
APPPHYS225 - Friday 7 November 2008

Before moving on to new material, let’s take a quick look at an experimental
implementation of a form of quantum cloning:
 W. T. M. Irvine et al., “Optimal Quantum Cloning on a Beam Splitter,” Phys.

Rev. Lett. 92, 047902 (2004).
The experiment described in this paper actually implements an approximate form of
pure-state cloning, which works in principle for any input state of a two-dimensional
quantum system but only has fidelity 2/3.

In order to explain the approximate cloning scheme, we’ll need to start by noting
an important property of optical beamsplitters. Recall from our discussion of the
‘quantum eraser’ scheme (class notes of 11/4) that if  and  are annihilation
operators for optical modes coming into an ideal 50/50 beamsplitter, then the
annihilation operators of the output modes may be written

  1
2
  ,   1

2
 − .

Note that ,  0 and
,   −   1

2    −  −  −     0,

†,†  †† − ††  − − †  0.

The states with two photons in the  mode, two photons in the  mode, and one
photon in each may thus be written

†
2
| 00   1

2 
†  ††  †| 00 

 1
2 

††  2††  ††| 00 

 1
2

|20   | 11   1
2

|02 ,

| 20   1
2 |20   1

2
|11   1

2 |02 

†
2
| 00   1

2 
† − †† − †| 00 

 1
2 

†† − 2††  ††| 00 

 1
2

|20  − | 11   1
2

|02 ,

| 02   1
2 |20  − 1

2
|11   1

2 |02 

and

1



††| 00   1
2 

† − ††  †| 00 

 1
2 

†† − ††| 00 ,

| 11   1
2

|20  − 1
2

|02 .

It follows that for a state on the input modes
| 11   1

2
|20  − 1

2
|02 ,

we have the interesting fact that it is possible for both photons to go out either the 
mode or the  mode but we cannot have one photon in each. This type of ‘bunching’ is
a consequence of the fact that photons are bosons, and occurs in practice only when
the photons coming in to the beamsplitter have the same ‘shape’ (waveform) and
polarization. Photons that have orthogonal polarizations and/or waveforms will act
independently at the beamsplitter.

Now consider a situation where we have two photons (call them A and B),
assumed to have identical waveforms, arriving synchronously on the two input ports of
an ideal 50/50 (non-polarizing) beamsplitter. The quantum state that we want to clone
is the polarization state of the A photon, which we can write

|A   ch|HA   cv|VA ,
where |HA , |VA  are basis states representing horizontal and vertical polarization.
The initial polarization state of the target photon is the completely mixed state,

B  1
2 |HB 〈HB |  1

2 |VB 〈VB |.

(In the paper, this completely mixed state is prepared by producing a Bell singlet state
of B and an auxilliary photon C, via spontaneous parametric down-conversion, and
then tracing out the state of photon C.) Note that we can just as well write

B  1
2 |B 〈B |  1

2 | ̄B 〈 ̄B |,

where
|B   ch|HB   cv|VB , | ̄B   cv|HB  − ch|VB ,

since the orthonormal pair of states |B , | ̄B  is just as good a basis for the B Hilbert
space as |HB , |VB  is. We can now see the basic idea of the probabilistic cloning
scheme. We can think of the initial state of the target photon as being either |B  or
| ̄B  with probability 1/2, and thus half the time we expect to observe the bunching
effect described above. This will cause both the input and target photons to exit from
the same port of the beamsplitter, in the same polarization state |A  ⊗ |B . Thus if
we are regarding one specific output port to be the desired output port, we succeed in
cloning the polarization state of the input photon with overall probability 1/4. Now with
probability 1/2 the initial state of the target photon should be regarded as | ̄B , in
which case the input and target photons will behave independently at the beamsplitter.
There is thus an overall probability 1/8 that both photons go into the desired output
port (with polarization state |A  ⊗ | ̄B ), overall probability 1/8 that both photons go
out the wrong output port, and overall probability 1/4 that one photon goes out each
output port.
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Summing this all up... If we pay attention only to the set of events in which two
photons emerge from the desired output port, there is a relative probability of 2/3 that
cloning succeeds and probability 1/3 that we instead obtain the orthogonal
complement of the input state in the output state, but it is important to note that we
have no way of knowing which. Hence we should think of the output as a mixed state
with weight 2/3 for the cloned state and 1/3 for the orthogonal complement. As
described in the introduction of this experimental paper, this is actually the best
outcome allowed by quantum mechanics for an approximate cloning scheme that
works for arbitrary two-dimensional input states.

A more formal calculation can be carried out using creation operators, as follows
(we will reproduce the calculation shown in the experimental paper, but with a
permutation of the photon labels to maintain consistency with our previous cloning
discussions). Keeping in mind the extra C photon produced by the parametric
down-conversion process, we can write the initial state of all the input modes as

|ABC   1
2

b
†c̄† − b̄

†c† a† | 0,

where | 0 denotes the vacuum state of all optical modes, a† ,b
† ,c† are creation

operators for photons with polarization state |, and a̄† ,b̄
† ,c̄† are creation

operators for photons with polarization state | ̄. Here we take advantage of the fact
that the form of a Bell singlet state is invariant under local changes of basis, i.e.,

BC
−  1

2
|HBVC  − |VBHC   1

2
|B̄C  − | ̄BC .

Then taking into account the beamsplitter transformation,
e†  1

2
a†  b

† , f
†  1

2
a† − b

† ,

a†  1
2

e†  f
† , b

†  1
2

e† − f
† ,

and similarly for the ̄ polarization modes, we have
|ABC   1

2 2
e† − f

† c̄† − e̄† − f̄
† c† e†  f

† | 0

 1
2 2

e† − f
† e†  f

† c̄† − e̄† − f̄
† e†  f

† c† | 0

 1
2 2

e†e† − f
†f
† c̄† − e̄†e†  e̄†f

† − e†f̄
† − f̄

†f
† c† | 0.

If we regard the e mode as the desired output mode, then we can group the relevant
terms in which two photons actually are present in that mode:
|ABC   1

2 2
e†e†c̄† − e̄†e†c† | 0 − 1

2 2
f
†f
†c̄†  e̄†f

† − e†f̄
† − f̄

†f
† c† | 0

 1
2 2

2 |2e0ē 0c1 c̄  − | 1e1ē 1c0 c̄  − 1
2 2

 0e1ē1f 0 f̄ 1c0 c̄  − 1e0ē1f 0 f̄ 1c0 c̄ 

− 1
2 2

2 2f 0 f̄ 0c1 c̄  − 1f 1 f̄ 1c0 c̄  .
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The notation here is such that, for example, | 2e0ē 0c1 c̄  indicates a state with two
photons in the e mode and one in the c̄ mode. Note that factors of 2 have
appeared in two places as a result of the repeated action of a creation operator. The
overall probability of the terms with two photons in the e output channel is easily seen
to be 1/4  1/8  3/8. If we post-select the subset of events in which two photons
emerge in the desired output channel, and trace over the polarization state of the C
photon, we end up with

B 
2
3 |B 〈B |  1

3 | ̄B 〈̄B |

for the polarization state of the B photon. As promised this has fidelity 2/3 with respect
to the desired ‘clone’ state of |B .

A comprehensive survey of quantum cloning work, as of a few years ago, can be
found in:
 V. Scarani et al., “Quantum cloning,” Rev. Mod. Phys. 77, 1225 (2005).

Nonlocality without entanglement
In this section we discuss results from the following paper:
 C. H. Bennett et al., “Quantum nonlocality without entanglement,” Phys. Rev. A

59, 1070 (1999).
We have discussed on many occasions in this class the fact that if we have a quantum
probability scenario in which all the state matrices and observables that we happen to
be interested in commute, the quantum model can be mapped to an entirely
equivalent classical probability model by switching to a basis in which all matrices are
simultaneously diagonalized. For example, if we are considering an ensemble of
mutually orthogonal pure states and we wish only to consider measurements that can
distinguish between these states, the state matrices and the relevant projection
operators can all be diagonalized in the basis specified by the pure states (as vectors)
themselves. We then associate each quantum pure basis state with a distinct
configuration of the classical model and consider the ensemble to represent an
essentially classical set of alternatives because they can be perfectly distinguished by
measurement of a single system.

It is interesting and important to note, however, that subtleties can arise if we are
talking about joint systems. In particular, in scenarios as elementary as a pair of
three-dimensional Hilbert spaces or a triple of two-dimensional Hilbert spaces it is
possible to find ensembles of mutually orthogonal pure states that cannot be perfectly
distinguished by measurements performed on a single system, if we require those
measurements to be local. That is, if we imagine that (in a HA ⊗ HB scenario) Alice
and Bob each have one of the subsystems in their laboratory, and allow them only to
perform POVM’s of the form 1A ⊗ Ei

B and F jA ⊗ 1B, then Alice and Bob cannot
perfectly distinguish among the mutually orthogonal pure states even if we allow them
to perform multiple local measurements combined with unlimited classical
communication. Of course, if Alice and Bob were to bring the subystems back together
they could simply perform the projective measurement |i 〈i | to determine which
joint state they have. In this sense one feels that there is something non-local about
such an ensemble of quantum states, even though there is no entanglement and
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therefore no possibility of violating a CHSH inequality or performing teleportation.
The canonical example of a locally-immeasurable set of orthogonal product states

requires two 3-dimensional Hilbert spaces, HA  span| 0A , | 1A , | 2A  and
HB  span| 0B , | 1B , | 2B . Consider the following orthonormal set of nine basis states
for HA ⊗ HB, each of which is a product state:
|1   | 1A  ⊗ | 1B , |2   1

2
|0A  ⊗ | 0B   | 1B , |3   1

2
|0A  ⊗ | 0B  − | 1B ,

|4   1
2

|2A  ⊗ | 1B   | 2B , |5   1
2

|2A  ⊗ | 1B  − | 2B ,

|6   1
2
|1A   | 2A  ⊗ | 0B , |7   1

2
| 1A  − | 2A  ⊗ | 0B ,

|8   1
2
 |0A   | 1A  ⊗ | 2B , |9   1

2
 |0A  − | 1A  ⊗ | 2B .

The way that these states ‘cover’ HA ⊗ HB is depicted graphically in Figure 1 of the
paper cited above.

To illustrate in a very loose way why this orthogonal set of product states is not
locally measurable, we start by examining an LOCC (local operations with classical
communication) procedure that is capable of perfectly distinguishing among eight of
the nine states listed above, with |4  removed. It turns out that this can be
accomplished by Bob and Alice alternately and ‘adaptively’ making local projective
measurements, communicating the results to each other after each measurement. can
make locally. The procedure is specified in Figure 3 of the paper, and is perhaps best
understood with reference to the graphical depiction of Figure 1 or 2.

In fact this exact same procedure can be applied in the full nine-state case, but it
will fail to distinguish between states 4 and 5, although it will correctly distinguish
cases in which the state is either 4 or 5 from cases in which it is in 1,2,3,6,7,8,9. If
we assume that the states are presented with equal probability this is not so bad, as
the average information gain will be close to the full log29 ≈ 3.1699 bits (the actual
value for this procedure is 2.9477 bits). The procedure can be patched up to do a bit
better, by replacing Bob’s opening measurement of 01B,2B, where

01B  | 0B 〈0B |  | 1B 〈1B |, 2B  | 2B 〈2B |,
with a POVM having operation elements B1r1,B2r1, where

B1r1  | 0B 〈0B |  1
2

|1B 〈1B |, B2r1  1
2

|1B 〈1B |  | 2B 〈2B |.

Before proceding let us quickly recall some basic expressions for working with
operation elements Ai in the pure state case:

Pri  〈|Ai
†Ai |  |Ai ||2, | i

Ai |

〈|Ai
†Ai |

.

If Bob obtains the result corresponding to B1r1, then states |4  and |5  would evolve
according to
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|4   1A ⊗ | 0B 〈0B |  1
2

|1B 〈1B | 1
2

| 2A  ⊗ | 1B   | 2B   1
2 |2A  ⊗ | 1B ,

|5   1A ⊗ | 0B 〈0B |  1
2

|1B 〈1B | 1
2

| 2A  ⊗ | 1B  − | 2B   1
2 |2A  ⊗ | 1B ,

(note that these are left in an unnormalized form  Ai | such that |Ai ||2  Pri)
and would therefore be left indistinguishable, but if Bob obtains the result
corresponding to B2r1,

|4   1A ⊗ 1
2

|1B 〈1B |  | 2B 〈2B | 1
2

| 2A  ⊗ | 1B   | 2B   | 2A  ⊗ 1
2 |1B   1

2
|2B  ,

|5   1A ⊗ 1
2

|1B 〈1B |  | 2B 〈2B | 1
2

| 2A  ⊗ | 1B  − | 2B   | 2A  ⊗ 1
2 |1B  − 1

2
|2B  ,

which are not indistinguishable but also not orthogonal:
〈4 |4   〈5 |5   3

4 ,

|〈4 |5 |
〈4 |4 〈5 |5 


1
4 −

1
2

3
4

 1
3 .

We see from these calculations that PrB1r1  1/4 and PrB2r1  3/4 for initial state
|4  or |5 , and so we expect to have some improvement in the overall performance
of the procedure. The remainder of the procedure must be further modified to take
advantage of this modified initial step, but in the paper it is reported that the resulting
average information gain is 2.9964 bits.

A ‘best known’ strategy for Alice and Bob in the full nine-state scenario is
described in the paper, starting at the bottom of page 1078, and results in an average
information gain of 3.0125 bits, where log29 ≈ 3.1699. The paper contains a long and
involved proof that it is not possible for Alice and Bob to distinguish all nine states
perfectly using only local operations and classical communication.
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