
APPPHYS 217 Tuesday 6 April 2010

Stability and input-output performance: second-order systems
Here we present a detailed example to draw connections between today’s topics and
our prior review of linear algebra and ODE’s. Of course, this "example" of
second-order systems is actually an important topic in and of itself, as one often gains
intuition about more complex systems by noting similarities to and differences from
this canonical class of models.

The equation of motion we want to consider is

q̈  20q̇  0
2q  u,

where u is an input signal and 0, are parameters of the model. This equation of
motion could represent, for example, a mass-spring-damper system for which F  ma
takes the form

mẍ  −kx − bẋ  Fext, ẍ  b
m ẋ  k

m x  1
m Fext,

0  k
m ,   b2

4km
, u  1

m Fext,

where m is the mass, k is the spring constant and b is the damping coefficient. The
same form of equation of motion arises for a series LCR circuit (inductor-capacitor
oscillator with resistance),

VC  Q
C

, VI  L dI
dt

→ LQ̈, VR  IR → Q̇R,

Vext  LQ̈  Q̇R  1
C

Q, Q̈  R
L

Q̇  1
LC

Q − 1
L

Vext  0,

0  1
LC

,   R2C
4L

, u  1
L

Vext,

where L is the inductance, C the capacitance and R the resistance. Here Q represents
the charge on the capacitor.

General solution of the initial value problem for second-order systems
We have already seen how to put this equation of motion into state-space form:

q̈  −20q̇ − 0
2q  u, x1 ≡ q, x2 ≡ q̇,

d
dt

x1

x2


0 1

−0
2 −20

x1

x2


0

u
.

For the moment, let’s set u to zero and make sure we understand the behavior of the
undriven system. In this case we are looking at ẋ  Ax with A the square matrix in the
equation above, and we know that we can solve all initial value problems by matrix
exponentiation. This in turn tells us that we should look at the eigenvalues of A and
check whether it is diagonalizable. Once we find the matrix exponential we can use it
to find analytic expressions for the impulse, step and frequency response. We’ll do the
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step response here in class today; the impulse and frequency responses are left as
exercises.

Computing the eigenvalues of A for arbitrary 0 and , we find

0  detA − I  −−20 −   0
2,

 2  20  0
2,

 
−20  420

2 − 40
2

2
 −0  0 2 − 1 .

Assuming 0  0 and  ≥ 0, we can then identify three distinct "cases" for  :

  1 : 2 − 1  0    ̄− ∈ C,

  1 :   −  −0,

  1 : 2 − 1  0  0    − ∈ R.

Traditionally one refers to the   1 case as being underdamped,   1 as critically
damped, and   1 as overdamped. Let’s try to figure out why.

The easiest case to analyze is   0 (the undamped case). Then

A 
0 1

−0
2 0

,   i0 ↔ 1
1  1

0
2

− i
0

1
, −  −i0 ↔ 1

1  1
0

2

i
0

1
,

so we have

P  1
1  1

0
2

− i
0

i
0

1 1
, P −1  1  1

0
2

i0

2
1
2

− i0

2
1
2

,

expAt  P
ei0t 0

0 e−i0t
P −1 

1
2 e−it0  1

2 eit0 i
20

e−it0 − i
20

eit0

− i0

2 e−it0  i0

2 eit0 1
2 e−it0  1

2 eit0


cos0t 1

0
sin0t

−0 sin0t cos0t
.

We see from this that for any non-zero initial condition, the integrated trajectory will
consist of undamped oscillations.

If   0 we can still find general expressions for the eigenvectors. In unnormalized
form,

  −0  0 2 − 1 ↔
− 1

0
  2 − 1

1
,

−  −0 − 0 2 − 1 ↔
− 1

0
 − 2 − 1

1
.

These two eigenvectors are independent as long as  ≠ 1, so let’s assume that for
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now. Then

expAt  P
expt 0

0 exp−t
P −1

 1
2 2 − 1

E−  2 − 1 E
1
0

E−

−0E− −E−  2 − 1 E

,

where

E− ≡ expt − exp−t,

E ≡ expt  exp−t.
Note that if 0    1, then

  −0  0 2 − 1  −  i,  ≡ 0,  ≡ 0 1 − 2 , −  − − i,

E−  e−teit − e−it  2ie−t sint, E  2e−t cost,

so

expAt → e−t

1 − 2

 sint  1 − 2 cost 1
0

sint

−0 sint − sint  1 − 2 cost
.

This shows us that for arbitrary initial conditions, the integrated trajectories look like
exponentially damped oscillations. Likewise if   1, then

  −0  0 2 − 1  −  ,  ≡ 0,  ≡ 0 2 − 1 , −  − − ,

E−  e−tet − e−t  2e−t sinht, E  2e−t cosht,

so

expAt → e−t

2 − 1

 sinht  2 − 1 cosht 1
0

sinht

−0 sinht − sinht  2 − 1 cosht
.

Taking into account the fact that   , we see that the integrated trajectories are
exponentially damped without any oscillating factors.

Finally, we consider the case   1. Now

A 
0 1

−0
2 −20

,   −  −0.

Looking at the eigenvalue equation,

0  A − Ix,


0 1

−0
2 −0

x1

x2

,

we see that the only solutions are of the form x2  −0x1 and are thus all linearly
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dependent (correspond to a single eigenvector). Hence we are in the case where A is
not diagonalizable. As mentioned in previous lecture notes, however, we can find a
decomposition into Jordan form:

A 
0 1

−0
2 −20


1 0

−0 1

−0 1

0 −0

1 0

0 1
≡ TJT −1,

where

J 
−0 1

0 −0


−0 0

0 −0


0 1

0 0
≡ S  N,

and clearly S,N   0 since S is proportional to the identity. Then

expAt  TexpJtT −1  TexpStexpNtT −1


1 0

−0 1

e−0t 0

0 e−0t

1 t

0 1

1 0

0 1


e−0t  t0e−0t te−0t

−0e−0t  0e−0t − t0e−0t e−0t − t0e−0t
.

Hence we see that the integrated trajectories will contain exponentially damped terms
as well as terms that intially t  1/0 grow linearly with time but then are dominanted
by the e−0t factors as well.

Step response of second-order systems
Our solutions to the initial value problem can directly be used to solve for the step
response, once we introduce a small trick.

Remember that the step response is defined as the system output corresponding
to an input signal of the form

ut  0, t  0,

ut  u0, t ≥ 0,

assuming the state variables are at equilibrium prior to t  0. Looking at the
second-order equation of motion in its original form,

q̈  20q̇  0
2q  u0,

we see that q, q̇  0 is the desired equilibrium for t  0, and thus that the step
response of the state space variables simply corresponds to an initial value problem,

q̈  20q̇  0
2q  u0,

q0  q̇0  0.

If we can solve for qt and q̇t, we can use them to compute any desired output
signal
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yt ≡ C
qt

q̇t
.

At this point we note that the initial value problem we want to consider can be
transformed by a simple change of variables,

q  q′  q − u0

0
2 , q̇′  q̇, q̈′  q̈,

into

q̈  20q̇  0
2q − u0  0,

q̈  20q̇  0
2 q − u0

0
2  0,

q̈′  20q̇′  0
2q′  0,

with initial condition

q′0  − u0

0
2 , q̇′0  0.

Hence, we can simply use the solutions we derived above for u  0 with an initial
condition corresponding to the desired step size, and then transform the integrated
solution according to

qt  q′t  u0

0
2 , q̇′t  q̇′t.

In the undamped case we have

q′t

q̇′t


cos0t 1
0

sin0t

− 1
0

sin0t cos0t

− u0

0
2

0


− u0

0
2 cos0t

u0

0
3 sin0t

,

so

qt

q̇t
 u0

0
2

1 − cos0t
1
0

sin0t
.

To help visualize this we can make a plot for 0  u0  1 :
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Note the serious overshoot and lack of any settling whatsoever!
In the underdamped case we have

q′t

q̇′t
 − u0

0
2

e−t

1 − 2

 sint  1 − 2 cost

−0 sint
,

so

qt

q̇t
 u0

0
2

1 − e−0t

1−2
 sin 0 1 − 2 t  1 − 2 cos 0 1 − 2 t

0e−0t

1−2
sin 0 1 − 2 t

.

For an example to plot we can choose 0  u0  1 and take   1/3 :
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Here the overshoot is greatly reduced and the system settles within a time  4/0.
Next the overdamped case,

q′t

q̇′t
 − u0

0
2

e−t

2 − 1

 sinht  2 − 1 cosht

−0 sinht

so

qt

q̇t
 u0

0
2

1 − e−0t

2−1
 sinh 0 2 − 1 t  2 − 1 cosh 0 2 − 1 t

0
e−0t

2−1
sinh 0 2 − 1 t

.

Again taking 0  u0  1 and now   4/3, we can plot:
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Here there is no overshoot at all and settling takes  3/0. Finally we consider the
critically damped case,

qt

q̇t
 u0

0
2

1 − e−0t − t0e−0t

0e−0t − 0e−0t − t0e−0t
,

which for 0  u0  1 looks like
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Here again there is no overshoot and settling occurs within  2/0.
Putting our   0 cases together into one plot:
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Exercise 1: How does the rise time vary with ? Consider all values of  ≥ 0.
Exercise 2: How does the settling time vary with ? Consider all values of  ≥ 0.
Exercise 3: Consider the following second-order control system:

d
dt

q

q̇


0 1

−0
2 −20

q

q̇


0

0
2

u,

y  1 1
0

q

q̇
,

where ut is a scalar input signal and yt is a scalar output signal. For a feedback law
of the form

ut  −Kyt,

explain the dependence of the closed-loop step response on the gain K for K  0.

Transient versus steady-state response
Looking at the general solution of a driven linear system that we discussed last week,

xt  expAtx0  
0

t
ds expAt − sbs,

we can now garner some insight as to transient versus steady-state response. For our
second-order systems with   0 (i.e., any case but the completely undamped case),
we know that expA is exponentially damping on long timescales. Hence, for t  0
the initial conditions will be "forgotten" (will no longer make a significant contribution to
xt). The driving input signal bs at early times such that t − s  0 will also be
forgotten. Hence, if bt is a repetitive signal we can expect that xt settles into a
steady-state regime in which x0 is forgotten and it doesn’t matter exactly how b was
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"switched on."
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