
APPPHYS225 - Friday 31 October 2008
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Say Alice has a two-level quantum system A prepared in initial state
|a   a0| 0a   a1| 1a .

She would like Charlie to have a two-level quantum system C prepared in the identical
state

|c   a0| 0c   a1| 1c .
However, let’s say she cannot directly send system A to Charlie, nor can she
communicate the coefficients a0,a1 with sufficient precision for their liking. In fact, let’s
imagine that Alice does not even know these coefficients explicitly – the initial state of
system A could have been prepared by a third person who refuses to tell her the
coefficients.

The secret of quantum-state teleportation is that Alice and Charlie need to have a
shared quantum resource: entanglement. Let’s say that the last time Alice and Charlie
got together, they prepared a pair of two-level quantum systems B,C in the entangled
joint state

|bc
−   1

2
| 0b1c  − | 1b0c .

A state of this form is often called a “singlet.” Alice keeps system B with her, and
Charlie takes C away with him. Recall that C eventually needs to end up in the state
|c , whose coefficients are unknown to Alice.

There are three two-level systems in the picture, and their joint state lives in the
tensor-product Hilbert space HA ⊗ HB ⊗ HC. The initial state of this three-part system
is simply

|a  ⊗ |bc
− .

In order to accomplish quantum-state teleportation, Alice performs the following
procedure:
1. Alice brings A together with B, and performs a joint measurement in the “Bell

basis”
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|ab
−   1

2
|0a1b  − |1a0b ,

|ab
   1

2
|0a1b   |1a0b ,

|ab
−   1

2
|0a0b  − |1a1b ,

|ab
   1

2
|0a0b   |1a1b .

Note that this is a complete basis for HA ⊗ HB, and that these are all
entangled states. The outcome probabilities can be computed explicitly by
rewriting the three-part state of A,B,C in terms of the Bell states on A,B:

|a  ⊗ |bc
−   1

2
a0|0a   a1|1a  ⊗ |0b1c  − |1b0c 

 1
2
a0|0a0b1c  − a0|0a1b0c   a1|1a0b1c  − a1|1a1b0c 

 1
2

a0|ab
   |ab

− |1c  − a0|ab
   |ab

− |0c 

a1|ab
  − |ab

− |1c  − a1|ab
  − |ab

− |0c 

 − 1
2

|ab
− a0|0c   a1|1c   |ab

 a0|0c  − a1|1c 

|ab
− a1|0c   a0|1c   |ab

 a1|0c  − a0|1c 
.

Since |a0 |2  |a1 |2  1, we see that all four outcomes have probability 1
4 . Also,

we can easily read off the post-measurement states for system C:

− : a0|0c   a1|1c  
1 0
0 1

|c  ≡ U1|c ,

 : a0|0c  − a1|1c  
1 0
0 −1

|c  ≡ U2|c ,

− : a1|0c   a0|1c  
0 1
1 0

|c  ≡ U3|c ,

 : a1|0c  − a0|1c  
0 1
−1 0

|c  ≡ U4|c .

Note that each of the four transformation operators U1,2,3,4 are unitary, and
therefore invertible.

2. Alice broadcasts a number from 1. . 4 corresponding to the result she actually
obtained. Note that this is just two bits of classical information, versus an
infinite number of bits that would be needed to transmit two complex
coefficients (a0,a1) with arbitrary precision.

3. When Charlie learns the result, he knows which of the four
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post-measurement states C has been left in! To recover |c  exactly, he
need only apply the appropriate inverse transformation.

So when Alice and Charlie implement this quantum-state teleportation protocol, they
can be certain that Charlie will end up with system C left in the state

|c   a0| 0c   a1| 1c ,
where a0,a1 are arbitrary complex coefficients known only to Charlie! The total
resource cost of the procedure is one entangled pair plus two bits of classical
communication.

In quantum information theory, we would say that teleportation demonstrates an
equivalence between quantum bits (qubits), entanglement “bits” (e-bits), and classical
bits (c-bits):

1 qubit  1e-bit  2 c-bits.
Here a qubit is implicitly defined as the amount of information represented by the state
of a two-level quantum system.

So what is it that actually got “teleported”...?

Teleportation of the state on an algebra
In order to answer this question, let’s try to formulate a classical version of
teleportation, first working with Bayes’ Rule to simplify the formalism. Assume we have
three systems each with two classical configurations,

A  0a,1a, B  0b,1b, C  0c,1c,
and an initial probability distribution on the A subsystem

pa0a  p0a, pa1a  p1a.
By analogy to the quantum case we should need to specify a joint state pbcb,c and
a random variable BAB on A  B. Again reasoning by analogy, we might expect
that depending on the result of the measurement of BAB we may end up with a
transformed version of pa on the C subsystem. Since the only reasonable
transformation of a classical two-state probability distribution is a permutation
(transposition), we can suppose that BAB has just two possible values and hence
two level sets, which we guess to be

b1  0a  0b,1a  1b, b2  0a  1b,1a  0b.
We have the initial probability distribution function

pabca,b,c  paapbcb,c.
and we are going to start by measuring BAB. The joint forward probabilities are
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PrBAB  1,c  0c ∑
a

∑
b

paapbcb,0cb1a,b

 p0apbcb0,0c  p1a pbcb1,0c,

PrBAB  2,c  0c ∑
a

∑
b

paapbcb,0cb2a,b

 p0apbcb1,0c  p1a pbcb0,0c,

PrBAB  1,c  1c ∑
a

∑
b

paapbcb,1cb1a,b

 p0apbcb0,1c  p1a pbcb1,1c,

PrBAB  2,c  1c ∑
a

∑
b

paapbcb,1cb2a,b

 p0apbcb1,1c  p1a pbcb0,1c.
We also have the marginal probabilities

PrBAB  1  PrBAB  1,c  0c  PrBAB  1,c  1c

 p0apbcb0,0c  p1a pbcb1,0c  p0apbcb0,1c  p1a pbcb1,1c,
PrBAB  2  p0apbcb1,0c  p1a pbcb0,0c  p0apbcb1,1c  p1a pbcb0,1c.

At this point let us try inserting
pbc0b,0c  1

2 , pbc0b,1c  0, pbc1b,0c  0, pbc1b,1c  1
2 ,

which is a classically correlated state of B and C. Then from Bayes’ Rule,

Prc  0c |BAB  1  PrBAB  1,c  0c
PrBAB  1

 p0a
2

1
p0a
2  p1a

2
 p0a,

Prc  1c |BAB  1  PrBAB  1,c  1c
PrBAB  1

 p1a,

and

Prc  0c |BAB  2  PrBAB  2,c  0c
PrBAB  2

 p1a,

Prc  1c |BAB  2  PrBAB  2,c  1c
PrBAB  2

 p0a.

Hence we see that, as hoped, with BAB  1 we transfer the pa distribution to
subsystem C, while if we obtain BAB  2 the distribution is transfered but transposed.

Let us now try to rework this example in the algebra-of-random variables setting,
first in the classical case and then in the quantum. Intuitively, it seems that we should
be trying to show that for any random variable Q defined on both the A and C
subsystems, by which we mean

QA0a  QC0c, QA1a  QC1c,
we would like
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EQC |BAB  1  EQA,
E j2QC |BAB  2  EQA,

where
j2QC0c  QC1c, j2QC1c  QC0c.

In the classical setting we have the usual definition of conditional expectation
(assuming from here on that all random variables are ampliated to A  B  C)

EQC |BAB 
Eb1  QC

Eb1
b1 

Eb2  QC
Eb2

b2,

and

EEQC |BAB 
Eb1  QC

Eb1
Eb1 

Eb2  QC
Eb2

Eb2


Eb1  QC

Eb1
PrBAB  1  Eb2  QC

Eb2
PrBAB  2.

From the second line we can infer that

EQC |BAB  1  Eb1  QC
Eb1

, E j2QC |BAB  2  Eb2  j2QC
Eb2 

,

and hence we need to compute
Eb1  QC

Eb1

∑a,b,c

paapbcb,cb1a,bQCc

∑a,b,c
paapbcb,cb1a,b


∑c

p0a pbc0b,c  p1a pbc1b,cQCc

∑c
p0a pbc0b,c  p1a pbc1b,c


p0a pbc0b,0cQC0c  p1a pbc1b,1cQC1c

p0a pbc0b,0c  p1a pbc0b,0c

 p0a QC0c  p1a QC1c,
and similarly

Eb2  j2QC
Eb2 


∑a,b,c

paapbcb,cb2a,b j2QCc

∑a,b,c
paapbcb,cb2a,b


p0a pbc1b,1c j2QC1c  p1a pbc0b,0c j2QC0c

p0a pbc1b,1c  p1a pbc0b,1c

 p0a QC0c  p1a QC1c.
Since by assumption QC0c  QA0a and QC1c  QA1a, we thus have

EQC |BAB  1  E j2QC |BAB  2  p0a QA0a  p1aQA1a  EQA,
as desired.

Hence we can say that at least in the classical case, we can characterize the
effect of teleportation as transferring the assignment of expectation values of QA
(the state on the algebra of random variables on A) to an equivalent assignment of
expectation values of QC. So in a sense, it is our “predictions” that get transferred
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from one subsystem to another.

Moving on to the quantum generalization of this algebra-of-observables version of the
calculation, let’s start by reminding ourselves of the notation. Let the particle whose
state is to be teleported be particle A with initial density matrix A, which we take to be
a pure state so that we can recycle calculational results from the first section of
today’s class notes:

A  |a0 |2| 0A 〈0A |  a0a1
∗| 0A 〈1A |  a0

∗a1| 1A 〈0A |  |a1 |2| 1A 〈1A |.
Then the two particles prepared in the Bell singlet are particles B and C, with initial
density matrix

|BC
−   1

2
| 0B  ⊗ | 1C  − | 1B  ⊗ | 0C ,

BC  |BC
− 〈BC

− |

 1
2 | 0B1C 〈0B1C | − | 0B1C 〈1B0C | − | 1B0C 〈0B1C |  | 1B0C 〈1B0C |.

If QA and QC are equivalent observables on the A and C subsystems, then we expect
that

Tr 00| 0a 〈0a |  01| 0a 〈1a |  10| 1a 〈0a |  11| 1a 〈1a |QA 

 Tr 00| 0c 〈0c |  01| 0c 〈1c |  10| 1c 〈0c |  11| 1c 〈1c |QC .
Let us also note the general rule

Tr A ⊗ B  Tr
a11B



ann B

∑
i

aiiTr B  Tr ATr B.

Our initial joint state is
ABC  A ⊗ BC  A ⊗ |BC

− 〈BC
− |,

and initially
EQA ⊗ 1BC  Tr QA ⊗ 1BCA ⊗ BC  Tr AQA Tr BC   Tr AQA .

After performing a measurement of the observable BAB ⊗ 1C, where
BAB  PAB

−  2PAB
  3PAB

−  4PAB


is an observable on the AB subsystem whose eigenstates are the Bell states, we
would like to have

E1AB ⊗ Ui
∗QCUi |BAB ⊗ 1C  i  Tr AQA ,

where the Ui were defined in our initial Schrodinger-picture discussion of the
teleportation protocol. We can check that E1A ⊗ 1B ⊗ QC is initially independent of
A :
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E1A ⊗ 1B ⊗ QC  Tr 1A ⊗ 1B ⊗ QCA ⊗ BC

 Tr A Tr 1B ⊗ QCBC 

 1
2 Tr 1B ⊗ QC| 0B1C 〈0B1C | − 1

2 Tr 1B ⊗ QC| 0B1C 〈1B0C |

− 1
2 Tr 1B ⊗ QC| 1B0C 〈0B1C |  1

2 Tr 1B ⊗ QC| 1B0C 〈1B0C |

 1
2 Tr | 0B 〈0B | ⊗ QC| 1C 〈1C | − 1

2 Tr | 0B 〈1B | ⊗ QC| 1C 〈0C |

− 1
2 Tr | 1B 〈0B | ⊗ QC| 0C 〈1C |  1

2 Tr | 1B 〈1B | ⊗ QC| 0C 〈0C |

 1
2 Tr QC| 1C 〈1C |  1

2 Tr QC| 0C 〈0C |

 1
2 Tr QC .

It is easy to see that BAB ⊗ 1C, 1A ⊗ 1B ⊗ Ui
∗QCUi   0 for any QC. Hence we can use

E X |Y ∑
i
∑

j

xj
PjQi
Qi

Qi ∑
i

XQi
Qi

Qi,

to form the conditional expectation of 1A ⊗ 1B ⊗ QC ≡ Q̂C given B̂AB ≡ BAB ⊗ 1C. We
obtain

E Q̂C | B̂AB 
 Q̂CP̂AB

−

 P̂AB
−

P̂AB
− 

 Q̂CP̂AB


 P̂AB


P̂AB
 

 Q̂CP̂AB
−

 P̂AB
−

P̂AB
− 

 Q̂CP̂AB


 P̂AB


P̂AB


 4PAB
− ⊗ QCP̂AB

−  4PAB
 ⊗ QCP̂AB

  4PAB
− ⊗ QCP̂AB

−  4PAB
 ⊗ QCP̂AB

 ,
where we recall from above that all four results of the Bell-basis measurement are
equiprobable. Reasoning as in the classical case we note that

E E Q̂C | B̂AB  4PAB
− ⊗ QC P̂AB

−  4PAB
 ⊗ QC P̂AB



 4PAB
− ⊗ QC P̂AB

−  4PAB
 ⊗ QC P̂AB



 4PAB
− ⊗ QCPrBAB  1  4PAB

 ⊗ QCPrBAB  2

 4PAB
− ⊗ QCPrBAB  3  4PAB

 ⊗ QCPrBAB  4,
and hence conclude that

E Q̂C | B̂AB  1  4PAB
− ⊗ QC, EQC |BAB  2  4PAB

 ⊗ QC,

E Q̂C | B̂AB  3  4PAB
− ⊗ QC, EQC |BAB  4  4PAB

 ⊗ QC.
Computing first for the BAB  1 case,

E Q̂C | B̂AB  1  4PAB
− ⊗ QC

 4Tr PAB
− ⊗ QCA ⊗ BC

 4Tr PAB
− ⊗ 1C1AB ⊗ QCPAB

− ⊗ 1CA ⊗ BC

 4Tr 1AB ⊗ QCPAB
− ⊗ 1CA ⊗ BCPAB

− ⊗ 1C,
at which point we recall that above we have already computed
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PAB
− ⊗ 1CA ⊗ BCPAB

− ⊗ 1C  1
4 |ab

− 〈ab
− | ⊗ a0|0c   a1|1c a0

∗〈0c |  a1
∗〈1c |.

Hence,
E Q̂C | B̂AB  1  Tr 1AB ⊗ QC|ab

− 〈ab
− | ⊗ a0|0c   a1|1c a0

∗〈0c |  a1
∗〈1c |

 Tr QC a0|0c   a1|1c a0
∗〈0c |  a1

∗〈1c |
 Tr A QA ,

as we have been trying to show. Analogous reults for B̂AB  2,3,4 presumably follow
straightforwardly.

Hence we see that also in the quantum case we can say that “what is teleported”
is the assignment of expectation values from observables on spin A to observables on
spin C, that is, predictions. We also see that the heart of the calculation involves an
application of the classical probability rule for conditional expectation.

So is there anything uniquely quantum about teleportation? Perhaps it would be
better to say that there are classical and quantum versions of teleportation, and that
entangled states are required for the latter, in the same sense that there are both
classical and quantum versions of uncertainty and correlation.
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