APPPHYS 217 Tuesday 20 April 2010

A\&M 7.4 - Bicycle Dynamics

The linearized model for a bicycle is given in equation (3.5), which has the form

$$
J \frac{d^{2} \varphi}{d t^{2}}-\frac{D v_{0}}{b} \frac{d \delta}{d t}=m g h \varphi+\frac{m v_{0}^{2} h}{b} \delta,
$$

where φ is the tilt of the bicycle and δ is the steering angle. Give conditions under which the system is observable and explain any special situations where it loses observability.

We first transform the model to state-space form, by choosing

$$
x_{1}=\varphi, \quad x_{2}=\dot{\varphi}, \quad u_{1}=\delta, \quad u_{2}=\dot{\delta}
$$

although we should be careful to keep in mind that u_{1} and u_{2} are not independent signals. Then the equation (3.5) gives us

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
\frac{m g h}{J} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
\frac{m v_{0} h}{b J} & \frac{D v_{0}}{b J}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] .
$$

Note that the eigenvalues and eigenvectors of A are (using $J \approx m h^{2}$)

$$
\left[\begin{array}{c}
\sqrt{\frac{h}{g}} \\
1
\end{array}\right] \leftrightarrow \sqrt{\frac{g}{h}},\left[\begin{array}{c}
-\sqrt{\frac{h}{g}} \\
1
\end{array}\right] \leftrightarrow-\sqrt{\frac{g}{h}},
$$

which are just the (inverted) pendulum modes of the bicycle. If we parametrize

$$
C=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right],
$$

then

$$
C A=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
\frac{m g h}{J} & 0
\end{array}\right]=\left[\begin{array}{ll}
\frac{m g h}{J} C_{2} & C_{1}
\end{array}\right],
$$

the observability matrix is

$$
W_{o}=\left[\begin{array}{c}
C \\
C A
\end{array}\right]=\left[\begin{array}{cc}
C_{1} & C_{2} \\
\frac{m g h}{J} C_{2} & C_{1}
\end{array}\right] .
$$

The determinant vanishes if

$$
C_{1}^{2}=\frac{m g h}{J} C_{2}^{2},
$$

that is if

$$
y=c\left[\sqrt{\frac{m g h}{J}} \varphi+\dot{\varphi}\right] .
$$

How shall we interpret this? We note that with this output signal, y would vanish at all times for a trajectory

$$
\varphi(t)=\varphi_{0} \exp \left(-\sqrt{\frac{m g h}{J}} t\right),
$$

which is in fact a valid solution for the equation of motion with $\delta(t)=0$, since

$$
J \frac{d^{2}}{d t^{2}} \varphi(t)=m g h \varphi(t)
$$

As noted in the text, $J \approx m h^{2}$ and thus $\sqrt{m g h / J} \approx \sqrt{g / h}$, which approximates the natural frequency of the (inverted) pendulum of the bicycle frame. Hence the "invisible" $\varphi(t)$ trajectory we noted above would in fact correspond to an approach to the saddle equilibrium point along its stable manifold; we cannot determine where we are along the stable manifold from an output signal y of the given form.

Incidentally we note that this system likewise has an input zero. If we set

$$
\delta(t)=\delta_{0} e^{s t},
$$

we have

$$
B u=\left[\begin{array}{cc}
0 & 0 \\
\frac{m v_{0}^{2} h}{b J} & \frac{D v_{0}}{b J}
\end{array}\right]\left[\begin{array}{c}
\delta_{0} e^{s t} \\
s \delta_{0} e^{s t}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{m v_{0}^{2} h}{b J}+s \frac{D v_{0}}{b J}
\end{array}\right] \delta_{0} e^{s t},
$$

which vanishes if

$$
s=-\frac{b J}{D v_{0}} \frac{m v_{0}^{2} h}{b J}=-\frac{m v_{0} h}{D}
$$

Hence a steering policy of

$$
\delta(t)=\delta_{0} \exp \left(-m v_{0} h t / D\right)
$$

will have no effect whatsoever on the dynamical variables $\{\varphi, \dot{\varphi}\}$.
In fact we can derive the Laplace-domain transfer function from δ to φ,

$$
\tilde{\varphi}(s)=G_{\varphi \delta}(s) \tilde{\delta}(s)
$$

via

$$
\left.\begin{array}{rl}
G_{\varphi \delta}(s) & =C(s I-A)^{-1} B\left[\begin{array}{l}
1 \\
s
\end{array}\right]=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left(\left[\begin{array}{cc}
s & -1 \\
-\frac{m g h}{J} & s
\end{array}\right]\right)^{-1}\left[\begin{array}{cc}
0 & 0 \\
\frac{m v_{0}^{2} h}{b J} & \frac{D v_{0}}{b J}
\end{array}\right]\left[\begin{array}{l}
1 \\
s
\end{array}\right] \\
& =\frac{1}{J s^{2}-g h m}\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
J s & J \\
g h m & J s
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
\frac{m v_{0}^{2} h}{b J} & \frac{D v_{0}}{b J}
\end{array}\right]\left[\begin{array}{c}
1 \\
s
\end{array}\right] \\
& =\frac{1}{J s^{2}-g h m}\left[\frac{1}{b} h m v_{0}^{2}\right. \\
\frac{1}{b} D v_{0}
\end{array}\right]\left[\begin{array}{c}
1 \\
s
\end{array}\right] .
$$

We see that it has poles at

$$
s_{ \pm}= \pm \sqrt{\frac{g h m}{J}} \approx \pm \sqrt{\frac{g}{h}}
$$

as well as a zero at

$$
s_{0}=-\frac{h m v_{0}}{D} .
$$

We have already seen what this zero means; the poles coincide with the eigenvalues of the A matrix. We'll talk a lot more about transfer functions next week as we start to move into frequency-domain control theory.

A\&M 7.10-Observer design for motor drive

Consider the normalized model of the motor drive in Exercise 2.10 where the open loop system has the eigenvalues $0,0,-0.05 \pm i$. A state feedback that gave a closed loop system with eigenvalues in $-2,-1$ and $-1 \pm i$ was designed in Exercise 6.11. Design an observer for the system that has eigenvalues $-4,-2$ and $-2 \pm 2 i$. Combine the observer with the state feedback from Exercise 6.11 to obtain an output feedback and simulate the complete system.

We have the motor drive model (2.39)

$$
\begin{aligned}
& J_{1} \frac{d^{2} \varphi_{1}}{d t^{2}}+c\left(\frac{d \varphi_{1}}{d t}-\frac{d \varphi_{2}}{d t}\right)+k\left(\varphi_{1}-\varphi_{2}\right)=k_{I} I, \\
& J_{2} \frac{d^{2} \varphi_{2}}{d t^{2}}+c\left(\frac{d \varphi_{2}}{d t}-\frac{d \varphi_{1}}{d t}\right)+k\left(\varphi_{2}-\varphi_{1}\right)=T_{d} .
\end{aligned}
$$

Introducing the normalized state variables

$$
\begin{aligned}
& x_{1}=\varphi_{1}, \quad x_{2}=\varphi_{2}, \quad x_{3}=\dot{\varphi}_{1} / \omega_{0}, \quad x_{4}=\dot{\varphi}_{2} / \omega_{0}, \\
& \omega_{0} \equiv \sqrt{k\left(J_{1}+J_{2}\right) /\left(J_{1} J_{2}\right)}
\end{aligned}
$$

we have

$$
\begin{aligned}
& J_{1} \omega_{0} \frac{d}{d t} x_{3}=k_{I} I-c\left(\frac{d \varphi_{1}}{d t}-\frac{d \varphi_{2}}{d t}\right)-k\left(\varphi_{1}-\varphi_{2}\right), \\
& J_{2} \omega_{0} \frac{d}{d t} x_{4}=T_{d}-c\left(\frac{d \varphi_{2}}{d t}-\frac{d \varphi_{1}}{d t}\right)-k\left(\varphi_{2}-\varphi_{1}\right)
\end{aligned}
$$

so

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & \omega_{0} & 0 \\
0 & 0 & 0 & \omega_{0} \\
-k /\left(J_{1} \omega_{0}\right) & k /\left(J_{1} \omega_{0}\right) & -c / J_{1} & c / J_{1} \\
k /\left(J_{2} \omega_{0}\right) & -k /\left(J_{2} \omega_{0}\right) & c / J_{2} & -c / J_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
k_{I} /\left(J_{1} \omega_{0}\right) \\
0 \\
0 \\
1 /\left(J_{2} \omega_{0}\right)
\end{array}\right]\left[\begin{array}{l}
I \\
T_{d}
\end{array}\right.
$$

In Exercise 6.11 we are told to set

$$
J_{1}=10 / 9, \quad J_{2}=10, \quad c=0.1, \quad k=1, \quad k_{I}=1,
$$

from which it follows also that

$$
\omega_{0}=\sqrt{k\left(J_{1}+J_{2}\right) /\left(J_{1} J_{2}\right)}=\sqrt{\left(\frac{10}{9}+\frac{90}{9}\right) \frac{9}{100}}=1,
$$

so in open loop

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-0.9 & 0.9 & -0.09 & 0.09 \\
0.1 & -0.1 & 0.01 & -0.01
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right],
$$

and the eigenvalues are indeed $0,0,-0.05 \pm i$. Taking I to be the input and assuming $T_{d}=0$, we have

$$
A=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-0.9 & 0.9 & -0.09 & 0.09 \\
0.1 & -0.1 & 0.01 & -0.01
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
0 \\
0.9 \\
0
\end{array}\right],
$$

and using

$$
K=p l a c e\left(A, B,\left[\begin{array}{llll}
-2 & -1 & -1+i & -1-i
\end{array}\right]\right),
$$

we obtain the state-feedback gain matrix

$$
K=\left[\begin{array}{llll}
8.9333 & 35.5111 & 5.4444 & 101.2222
\end{array}\right]
$$

Assuming we implement a state-feedback control law of the form

$$
u=-K \vec{x}+k_{r} r,
$$

we then have

$$
\frac{d}{d t} \vec{x}=(A-B K) \vec{x}+k_{r} B r .
$$

The response to a step in the command input r is obtained by
motdrv $=\operatorname{ss}\left(A-B^{*} K, B,\left[\begin{array}{llllll}0 & 0 & 1 & 0 ; 0 & 0 & 0 \\ 1\end{array}\right],[]\right)$,
step(motdrv),
yielding

The response to a step in the disturbance torque T_{d} is obtained by
motdrv = ss(A-B*K,[0;0;0;0.1],[0 $010 ; 0001],[])$, step(motdrv),
yielding

Next we are supposed to design an observer, but A\&M do not tell us what to assume for C. Using the observability matrix

$$
W_{o}=\left[\begin{array}{c}
C \\
C A \\
C A^{2} \\
C A^{3}
\end{array}\right] \text {, }
$$

and Matlab's cond routine, it is easy to establish that measurements of the angular velocities are not so appropriate. We therefore choose

$$
C=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]
$$

corresponding to a measurement of the angular position of the motor drive shaft. Then using

L=place $\left(A^{\prime}, C^{\prime},\left[\begin{array}{llll}-4 & -2 & -2+2 * i & -2-2 * i\end{array}\right]\right)^{\prime}$, we find

$$
L=\left[\begin{array}{c}
9.9 \\
80.6778 \\
38.01 \\
66.8878
\end{array}\right]
$$

Hence the observer evolves according to

$$
\frac{d}{d t} \hat{x}=A \hat{x}+B u+L(y-C \hat{x})
$$

and our output feedback law is

$$
u=-K \hat{x}+k_{r} r .
$$

To simulate the output feedback system we note that we can write

$$
\begin{aligned}
\frac{d}{d t}\left[\begin{array}{l}
x \\
\hat{x}
\end{array}\right] & =\left[\begin{array}{ll}
A & 0 \\
0 & A
\end{array}\right]\left[\begin{array}{l}
x \\
\hat{x}
\end{array}\right]+\left[\begin{array}{l}
B \\
B
\end{array}\right] u+\left[\begin{array}{l}
0 \\
L
\end{array}\right]\left[\begin{array}{ll}
C & -C
\end{array}\right]\left[\begin{array}{l}
x \\
\hat{x}
\end{array}\right] \\
& =\left(\left[\begin{array}{ll}
A & 0 \\
0 & A
\end{array}\right]+\left[\begin{array}{l}
0 \\
L
\end{array}\right]\left[\begin{array}{ll}
C & -C
\end{array}\right]\right)\left[\begin{array}{l}
x \\
\hat{x}
\end{array}\right]+\left[\begin{array}{l}
B \\
B
\end{array}\right]\left[\begin{array}{ll}
0 & -K
\end{array}\right]\left[\begin{array}{l}
x \\
\hat{x}
\end{array}\right]+\left[\begin{array}{l}
B \\
B
\end{array}\right] k_{r} \\
& =\left(\left[\begin{array}{ll}
A & 0 \\
0 & A
\end{array}\right]+\left[\begin{array}{l}
B \\
B
\end{array}\right]\left[\begin{array}{ll}
0 & -K
\end{array}\right]-\left[\begin{array}{l}
0 \\
L
\end{array}\right]\left[\begin{array}{ll}
C & -C
\end{array}\right]\right)\left[\begin{array}{l}
x \\
\hat{x}
\end{array}\right]+\left[\begin{array}{l}
B \\
B
\end{array}\right] k_{r} r \\
& =\left[\begin{array}{cc}
A & -B K \\
L C & A-B K-L C
\end{array}\right]+\left[\begin{array}{l}
B \\
B
\end{array}\right] k_{r} r .
\end{aligned}
$$

Hence in Matlab we can easily do simulations of the output-feedback system in closed loop. For example let us set $r=0$ and simulate the behavior of the system under the influence of an (unobserved) disturbance torque:

$$
\frac{d}{d t}\left[\begin{array}{c}
x \\
\hat{x}
\end{array}\right]=\left[\begin{array}{cc}
A & -B K \\
L C & A-B K-L C
\end{array}\right]\left[\begin{array}{c}
x \\
\hat{x}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0.1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] T_{d}
$$

If we take for example

$$
T_{d}(t)=\frac{1}{2} \sin ^{2}(\sqrt{2} t)
$$

we can run the Matlab code

$$
\begin{aligned}
& A A=\left[\begin{array}{ll}
A & -B^{*} K ; ~ L * C ~ A-B * K-L * C
\end{array}\right] \text {, } \\
& N t=30000 \text {; } t=1 i n s p a c e(0,15, N t) ; d t=t(2)-t(1) \text {; } \\
& \text { x=zeros(8,Nt); Td=0.5*sin(sqrt(2)*t).^2; } \\
& \text { for } i \mathbf{i = 2 : N t} \text {, } \\
& x(:, i \mathbf{i})=x(:, i \mathbf{i}-1)+A A^{*} \mathbf{x}(:, \mathbf{i i}-\mathbf{1}) * d t+ \\
& \text { [0;0;0;0.1;0;0;0;0]*Td(ii)*dt; } \\
& \text { end; } \\
& \text { figure; plot(t, x(3,:),'k-',t,x(4,:),'r-',t,Td,'g:'); }
\end{aligned}
$$

to generate the plot

Contrast this with the open-loop behavior, obtained by setting $K=\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$ and re-running the above Matlab code:

