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Given an observable O, the spectral decomposition
O|Yi) = Ai|¥i),

N
O =) AlL, I =|¥iX¥il.
i=1
shows us how we can shift from thinking about eigenvalues and eigenvectors to
complete sets of orthogonal projection operators,

N
{I,I,.... Iy}, D _IL =1, ILIL = L.
i=1
Here N must be less than or equal to the dimension of the Hilbert space of the system
being measured. We then focus on the probability rule

Pr(i) = (y|Iify), Pr(i) = Tr[ILp],
where the fact that the projectors sum to the identity guaratees that the sum of the
Pr(i) is one. The fact that the projectors are orthogonal means that the outcomes are
mutually exclusive - for any possible state we can prepare, if one of the outcomes i
has probability one then the others must have probability zero.

The framework of generalized quantum measurement establishes the following
fact. Any possible quantum measurement procedure can be specified by a set of
operators {E;}, which must satisfy

E; >0, ZEizl.
i

Here the inequality is meant to indicate that each operator E; should have real,
non-negative eigenvalues, and it is important to note that the number of operators in
the set is not bounded by the dimension of the Hilbert space of the system being
measured. The probability rule now generalizes to

Pr(i) = (y|Eily), Pr(i) = Tr[Eip],
and again we have normalization of the probabilities by construction. Theory
guarantees us not only that any possible measurement procedure can be abstractly
represented in this way, but also that any such compete set of positive operators is in
principle implementable as a measurement procedure.

As for conditioning, the usual rule of “collapse onto an eigenstate” can be
represented by the conditional evolution rule

Ii|y) _ _ipIl
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In the more general case, the conditional rule for a given {E;} depends on the details
of exactly how the measurement is implemented. That information can be represented
by decomposing each of the operators E; further:

ly) ~




Ei = D (A)'A;,
j

where the summation can be over any number of elements (often only one) and each
Ajj is a positive operator. Given such a decomposition, the conditional evolution rule is

> AipAp)'
Tr[ 3 Aip (A ]

That'’s a lot of notation, but introducing it will allow us now to talk about some very
fundamental features of quantum measurement theory.

Say we have a quantum system A whose state is described by a vector in a
two-dimensional Hilbert space Ha,

=

|‘“PA> S HA.

We consider a scenario in which someone has prepared A in one of the following two
states,

|W.(0)) = cosh|0a)+sinb|1a),
|W_(0)) = cosf|0a)—sind|1a),

where 0 < 6 < Z-. The inner product between these vectors is easily seen to be

(P-(0)|¥+(0)) = (cos{0a|—sinO{1a|)(cosO|0a)+sinb|1a))
= c0s20 — sin?é,

which is nonzero for any 6 in the open inverval [0, z/4). Hence we know that there is no

measurement that can distinguish perfectly between the two alternatives.

It is easy to show that the optimal projective measurement for distinguishing two
non-orthogonal vectors consists of

1Eiy = Il = [+ )(+ [Tl = | = X~ [},

|+>z%<|oA>+|1A>>,

=)= 500~ 11a)).
The operators IT, and IT- project onto an orthogonal pair of vectors that ‘straddles’ the

alternatives |V, (0) ) and |'\Y_(0) ). The measurement outcome probabilites are easily
computed. In the case that |\V..(0) ) is actually prepared,

Pr( +|¥+(0)) = (¥+(0)|IL. ['Y.(0))

2
(COSO(0A | +SiNO( La |)%(|0A>+ 114))

= %| cosf +sing|?

= %(00529 +2c0s@sing + sin?0)

_ 1 + cosfsing,

2




Pr( —|¥+(6)) = (Y+(0)[T1-|¥+(6))

2
(COSO(0A | +SINO(La|)—L=(|0a) — [1a))

J2
= %| cos —sind |?
= % —cos@sing.

Clearly Pr( + |W.(0)) +Pr( — |¥.(0)) = 1, and the probability of error here is
Pr( — |¥+(0)) > 0. In the case that |'V_(0) ) is actually prepared,

Pr(+|¥-(0)) = (Y-(0)|IL. ['Y-(6))

2

(COSO(0a | — SINO( La |)%(|0A>+ 114))

= %| cosf —sing|?

_ 1 cosfsing,

2
(Y-(0)[TL|'¥-(0))

Pr( - |¥-(0))

2

(cos0<oA|—sinf%lﬂ)%qom— 11a))

= %| cos@ +sind |?

-1 + cosfsing.

2
Again the probabilities are clearly normalized and the probability of error is the same
Pr( + |¥-(0)) > 0. Recall from last time that

PEpo.p1) = 5 — 5 Trlpo—pil = 5 — 5 2 I,
J

where {1;} are the eigenvalues of the matrix I' = po — p1. In this case we have
c0s20 sinfcosh )

sinfcosf | sin0

c0s260 —sin@coso
p1=|¥Y-X¥Y-| - :

po = [P )(Fa] » (

—sin@cos@ | sin%0

ro 0 2sin@cos0
2sinfcosO | 0 '

The eigenvalues of I" are +2sinfcos6, so we should indeed have
PE(po, p1) = % — sinfcosé.

Since the probabilities of error are greater than zero for the projective



measurement strategy, even when ¢ is close to /4, we can never really be sure in any
single trial that we have obtained a ‘correct’ answer. The particular pair of projectors
described above minimizes the probabilities of error for any standard measurement.
Now that we have learned about generalized measurements, however, a rather
different type of strategy may come to mind. It turns out that we can describe a
measurement that yields ‘guaranteed’ results in the sense that when we get a ‘+'
outcome we may be absolutely sure that the state was |V, (0) ), and when we get a *—’
result we may be absolutely sure that the state was |'V_(0) ). The catch is that we
sometimes get an inconclusive result for the measurement, which must necessarily
have more than two outcomes!

Let us try to construct this measurement from scratch. If we want to have a
measurement outcome that absolutely excludes the possibility |'V_(0) ), we should
choose a projector onto the vector perpendicular to it:

I, = | —1 >< —L |,
| =) =sinf|0a)+cosb|1a),
(=1 |¥-(0)) = (sin6{0a |+ cosO{1a])(cosO|0a)—sinO|1a))
sinfcosf — coshsinf
= 0.

Any time we obtain the measurement outcome corresponding to this projector, we
may be absolutely sure that the state was not prepared in state |\Y_(0) ), hence in our
scenario the preparation must have been | V. (0) ). Likewise, we can easily find a
projector that excludes | V.. (0) ),

I, =+ X +. ],
| +. ) =sinf|0a)—cosO|1a),
(+.|¥Y+(0)) = (siNG{0a| —CcosO{1a])(c0sO|0a)+SiNO|1A))
sinfcosf — coshsinf
= 0.

Now the difficulty is that

sin@ - sin@ -
I, +1II,, < ( sin@ | cosd >+ ( sin@ | —cosé )
coso —Ccosf
B sin%d | sinfcosh ) sin20 —sinfcoso
sin@cos@ | cos20 —sinfcoso c0s26

- 2sin20 0
0 20520

is clearly not equal to the identity operator, hence this particular pair of projectors is
not complete.

We can try to salvage our strategy by noting that the addition of a third operator




205260 0
2E; & -
0 2sin2%0

would make the set at least proportional to the identity,

2sin%0 0 205260 0
H7L+H+i+2E? Aand —+ -
0 205260 0 2sin2%0
(1210
02 )

The operator E- is clearly positive since it is diagonal and its diagonal elements are
the squares of real numbers, hence the set {E. = %H_L, E.= %Hﬂ, E,} forms a
valid POVM! So in principle, we know that there is a tri-valued measurement whose
outcome probabilities are given by:

= ¥, (0) ¥_(0)
+ | (L) TP (0)) 0

- 0 L(P_(0) [T |Y-(0)) |
2 (PL0)|E-|Y0)) | (P (O)|E|V_(0))

Computing these explicitly,
(VL0 ITL.|P..(0))

%|(cos@<OA | +sinO(1a])(5iNO|0a ) + cOSO|1a ))|?

%| cosfsind + sin@cosh |?

25in%0 cos?6,

%Kcos@(OA | —sin6(1a|)(sin6]0a) — cosO|1a))|?

%011_(9) ITL.|¥_(0))

%| cos@sind + sin@cosh |?

25in%0 cos20,




(¥.0)|E>|%.0)) = (| cose [ sine |
)

= ( cos | sind

cos?0| O cosf
0 |sin2%0 siné
c0s30

sin%g

cos?0| 0 cos6
0 |sin2%0 —sind
co0s30
—sin0

= c0s*0 + sin*o,

(¥_(0)|Eo|¥_(0)) = ( cos | —sing

N—

VR

= ( cosf | —sind )

= c0s*0 + sin“0.

Hence our table is

V.(0) Y_(0)
+ | 2sin?0cos?0 0
- 0 2sin%0cos20 |
? | cos*0 +sin*0 | cos*0 + sin“0

We clearly see that the columns are normalized, as required,
25in260c0s26 + cos*0 + sin%0 = (cos20 + sin%h)” = 1.

Our probabilites of ‘making the wrong guess’ are zero, our probabilites of getting the
correct answer (and knowing it!) are 2sin?0cos? for either preparation, and our
probabilites of getting an inconclusive result ‘2’ are cos*6 + sin“d. You may find it
enlightening to look at a plot of these quantities:
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Here the x-axis is 6 (in units of x), the red curve is the probability of an unambiguous
correct result, and the black curve is the probability of an inconclusive result. At 6 = 0



the two states |'V.(0) ) are identical so we can only get inconclusive results, and at
0 = n/4 the two states are orthogonal. There it is clear that the tri-valued measurement
is a bad idea (since the probability of success is 0.5 instead of 1), but in between it
seems fair to say that we have gained something since we can sometimes obtain the
correct answer without ever making an incorrect guess!

But have we actually made an optimal choice for the third positive operator E-, for
this general measurement scheme? Note that we could have also considered any
POVM of the form

E+ = %H—Lu
E_-= %Hﬂ,
E,=1-(E,+E.),

where 0 < p < 1is an adjustable real parameter. Then the probabilities of error are still
clearly zero, so to optimize p it suffices to minimize the probability of inconclusive
outcome,

Pr(?) = (Y+(0)|E2|'¥+(0)) = (‘Y-(6)|E-['¥-(6)),

where the two expectation values are equated by symmetry. Going back to a matrix
representation, we may compute

E,=1-(E,+E.)

_(]1]0 p(|2sin?0 0
01 2 0 |2cos?0
[ |1-psin®0 0
0 1-pcos2d | )
1—psin?0 0 cosf
(E2) = ( cosf | sind ) P :
0 1 —pcos?0 sinf

_ (1 - psin20)cos6
= ( cos@ | sinf ) -
(1 -pcos?0)sing
= (1 - psin?0)cos20 + (1 — pcos2)sin?é
= 1 - 2psin20cos?0.
We note that since 0 < sin?0cos?0 < 1/4 for 6 e [0, /4], we should make p as large as
possible to minimize Pr(?). However, we must take care to ensure that E, remains a

positive operator! Since it is diagonal this boils down to making sure that its diagonal
elements are non-negative, so we have

p~! = max(sin20,cos20).

Since 0 € [0,7/4], we can set p = cos~?0 and thus



1—tan%0 |0
E, = ,
0 0

Pr(?) = (E») = 1 —2sin%0.
With this new choice of POVM, our outcome probability table looks like
L1 W.(0) Y_(0)

+| 2sin%0 0

— 0 2sin%0

? | 1-2sin%0 | 1 - 2sin?0

with graph:

s s s s
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Here again the x-axis is 6 in units of 7, the red curve is the probability of getting the
correct unambiguous answer, and the black curve is the probability of getting the
inconclusive answer. This looks much better since Pr(?) now goes to zero at 6 = 7/4.

So what is this optimal E,? Looking at its matrix form

1 —tan?
E, an<0 | 0
0 0

we see that it is proportional to a projector,

E, = (1 -1tan?0)|0a X 04|
= (1 -tan?0)IIo.

Hence we find that we may think of the optimal POVM,

{% cos—20T1_, , % cos~20TL,,, (1 - tanze)l'[o},

as projections onto a set of three vectors {| —, ),| +. ), |0a )} with optimized ‘weights.’
It is interesting to note that for general p, our third operator

1 - psin?0 0
E, =
0 1 - pcos?6




is not proportional to a projector since

(E2) - 1 —2psin?g + p?sin*o 0
' 0 1 - 2pcos?0 + p?cos*o

* O{E?
for any scalar «. Looking at the original p = 1 case for example,

e 1 —sin2%0 0 cos?0| 0
’) = = 1
' 0 1 — cos26 0 |sin2%0
(Er)? cos*9| 0
' 0 |sin*0| )

The only way to have proportionality is if

c0s20 = sin?e,
or 0 = n/4 which is a boundary of the interval we consider. Hence we have our first
example of a ‘useful’ Effect that is neither a projector nor proportional to a projector.
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