Tracking Fluorescence Correlation Spectroscopy of individual biomolecules

Kevin McHale¹, Andrew Berglund², Mike Zhang, Charles Limouse, Chandra Raman³, Hideo Mabuchi Edward L. Ginzton Laboratory, Stanford University

¹Chemical Physics Laboratory, NIDDK, NIH ²CNST Nanofabrication lab, NIST ³Physics, Georgia Institute of Technology

ARO, NDSEG, NSF, NIGMS

Single-pair FRET measurements on dye-labeled DNA

S. Chu *et al,* S. Weiss *et al*

Single-pair FRET measurements on dye-labeled DNA

Fluorescence-modulation particle tracking (2D)

A. J. Berglund and HM, Appl. Phys. B 78, 653 (2004)

Near axis of rotation the demodulated fluorescence provides a linear error signal

Cohen & Moerner: anti-Brownian electrokinetic trap

A. E. Cohen and W.E. Moerner, Proc. Natl. Acad. Sci. U.S.A. 103, 4362 (200

A. E. Cohen and W. E. Moerner, Phys. Rev. Lett. 98, 116001 (2007)

Tracking data channel(s)

A. J. Berglund, K. McHale and HM, Opt. Lett. 32, 145 (2007)

Tracking performance near the shotnoise limit (2D)

A. J. Berglund, K. McHale and HM, Opt. Lett. 32, 145 (2007)

Fast classification of individual nano-particles (beads)

 $D[\mu m^2/s]$ 90% confidence with only ~600 photons! 2 4 6 8 Estimation time [s] ($\Delta t = 0.1 s$) 10 1.50.5 45 35 2515 ${}^{5}_{\Delta t}{}^{4}$ [$\mu m^2/s$] 0 4 D [Δ t=0.2 s] 2 3 5 6 7 8 Ν

Number of occurences

A. J. Berglund, K. McHale and HM, Opt. Express 15, 7752 (2007)

3D Feedback tracking microscopy

Kevin McHale, A. J. Berglund and HM, Nano Lett. 7, 3535 (2007)

3-D sensing by beam switching

3-D tracking

Schematic apparatus

Kevin McHale, A. J. Berglund and HM, Nano Lett. 7, 3535 (2007)

Free-solution dynamics of large dsDNA molecules

A. J. Spakowitz, Stanford University

www.sciencelearn.org.nz

"Simple" (linearized) polymer models

- Rouse: Beads and springs
- Zimm: Hydrodynamic couplings
- Semi-flexible: Bending energy
- None: excluded volume

Question: which (if any) model quantitatively describes DNA?

Experiments on genomic lambda-DNA

K. McHale and HM, submitted

References

- Initial D measurements: Smith, Perkins & Chu, Macromolecules, 1995
- Intramolecular fluorescence on trapped DNA: Quake, Babcock & Chu, Nature, 1997
- Intramolecular FCS of DNA: Lumma, Keller, Vilgis & Rädler, PRL, 2003; Shusterman, Alon, Gavrinyov & Krichevsky, PRL, 2004; Winkler, Keller & Rädler, PRE, 2006; Petrov, Ohrt, Winkler & Schwille, PRL, 2006
- DNA in ABEL trap: Cohen & Moerner, PRL and PNAS, 2007

FIG. 1. The measured autocorrelation curve g_2 for dilute λ -phage DNA deviates from the correlation function expected for a stiff finite-size polymer with $R_g = 0.73 \ \mu m$ (dashed line). The solid line shows the poor agreement with a best fit to the correlation function of a pointlike particle. The drawings illustrate labeled DNA as a chain of linked chromophores for (a) high and (b) low average label densities.

A. E. Cohen and W.E. Moerner Proc. Natl. Acad. Sci. U.S.A. **103**, 4362 (2006)

A. E. Cohen and W. E. Moerner, Phys. Rev. Lett. 98, 116001 (2007)

Experiments on genomic lambda-DNA

K. McHale and HM, submitted

- Dense tracking labels (POPO-3)
- Single probe label (Atto425)
- Fluorescence rate and beam intensity stabilization
- Alternating excitation to prevent cross-talk

Two-color alternating excitation

K. McHale and HM, submitted

Center-of-mass motion

K. McHale and HM, submitted

Get systematic parameters and D from stage motion

- ► Tracking bandwidths: $\gamma_{xy} = 15$ Hz, $\gamma_z = 2$ Hz
- RMS localization: $L_{xy} = 110$ nm, $L_z = 290$ nm
- ▶ Diffusion coefficient: $D = (0.80 \pm 0.05) \mu m^2/s$

D inconsistent with all other measurements! (but really can't be wrong...)

Intramolecular motion

K. McHale and HM, submitted

Fit parameters:

- ▶ r_0 : size parameter $(R_g \sqrt{2})$
- τ₁: characteristic time
- h: draining parameter

Interpretation

- (r_0 , τ_1) theoretically consistent with $D \approx 0.8 \mu \text{m}^2/\text{s}$
- Data and R/Z theories internally consistent to a factor of 2-4
- Zimm model is inconsistent with the FCS data!

