
APPPHYS217 Tuesday 25 May 2010

Our aim today is to take a brief tour of some topics in nonlinear dynamics. Some good
references include:
[Perko] Lawrence Perko, Differential Equations and Dynamical Systems
(Springer-Verlag, New York, 2001)
[Wiggins] Stephen Wiggins, Introduction to Applied Nonlinear Dynamical Systems and
Chaos (Springer-Verlag, New York 1990)

The Stable Manifold Theorem
Consider a linear dynamical system,

ẋ  Ax,
where x ∈ Rn. The origin is an equilibrium point of such a system, and we have seen
that the eigenvalues of A determine its stability. In fact, one can write (Perko §1.9
Theorem 1)

Rn  Es ⊕ Eu ⊕ Ec,
where where Es, Eu and Ec are the stable, unstable and center subspaces associated
with eigenvalues of A having negative, positive and zero real parts. The subspaces Es,
Eu and Ec are invariant with respect to the flow xt  expAtx0. As a simple
example we can consider

A 

0 −1 0

1 0 0

0 0 −3

,

which has eigenvalues and eigenvectors

0

0

1

↔ −3,

−i

1

0

↔ −i,
i

1

0

↔ i.

Hence the stable subspace Es is the x3 axis while the center subspace Ec is the x1 − x2

plane. Note than an arbitrary initial condition with x1, x2 and x3 all nonzero ‘decays
into’ the center subspace as t → .

We have seen that it is straightforward to compute the linearization of a nonlinear
dynamical system in the neighborhood of an equilibrium point. For example if we
consider (Perko §2.7 Problem 7.4)

ẋ1  −x1,

ẋ2  −x2  x1
2,

ẋ3  x3  x2
2,

we note by inspection that the origin is an equilibrium point and assuming the vector
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notation ẋ  fx we can derive

Dfx 

−1 0 0

2x1 −1 0

0 2x2 1

, A  Df0 

−1 0 0

0 −1 0

0 0 1

.

It thus appears that the local linearization at the origin has a two-dimensional stable
subspace (the x1 − x2 plane) and a one-dimensional unstable subspace (the x3 axis).
Thinking only about the linearization, any initial condition x0 that lies in the x1 − x2

plane should flow to the origin as t → , and it seems tempting to infer that in the full
nonlinear system this should hold true as long as x0 is also within a small
neighborhood of the origin. But is that really true? The Stable Manifold Theorem
(Perko §2.7) and the Local Center Manifold Theorem (Perko §2.12) can be combined
to yield the following (Perko §2.7):

Let f ∈ CrE where E is an open subset of Rn containing the origin and r ≥ 1.
Suppose that f0  0 and that Df0 has k eigenvalues with negative real
part, j eigenvalues with positive real part, and m  n − k − j eigenvalues with
zero real part. Then there exists an m-dimensional center manifold Wc0 of
class Cr tangent to the center subspace Ec of Df0, there exists a
k-dimensional stable manifold Ws0 of class Cr tangent to the stable
subspace of Df0 and there exists a j-dimensional unstable manifold Wu0
of class Cr tangent to the unstable subspace Eu of Df0; furthermore, Wc0,
Ws0 and Wu0 are invariant under the flow of ẋ  fx.

To get a practical feeling for what this means, we note that the (global) stable and
unstable manifolds of the above example are

S : x3  − 1
3
x2

2 − 1
6
x1

2x2 − 1
30
x1

4,

U : x1  x2  0.

The stable manifold is two-dimensional and is specified in the form of a graph over the
x1 − x2 plane (the stable subspace of Df0); the unstable manifold is one-dimensional
and coincides with the x3 axis (the unstable subspace of Df0). We can easily confirm
that for an initial condition x0 ∈ U we have xt ∈ U and in fact xt → 0 as t → −.
For any initial condition x0 ∈ S we have
d
dt
− 1

3
x2

2 − 1
6
x1

2x2 − 1
30
x1

4  − 2
3
x2ẋ2 − 1

6
2x1ẋ1x2  x1

2ẋ2 − 4
30
x1

3ẋ1

 − 2
3
x2−x2  x1

2 − 1
6
−2x1

2x2  x1
2−x2  x1

2  4
30
x1

4

 2
3
x2

2 − 2
3
x1

2x2  1
3
x1

2x2  1
6
x1

2x2 − 1
6
x1

4  4
30
x1

4

 2
3
x2

2 − 1
6
x1

2x2 − 1
30
x1

4

 x3  x2
2

 ẋ3,

which confirms that S is an invariant manifold. Since we can easily solve
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ẋ1  −x1,

x1t  exp−tx10,

ẋ2  −x2  x1
2  −x2  exp−2tx1

20,

x2t  exp−tx20  exp−t 
0

t
ds expsexp−2sx1

20

 exp−tx20  exp−t − exp−2tx1
20,

we see that for any point x0 ∈ S we have xt → 0 as t → . Finally we confirm that
S is tangent to the x1 − x2 plane. For x3  0 we have

0  − 1
3
x2

2 − 1
6
x1

2x2 − 1
30
x1

4,

x2  − 3
2

1
6
x1

2  1
36
x1

4 − 4
90
x1

4

 − 3
2

1
6
x1

2  x1
2 5

180
− 8

180
,

hence (since x2 and x1 must both be real in this solution) S contacts the x1 − x2 plane
only at the origin. The stable manifold S consists of all points x1,x2,x3 such that

Fx1,x2,x3  x3  1
3
x2

2  1
6
x1

2x2  1
30
x1

4  0,

hence the normal vector to the surface at an arbitrary point on S is

∇F 

2
15 x1

3  1
3 x1x2

2
3 x2  1

6 x1
2

1

,

which clearly points along the x3-axis at the origin; hence S is tangent to the x1 − x2

plane at the origin. Note that the answer to our original question is that in the full
nonlinear flow, the only point near the origin in the x1 − x2 plane that goes to the origin
as t →  is the origin! Should we be bothered by this? How should we understand the
relevance of the linearized dynamics to the true nonlinear flow in the neighborhood of
an equilibrium point?

Before answering this, let us briefly note that the stable, unstable and center
manifolds are prototypical examples of invariant manifolds of a nonlinear dynamical
system. It can be useful to know about invariant manifolds as, e.g., no trajectory of the
dynamics can cross through one. And while the global stable and unstable manifolds
of the above example had no boundaries, this need not always be the case. For
example consider the two-dimensional dynamical system

ẋ1  1 − x1
2,

ẋ2  −x2.

We have equilibrium points x1,x2  −1,0, 1,0 with linearizations

Df 
−2x1 0

0 −1
, Df −1,0 

2 0

0 −1
, Df 1,0 

−2 0

0 −1
.
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We see that the global stable manifold of the stable equilibrium point 1,0
corresponds to the half-space x1  −1. On the interval x1 ∈ −1,1 the unstable
manifold of −1,0 coincides with the stable manifold of 1,0.

The Hartman-Grobman Theorem
An equilibrium point of a nonlinear system is called hyperbolic if all of the eigenvalues
of the linearization there have non-zero real part. The dynamics in the neighborhood of
a hyperbolic equilibrium point are guaranteed to be ‘simple’ in the sense of the
following theorem (Perko §2.8):

(The Hartman-Grobman Theorem) Let E be an open subset of Rn containing
the origin, let f ∈ C1E, and let t be the flow of the nonlinear system
ẋ  fx. Suppose that f0  0 and that the matrix A  Df0 has no
eigenvalue with zero real part. Then there exists a homeomorphism H of an
open set U containing the origin onto an open set V containing the origin such
that for each x0 ∈ U, there is an open interval I0 ⊂ R containing zero such
that for all x0 ∈ U and t ∈ I0

H ∘ tx0  expAtHx0;

i.e., H maps trajectories of ẋ  fx near the origin onto trajectories of ẋ  Ax
near the origin and preserves the parameterization by time.

Note that the ‘flow’ t is defined such that tx0  xt according to ẋ  fx. In
order to get a practical feeling for what the theorem means we consider a simple
example (Perko §2.8 Problem 8.1):

ẏ1  −y1,

ẏ2  −y2  z2,

ż  z,
for which the origin is clearly an equilibrium point. The linearization there is

D 

−1 0 0

0 −1 2z

0 0 1



−1 0 0

0 −1 0

0 0 1

,

so the eigenvalues are 1 and the equilibrium point at the origin is hyperbolic. We can
actually solve the nonlinear system explicitly,

y1t  exp−ty10,

zt  exptz0,

y2t  exp−ty20  exp−t 
0

t
ds expsexp2sz20

 exp−ty20  1
3
exp2t − exp−t z20.

Using methods discussed in Perko §2.8 (which are straightforward but rather
laborious) one can derive
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Hy1,y2, z 

y1

y2 − 1
3 z

2

z

, H −1 

y1

y2  1
3 z

2

z

.

and the theorem reads

H ∘ tx0  expAtHx0,

tx0  H −1expAtHx0,

where

expAtHx0 

exp−t 0 0

0 exp−t 0

0 0 expt

y10

y20 − 1
3 z

20

z0



exp−ty10

exp−ty20 − 1
3 exp−tz20

exptz0

,

H −1expAtHx0 

exp−ty10

exp−ty20 − 1
3 exp−tz20  1

3 exp2tz20

exptz0

,

which is indeed equal to the nonlinear flow that we obtained by explicit solution of the
nonlinear equations.

As a consequence of the Hartman-Grobman theorem we can say that the flow in
the neighborhood of a hyperbolic equilibrium point is topologically conjugate to that of
its linearization. In the neighborhood of a non-hyperbolic equilibrium point (whose
linearization has some eigenvalues with zero real part) it is not generally possible to
find a homeomorphism that transforms the nonlinear flow to that of the linearization;
we’ll pick up this point again below.

Center Manifold Theory
It follows from the above that if we have an equilibrium point of a nonlinear system
whose linearization has eigenvalues with all negative real parts, the equilibrium point
is stable. If the linearization has any eigenvalues with positive real part then the
equilibrium point is not stable. What if the linearization has no positive eigenvalues but
some of its eigenvalues have zero real part? To answer this question we need the
Local Center Manifold Theorem (Wiggins §2.1A). Suppose we have a nonlinear
dynamical system with an equilibrium point at the origin and with the linearization there
having no eigenvalues with positive real part. By a suitable linear transformation we
can always rewrite the dynamics in terms of stable coordinates x ∈ Rc and y ∈ Rs
(where c is the dimension of Ec and s is the dimension of Es at the origin) in the form
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ẋ  Ax  f x,y,

ẏ  By  gx,y,
where A is a matrix whose eigenvalues all have zero real part, B is a matrix whose
eigenvalues all have negative real part, and

f 0,0  Df 0,0  0,

g0,0  Dg0,0  0.

The local center manifold of the origin Wc0 can then be expressed as an invariant
manifold

Wc0  x,y ∈ Rc  Rs | y  hx, |x |  , h0  0, Dh0  0 ,

for  sufficiently small, and the dynamics on the center manifold is, for u sufficiently
small, given by

u̇  Au  f u,hu, u ∈ Rc.
The non-hyperbolic equilibrium point in question is stable if and only if the dynamics
on the center manifold is stable. The form of the all-important function h, which
specifies Wc0 as a graph above Ec, can be derived from the equation

DhxAx  f x,hx − Bhx − gx,hx  0.

Generally one does this by assuming a low-order polynomial form for hx and solving
the above equation for the coefficients of powers of x. Note that if we know the local
stable manifold Wc0 exactly, we can extend it to the global stable manifold S by
mapping backwards via the flow −t.

Once again we illustrate the use of this theorem with an example (Wiggins
Example 2.1.1):

ẋ  x2y − x5,

ẏ  −y  x2.

It is clear that the origin is an equilibrium point, and the linearization there is

D 
2xy − 5x4 x2

2x −1


0 0

0 −1
,

which obviously has one zero eigenvalue and one negative eigenvalue; the center
subspace is the x-axis and the stable subspace is the y-axis. We can thus write

ẋ  Ax  f x,y, ẏ  By  gx,y,
with

A  0, f x,y  x2y − x5,

B  −1, gx,y  x2.

The equation defining the local center manifold is

DhxAx  f x,hx − Bhx − gx,hx  0,

Dhxx2hx − x5   hx − x2  0,

and if we insert a third-order polynomial form for hx (note that the coefficients of x0

and x1 must vanish because of conditions above),
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hx  ax2  bx3  Ox4,

we have

2ax  3bx2ax4  bx5 − x5  ax2  bx3 − x2  0,

and we can equate coefficients of the lowest surviving orders in x,

ax2 − x2  0, a  1,

bx3  0, b  0,

which implies

hx  x2  Ox4.

According to the theorem, the dynamics on the local center manifold is given by

u̇  Au  f u,hu → x4  Ox5,

which is not stable (ut does not go to zero as t →  for all u0 in any small
neighborhood of the origin, because of the points u0  0). A diagram of the flow in
the neighborhood of the origin, indicating Ec, Es, Wc0 and Ws0 illustrates the
‘intrinsically nonlinear’ flow.

It should furthermore be evident from this example that in general it is not possible
to find a homeomorphism that transforms the nonlinear flow in the neighborhood of a
non-hyperbolic equlibrium point to that of its linearization. In general the best that can
be done is to transform the dynamics on the stable and unstable manifolds to linear
form, and to reduce the dynamics on the center manifold to a ‘simplest possible’ form
called a normal form (Perko §2.13; Wiggins 2.2). Surprisingly, the structure of the
normal form is determined entirely by the linear part of the dynamics. Normal forms
can be quite useful in the classification of local bifurcations at nonhyperbolic
equilibrium points. Finding a homeomorphism that transforms the nonlinear flow in the
neighborhood of an equilibrium point to linear dynamics in the stable and unstable
coordinates and a normal form in the center coordinates is thus conceptually similar to
finding an invertible linear transformation that takes a linear dynamical system to its
Jordan form.

Structural stability and local bifurcations
One often has cause to consider dynamical systems with parameters,

ẋ  f x,, x ∈ Rn,  ∈ Rp,
where the x are the dynamical variables and the  are parameters that are considered
to have fixed values for the purposes of integrating the dynamics, but where we are
interested in studying how the nature of the dynamics depend . It can be particularly
interesting to ask whether there are any critical values 0 such that small perturbation
 → 0   leads to a qualitative change in the nature of the trajectories of xt. One
can get quite technical about what it really means to have a ‘qualitative change’ but let
us simply look at some canonical examples.

(Wiggins §3.1A, Example 3.1.1 and section iii ) With n  p  1 we can consider

ẋ  f x,   − x2.
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The equilibrium points are the solutions of

  x2,

hence there are no equilibrium points for   0, a unique equilibrium point at the origin
for   0 and two equilibrium points at x    for   0. It is easy to see the
linearizations are

Df  −2x,
from which we see that when   0 there is one stable (x  0) and one unstable
(x  0) equilibrium point, while for   0 the equilibrium at the origin is non-hyperbolic
but clearly unstable. The point x,  0,0 is a bifurcation point for this system, as
varying  smoothly from below zero to above zero leads to a qualitative change in the
phase portrait (the appearance of new equilibrium points); an intuitive ‘bifurcation
diagram’ can be drawn with  on the horizontal axis and the equilibrium points in x
indicated on the vertical axis as a function of . This type of bifurcation, called a
saddle-node bifurcation, occurs at a point x, of a dynamical system where x is an
equilibrium point where the linearization has a single zero eigenvalue and the normal
form on the center manifold is   x2.

(Wiggins §3.1A, Example 3.1.2 and section iv ) Again with n  p  1 we consider

ẋ  f x,  x − x2,

which has equilibrium points

x  0, x  .

The linearizations are

Df   − 2x,

so both equilibrium points change stability as  passes through zero. For   0 the
origin is stable and the x   point is unstable; for   0 the origin is unstable and the
x   point is stable. At   0 the origin is unstable. This type of bifurcation, with
normal form x ∓ x2, is called a transcritical bifurcation.

(Wiggins §3.1A, Example 3.1.3 and section v ) Again with n  p  1 we consider

ẋ  f x,  x − x3,

which has equilibrium points

x  0, x    .

Hence there is a unique equilibrium point at the origin for  ≤ 0 and three equilibrium
points for   0. The linearizations are

Df   − 3x2,

so for   0 the origin is stable. For   0 the origin is still stable, but for   0 the
origin is unstable while the points at   are stable. This type of bifurcation, with
normal form x ∓ x3, is called a pitchfork bifurcation.

Bifurcations are responsible for a wide variety of switching and hysteresis
behaviors in nonlinear dynamical systems, with important examples in domains
ranging from physical precision measurement to biology. A few examples:
 D. Battogtokh and J. Tyson, “Bifurcation analysis of a model of the budding

yeast cell cycle,” Chaos 14, 653 (2004).
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 R. Vijay, M. H. Devoret and I. Siddiqi, “Invited Review Article: The Josephson
Bifurcation Amplifier,” Rev. Sci. Instrum. 80, 111101 (2009).

 J. Lu, H. W. Engl and P. Schuster, “Inverse bifurcation analysis: application to
simple gene systems,” Algorithms for Molecular Biology 1:11 (2006).

 C. H. Tseng, D. Enzer, G. Gabrielse, and F. L. Walls, “1-bit memory using one
electron: Parametric oscilliations in a Penning trap,” Phys. Rev. A 59, 2094
(1999).

Periodic orbits and limit cycles
Consider the system (Perko §3.2, Example 1)

ẋ  −y  x1 − x2 − y2,

ẏ  x  y1 − x2 − y2,

which is easier to analyze in polar coordinates:

ṙ  r1 − r2,

̇  1.

This system has an unstable equilibrium at the origin and a periodic orbit at r  1.
Inspection of the vector field makes it clear that the periodic orbit is actually a stable
limit cycle for the flow. Such a limit cycle is an example of a non-equilibrium attractor;
limit cycles can appear and disappear in (Hopf) bifurcations, just like equilibrium
points.

Lyapunov/Liapunov stability
For completeness, we conclude with brief mention of a very general technique for
proving the stability of an equilibrium point of a nonlinear dynamical system, which can
potentially be used in situations where center manifold methods are too cumbersome.
The method relies on the following theorem (Perko §2.9):

Let E be an open subset of Rn containing x0. Suppose that f ∈ C1E and that
fx0  0. Suppose further that there exists a real valued function V ∈ C1E
satisfying Vx0  0 and Vx  0 if x ≠ x0. Then (a) if V̇x ≤ 0 for all x ∈ E, x0

is stable; (b) if V̇x  0 for all x ∈ E \x0, x0 is asymptotically stable; (c) if
V̇x  0 for all x ∈ E \x0, x0 is unstable.

Recall that an equilibrium point x0 is stable if for all   0 there exists a   0 such that
for all x ∈ Nx0 and t ≥ 0 we have tx ∈ Nx0, and that x0 is asymptotically stable
if it is stable and there exists a   0 such that for all x ∈ Nx0 we have
limt→ tx  x0.

The difficult part about applying the Lyapunov (sometimes written Liapunov)
stability theorem lies in finding an appropiate Lyapunov function Vx. Unfortunately no
generally applicable method exists for deriving one from the form of the dynamics, but
sometimes one can intuit a workable form using the idea that Vx is something like an
energy. Once again we provide an illustrative example (Perko §2.9, Example 3):
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ẋ1  −2x2  x2x3 − x1
3,

ẋ2  x1 − x1x3 − x2
3,

ẋ3  x1x2 − x3
3.

Here the origin is clearly an equilibrium point, but the linearization there is

Df 

−3x1
2 −2  x3 x2

1 − x3 3x2
2 −x1

x2 x1 −3x3
2

→

0 −2 0

1 0 0

0 0 0

,

which has eigenvalues 0 and  2 i. The function

Vx  x1
2  2x2

2  x3
2

vanishes at the origin but is positive everywhere else, and thus provides a candidate
Lypapunov function. We can compute

V̇  2x1ẋ1  4x2ẋ2  2x3ẋ3

 2x1−2x2  x2x3 − x1
3  4x2x1 − x1x3 − x2

3  2x3x1x2 − x3
3

 −2x1
4 − 4x1x2  2x1x2x3  4x1x2 − 4x1x2x3 − 4x2

4  2x1x2x3 − 2x3
4

 −2x1
4 − 4x2

4 − 2x3
4,

which is negative everywhere except the origin and vanishes at the origin. Hence by
the theorem, the origin is asymptotically stable.

Lyapunov functions can sometimes be used in controller design. In a nonlinear
state feedback setting, for example, if there is a candidate Lyapunov function one can
try to apply feedback that maintains V̇  0 at all times in order to asymptotically
stabilize a point x0.
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