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A&M 7.4 - Bicycle Dynamics
The linearized model for a bicycle is given in equation (3.5), which has the form

J
d 2
dt2 −

Dv0

b
d
dt

 mgh  mv0
2h

b
,

where  is the tilt of the bicycle and  is the steering angle. Give conditions under
which the system is observable and explain any special situations where it loses
observability.

We first transform the model to state-space form, by choosing

x1  , x2  ̇, u1  , u2  ̇,
although we should be careful to keep in mind that u1 and u2 are not independent
signals. Then the equation (3.5) gives us

d
dt

x1

x2


0 1

mgh
J 0

x1

x2


0 0

mv0
2h

bJ
Dv0

bJ

u1

u2

.

Note that the eigenvalues and eigenvectors of A are (using J ≈ mh2)

h
g

1
↔ g

h
,

− h
g

1
↔ − g

h
,

which are just the (inverted) pendulum modes of the bicycle. If we parametrize

C  C1 C2 ,

then

CA  C1 C2

0 1
mgh

J 0
 mgh

J C2 C1 ,

the observability matrix is

Wo 
C

CA


C1 C2

mgh
J C2 C1

.

The determinant vanishes if

C1
2  mgh

J
C2

2,

that is if

y  c
mgh

J
  ̇ .

How shall we interpret this? We note that with this output signal, y would vanish at all
times for a trajectory
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t  0 exp − mgh
J

t ,

which is in fact a valid solution for the equation of motion with t  0, since

J d 2

dt2 t  mght.

As noted in the text, J ≈ mh2 and thus mgh/J ≈ g/h , which approximates the natural
frequency of the (inverted) pendulum of the bicycle frame. Hence the “invisible” t
trajectory we noted above would in fact correspond to an approach to the saddle
equilibrium point along its stable manifold; we cannot determine where we are along
the stable manifold from an output signal y of the given form.

Incidentally we note that this system likewise has an input zero. If we set

t  0est,

we have

Bu 
0 0

mv0
2h

bJ
Dv0

bJ

0est

s0est


0
mv0

2h

bJ
 s Dv0

bJ

0est,

which vanishes if

s  − bJ
Dv0

mv0
2h

bJ
 − mv0h

D
.

Hence a steering policy of

t  0 exp−mv0ht/D

will have no effect whatsoever on the dynamical variables , ̇.
In fact we can derive the Laplace-domain transfer function from  to ,

̃s  Gs ̃s,

via

Gs  CsI − A−1B
1

s
 1 0

s −1

− mgh
J s

−1
0 0

mv0
2h

bJ
Dv0

bJ

1

s

 1
Js2 − ghm

1 0
Js J

ghm Js

0 0
mv0

2h

bJ
Dv0

bJ

1

s

 1
Js2 − ghm

1
b

hmv0
2 1

b
Dv0

1

s

 hmv0
2  Dv0s

bJs2 − ghm
.

We see that it has poles at

s   ghm
J

≈  g
h

,
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as well as a zero at

s0  − hmv0

D
.

We have already seen what this zero means; the poles coincide with the eigenvalues
of the A matrix. We’ll talk a lot more about transfer functions next week as we start to
move into frequency-domain control theory.

A&M 7.10 - Observer design for motor drive
Consider the normalized model of the motor drive in Exercise 2.10 where the open
loop system has the eigenvalues 0,0,−0.05  i. A state feedback that gave a closed
loop system with eigenvalues in −2,−1 and −1  i was designed in Exercise 6.11.
Design an observer for the system that has eigenvalues −4,−2 and −2  2i. Combine
the observer with the state feedback from Exercise 6.11 to obtain an output feedback
and simulate the complete system.

We have the motor drive model (2.39)

J1
d 21

dt2  c
d1

dt
− d2

dt
 k1 − 2  kII,

J2
d 22

dt2  c
d2

dt
− d1

dt
 k2 − 1  Td.

Introducing the normalized state variables

x1  1, x2  2, x3  ̇1/0, x4  ̇2/0,

0 ≡ kJ1  J2/J1J2 ,

we have

J10
d
dt

x3  kII − c
d1

dt
− d2

dt
− k1 − 2,

J20
d
dt

x4  Td − c
d2

dt
− d1

dt
− k2 − 1,

so

d
dt

x1

x2

x3

x4



0 0 0 0

0 0 0 0

−k/J10 k/J10 −c/J1 c/J1

k/J20 −k/J20 c/J2 −c/J2

x1

x2

x3

x4



0 0

0 0

kI/J10 0

0 1/J20

I

Td

In Exercise 6.11 we are told to set

J1  10/9, J2  10, c  0.1, k  1, kI  1,

from which it follows also that

0  kJ1  J2/J1J2  10
9

 90
9

9
100

 1,

so in open loop
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d
dt

x1

x2

x3

x4



0 0 1 0

0 0 0 1

−0.9 0.9 −0.09 0.09

0.1 −0.1 0.01 −0.01

x1

x2

x3

x4

,

and the eigenvalues are indeed 0,0,−0.05  i. Taking I to be the input and assuming
Td  0, we have

A 

0 0 1 0

0 0 0 1

−0.9 0.9 −0.09 0.09

0.1 −0.1 0.01 −0.01

, B 

0

0

0.9

0

,

and using
Kplace(A,B,[-2 -1 -1i -1-i]),

we obtain the state-feedback gain matrix

K  8.9333 35.5111 5.4444 101.2222 .

Assuming we implement a state-feedback control law of the form

u  −Kx  krr,

we then have
d
dt

x  A − BKx  krBr.

The response to a step in the command input r is obtained by
motdrv  ss(A-B*K,B,[0 0 1 0;0 0 0 1],[]),
step(motdrv),

yielding
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The response to a step in the disturbance torque Td is obtained by
motdrv  ss(A-B*K,[0;0;0;0.1],[0 0 1 0;0 0 0 1],[]),
step(motdrv),

yielding
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Next we are supposed to design an observer, but A&M do not tell us what to assume
for C. Using the observability matrix

Wo 

C

CA

CA2

CA3

,

and Matlab’s cond routine, it is easy to establish that measurements of the angular
velocities are not so appropriate. We therefore choose

C  1 0 0 0 ,

corresponding to a measurement of the angular position of the motor drive shaft. Then
using

Lplace(A’,C’,[-4 -2 -22*i -2-2*i])’,
we find

L 

9.9

80.6778

38.01

66.8878

.

Hence the observer evolves according to
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d
dt

x̂  Ax̂  Bu  Ly − Cx̂,

and our output feedback law is

u  −Kx̂  krr.

To simulate the output feedback system we note that we can write

d
dt

x

x̂


A 0

0 A

x

x̂


B

B
u 

0

L
C −C

x

x̂


A 0

0 A


0

L
C −C

x

x̂


B

B
0 −K

x

x̂


B

B
krr


A 0

0 A


B

B
0 −K −

0

L
C −C

x

x̂


B

B
krr


A −BK

LC A − BK − LC

x

x̂


B

B
krr.

Hence in Matlab we can easily do simulations of the output-feedback system in closed
loop. For example let us set r  0 and simulate the behavior of the system under the
influence of an (unobserved) disturbance torque:

d
dt

x

x̂


A −BK

LC A − BK − LC

x

x̂


0

0

0

0.1

0

0

0

0

Td.

If we take for example

Tdt  1
2

sin2 2 t ,

we can run the Matlab code
AA[A -B*K; L*C A-B*K-L*C],
Nt30000; tlinspace(0,15,Nt); dtt(2)-t(1);
xzeros(8,Nt); Td0.5*sin(sqrt(2)*t).^2;
for ii2:Nt,

x(:,ii)  x(:,ii-1)  AA*x(:,ii-1)*dt 
[0;0;0;0.1;0;0;0;0]*Td(ii)*dt;
end;
figure; plot(t,x(3,:),’k-’,t,x(4,:),’r-’,t,Td,’g:’);
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to generate the plot
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Contrast this with the open-loop behavior, obtained by setting K  0 0 0 0 and

re-running the above Matlab code:
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