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Quantum-state teleportation
Theory: C. H. Bennett et al., “Teleporting an Unknown Quantum State via Dual
Classical and Einstein-Podolsky-Rosen Channels,” Phys. Rev. Lett. 70, 1895 (1993).
Experiments: A. Furusawa et al, “Unconditional quantum teleportation,” Science 282,
706 (1998); D. Bouwmeester et al., “Experimental quantum teleportation,” Nature 390,
575 (1997); D. Boschi et al., “Experimental realization of teleporting an unknown pure
quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev.
Lett. 80, 1121 (1998); R. Ursin et al., “Quantum teleportation across the Danube,”
Nature 430, 849 (2004).

Say Alice has a two-level quantum system A prepared in initial state
|a   a0| 0a   a1| 1a .

She would like Charlie to have a two-level quantum system C prepared in the identical
state

|c   a0| 0c   a1| 1c .
However, let’s say she cannot directly send system A to Charlie, nor can she
communicate the coefficients a0,a1 with sufficient precision for their liking. In fact, let’s
imagine that Alice does not even know these coefficients explicitly – the initial state of
system A could have been prepared by a third person who refuses to tell her the
coefficients.

The secret of quantum-state teleportation is that Alice and Charlie need to have a
shared quantum resource: entanglement. Let’s say that the last time Alice and Charlie
got together, they prepared a pair of two-level quantum systems B,C in the entangled
joint state

|bc
−   1

2
| 0b1c  − | 1b0c .

A state of this form is often called a “singlet.” Alice keeps system B with her, and
Charlie takes C away with him. Recall that C eventually needs to end up in the state
|c , whose coefficients are unknown to Alice.

There are three two-level systems in the picture, and their joint state lives in the
tensor-product Hilbert space HA ⊗ HB ⊗ HC. The initial state of this three-part system
is simply

|a  ⊗ |bc
− .

In order to accomplish quantum-state teleportation, Alice performs the following
procedure:
1. Alice brings A together with B, and performs a joint measurement in the “Bell

basis”
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|ab
−   1

2
|0a1b  − |1a0b ,

|ab
   1

2
|0a1b   |1a0b ,

|ab
−   1

2
|0a0b  − |1a1b ,

|ab
   1

2
|0a0b   |1a1b .

Note that this is a complete basis for HA ⊗ HB, and that these are all
entangled states. The outcome probabilities can be computed explicitly by
rewriting the three-part state of A,B,C in terms of the Bell states on A,B:

|a  ⊗ |bc
−   1

2
a0|0a   a1|1a  ⊗ |0b1c  − |1b0c 

 1
2
a0|0a0b1c  − a0|0a1b0c   a1|1a0b1c  − a1|1a1b0c 

 1
2

a0|ab
   |ab

− |1c  − a0|ab
   |ab

− |0c 

a1|ab
  − |ab

− |1c  − a1|ab
  − |ab

− |0c 

 − 1
2

|ab
− a0|0c   a1|1c   |ab

 a0|0c  − a1|1c 

|ab
− a1|0c   a0|1c   |ab

 a1|0c  − a0|1c 
.

Since |a0 |2  |a1 |2  1, we see that all four outcomes have probability 1
4 . Also,

we can easily read off the post-measurement states for system C:

− : a0|0c   a1|1c  
1 0
0 1

|c  ≡ U1|c ,

 : a0|0c  − a1|1c  
1 0
0 −1

|c  ≡ U2|c ,

− : a1|0c   a0|1c  
0 1
1 0

|c  ≡ U3|c ,

 : a1|0c  − a0|1c  
0 1
−1 0

|c  ≡ U4|c .

Note that each of the four transformation operators U1,2,3,4 are unitary, and
therefore invertible.

2. Alice broadcasts a number from 1. . 4 corresponding to the result she actually
obtained. Note that this is just two bits of classical information, versus an
infinite number of bits that would be needed to transmit two complex
coefficients (a0,a1) with arbitrary precision.

3. When Charlie learns the result, he knows which of the four
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post-measurement states C has been left in! To recover |c  exactly, he
need only apply the appropriate inverse transformation.

So when Alice and Charlie implement this quantum-state teleportation protocol, they
can be certain that Charlie will end up with system C left in the state

|c   a0| 0c   a1| 1c ,
where a0,a1 are arbitrary complex coefficients known only to Charlie! The total
resource cost of the procedure is one entangled pair plus two bits of classical
communication.

In quantum information theory, we would say that teleportation demonstrates an
equivalence between quantum bits (qubits), entanglement “bits” (e-bits), and classical
bits (c-bits):

1 qubit  1e-bit  2 c-bits.
Here a qubit is implicitly defined as the amount of information represented by the state
of a two-level quantum system.

So what is it that actually got “teleported”...?

Teleportation of the state on an algebra
In order to answer this question, let’s try to formulate a classical version of
teleportation, first working with Bayes’ Rule to simplify the formalism. Assume we have
three systems each with two classical configurations,

A  0a,1a, B  0b,1b, C  0c,1c,
and an initial probability distribution on the A subsystem

pa0a  p0a, pa1a  p1a.
By analogy to the quantum case we should need to specify a joint state pbcb,c and
a random variable BAB on A  B. Again reasoning by analogy, we might expect
that depending on the result of the measurement of BAB we may end up with a
transformed version of pa on the C subsystem. Since the only reasonable
transformation of a classical two-state probability distribution is a permutation
(transposition), we can suppose that BAB has just two possible values and hence
two level sets, which we guess to be

b1  0a  0b,1a  1b, b2  0a  1b,1a  0b.
We have the initial probability distribution function

pabca,b,c  paapbcb,c.
and we are going to start by measuring BAB. The joint forward probabilities are
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PrBAB  1,c  0c ∑
a

∑
b

paapbcb,0cb1a,b

 p0apbcb0,0c  p1a pbcb1,0c,

PrBAB  2,c  0c ∑
a

∑
b

paapbcb,0cb2a,b

 p0apbcb1,0c  p1a pbcb0,0c,

PrBAB  1,c  1c ∑
a

∑
b

paapbcb,1cb1a,b

 p0apbcb0,1c  p1a pbcb1,1c,

PrBAB  2,c  1c ∑
a

∑
b

paapbcb,1cb2a,b

 p0apbcb1,1c  p1a pbcb0,1c.
We also have the marginal probabilities

PrBAB  1  PrBAB  1,c  0c  PrBAB  1,c  1c

 p0apbcb0,0c  p1a pbcb1,0c  p0apbcb0,1c  p1a pbcb1,1c,
PrBAB  2  p0apbcb1,0c  p1a pbcb0,0c  p0apbcb1,1c  p1a pbcb0,1c.

At this point let us try inserting
pbc0b,0c  1

2 , pbc0b,1c  0, pbc1b,0c  0, pbc1b,1c  1
2 ,

which is a classically correlated state of B and C. Then from Bayes’ Rule,

Prc  0c |BAB  1  PrBAB  1,c  0c
PrBAB  1

 p0a
2

1
p0a
2  p1a

2
 p0a,

Prc  1c |BAB  1  PrBAB  1,c  1c
PrBAB  1

 p1a,

and

Prc  0c |BAB  2  PrBAB  2,c  0c
PrBAB  2

 p1a,

Prc  1c |BAB  2  PrBAB  2,c  1c
PrBAB  2

 p0a.

Hence we see that, as hoped, with BAB  1 we transfer the pa distribution to
subsystem C, while if we obtain BAB  2 the distribution is transfered but transposed.

Let us now try to rework this example in the algebra-of-random variables setting,
first in the classical case and then in the quantum. Intuitively, it seems that we should
be trying to show that for any random variable Q defined on both the A and C
subsystems, by which we mean

QA0a  QC0c, QA1a  QC1c,
we would like
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EQC |BAB  1  EQA,
E j2QC |BAB  2  EQA,

where
j2QC0c  QC1c, j2QC1c  QC0c.

In the classical setting we have the usual definition of conditional expectation
(assuming from here on that all random variables are ampliated to A  B  C)

EQC |BAB 
Eb1  QC

Eb1
b1 

Eb2  QC
Eb2

b2,

and

EEQC |BAB 
Eb1  QC

Eb1
Eb1 

Eb2  QC
Eb2

Eb2


Eb1  QC

Eb1
PrBAB  1  Eb2  QC

Eb2
PrBAB  2.

From the second line we can infer that

EQC |BAB  1  Eb1  QC
Eb1

, E j2QC |BAB  2  Eb2  j2QC
Eb2 

,

and hence we need to compute
Eb1  QC

Eb1

∑a,b,c

paapbcb,cb1a,bQCc

∑a,b,c
paapbcb,cb1a,b


∑c

p0a pbc0b,c  p1a pbc1b,cQCc

∑c
p0a pbc0b,c  p1a pbc1b,c


p0a pbc0b,0cQC0c  p1a pbc1b,1cQC1c

p0a pbc0b,0c  p1a pbc0b,0c

 p0a QC0c  p1a QC1c,
and similarly

Eb2  j2QC
Eb2 


∑a,b,c

paapbcb,cb2a,b j2QCc

∑a,b,c
paapbcb,cb2a,b


p0a pbc1b,1c j2QC1c  p1a pbc0b,0c j2QC0c

p0a pbc1b,1c  p1a pbc0b,1c

 p0a QC0c  p1a QC1c.
Since by assumption QC0c  QA0a and QC1c  QA1a, we thus have

EQC |BAB  1  E j2QC |BAB  2  p0a QA0a  p1aQA1a  EQA,
as desired.

Hence we can say that at least in the classical case, we can characterize the
effect of teleportation as transferring the assignment of expectation values of QA
(the state on the algebra of random variables on A) to an equivalent assignment of
expectation values of QC. So in a sense, it is our “predictions” that get transferred
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from one subsystem to another.

Moving on to the quantum generalization of this algebra-of-observables version of the
calculation, let’s start by reminding ourselves of the notation. Let the particle whose
state is to be teleported be particle A with initial density matrix A, which we take to be
a pure state so that we can recycle calculational results from the first section of
today’s class notes:

A  |a0 |2| 0A 〈0A |  a0a1
∗| 0A 〈1A |  a0

∗a1| 1A 〈0A |  |a1 |2| 1A 〈1A |.
Then the two particles prepared in the Bell singlet are particles B and C, with initial
density matrix

|BC
−   1

2
| 0B  ⊗ | 1C  − | 1B  ⊗ | 0C ,

BC  |BC
− 〈BC

− |

 1
2 | 0B1C 〈0B1C | − | 0B1C 〈1B0C | − | 1B0C 〈0B1C |  | 1B0C 〈1B0C |.

If QA and QC are equivalent observables on the A and C subsystems, then we expect
that

Tr 00| 0a 〈0a |  01| 0a 〈1a |  10| 1a 〈0a |  11| 1a 〈1a |QA 

 Tr 00| 0c 〈0c |  01| 0c 〈1c |  10| 1c 〈0c |  11| 1c 〈1c |QC .
Let us also note the general rule

Tr A ⊗ B  Tr
a11B



ann B

∑
i

aiiTr B  Tr ATr B.

Our initial joint state is
ABC  A ⊗ BC  A ⊗ |BC

− 〈BC
− |,

and initially
EQA ⊗ 1BC  Tr QA ⊗ 1BCA ⊗ BC  Tr AQA Tr BC   Tr AQA .

After performing a measurement of the observable BAB ⊗ 1C, where
BAB  PAB

−  2PAB
  3PAB

−  4PAB


is an observable on the AB subsystem whose eigenstates are the Bell states, we
would like to have

E1AB ⊗ Ui
∗QCUi |BAB ⊗ 1C  i  Tr AQA ,

where the Ui were defined in our initial Schrodinger-picture discussion of the
teleportation protocol. We can check that E1A ⊗ 1B ⊗ QC is initially independent of
A :
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E1A ⊗ 1B ⊗ QC  Tr 1A ⊗ 1B ⊗ QCA ⊗ BC

 Tr A Tr 1B ⊗ QCBC 

 1
2 Tr 1B ⊗ QC| 0B1C 〈0B1C | − 1

2 Tr 1B ⊗ QC| 0B1C 〈1B0C |

− 1
2 Tr 1B ⊗ QC| 1B0C 〈0B1C |  1

2 Tr 1B ⊗ QC| 1B0C 〈1B0C |

 1
2 Tr | 0B 〈0B | ⊗ QC| 1C 〈1C | − 1

2 Tr | 0B 〈1B | ⊗ QC| 1C 〈0C |

− 1
2 Tr | 1B 〈0B | ⊗ QC| 0C 〈1C |  1

2 Tr | 1B 〈1B | ⊗ QC| 0C 〈0C |

 1
2 Tr QC| 1C 〈1C |  1

2 Tr QC| 0C 〈0C |

 1
2 Tr QC .

It is easy to see that BAB ⊗ 1C, 1A ⊗ 1B ⊗ Ui
∗QCUi   0 for any QC. Hence we can use

E X |Y ∑
i
∑

j

xj
PjQi
Qi

Qi ∑
i

XQi
Qi

Qi,

to form the conditional expectation of 1A ⊗ 1B ⊗ QC ≡ Q̂C given B̂AB ≡ BAB ⊗ 1C. We
obtain

E Q̂C | B̂AB 
 Q̂CP̂AB

−

 P̂AB
−

P̂AB
− 

 Q̂CP̂AB


 P̂AB


P̂AB
 

 Q̂CP̂AB
−

 P̂AB
−

P̂AB
− 

 Q̂CP̂AB


 P̂AB


P̂AB


 4PAB
− ⊗ QCP̂AB

−  4PAB
 ⊗ QCP̂AB

  4PAB
− ⊗ QCP̂AB

−  4PAB
 ⊗ QCP̂AB

 ,
where we recall from above that all four results of the Bell-basis measurement are
equiprobable. Reasoning as in the classical case we note that

E E Q̂C | B̂AB  4PAB
− ⊗ QC P̂AB

−  4PAB
 ⊗ QC P̂AB



 4PAB
− ⊗ QC P̂AB

−  4PAB
 ⊗ QC P̂AB



 4PAB
− ⊗ QCPrBAB  1  4PAB

 ⊗ QCPrBAB  2

 4PAB
− ⊗ QCPrBAB  3  4PAB

 ⊗ QCPrBAB  4,
and hence conclude that

E Q̂C | B̂AB  1  4PAB
− ⊗ QC, EQC |BAB  2  4PAB

 ⊗ QC,

E Q̂C | B̂AB  3  4PAB
− ⊗ QC, EQC |BAB  4  4PAB

 ⊗ QC.
Computing first for the BAB  1 case,

E Q̂C | B̂AB  1  4PAB
− ⊗ QC

 4Tr PAB
− ⊗ QCA ⊗ BC

 4Tr PAB
− ⊗ 1C1AB ⊗ QCPAB

− ⊗ 1CA ⊗ BC

 4Tr 1AB ⊗ QCPAB
− ⊗ 1CA ⊗ BCPAB

− ⊗ 1C,
at which point we recall that above we have already computed
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PAB
− ⊗ 1CA ⊗ BCPAB

− ⊗ 1C  1
4 |ab

− 〈ab
− | ⊗ a0|0c   a1|1c a0

∗〈0c |  a1
∗〈1c |.

Hence,
E Q̂C | B̂AB  1  Tr 1AB ⊗ QC|ab

− 〈ab
− | ⊗ a0|0c   a1|1c a0

∗〈0c |  a1
∗〈1c |

 Tr QC a0|0c   a1|1c a0
∗〈0c |  a1

∗〈1c |
 Tr A QA ,

as we have been trying to show. Analogous reults for B̂AB  2,3,4 presumably follow
straightforwardly.

Hence we see that also in the quantum case we can say that “what is teleported”
is the assignment of expectation values from observables on spin A to observables on
spin C, that is, predictions. We also see that the heart of the calculation involves an
application of the classical probability rule for conditional expectation.

So is there anything uniquely quantum about teleportation? Perhaps it would be
better to say that there are classical and quantum versions of teleportation, and that
entangled states are required for the latter, in the same sense that there are both
classical and quantum versions of uncertainty and correlation.
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