
APPPHYS217 Thursday 6 May 2010

A bit more on Nyquist plots and stability
Let’s start by recalling the scenario of interest. In a standard unity-feedback setup we
have a given plant transfer function Ps and controller transfer function Cs. If we
know how to write these as rational functions,

Ps 
np

dp
, Cs  nc

dc
,

then it is simple to read off their poles (roots of dp,dc) and zeros (roots of np,nc). Then
for the ‘loop transfer function’

Ls ≡ CsPs 
np nc

dp dc
,

we know that the set of poles of Ls is the union of the sets of poles of Ps and Cs,
likewise the set of zeros of Ls is the union of the sets of zeros of Ps and Cs. This
follows simply from the fact that series interconnection corresponds to multiplication of
transfer functions.

What we want to know for feedback analysis and design purposes is how to
predict the stability of the closed-loop transfer function

Hs 
Ls

1  Ls


np nc

dp dc  np nc
.

Without the use of a computer algebra package, it generally isn’t easy to determine
the roots of dp dc  np nc. Luckily, we can often proceed with analysis/design by making
use of the Nyquist theorem,

Z  N  P,

where Z is the number of right half-plane zeros of 1  Ls (that is, zeros of 1  Ls that
have positive real part), P is the number of right half-plane poles of Ls, and N is the
number of clockwise encirclements of the −1 point on a Nyquist plot of Ls. In order
for the closed-loop system to be stable we want Z  0, and we usually know P from
factorizations of dp and dc.

Last time we described two practical strategies for generating a Nyquist plot of
Ls. One is to use the MATLAB routine; the other is to sketch the Nyquist plot from a
Bode plot of Ls. To start today’s lecture we’ll talk more about the sketching method,
and review relationships among the frequency response, Nyquist plot and transfer
function. We’ll discuss some subtleties along the way that were only mentioned in
passing last time.

The Nyquist plot is a plot of Ls as s follows the Nyquist “D” curve, which runs up
along the imaginary axis (from negative j to positive j, with semicircular detours of
radius r around any poles of Ls on the imaginary axis) and then closes with a
semicircle of radius R. We work in the limits R →  and r → 0. The part of the contour
along the imaginary axis coincides of course with the frequency response, and thus
can in principle be read off from a Bode plot. It is usually the case that Ls → 0 as
|s| →  (we say that Ls is ‘strictly proper’ in this case, which holds for any linear
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state-space model with D  0), which means that the infinite-semicirclular part of the D
curve usually maps to the origin. Hence the main thing we should discuss here is
generating Nyquist curve from Bode plot.

We begin by noting two important symmetries of the frequency response under the
mapping   −. For Ls a rational function,

Ls  nl

dl


aps p  ap−1s p−1  ap−2s p−2   a1s  a0

brsr  br−1sr−1  br−2sr−2   b1s  b0
,

where p is the order of the numerator polynomial and r is the order of the denominator
polynomial. For a strictly proper transfer function, r  p. For s  j, the even powers
of s will all be purely real and the odd powers will be purely imaginary. This means that
we can write

Renl   a0 − a22  a44 , Imnl   a1 − a33  a55 ,

Redl   b0 − b22  b44 , Imdl   b1 − b33  b55 .

Under the mapping   −, we see that Renl  and Redl  are unchanged while Imnl 
and Imdl  are simply multiplied by −1. Generally speaking,

|Lj| 
Renl   i Imnl 
Redl   i Imdl 

 |Renl   i Imnl Redl  − i Imdl |
Redl 2  Imdl 2

 |Renl Redl   iRedl  Imnl  − iRenl  Imdl   Imnl  Imdl |
Redl 2  Imdl 2


Renl Redl   Imnl  Imdl 2  Redl  Imnl  − Renl  Imdl 2

Redl 2  Imdl 2 .

Likewise,

∠Lj  tan−1
Redl  Imnl  − Renl  Imdl 
Renl Redl   Imnl  Imdl 

.

Hence we see by inspection that under   −, the frequency response of a rational
transfer function transforms as

|Ls|  |Ls|, ∠Ls  −∠Ls.

This in turn means that when we are sketching the Nyquist curve, we can first draw
the part corresponding to  ∈ 0, and the the part corresponding to  ∈ −, 0 will
simply be its mirror image (reflected through the real axis).

Of course, the frequency response for  ∈ 0, is in principle what we see in a
Bode plot. Since the “D” curve runs upwards along the imaginary axis, we should think
about plotting the positive frequency part of the Nyquist curve from   0 to   . If
we have a rational Ls and the lowest power of s appearing in the numerator is equal
to or higher than the lowest power of s appearing in the denominator, then
lim→0 |Lj| is finite and we can locate it somewhere on the finite complex plane. It
will be the point whose radius (in polar coordinates) is the magnitude of the frequency
response at   0 and whose angle (in polar coordinate) is the phase of the frequency
response at   0; these can be directly read off of a Bode plot.

If the lowest power of s appearing in the denominator is higher than in the
numerator, however, then lim→0 |Lj| diverges. Note that under these assumptions,
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Ls has at least a simple pole at the origin. Remember that in this case the “D” curve
takes a small semicircular detour around the origin. Consider Lj for some very
small value . We know that |Lj| will be large, and from the rational function form of
Ls we can determine∠Lj. Likewise we can find |L−j| and∠L−j
straightforwardly. If we can evaluate one more point, L for  small and real, this
usually suffices to determine how the image of the semicircle closes the Nyquist
curve. It’s easiest to see this with an example.

Consider

Ls 
9s  1
ss − 10

.

This has a left half-plane zero at s  −1 and poles at s  0 and s  10. For s  j, with
 small but positive, we can infer

Ls  9s  9
s2 − 10s

→ − 0.9
s  − 0.9

j .

Thus |Ls|  1/ and∠Ls  −270°. The Bode plot for intermediate frequencies looks
like
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Hence the magnitude decreases monotonically as  →  while the phase wraps from
−270 to −90. By plotting a few points and connecting the dots, one can obtain the parts
of the Nyquist curve corresponding to  ∈ 0, and  ∈ −, 0 :
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Now we need to be careful about evaluating the response near the −1 point because
the Nyquist curve comes very close! Analytically, we can solve

Lj  9j  9
−2 − 10j

 − 9  9j
2  10j

2 − 10j
2 − 10j

 −
9  9j2 − 10j

4  1002  − 92 − 90j  93j  902

4  1002


−f99  90 − 92j

3  100
.

Hence the Nyquist curve crosses the real axis at   10 , and that point the
magnitude is

L j 10  99
2  100

 1.

Hence, N  0 or N  1 depending on whether the Nyquist curve closes ‘to the right’
or ‘to the left,’ which we can settle by evaluating L  0j :

Ls  9s  9
s2 − 10s

→ − 0.9
s  − 0.9

 .

Hence we see that the Nyquist curve closes in a way such that∠Ls passes through
−180°, and looking at the orientation of the contour we conclude N  1. According to
the Nyquist theorem this means that Z  N  P should be two, since P  1. Indeed,

Hs 
Ls

1  Ls
 9s  9

s2 − 10s  9s  9


9s  1
s2 − s  9

.

This has a single left half-plane zero and a conjugate pair of RHP poles.
Another example:

Ls  1
ss  12  1

s3  2s2  s
,

which has a simple pole at the origin. For s  j, we have

Ls → 1
s  1

j ,
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so the phase is −90. For intermediate positive frequencies, the Bode plot looks like

-150

-100

-50

0

50

100

M
ag

ni
tu

de
 (

dB
)

10
-2

10
-1

10
0

10
1

10
2

-270

-225

-180

-135

-90

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (rad/sec)

and the corresponding branches of the Nyquist curve:
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Now we check

L  0j → 1
 ,

which has phase 0. Hence the Nyquist curve closes to the right, and N  0. Hence the
Nyquist theorem tells us Z  N  P  0 and we should be stable in closed-loop.
Indeed,

Hs 
Ls

1  Ls
 1

s3  2s2  s  1
,

which has pole-zero map:
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Systems with more than 180° phase lag where |Lj|  1
Consider the following loop transfer function:

Ls 
10000s  10s  100

s  13  10000 s2  110s  1000
s3  3s2  3s  1

,

which has Bode plot
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This has phase  −210° in a region where |Lj|  90 dB. Is this a problem for
closed-loop stability?

We can simply compute,

Hs 
Ls

1  Ls
 10000 s2  110s  1000

s3  3s2  3s  1  10000s2  110s  1000

 10000 s2  110s  1000
s3  10003s2  1100003s  10000001

,

which turns out to have only left half-plane poles.
Alternatively, let us look at
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Ls 
10000s  10s  100

s − 1s  12  10000 s2  110s  1000
s3  s2 − s − 1

,

which has Bode plot
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Like the previous example, this has phase  −180° in some region where the gain is
large. Looking at the closed-loop transfer function,

Hs 
Ls

1  Ls
 10000 s2  110s  1000

s3  s2 − s − 1  10000s2  110s  1000

 10000 s2  110s  1000
s3  10001s2  1099999s  9999999

,

which again turns out to have only left half-plane poles.
Finally, consider

Ls 
10000s − 10s  100

s − 13  10000 s2  90s − 1000
s3 − 3s2  3s − 1

,

which has Bode plot
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Hs  10000 s2  90s − 1000
s3 − 3s2  3s − 1  10000s2  90s − 1000

 10000 s2  90s − 1000
s3  9997s2  900003s − 10000001

.

This now does have a right half-plane pole...
Exercises: analyze the stability of the examples in this section using Nyquist plots

and the Nyquist theorem.

Time delays and Padé approximation
Suppose we want to represent the frequency response (transfer function) of a time
delay. Then for example,

u  sint  y  sint − ,
(note the minus sign) so the magnitude should be one and the phase should be −.

A simple way to represent this as a transfer function is

Ps  e−s,

which clearly has

|Pj|  |e−j |  1, ∠Pj  −.
Time delays are very common in practical scenarios, although they are often small
enough to be neglected. When they are large enough to be significant, they can cause
major problems! As we’ll see in later lectures, one particularly problematic feature of
time delays is that they cause phase lags without adding any ‘slope’ to the magnitude
part of the Bode plot - this means you can’t correct the lags via derivative control.

From an analysis perspective, time delays are inconvenient because the natural
representation of the transfer function isn’t a rational function. We could try expanding
it as a power series,

exp−s ≈ 1 − s  1
2
s2  1

3!
s3 ,

but it turns out that one can do better by using a rational function of the form

exp−s ≈ a0  a1s  a2s2 
b0  b1s  b2s2 

,

called a Padé approximant. For example, if we use two terms each in the numerator
and denominator,

exp−s ≈ a0  a1s
1  b1s

,

where b0 is set to 1 without loss of generality, we can find the coefficients by
comparison with the power series expansion of the exponential:

1 − s  1
2
s2  1

3!
s3  ↔ a0  a1s

1  b1s
,

1  b1s 1 − s  1
2
s2   a0  a1s,

and equating powers of s we find (keeping enough terms on the left-hand side to
generate three equations)
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a0  1, b1 −   a1, 1
2
 − b1  0  exp−s ≈ 1 − s/2

1  s/2
.

This has essentially three adjustable coefficients, so we should compare it with a
third-order power series,

exp−s ≈ 1 − s  1
2
s2  1

3!
s3.

Comparing all three functions:
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General expressions for higher-order Padé approximants of exp−s can be found,
e.g., on Mathworld. For example,

exp−s ≈ s2 − 6s  12

s2  6s  12
,

exp−s ≈ −s
3  12s2 − 60s  120

s3  12s2  60s  120
.

Matlab has a pade function as well.
One thing to watch out for with Padé approximants is the fact that they tend to

introduce right half-plane zeros, which could possibly cause unstable (in fact,
inaccurate) cancellations of right-half plane poles in some other component of the
transfer function. The exact location of these zeros depends on the numerator order of
the Padé approximation. For example,

exp−s ≈ 1 − s/2
1  s/2

→ z  2/,

whereas

exp−s ≈ s2 − 6s  12

s2  6s  12
→ z  3  i 3 /.

Clearly the locations of these poles is not completely accurate at any finite order of
approximation. Consider the loop transfer function

Ls  1
s − 2/

exp−s.

For the Nyquist criterion, is P zero or one?
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