
APPPHYS225 - Friday 14 November 2008

The quantum example in today’s notes follows methods presented in G. Chiribella et
al., “Efficient Use of Quantum Resources for the Transmission of a Reference Frame,”
Phys. Rev. Lett. 93, 180503 (2004); and G. Chiribella et al., “Covariant quantum
measurements that maximize the likelihood,” Phys. Rev. A 70, 062105 (2004).

Yesterday we briefly examined the dihedral group D2, corresponding to the
symmetries of a rectangle. Its elements are e,a,b,c where a is the reflection through
1 − 3, b is the reflection through 2 − 4, and c is the rotation by , and the multiplication
table is

Today we begin by introducing a new linear representation motivated by the way that
D2 induces permutations of the four points labeled in the above figure. Looking at the
diagram we easily infer

e : 1  1, 2  2, 3  3, 4  4,
a : 1  1, 2  4, 3  3, 4  2,
b : 1  3, 2  2, 3  1, 4  4,
c : 1  3, 2  4, 3  1, 4  2.

If we define four basis vectors

v1 

1
0
0
0

, v2 

0
1
0
0

, v3 

0
0
1
0

, v4 

0
0
0
1

,

it follows that we should have matrix representations

Da 

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

, Db 

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

, Dc 

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

,
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with De equal to the 4  4 identity. We confirm

DaDb 

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 Dc,

DaDc 

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 Db,

DbDc 

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 Da,

and likewise for DbDc  Da, DcDa  Db, DcDb  Da.
Let us define a classical sample space for a pebble that can be placed on any one

of the four labeled points of the above rectangle diagram:
  1,2,3,4.

Here i corresponds to the configuration in which the pebble is placed on point i. We
can represent any probability density function m by a diagonal 4  4 state matrix,

 

m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

,

and note that the D2 permutations act on  via conjugation. For example,
a :   DaD†a



1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



m1 0 0 0
0 m4 0 0
0 0 m3 0
0 0 0 m2

,

where we have introduced the shorthand mi ≡ mi. Likewise the D2 permutations
can act on random variables via conjugation. If F is the matrix representation of a
function f , we have for example F  D†aFDa. Since the D matrices we are
working with are actually all real symmetric and orthogonal, we will drop the
conjugation symbols in what follows.
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Suppose we are interested in an estimation scenario in which you get to place the
pebble on whichever location you like, and then I secretly perform a random D2
transformation with uniform probability

Pre  Pra  Prb  Prc  1
4 .

Your task is to guess which transformation I performed, and the information you have
is the new location of the pebble. Clearly this estimation task cannot be performed
perfectly, since according to the permutations we noted above you will have an
ambiguity no matter which initial point you choose. For example, if you place the
pebble initially on point 1 the possible final points are 1 and 3. If you find it on point 1
after my transformation, you know only that the transformation was either e or a. If you
find it on point 3, you know only that the transformation was either b or c. Similar
scenarios hold for any other initial point, so overall you will only be able to guess the
correct transformation with probability 1/2.

The basic problem here is that the set of transformations we have chosen, the D2
transformations, share too much symmetry with the set of points on which you can
initially place the pebble. Note that if you were allowed to place the pebble initially on
one of the corners of the rectangle, you could determine the transformation with
probability 1.

But for today let’s stick with the set of symmetry points indicated on the rectangle
diagram. Although it can’t actually help the estimation problem to randomize the initial
position of the pebble, it is interesting to consider the way that D2 transformations map
an initial mixed state such as

12 

1
2 0 0 0

0 1
2 0 0

0 0 0 0
0 0 0 0

.

We have

De12De  12, Da12Da  1
2

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

≡ 14,

Db12Db  1
2

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

≡ 23, Dc12Dc  1
2

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

≡ 34.

Thus we recover a scenario in which the four D2 transformations map the initial state
12 into four distinct final states 12,14,23,34. Of course these states are not
mutually orthogonal, and as a result it is still not possible to guess the transformation
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with probability better than 1/2. Note that the fact that our initial mixed state ‘covered’ a
corner was important. If we started instead with the initial state 13 we would actually
have final states (extending the notation introduced above)

De13De  Da13Da  Db13Db  Dc13Dc  13,
hence we would be unable to guess with probability of success better than 1/4.

The mixed-state calculations suggest that it might be possible to do better in a
quantum generalization of this D2 estimation problem. Let us therefore retain exactly
the same set of 4  4 representation matrices De,Da,Db,Dc but open up the
state to pure states in a four-dimensional complex Hilbert space. Can we find an initial
quantum state such that we do better than the 1/2 probability of success for a classical
configuration space?

First let us note that there is no choice of intial state | that even enables perfect
detection of a non-trivial transformation, let alone perfect identification of the specific
transformation. In order to have perfect detection we would need D| to be
orthogonal to | for all  ≠ e,

〈|Da|  〈|Db|  〈|Dc|  0.
With a little foresight (drawn from a diagonalization performed below) we can
parametrize

| ↔ 1
2

1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

w
x
y
z

 1
2

w − y
x − z
w  y
x  z

,

and compute
〈Da  |w|2  |x|2  |y|2 − |z|2, 〈Db  |w|2  |x|2 − |y|2  |z|2, 〈Dc  |w|2  |x|2 − |y|2 − |z|2.

Normalization gives us |w|2  1 − |x|2 − |y|2 − |z|2, so in order for all of these
expectations to vanish we need

1 − 2|z|2  0, 1 − 2|y|2  0, 1 − 2|y|2 − 2|z|2  0.
Clearly we cannot satisfy all of these at the same time.

Following the spirit of the papers cited at the top of today’s notes, we therefore
proceed in a more sophisticated fashion by first writing an expression for the average
probability of error:

〈  ∑
∗∈e,a,b,c

Pr∗∑
≠∗

Pr|∗,∗.

Here the idea is that we will define a POVM Ee,Ea,Eb,Ec, with all E ≥ 0 and
∑E  1, so that

Pr |∗  Tr ED∗|〈|D∗,
where | is the initial state of the system, and

,∗  0,   ∗,
 1,  ≠ ∗.
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We note that this simple error function is covariant with respect to D2 in that
h,h∗  ,∗ for all h ∈ D2. To see this, just note that if   ∗ then h  h∗
for any h, and if  ≠ ∗ then h ≠ h∗ because every h has an inverse. It follows from
symmetry considerations that the optimal POVM should have the covariant form

E  DD,  ≥ 0.
Assuming this, we find that

Pr |∗  Tr ED∗|〈|D∗  Tr DDD∗|〈|D∗,
and the probability of success is thus

Pr∗ |∗  Tr D∗D∗D∗|〈|D∗
 Tr D∗ |〈|D∗
 Tr  |〈|,

where we have used the group multiplication property that D∗D∗  1 and cyclic
property of trace. We thus see that our task is to find  and | that jointly maximize
the likelihood function Tr  |〈|.

Again using clues from the above-cited papers, we begin by decomposing our
permutation-motivated representation of D2 into irreps. The abelian nature of the
group multiplication table tells us that any one of the three non-diagonal matrices
Da,Db,Dc could be a candidate Casimir operator, and a casual inspection of
their eigenvectors suggests that Dc is the best candidate. Its eigenvectors are

−1
0
1
0

,

0
−1
0
1

↔ −1,

1
0
1
0

,

0
1
0
1

↔ 1,

so the diagonalizing transformation that results is D  S −1DS with

S  1
2

1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

, S −1  1
2

1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1

.

This yields

Da 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

, Db 

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

, Dc 

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

.

It follows that our original ‘permutation’ representation decomposes into the direct sum
of four one-dimensional representations. We have two copies of the trivial
representation, one copy of the representation e  1,a  1,b  −1,c  −1, and one
copy of e  1,a  −1,b  1,c  −1. Note that the latter two representations are not
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equivalent. The methods of Chiribella et al. then suggest that we should take | as a
coherent superposition of states from each of the distinct irreps. In the original vector
basis,

| ↔ 1
6

1
0
1
0

 1
6

−1
0
1
0

 1
6

0
−1
0
1

 1
6

0
−1
2
1

,

where the three vectors left of the equality are eigenvectors of Dc corresponding to
the first, third and fourth irreps. We take equal coefficients in this superposition as
there is nothing a priori to distinguish the three one-dimensional irreps. It is perhaps
relevant to note that in the parametrization introduced above, this state corresponds to

w  y  z  1
3

, x  0,

which actually minimizes the quantity
|〈Da|2  |〈Db|2  |〈Dc|2  3 − 16  242,

which is proportional to the average overlap of the transformed states with the initial
state, where we have written  ≡ |y|2  |z|2 since y and z appear symmetrically. We
have

d
d → −16  48,  → 1

3 ,

from which w  y  z  1/ 3 immediately follows.
Now we need to determine . Again symmetry considerations from the papers

suggest   |〈|  |〈|, where

|  1
2

1
0
1
0

 1
2

−1
0
1
0

 1
2

0
−1
0
1

 3 |

is an unnormalized coherent superposition of the eigenstates of Dc corresponding to
the three included irreps and | is the eigenstate corresponding to the unused irrep.
The proportionality will be used to enforce

  DaDa  DbDb  DcDc  1.
We find by straightforward calculation that the required constant is 1/4, leaving us with

  1
8

0
−1
2
1

0 −1 2 1  1
8

0
1
0
1

0 1 0 1  1
4

0 0 0 0
0 1 −1 0
0 −1 2 1
0 0 1 1

,

which is positive and furthermore satisfies the POVM sum rule. As a result, we have
Ee   and
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Ea  1
4

0 0 0 0
0 1 1 0
0 1 2 −1
0 0 −1 1

, Eb  1
4

2 −1 0 1
−1 1 0 0
0 0 0 0
1 0 0 1

, Ec  1
4

2 1 0 −1
1 1 0 0
0 0 0 0
−1 0 0 1

.

We can then immediately verify that

Pr∗ |∗  1
24 Tr

0 0 0 0
0 1 −1 0
0 −1 2 1
0 0 1 1

0 0 0 0
0 1 −2 −1
0 −2 4 2
0 −1 2 1

 3
4 ,

and the probabilites of error are all 1/12. Hence we do in fact find that a higher
probability of success is possible in the quantum generalization of our model. The
covariant structure of the optimal POVM provided essential guidance for our
calculation.
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