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A&M 7.4 - Bicycle Dynamics
The linearized model for a bicycle is given in equation (3.5), which has the form
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where ¢ is the tilt of the bicycle and ¢ is the steering angle. Give conditions under
which the system is observable and explain any special situations where it loses
observability.

We first transform the model to state-space form, by choosing
X1 =@, X2=¢, U =5, Uy=7J,

although we should be careful to keep in mind that u; and u, are not independent
signals. Then the equation (3.5) gives us
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Note that the eigenvalues and eigenvectors of A are (using J * mh?)
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which are just the (inverted) pendulum modes of the bicycle. If we parametrize
c-[cc |
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the observability matrix is
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The determinant vanishes if
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then

that is if
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How shall we interpret this? We note that with this output signal, y would vanish at all
times for a trajectory



o) = mexp(—,/ngh t>,

which is in fact a valid solution for the equation of motion with 6(t) = 0, since
2
L300 = mgho(t).
As noted in the text, J ¥ mh? and thus ,/mgh/J ~ ,/g/h, which approximates the natural

frequency of the (inverted) pendulum of the bicycle frame. Hence the “invisible” ¢(t)
trajectory we noted above would in fact correspond to an approach to the saddle
equilibrium point along its stable manifold; we cannot determine where we are along
the stable manifold from an output signal y of the given form.

Incidentally we note that this system likewise has an input zero. If we set

o(t) = doe,

we have
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Hence a steering policy of
o(t) = doexp(—mvoht/D)
will have no effect whatsoever on the dynamical variables {¢, ¢}.
In fact we can derive the Laplace-domain transfer function from ¢ to o,

B(s) = Gps(s)5(s),
via
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We see that it has poles at




as well as a zero at
_ hmvg

D
We have already seen what this zero means; the poles coincide with the eigenvalues
of the A matrix. We'll talk a lot more about transfer functions next week as we start to
move into frequency-domain control theory.

So =

A&M 7.10 - Observer design for motor drive
Consider the normalized model of the motor drive in Exercise 2.10 where the open
loop system has the eigenvalues 0,0,-0.05 + i. A state feedback that gave a closed
loop system with eigenvalues in —2,-1 and -1 + i was designed in Exercise 6.11.
Design an observer for the system that has eigenvalues —4,-2 and -2 + 2i. Combine
the observer with the state feedback from Exercise 6.11 to obtain an output feedback
and simulate the complete system.

We have the motor drive model (2.39)

d?p; dp:1  de2 _
J1 dt2 +C( T: - dt )+k((p1—(02)—k||,

d?gp, dp>  dei _
J2 at2 +C( dt - dt )+k((p2—§01)—Td.

Introducing the normalized state variables
X1 = @1, X2=0@2 X3=@iloo, Xs= @2loo,
o = Jk(Jl +J2)/(JlJz) )

we have
Jla)O%XC% = kil - C(% - %) — k(o1 —92),
Jaoo-Shxs = Ta—o G2 - S8 )~ k(2 - 90).
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dt| x, —K(Q1w0) KQiwo) -cly cldy X3 ki/(Ji00) O
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In Exercise 6.11 we are told to set
J1 =109, J, =10, ¢=0.1, k=1, k =1,

from which it follows also that

wo = JkQ1+32)I(0132) = \/(170 + %’)%O -1,

so in open loop

Tq
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and the eigenvalues are indeed 0,0,-0.05 + i. Taking | to be the input and assuming

T4 = 0, we have

and using
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K=place(A,B,[-2 -1 -1+i -1-1]),
we obtain the state-feedback gain matrix

K:[ 8.9333 35.5111 5.4444 101.2222 }

X1
X2
X3
X4

0.9

Assuming we implement a state-feedback control law of the form

we then have

The response to a step in the command input r is obtained by

u=-K

X + K,

= (A — BK)X + k,Br.

motdrv = ss(A-B*K,B,[0 0 1 0;0 0 O 17,[D).,

step(motdrv),
yielding
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The response to a step in the disturbance torque T4 is obtained by
motdrv = ss(A-B*K,[0;0;0;0.1],[]0 0 1 0;0 0 O 1].ID.
step(motdrv),

yielding
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Next we are supposed to design an observer, but A&M do not tell us what to assume
for C. Using the observability matrix

C
CA
WO = [
CA?
CA3
and Matlab’s cond routine, it is easy to establish that measurements of the angular
velocities are not so appropriate. We therefore choose
c-[1000]

corresponding to a measurement of the angular position of the motor drive shaft. Then
using

L=place(A”,C”,[-4 -2 -2+2*i -2-2*i])”,
we find

9.9
80.6778
38.01
66.8878

Hence the observer evolves according to



%&:A%+&H¢@—cm,
and our output feedback law is
u = —-KR+Kkr.

To simulate the output feedback system we note that we can write
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Hence in Matlab we can easily do simulations of the output-feedback system in closed
loop. For example let us set r = 0 and simulate the behavior of the system under the

influence of an (unobserved) disturbance torque:

0
0
d X _ A —-BK X N 0.1 T.
dt| g LC A—BK-LC R

If we take for example

o O o o

Ta(t) = %sinz(ﬁt)
we can run the Matlab code

AA=[A -B*K; L*C A-B*K-L*C],

Nt=30000; t=linspace(0,15,Nt); dt=t(2)-t(1);
x=zeros(8,Nt); Td=0.5*sin(sqrt(2)*t)."2;

for 11=2:Nt,

X(z,11) = x(z,11-1) + AA*X(Z,1i-1)*dt +
[0;0;0;0.1;0;0;0;0])*Td(ni)*dt;

end;

figure; plot(t,x(3,:),’k-",t,x(4,:),’r-7,t,7d,’g:7);
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to generate the plot
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Contrast this with the open-loop behavior, obtained by setting K = [ 0000 } and
re-running the above Matlab code:
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