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A&M 7.4 - Bicycle Dynamics
The linearized model for a bicycle is given in equation (3.5), which has the form

J
d 2
dt2 −

Dv0

b
d
dt

 mgh  mv0
2h

b
,

where  is the tilt of the bicycle and  is the steering angle. Give conditions under
which the system is observable and explain any special situations where it loses
observability.

We first transform the model to state-space form, by choosing

x1  , x2  ̇, u1  , u2  ̇,
although we should be careful to keep in mind that u1 and u2 are not independent
signals. Then the equation (3.5) gives us

d
dt

x1

x2


0 1

mgh
J 0

x1

x2


0 0

mv0
2h

bJ
Dv0

bJ

u1

u2

.

Note that the eigenvalues and eigenvectors of A are (using J ≈ mh2)

h
g

1
↔ g

h
,

− h
g

1
↔ − g

h
,

which are just the (inverted) pendulum modes of the bicycle. If we parametrize

C  C1 C2 ,

then

CA  C1 C2

0 1
mgh

J 0
 mgh

J C2 C1 ,

the observability matrix is

Wo 
C

CA


C1 C2

mgh
J C2 C1

.

The determinant vanishes if

C1
2  mgh

J
C2

2,

that is if

y  c
mgh

J
  ̇ .

How shall we interpret this? We note that with this output signal, y would vanish at all
times for a trajectory

1



t  0 exp − mgh
J

t ,

which is in fact a valid solution for the equation of motion with t  0, since

J d 2

dt2 t  mght.

As noted in the text, J ≈ mh2 and thus mgh/J ≈ g/h , which approximates the natural
frequency of the (inverted) pendulum of the bicycle frame. Hence the “invisible” t
trajectory we noted above would in fact correspond to an approach to the saddle
equilibrium point along its stable manifold; we cannot determine where we are along
the stable manifold from an output signal y of the given form.

Incidentally we note that this system likewise has an input zero. If we set

t  0est,

we have

Bu 
0 0

mv0
2h

bJ
Dv0

bJ

0est

s0est


0
mv0

2h

bJ
 s Dv0

bJ

0est,

which vanishes if

s  − bJ
Dv0

mv0
2h

bJ
 − mv0h

D
.

Hence a steering policy of

t  0 exp−mv0ht/D

will have no effect whatsoever on the dynamical variables , ̇.
In fact we can derive the Laplace-domain transfer function from  to ,

̃s  Gs ̃s,

via

Gs  CsI − A−1B
1

s
 1 0

s −1

− mgh
J s

−1
0 0

mv0
2h

bJ
Dv0

bJ

1

s

 1
Js2 − ghm

1 0
Js J

ghm Js

0 0
mv0

2h

bJ
Dv0

bJ

1

s

 1
Js2 − ghm

1
b

hmv0
2 1

b
Dv0

1

s

 hmv0
2  Dv0s

bJs2 − ghm
.

We see that it has poles at

s   ghm
J

≈  g
h

,
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as well as a zero at

s0  − hmv0

D
.

We have already seen what this zero means; the poles coincide with the eigenvalues
of the A matrix. We’ll talk a lot more about transfer functions next week as we start to
move into frequency-domain control theory.

A&M 7.10 - Observer design for motor drive
Consider the normalized model of the motor drive in Exercise 2.10 where the open
loop system has the eigenvalues 0,0,−0.05  i. A state feedback that gave a closed
loop system with eigenvalues in −2,−1 and −1  i was designed in Exercise 6.11.
Design an observer for the system that has eigenvalues −4,−2 and −2  2i. Combine
the observer with the state feedback from Exercise 6.11 to obtain an output feedback
and simulate the complete system.

We have the motor drive model (2.39)

J1
d 21

dt2  c
d1

dt
− d2

dt
 k1 − 2  kII,

J2
d 22

dt2  c
d2

dt
− d1

dt
 k2 − 1  Td.

Introducing the normalized state variables

x1  1, x2  2, x3  ̇1/0, x4  ̇2/0,

0 ≡ kJ1  J2/J1J2 ,

we have

J10
d
dt

x3  kII − c
d1

dt
− d2

dt
− k1 − 2,

J20
d
dt

x4  Td − c
d2

dt
− d1

dt
− k2 − 1,

so

d
dt

x1

x2

x3

x4



0 0 0 0

0 0 0 0

−k/J10 k/J10 −c/J1 c/J1

k/J20 −k/J20 c/J2 −c/J2

x1

x2

x3

x4



0 0

0 0

kI/J10 0

0 1/J20

I

Td

In Exercise 6.11 we are told to set

J1  10/9, J2  10, c  0.1, k  1, kI  1,

from which it follows also that

0  kJ1  J2/J1J2  10
9

 90
9

9
100

 1,

so in open loop
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d
dt

x1

x2

x3

x4



0 0 1 0

0 0 0 1

−0.9 0.9 −0.09 0.09

0.1 −0.1 0.01 −0.01

x1

x2

x3

x4

,

and the eigenvalues are indeed 0,0,−0.05  i. Taking I to be the input and assuming
Td  0, we have

A 

0 0 1 0

0 0 0 1

−0.9 0.9 −0.09 0.09

0.1 −0.1 0.01 −0.01

, B 

0

0

0.9

0

,

and using
Kplace(A,B,[-2 -1 -1i -1-i]),

we obtain the state-feedback gain matrix

K  8.9333 35.5111 5.4444 101.2222 .

Assuming we implement a state-feedback control law of the form

u  −Kx  krr,

we then have
d
dt

x  A − BKx  krBr.

The response to a step in the command input r is obtained by
motdrv  ss(A-B*K,B,[0 0 1 0;0 0 0 1],[]),
step(motdrv),

yielding
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The response to a step in the disturbance torque Td is obtained by
motdrv  ss(A-B*K,[0;0;0;0.1],[0 0 1 0;0 0 0 1],[]),
step(motdrv),

yielding
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Next we are supposed to design an observer, but A&M do not tell us what to assume
for C. Using the observability matrix

Wo 

C

CA

CA2

CA3

,

and Matlab’s cond routine, it is easy to establish that measurements of the angular
velocities are not so appropriate. We therefore choose

C  1 0 0 0 ,

corresponding to a measurement of the angular position of the motor drive shaft. Then
using

Lplace(A’,C’,[-4 -2 -22*i -2-2*i])’,
we find

L 

9.9

80.6778

38.01

66.8878

.

Hence the observer evolves according to
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d
dt

x̂  Ax̂  Bu  Ly − Cx̂,

and our output feedback law is

u  −Kx̂  krr.

To simulate the output feedback system we note that we can write

d
dt

x

x̂


A 0

0 A

x

x̂


B

B
u 

0

L
C −C

x

x̂


A 0

0 A


0

L
C −C

x

x̂


B

B
0 −K

x

x̂


B

B
krr


A 0

0 A


B

B
0 −K −

0

L
C −C

x

x̂


B

B
krr


A −BK

LC A − BK − LC

x

x̂


B

B
krr.

Hence in Matlab we can easily do simulations of the output-feedback system in closed
loop. For example let us set r  0 and simulate the behavior of the system under the
influence of an (unobserved) disturbance torque:

d
dt

x

x̂


A −BK

LC A − BK − LC

x

x̂


0

0

0

0.1

0

0

0

0

Td.

If we take for example

Tdt  1
2

sin2 2 t ,

we can run the Matlab code
AA[A -B*K; L*C A-B*K-L*C],
Nt30000; tlinspace(0,15,Nt); dtt(2)-t(1);
xzeros(8,Nt); Td0.5*sin(sqrt(2)*t).^2;
for ii2:Nt,

x(:,ii)  x(:,ii-1)  AA*x(:,ii-1)*dt 
[0;0;0;0.1;0;0;0;0]*Td(ii)*dt;
end;
figure; plot(t,x(3,:),’k-’,t,x(4,:),’r-’,t,Td,’g:’);
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to generate the plot
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Contrast this with the open-loop behavior, obtained by setting K  0 0 0 0 and

re-running the above Matlab code:
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