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Given an observable O, the spectral decomposition
O |i   i |i ,

O ∑
i1

N

ii, i  |i 〈i |,

shows us how we can shift from thinking about eigenvalues and eigenvectors to
complete sets of orthogonal projection operators,

1,2,… ,N, ∑
i1

N

i  1, ij  i ij.

Here N must be less than or equal to the dimension of the Hilbert space of the system
being measured. We then focus on the probability rule

Pri  〈 |i |, Pri  Tr i,
where the fact that the projectors sum to the identity guaratees that the sum of the
Pri is one. The fact that the projectors are orthogonal means that the outcomes are
mutually exclusive - for any possible state we can prepare, if one of the outcomes i
has probability one then the others must have probability zero.

The framework of generalized quantum measurement establishes the following
fact. Any possible quantum measurement procedure can be specified by a set of
operators Ei, which must satisfy

Ei  0, ∑
i

Ei  1.

Here the inequality is meant to indicate that each operator Ei should have real,
non-negative eigenvalues, and it is important to note that the number of operators in
the set is not bounded by the dimension of the Hilbert space of the system being
measured. The probability rule now generalizes to

Pri  〈 |Ei |, Pri  Tr Ei,
and again we have normalization of the probabilities by construction. Theory
guarantees us not only that any possible measurement procedure can be abstractly
represented in this way, but also that any such compete set of positive operators is in
principle implementable as a measurement procedure.

As for conditioning, the usual rule of “collapse onto an eigenstate” can be
represented by the conditional evolution rule

|  i|
〈 |i |

,  
i i

Tr i 
.

In the more general case, the conditional rule for a given Ei depends on the details
of exactly how the measurement is implemented. That information can be represented
by decomposing each of the operators Ei further:
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Ei ∑
j

Aij
†Aij,

where the summation can be over any number of elements (often only one) and each
Aij is a positive operator. Given such a decomposition, the conditional evolution rule is

 
∑ j Aij  Aij

†

Tr ∑ j Aij  Aij
† .

That’s a lot of notation, but introducing it will allow us now to talk about some very
fundamental features of quantum measurement theory.

Say we have a quantum system A whose state is described by a vector in a
two-dimensional Hilbert space HA,

|A  ∈ HA.
We consider a scenario in which someone has prepared A in one of the following two
states,

|   cos| 0A   sin| 1A ,
|−   cos| 0A  − sin| 1A ,

where 0 ≤   
4 . The inner product between these vectors is easily seen to be

〈− |   cos〈0A | − sin〈1A |cos| 0A   sin| 1A 

 cos2 − sin2,
which is nonzero for any  in the open inverval 0,/4. Hence we know that there is no
measurement that can distinguish perfectly between the two alternatives.

It is easy to show that the optimal projective measurement for distinguishing two
non-orthogonal vectors consists of

Ei    |  〈  | , −  | − 〈 − | ,

|   ≡ 1
2
| 0A   | 1A ,

| −  ≡ 1
2
| 0A  − | 1A .

The operators  and − project onto an orthogonal pair of vectors that ‘straddles’ the
alternatives |  and |− . The measurement outcome probabilites are easily
computed. In the case that |  is actually prepared,

Pr  | ≡ 〈 | |

 cos〈0A |  sin〈1A | 1
2
| 0A   | 1A 

2

 1
2 | cos  sin |2

 1
2 cos2  2cos sin  sin2

 1
2  cos sin,
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Pr − | ≡ 〈 |− |

 cos〈0A |  sin〈1A | 1
2
| 0A  − | 1A 

2

 1
2 | cos − sin |2

 1
2 − cos sin.

Clearly Pr  |  Pr − |  1, and the probability of error here is
Pr − |  0. In the case that |−  is actually prepared,

Pr  |− ≡ 〈− | |−

 cos〈0A | − sin〈1A | 1
2
| 0A   | 1A 

2

 1
2 | cos − sin |2

 1
2 − cos sin,

Pr − |− ≡ 〈− |− |−

 cos〈0A | − sin〈1A | 1
2
| 0A  − | 1A 

2

 1
2 | cos  sin |2

 1
2  cos sin.

Again the probabilities are clearly normalized and the probability of error is the same
Pr  |−  0. Recall from last time that

PE0,1  1
2 −

1
4 Tr |0 − 1 |  1

2 −
1
4 ∑

j
|j |,

where j are the eigenvalues of the matrix Γ  0 − 1. In this case we have

0  | 〈 | →
cos2 sincos
sincos sin2

,

1  |− 〈− | →
cos2 − sincos
− sincos sin2

,

Γ 
0 2sincos
2sincos 0

.

The eigenvalues of Γ are 2sincos, so we should indeed have
PE0,1  1

2 − sincos.

Since the probabilities of error are greater than zero for the projective
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measurement strategy, even when  is close to /4, we can never really be sure in any
single trial that we have obtained a ‘correct’ answer. The particular pair of projectors
described above minimizes the probabilities of error for any standard measurement.
Now that we have learned about generalized measurements, however, a rather
different type of strategy may come to mind. It turns out that we can describe a
measurement that yields ‘guaranteed’ results in the sense that when we get a ‘’
outcome we may be absolutely sure that the state was | , and when we get a ‘−’
result we may be absolutely sure that the state was |− . The catch is that we
sometimes get an inconclusive result for the measurement, which must necessarily
have more than two outcomes!

Let us try to construct this measurement from scratch. If we want to have a
measurement outcome that absolutely excludes the possibility |− , we should
choose a projector onto the vector perpendicular to it:

−  | − 〈 − |,
| −  ≡ sin| 0A   cos| 1A ,

〈 − |−   sin〈0A |  cos〈1A |cos| 0A  − sin| 1A 

 sincos − cos sin
 0.

Any time we obtain the measurement outcome corresponding to this projector, we
may be absolutely sure that the state was not prepared in state |− , hence in our
scenario the preparation must have been | . Likewise, we can easily find a
projector that excludes | ,

  |  〈  |,
|   ≡ sin| 0A  − cos| 1A ,

〈  |   sin〈0A | − cos〈1A |cos| 0A   sin| 1A 

 sincos − cos sin
 0.

Now the difficulty is that

−   ↔
sin
cos

sin cos 
sin
−cos

sin −cos


sin2 sincos

sincos cos2


sin2 − sincos
− sincos cos2


2sin2 0

0 2cos2

is clearly not equal to the identity operator, hence this particular pair of projectors is
not complete.

We can try to salvage our strategy by noting that the addition of a third operator
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2E? ↔
2cos2 0

0 2sin2

would make the set at least proportional to the identity,

−    2E? ↔
2sin2 0

0 2cos2


2cos2 0
0 2sin2


2 0
0 2

.

The operator E? is clearly positive since it is diagonal and its diagonal elements are
the squares of real numbers, hence the set E ≡ 1

2 − , E− ≡ 1
2  , E? forms a

valid POVM! So in principle, we know that there is a tri-valued measurement whose
outcome probabilities are given by:

 −

 1
2 〈 |− |  0

− 0 1
2 〈− | |− 

? 〈 |E? |  〈− |E? |− 

.

Computing these explicitly,
1
2 〈 |− |   1

2 |cos〈0A |  sin〈1A |sin| 0A   cos| 1A |2

 1
2 | cos sin  sincos |2

 2sin2cos2,
1
2 〈− | |−   1

2 |cos〈0A | − sin〈1A |sin| 0A  − cos| 1A |2

 1
2 | cos sin  sincos |2

 2sin2cos2,
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〈 |E? |   cos sin
cos2 0

0 sin2

cos
sin

 cos sin
cos3

sin3

 cos4  sin4,

〈− |E? |−   cos − sin
cos2 0

0 sin2

cos
− sin

 cos − sin
cos3

− sin3

 cos4  sin4.
Hence our table is

 −

 2sin2cos2 0
− 0 2sin2cos2

? cos4  sin4 cos4  sin4

.

We clearly see that the columns are normalized, as required,
2sin2cos2  cos4  sin4  cos2  sin22  1.

Our probabilites of ‘making the wrong guess’ are zero, our probabilites of getting the
correct answer (and knowing it!) are 2sin2cos2 for either preparation, and our
probabilites of getting an inconclusive result ‘?’ are cos4  sin4. You may find it
enlightening to look at a plot of these quantities:
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Here the x-axis is  (in units of ), the red curve is the probability of an unambiguous
correct result, and the black curve is the probability of an inconclusive result. At   0
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the two states |  are identical so we can only get inconclusive results, and at
  /4 the two states are orthogonal. There it is clear that the tri-valued measurement
is a bad idea (since the probability of success is 0.5 instead of 1), but in between it
seems fair to say that we have gained something since we can sometimes obtain the
correct answer without ever making an incorrect guess!

But have we actually made an optimal choice for the third positive operator E?, for
this general measurement scheme? Note that we could have also considered any
POVM of the form

E 
p
2 − ,

E− 
p
2 ,

E?  1 − E  E−,
where 0 ≤ p ≤ 1 is an adjustable real parameter. Then the probabilities of error are still
clearly zero, so to optimize p it suffices to minimize the probability of inconclusive
outcome,

Pr?  〈 |E? |   〈− |E? |− ,
where the two expectation values are equated by symmetry. Going back to a matrix
representation, we may compute

E?  1 − E  E−


1 0
0 1

− p
2

2sin2 0
0 2cos2


1 − p sin2 0

0 1 − pcos2
,

〈E?   cos sin
1 − p sin2 0

0 1 − pcos2

cos
sin

 cos sin
1 − p sin2cos

1 − pcos2 sin

 1 − p sin2cos2  1 − pcos2 sin2

 1 − 2p sin2cos2.
We note that since 0 ≤ sin2cos2 ≤ 1/4 for  ∈ 0,/4, we should make p as large as
possible to minimize Pr?. However, we must take care to ensure that E? remains a
positive operator! Since it is diagonal this boils down to making sure that its diagonal
elements are non-negative, so we have

p−1  maxsin2, cos2.
Since  ∈ 0,/4, we can set p  cos−2 and thus
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E? 
1 − tan2 0

0 0
,

Pr?  〈E?   1 − 2sin2.
With this new choice of POVM, our outcome probability table looks like

 −

 2sin2 0
− 0 2sin2

? 1 − 2sin2 1 − 2sin2

,

with graph:
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Here again the x-axis is  in units of , the red curve is the probability of getting the
correct unambiguous answer, and the black curve is the probability of getting the
inconclusive answer. This looks much better since Pr? now goes to zero at   /4.

So what is this optimal E?? Looking at its matrix form

E? 
1 − tan2 0

0 0

we see that it is proportional to a projector,
E?  1 − tan2| 0A 〈0A |
≡ 1 − tan20.

Hence we find that we may think of the optimal POVM,
1
2 cos−2− , 1

2 cos−2 , 1 − tan20 ,

as projections onto a set of three vectors  | −  , |   , | 0A  with optimized ‘weights.’
It is interesting to note that for general p, our third operator

E? 
1 − p sin2 0

0 1 − pcos2
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is not proportional to a projector since

E? 2 
1 − 2p sin2  p2 sin4 0

0 1 − 2pcos2  p2 cos4

≠ E?

for any scalar . Looking at the original p  1 case for example,

E? 
1 − sin2 0

0 1 − cos2


cos2 0
0 sin2

,

E? 2 
cos4 0

0 sin4
.

The only way to have proportionality is if
cos2  sin2,

or   /4 which is a boundary of the interval we consider. Hence we have our first
example of a ‘useful’ Effect that is neither a projector nor proportional to a projector.
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