
APPPHYS217 Tuesday 30 March 2010
Review of Linear Algebra and Ordinary Differential Equations (ODE’s) / Part 1 of 2

Matrix and vector notation and operations
We generally think of a vector v as representing a point in Rn. For example,

v 

x

y

z

, vT  x y z

can be interpreted as a point in 3-space, specified by its Cartesian coordinates. Given two
vectors v and w, we can form the "dot product,"

v  w  vTw  v1 v2 v3

w1

w2

w3

 v1w1  v2w2  v3w3  w  v.

Taking the square-root of the dot product of a vector with itself gives us its length,

|v|  v  v  v1
2  v2

2  v3
2 .

For example if vT  x y z , then |v| is the familiar expression for the (Euclidean)

distance of the point x,y, z from the origin.
Note that if we evaluate something like vwT we get a matrix rather than a scalar. With

our above definitions of v and w for example,

vwT 

v1

v2

v3

w1 w2 w3 

v1w1 v1w2 v1w3

v2w1 v2w2 v2w3

v3w1 v3w2 v3w3

,

which is in general distinct from

wvT 

w1

w2

w3

v1 v2 v3 

v1w1 v2w1 v3w1

v1w2 v2w2 v3w2

v1w3 v2w3 v3w3

 vwTT.

Just to be clear, the matrix transpose notation means, for example,

M 

a b c

d e f

g h i

, M T 

a d g

b e h

c f i

, M1M2T  M2
TM1

T.

Note the relevance of the last identity for our vector case: vwTT  wvT.
In Matlab,

v  1 2 3

defines a row vector, whereas

1

v  1;2;3

defines a column vector. Transpose is denoted by ′ (the apostrophe), such that if

v  1 2 3;

w  v ′;

then w is a column vector. Similarly,

A  1 2 3;4 5 6;7 8 9

is a 3  3 matrix and A ′ is its transpose.
We can multiply vectors by matrices. Defining

A 

a11 a12 a13

a21 a22 a23

a31 a32 a33

, v 

v1

v2

v3

,

we have for example

Av 

a11 a12 a13

a21 a22 a23

a31 a32 a33

v1

v2

v3



a11v1  a12v2  a13v3

a21v1  a22v2  a23v3

a31v1  a32v2  a33v3

,

vTA  v1 v2 v3

a11 a12 a13

a21 a22 a23

a31 a32 a33

    

a11v1  a21v2  a31v3

a12v1  a22v2  a32v3

a13v1  a23v2  a33v3

T

.

Here the notation is just meant to emphasize that vTA is a row vector.
Matrices can of course be multiplied and added with each other. If we define

A 

a11 a12 a13

a21 a22 a23

a31 a32 a33

, B 

b11 b12 b13

b21 b22 b23

b31 b32 b33

,

we have

AB 

a11b11  a12b21  a13b31 a11b12  a12b22  a13b32 a11b13  a12b23  a13b33

a21b11  a22b21  a23b31 a21b12  a22b22  a23b32 a21b13  a22b23  a23b33

a31b11  a32b21  a33b31 a31b12  a32b22  a33b32 a31b13  a32b23  a33b33

,

and in general AB ≠ BA. One sometimes sees (especially in physics)

A,B ≡ AB − BA,

and if A,B  0, which implies AB  BA, we say that "A and B commute."
In Matlab the  and ∗ symbols are overloaded such that, for example, 1 ∗ 2  2 but A ∗ B

is the matrix multiplication of A and B. Likewise for multiplication of vectors by matrices,
vector addition, et cetera. For example, 1 2 3 ∗ 1 2 3

′
 14 whereas 1 2 3

′ ∗ 1 2 3 is
a 3  3 matrix.

Matrices can of course be multiplied by scalars:

2

A 

a11 a12 a13

a21 a22 a23

a31 a32 a33

,

where  ∈ R or  ∈ C. Note that A  IA, where

I 

1 0 0

0 1 0

0 0 1

is an identity matrix (here, in R3). Likewise, one sometimes writes A  , which usually means

A   ≡
a11   a12 a13

a21 a22   a23

a31 a32 a33  

 A  I.

Note, however, that Matlab will interpret such expressions in a different way! (Exercise: try
this for yourself and write an equation to describe what Matlab does.)

Given a (square) matrix M, we can sometimes find a matrix M −1 such that

MM −1  M −1M  I.

We then refer to M −1 as the inverse of M (and vice versa). For example, if

M 
1 2

2 1
, M −1  1

3
−1 2

2 −1
,

as is easily verified by direct multiplication (exercise: prove that the inverse of a matrix, if it
exists, is unique). In general for 2  2 matrices,

M 
a b

c d
, M −1  1

ad − bc
d −b

−c a
.

Note that ad − bc here is the determinant of M. For an corresponding expression for 3  3
matrices, see http://mathworld.wolfram.com/MatrixInverse.html on the same
site. For a general discussion of matrix determinants, see
http://mathworld.wolfram.com/Determinant.html. Looking at the general form of
an inverse for 2  2 matrices we can already see that M −1 won’t exist for some matrices M.
For example, if

M 
1 1

2 2
,

the determinant is zero and thus our explicit expression for M −1 doesn’t exist. It is likewise
easy to see that if we try to solve

MM −1 
1 1

2 2

a b

c d


a  c b  d

2a  c 2b  d
 I 

1 0

0 1
,

we can’t simultaneously satisfy a  c  1 and 2a  c  0. Hence not all square matrices
have inverses. Luckily the invertibility of a matrix is easy to determine: a square matrix M has

3

an inverse if and only if the determinant of M is non-zero. If a matrix has zero determinant we
say that it is singular (non-invertible).

In Matlab, the determinant of a matrix can be found using det, the inverse of a matrix
can be found using inv, and cond can be used to test whether a matrix is singular (with
finite precision arithmetic, cond provides a more robust method than simply checking
detA  0).

Eigenvalues and eigenvectors
Let A be an n  n matrix with real entries,

A 

a11 a12  a1n

a21 a22  a2n

   

an1 an2  ann

, aij ∈ R.

Then the roots of the equation

detA − I  0

are called the eigenvalues of A. For example, if

A 
1 2

2 3
, detA − I  det

1 −  2

2 3 − 
 1 − 3 −  − 4  0

 2 − 4 − 1  0,

whose roots are   2  5 and   2 − 5 . It is important to note that even a matrix with all
real entries can have complex (or imaginary) eigenvalues. Consider for example

A 
1 1

−1 1
,

which has   1  i. One can prove, however, that such complex or imaginary eigenvalues
always appear in conjugate pairs: if i ∉ R ≡ a  ib is an eigenvalue then ̄i  a − ib is an
eigenvalue as well. We’ll come back to this important point when we talk about general
solutions to linear first-order ODE’s.

Sometimes the number of distinct eigenvalues is less than n, as in

A 
2 0

0 2
, detA − I  2 − 2 −   0,

which has   2 as its unique root. As we’ll soon see, it makes sense to think of the
eigenvalue   2 in this case as "being repeated twice" or as "having degeneracy two."

Each distinct eigenvalue of a matrix has at least one associated eigenvector. These are
defined as the (non-zero) vectors vi, j that satisfy

Avi, j  ivi, j.

In our example immediately above, 1  2 has two linearly independent eigenvectors:

4

Av1,1 
2 0

0 2

1

0


2

0
 1v1,1,

Av1,2 
2 0

0 2

0

1


0

2
 1v1,2,

It is obvious that one cannot write v1,1  v1,2 for any scalar , which makes it clear that v1,1

and v1,2 are linearly independent. (One usually assumes that eigenvectors are given in a
normalized form; hence if vi, j is presented as an eigenvector of some matrix it is generally
safe to assume that |vi, j |  1.) The fact that the eigenvalue 1  2 has two independent
eigenvectors leads us to think of the eigenvalue as being repeated.

A different sort of situation occurs, for example, for

A 
0 2

0 0
, detA − I  2  0.

This equation has 1  0 as its unique root, so this A has only one eigenvalue. However, if
we look for solutions of the equation

Avi, j  ivi, j, A − iIvi, j  0,

0 2

0 0

a

b


2b

0


0

0
,

we see that all solutions are going to be linearly dependent. Hence 1  0 has only one
associated eigenvector in this case and we therefore don’t think of the eigenvalue as being
repeated.

If an n  n matrix A has n distinct eigenvalues, or if A has some repeated eigenvalues but
is symmetric (by which we mean A  AT), then it is guaranteed that we can choose n
linearly-independent eigenvectors for A. As a result, the n  n matrix P whose columns are
these n linearly-independent vectors vi, j is invertible and P−1AP is a diagonal matrix with the
eigenvalues of A on the diagonal (ordered in a way that follows from the ordering of the
columns of P). Note that eigenvectors corresponding to distinct eigenvalues are necessarily
linearly independent. If an n  n matrix has fewer than n distinct eigenvalues then we need
special conditions (such as symmetry) in order to guarantee that we will be able to find n
linearly independent eigenvectors, which is in turn what guarantees the existence of P−1.

A rather obvious example is given by

A 
2 0

0 2
, 1  2, v1,1 

1

0
, v1,2 

0

1
, P 

1 0

0 1
.

Then P  P−1 and P−1AP  A, which is already a diagonal matrix of eigenvalues. Note that
any different choice of linearly-independent eigenvectors for the repeated eigenvalue 1

works just as well. With the present example, A  2I so in fact any vector in R2 is an
eigenvector of A corresponding to   2. For example,

v1,1
′  1

2

1

1
, v1,2

′ 
1

0
, P  1

2

1 2

1 0
, P −1 

0 2

1 −1
,

and since A  2I we can easily verify P−1AP  2P−1P  2I  A.

5

For a more typical example, consider

A 
0 1

2 1
, 1  −1, v1  1

2

1

−1
, 2  2, v2  1

5

1

2
,

for which

P 

1
2

1
5

−1
2

2
5

, P−1 
2 2

3
− 2

3

5
3

5
3

,

and (incidentally) we see that v1 and v2 are not orthogonal:

v1  v2  −1
10

.

Still, we recover

P−1AP 
2 2

3
− 2

3

5
3

5
3

0 1

2 1

1
2

1
5

−1
2

2
5


−1 0

0 2


1 0

0 2

.

This process of bringing a matrix A into diagonal form by a similarity transformation is
called diagonalization. It is often useful to think of the matrix P as representing a linear
transformation of Rn :

v  v ′ ≡ P−1v, v,v ′ ∈ Rn.

For example, next time we will see that one often deals with linear dynamical systems
d
dt

v  Av,

which under the linear transformation P maps to
d
dt
P−1v  P−1APP−1v

 D P−1v,

where D is a diagonal matrix of the eigenvalues of A. We can think of this use of P as
"working the problem in different coordinates" such that the system of differential equations
become completely decoupled and thus trivial to solve (more on this later). Note that in this
context we want P to be invertible so that we can change back to the original coordinate
system at the end of our computation.

It is very important to remember that not all matrices are diagonalizable since, as
discussed above, we need special conditions to guarantee the existence of an invertible P. In
this context, symmetric matrices A  AT lead to especially simple computations because the
eigenvectors of a symmetric matrix can be chosen such that P is orthogonal (P−1  PT). All
sorts of nice properties follow from this, which are often exploited in finite-dimensional
quantum mechanics calculations. Physicists (such as your Instructor) often make the mistake
of assuming that one or more of these nice properties is actually true in general (i.e., for
non-symmetric matrices).

In Matlab, eigenvalues and eigenvectors can be found using the function eig.

Jordan forms
For completeness we include here a very brief discussion of non-diagonalizable matrices.

6

Consider

A 
3 1

0 3
,

which has a unique eigenvalue 1  3, and this eigenvalue has only one eigenvector

v1 
1

0
.

Hence we cannot bring A into diagonal form by a similarity transformation (in other words,
there is no invertible linear transformation of R2 that would result in A having diagonal form).
In a sense this particular matrix A is already in its simplest possible form (among all forms
one could reach via various similarity transforms), called its Jordan Canonical Form.
Generally speaking, this is a form that has eigenvalues along the diagonal, ones and zeros
on the first super-diagonal, and zeros everywhere else (this includes diagonal matrices). For
any matrix A, an invertible linear transformation T can be found that brings A into some
Jordan Canonical Form J,

T −1AT  J.

For 2  2 and 3  3 matrices, the complete set of Jordan Canonical Forms is

1 0

0 2

,
1 0

0 1

,
1 1

0 1

,

1 0 0

0 2 0

0 0 3

,

1 0 0

0 1 0

0 0 2

,

1 0 0

0 1 0

0 0 1

,

1 1 0

0 1 0

0 0 2

,

1 1 0

0 1 1

0 0 1

.

Note that we do not consider row permutations, et cetera to be distinct Jordan forms.
One of the reasons that it is can be useful to know the Jordan Canonical Form J of a

matrix A is that J is the sum of a diagonal matrix and a nilpotent matrix. A "nilpotent matrix of
order r" is a matrix N such that N r  0. For example,

J 

1 1 0

0 1 1

0 0 1

 1I  N, N 

0 1 0

0 0 1

0 0 0

,

where

N 2 

0 1 0

0 0 1

0 0 0

0 1 0

0 0 1

0 0 0



0 0 1

0 0 0

0 0 0

,

N 3 

0 0 1

0 0 0

0 0 0

0 1 0

0 0 1

0 0 0

 0.

This algebraic property can simplify computations involving J. For example for this particular

7

J, we have

J 2  1I  N2  1
2I  21N  N 2,

J3  1I  N1
2I  21N  N 2  1

3I  31
2N  31N 2,

and for higher powers of J we’ll never need to keep more than three powers of N.

Functions of matrices
One often encounters functions of matrices, such as the matrix exponential. These are
defined by power series expansion. For example,

expA ≡ lim
n→ ∑

j0

n
1
j!

A j  1  A  1
2

A2  1
3!

A3 .

Suppose A is diagonalizable and we have found a linear transformation P of the type
discussed above, such that P −1AP  D where D is a diagonal matrix of eigenvalues of A.
Then

expA  expPDP −1

 1  PDP −1  1
2
PDP −1PDP −1  1

3!
PDP −1PDP −1PDP −1 

 1  PDP −1  1
2
PD2P −1  1

3!
PD3P −1 

 P 1  D  1
2

D2  1
3!

D3  P −1

 PexpDP −1,

where expD is trivial to compute because it is just the diagonal matrix whose entries are the
scalar exponentials of the eigenvalues of A (make sure you can see this for yourself). Even if
A is not diagonalizable, we can still simplify the computation of its exponential (to some
degree) if we know a linear transformation T that brings it into a Jordan Canonical Form
(exercise: try computing expJ  for  ∈ R and J the 3  3 matrix we considered at the end of
the brief section on Jordan forms).

In Matlab, one can compute the matrix exponential using the function expmA. Note that
expA is also defined but returns the matrix whose entries are the scalar exponentials of the
entries of A (exercise: convince yourself that this is a different matrix for general choice of A).
Similarly Matlab has functions such as logm and sqrtm (exercise: show how to compute
A1/2 for a diagonalizable matrix A), as well as a general-purpose function-to-matrix-function
converter funm.

8

