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A&M example 6.1: The double integrator
Consider the motion of a point particle in 1D, with the applied force as a control input.
This is simply Newton’s equation F  ma with F ↔ u :

d
dt

q

q̇


0 1

0 0

q

q̇


0
1
m

u.

The set of equilibrium points of this system clearly corresponds to the line q̇  0 (from
the equations we see that u  0 is required for equilibrium). With reference to A&M
Figure 6.1(b), let us briefly consider how we can use the input u to steer the system,
starting from any equilibrium point and ending on any other. It is instructive to visualize
this process on the phase portrait.

State-feedback control example: second-order system
Consider the driven second-order system

q̈  −20q̇ − 0
2q  u, x1 ≡ q, x2 ≡ q̇,

d
dt

x1

x2


0 1

−0
2 −20

x1

x2


0

u
.

As we have previously discussed, u here could represent an external applied force (in
a mechanical mass-spring-damper system) or voltage (in the LCR circuit realization).
Anticipating conventional control-theoretic notation that we will introduce below, let us
also write this as

d
dt

x  Ax  Bu, A 
0 1

−0
2 −20

, B 
0

1
.

We saw last time that the damping ratio  sets important properties of the step
(transient) response:
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Let us briefly consider the state-feedback control scenario

u  −Kx,
where (since we have taken u to be scalar)

K  k1 k2 .

With this feedback law, we have
d
dt

x  Ax  Bu  A − BKx,

where

A − BK →
0 1

−0
2 −20

−
0

1
k1 k2


0 1

−0
2 −20

−
0 0

k1 k2


0 1

−0
2 − k1 −20 − k2

.

Clearly we can view this as a modified second-order system. If we define

0
′  0

2  k1 ,

then apparently we have

′0
′  0 − k2,

′ 
0 − k2

0
2  k1

,
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and it follows that we can actually set 0
′ to any value we like through choice of the

feedback parameter k1, and once this is set (assuming 0
′ ≠ 0) we can adjust ′ as

desired through choice of k2. Hence if we don’t like the transient behavior of our
original open-loop system (without feedback), we can in principle modify it however we
like by use of state feedback as described above. We program the desired behavior
by setting the feedback gain K.

Note that if the components of x are available as electronic signals, it is
straightforward to produce the feedback signal u with an op-amp circuit. (LCR
example)

The fact that we have full power to reprogram the oscillation frequency and
damping ratio in this state feedback scenario can be made obvious if we look at the
dynamics with feedback, transformed back to a single second-order ODE:

d
dt

q

q̇


0 1

−0
2 − k1 −20 − k2

q

q̇
,

0  q̈  20  k2q̇  0
2  k1q.

Hence k1 is associated with a modification of the harmonic restoring force while k2

directly and independently modifies the velocity-damping.
Just for fun, let us calculate the eigenvalues of the feedback-modified A matrix:

0  detA − BK − I →
− 1

−0
2 − k1 −20 − k2 − 

,

0  20  k2    0
2  k1

 2  20  k2  0
2  k1.

Considering the solutions given by the quadratic equation,

  1
2
−20 − k2  20  k22 − 40

2 − 4k1 ,

we see that we can achieve any desired pair of eigenvalues ,− by setting

  −  −20 − k2,

k2  −20 −  − −,
and

 − −  20  k22 − 40
2 − 4k1 ,

k1  1
4
20  k22 − 0

2 − 1
4
 − −2

 1
4
  −2 − 0

2 − 1
4
 − −2

 − − 0
2.

Hence, we can arbitrarily program the eigenvalues of the closed-loop dynamics matrix.
Before turning to some generalities, we note that the second-order system with the

control structure we are considering can be pushed into arbitrary states in a similar
manner as the double-integrator. Suppose we are starting at the origin at t  0 and
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want to reach q q̇
′
at a target time T. If we use the input u and allow our input

signals to be unbounded, we can in principle take the following approach. First, give
the system a momentum impulse at time t  0 that will cause the system to pass
through position q at time T. To convince ourselves that this is really possible, we
could look at the matrix exponential we calculated last time and show that we can
always solve for q̇0 such that

q


 expAT

0

q̇0

.

In the overdamped case, for example, this leads to

q̇0 
0 2 − 1

e−0T sinh 0T 2 − 1
q.

Then, at time T, apply a second momentum impulse that “corrects” the final velocity q̇
to its desired value. Note that even with this rather singular strategy, in which we rely
on our ability to apply controls so strong that they overwhelm most of the system’s
natural dynamics (harmonic restoring force and velocity-damping), we still rely on the
inherent integrator structure

d
dt

q  q̇

that allows us to use an input to q̇ only to affect the position q.

Reachability rank condition
We say that a linear system

ẋ  Ax  Bu

is reachable if for any initial state x0  x0, desired final state xf and ‘target time’ T it is
possible to find a control input ut, t ∈ 0,T that steers the system to reach xT  xf.
There is a theorem (see A&M pp. 167-170) that says that a system is reachable if its
reachability matrix

Wr ≡ B AB A2B  An−1B

has full rank (here x ∈ Rn). If a system is reachable, it is furthermore possible to solve
the pole placement problem, in which we want to design a state feedback law

u  −Kx

such that we can pick any eigenvalues we want for the controlled dynamics

ẋ  Ax  Bu

 A − BKx.

Here A and B are given, and we must find a K to achieve the desired eigenvalues for
A − BK.

In the case of our second-order system with
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A 
0 1

−0
2 −20

, B 
0

1
,

we have

AB 
0 1

−0
2 −20

0

1


1

−20

, Wr 
0 1

1 −20

,

and clearly Wr has full rank as detWr  −1.
Before moving on, let’s look at a simple example (from Åström and Murray, Ex.

5.3) of a system that is not reachable:

d
dt

x1

x2

 −
1 0

0 1

x1

x2


1

1
u.

Here we can easily compute

Wr 
1

1

−1

−1
,

which clearly has determinant zero. This can be understood by noting the complete
‘symmetry’ of the way that u modifies the evolution of x1 and x2. For example, if
x10  x20 there is no way to use u to achieve x1T ≠ x2T at any later time.

Predator-Prey example
We have the equations of motion

Ḣ  fHH,L  rH 1 − H
k
− aHL

c  H
,

L̇  fLH,L  b aHL
c  H

− dL.

First we find the equilibrium points. For steady-state of the lynx equation, we have

0  b aHL
c  H

− dL

L  abH
dc  H

L,

which has a trivial solution L  0 as well as

dc  H  abH,

cd  ab − dH,

H  Heq ≡ cd
ab − d

.

Then going to the hares equation, if L  0 then we need

0  rH 1 − H
k

,

which has solutions H  0 and H  k. Thus we have two distinct equilibria so far,
L  0,H  0 and L  0,H  k. If we set H  Heq however then we need
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aHeqL
c  Heq

 rHeq 1 −
Heq

k
,

L  Leq ≡
c  Heq

a r 1 −
Heq

k
 r

ak
c  Heqk − Heq

 r
ak

c  cd
ab − d

k − cd
ab − d

 r
ak

abc − cd  cd
ab − d

abk − dk − cd
ab − d

 r
k

bc
ab − d

abk − dk − cd
ab − d


bcrabk − dk − cd

ab − d2k
.

This gives us a third equilibrium point L  Leq,H  Heq.
In order to determine the stability of these equilibria, we compute the derivative

f ≡
fH

fL


rH 1 − H

k
− aHL

cH

b aHL
cH − dL


rH − r

k
H 2 − aHLc  H−1

abHLc  H−1 − dL

df  
∂fH

∂H
∂fH

∂L
∂fL

∂H
∂fL

∂L


r − 2r

k
H − aLc  H−1  aHLc  H−2 −aHc  H−1

abLc  H−1 − abHLc  H−2 abHc  H−1 − d
.

Evaluating this at each equilibrium point:

H

L


0

0
: df →

r 0

0 −d
,

H

L


k

0
: df →

−r ak
ck

0 abk
ck
− d

,

H

L


Heq

Leq

: df →
r − 2r

k
Heq − aLeqc  Heq

−1  aHeqLeqc  Heq
−2 −aHeqc  Heq

−1

abLeqc  Heq
−1 − abHeqLeqc  Heq

−2 abHeqc  Heq
−1 −

By computing eigenvalues it follows that all three equilibrium points are unstable, with
the first two being saddles and the third a source.

Following Example 6.5 from A&M, we now consider state-feedback stabilization of

the non-trivial equilibrium point Heq Leq

′
, where once again

Heq  cd
ab − d

, Leq 
bcrabk − dk − cd

ab − d2k
.

The feedback strategy will be to modulate the net birth rate of hares (which could be
done for example by modulating their food supply), r → r  u, so that
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Ḣ  fHH,L  r  uH 1 − H
k
− aHL

c  H
,

L̇  fLH,L  b aHL
c  H

− dL,

Using the derivative df  that we derived above, we can linearize the controlled
dynamics (assuming u  r) as

d
dt

H

L


r − 2r
k

Heq − aLeqc  Heq
−1  aHeqLeqc  Heq

−2 −aHeqc  Heq
−1

abLeqc  Heq
−1 − abHeqLeqc  Heq

−2 abHeqc  Heq
−1 − d

H

L


Heq 1 − Heq

k

0
u.

Hence in the control-theoretic notation we have been using,

d
dt

H

L
 A

H

L
 Bu,

and inserting parameter values as in A&M,

a  3.2, b  0.6, c  50,

d  0.56, k  125, r  1.6,

we numerically evaluate

A ≈
0.13 −0.93

0.57 0
, B ≈

17.2

0
≡

b

0
.

The open-loop eigenvalues of A are then 0.0631  0.7254i, unstable as claimed. We
can now try to find a feedback law

u  −K
H

L
,

such that the closed-loop eigenvalues become real and negative, for example
 → −0.1,−0.2. Using the Matlab function place, we find

K  0.0248 −0.0522 ≡ k1 k2 .

This state-feedback law leads to new linearized dynamics

d
dt

H

L
 A − BK

H

L
,

A − BK ≈
−0.3 −0.0352

0.568 0
.

Assuming the state-feedback law is implemented linearly, we can in fact write the
nonlinear dynamics with feedback as
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Ḣ  fHH,L  r − k1H − Heq − k2L − LeqH 1 − H
k
− aHL

c  H
,

L̇  fLH,L  b aHL
c  H

− dL.

Using pplane8 we can investigate the phase portrait of the closed-loop system in the
vicinity of the open-loop equilibrium point.

State feedback versus output feedback
Note that in our discussion of stabilization and pole-placement so far, we have
assumed that it makes sense to design a control law of the form

u  −Kx.

This is called a ‘state feedback’ law since in order to determine the control input ut at
time t, we generally need to have full knowledge of the state xt. In practice this is
often not possible, and thus we usually specify the available output signals when
defining a control design problem:

ẋ  Ax  Bu,

y  Cx.

Here the output signal yt, which can in principle be a vector of any dimension,
represents the information about the evolving system state that is made available to
the controller via sensors. An ‘output feedback’ law must take the form

ut  f y ≤ t,

where, in general, we can allow ut to depend on the entire history of y with  ≤ t
(more on this below and later in the course). Output feedback is a natural setting for
practical applications. For example, if we are talking about cruise control for an
automobile, x may represent a complex set of variables having to do with the internal
state of the engine, wheels and chassis while y is only a readout from the
speedometer. Hopefully it will seem natural that it is usually prohibitively difficult to
install a sensor to monitor every coordinate of the system’s state space, and also that
it will often be unnecessary to do so (cruise control electronics can function quite well
with just the car’s speed).

One simple example of a system in which full state knowledge is clearly not
necessary is (asymptotic) stabilization of a simple harmonic oscillator. If the natural
dynamics of the plant is

mẍ  −kx,

and our actuation mechanism is to apply forces directly on the mass, then the control
system looks like

d
dt

x1

x2


0 1
−k
m 0

x1

x2


0

1
u,

(where x1 is now the position and x2 the velocity). We can clearly make the equilibrium
point at the origin asymptotically stable via the feedback law
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u  −bx2  0 −b
x1

x2

,

which makes the overall equation of motion

ẍ1  − k
m x1 − bẋ1,

which we recognize as a damped harmonic oscillator. Thus it is clear that the
controller only needs to know the velocity of the oscillator in order to implement a
successful feedback strategy. So even if we go to a SISO (single-input single-output)
formulation of this problem,

ẋ  Ax  Bu,

y  Cx,

we are obviously fine for any C of the form  ≠ 0

C  0  ,

since x2  y/ and we can implement an output-feedback law of the form

u  −bx2  − b
 y.

In contrast to this, consider the analogous stabilization problem for the
predator-prey system that we discussed above. Even if our attention to the immediate
vicinity of the natural equilibrium point and assume that a linearized model is sufficient
for the design, it is not clear that we could succeed without requiring knowledge of
both the lynx and hare populations.

Clearly, if C is a square matrix and y has the same dimension as x, everything will
be easy if C is invertible. As a generalization of what we did for the simple harmonic
oscillator above, we could just design a state feedback controller K, set

x̂  C−1y,

and apply feedback

u  −Kx̂  −KC−1y.

However this is a special case and not the sort of convenience we want to count on!

State estimation
At this point it might seem like we might need completely new theorems about
reachability and pole-placement for output-feedback laws, when ut is only allowed to
depend on y  t. However, it turns out that we can build naturally on our previous
results by appealing to a separation method. The basic idea is that we will try to
construct a procedure for processing the data y  t to obtain an estimate x̂t of the
true system state xt, and then apply a feedback law u  −Kx̂ based on this estimate.
This can be possible even when C is not invertible (not even square). The controller
thus assumes the structure of a dynamical system itself, with yt as its input, ut as
its output and x̂t as its internal state. There are various ways of designing ‘state
estimators’ to extract x̂t from y  t, of which we will discuss two, and there is also
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a convenient procedure for determining whether or not y contains enough information
to make full state reconstruction possible in principle. The latter test looks a lot like the
test for reachability, for not accidental reasons.

Let’s start by thinking about the simple harmonic oscillator again. We noted that in
order to asymptotically stabilize the equilibrium point at the origin, it would be most
convenient to have an output signal that told us directly about its velocity x2. However,
you may have already realized that in a scenario with  ≠ 0

C   0 ,

y  x1,

it should be simple to obtain a good estimate of x2 via

x̂2  d
dt
−1y.

This is certainly a valid procedure for estimating x2, although in practice one should be
wary of taking derivatives of measured data since that tends to accentuate
high-frequency noise.

In a similar spirit, we note that for any dynamical system

ẋ  Ax  Bu,

y  Cx,

if we hold u at zero we can make use of the general relations

ẏ  Cẋ  CAx,

ÿ  Cẍ  C d
dt

ẋ  C d
dt

Ax  CAẋ  CA2x,


d n

dtn y  CAnx.

If we look at how this applies to our modified simple harmonic oscillator example with

C   0 , A 
0 1

− k
m 0

,

y  C
x1

x2

 x1,

we have

CA   0
0 1

− k
m 0

 0  ,

ẏ  CA
x1

x2

 x2,

and we start to get a sense for how the natural dynamics A can move information
about state space variables into the ‘support’ of C. Hopefully it should thus seem
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reasonable that in order for a system to be observable, we require that the
observability matrix

Wo 

C

CA

CA2



CAn−1

have full rank. Informally, if a system is observable then we are guaranteed that we
can design a procedure (such as the derivatives scheme above) to extract a faithful
estimate x̂ from y. However, it will generally be necessary to monitor y for some time
(and with good accuracy) before the estimation error

x̃t ≡ xt − x̂t

can be made small. In the derivatives scheme, for instance, we can’t estimate high
derivatives of yt until we see enough of it to get an accurate determination of its
slope, curvature, etc.

State observer with innovations
A more common (and more robust) method for estimating x from y is to construct a
state observer that applies corrections to an initial guess x̂ until Cx̂ becomes an
accurate predictor of y.

Suppose that at some arbitrary point in time t we have an estimate x̂t. How
should we update this estimate to generate estimates of the state xt′ with t ′  t ?
Most simply, we could integrate

d
dt

x̂  Ax̂  Bu,

assuming we know A and B for the plant. It is generally assumed that we know u since
this signal is under our control! Then we notice that the estimation error x̃ evolves as

d
dt

x̃  d
dt
x − x̂

 Ax  Bu − Ax̂  Bu

 Ax − x̂

 Ax̃.

Hence, this strategy has the nice feature that if A is stable,

lim
t→

x̃  0,

meaning that our estimate will eventually converge to the true system state. Note that
this works even if B and u are non-zero.

What if we are not so lucky as to have sufficiently stable natural dynamics A? As
mentioned above, a good strategy is to try to apply corrections to x̂ at every time step,
in proportion to the so-called innovation,
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w ≡ y − Cx̂.

Here y − Cx̂ is the error we make in predicting yt on the basis of x̂t. Clearly when x̃
is small, so is w. A ‘Luenberger state observer’ can thus be constructed as

d
dt

x̂  Ax̂  Bu  Ly − Cx̂,

where L is a ‘gain’ matrix that is left to our design. This observer equation results in
d
dt

x̃  ẋ − d
dt

x̂

 Ax − Bu − Ax̂  Bu  Ly − Cx̂

 Ax − x̂ − Ly − Cx̂

 Ax − x̂ − LCx − x̂

 A − LC x̃.

Hence we see that our design task should be to choose L, given A and C, such that
A − LC has nice stable eigenvalues.

This should remind you immediately of the pole-placement problem in state
feedback, in which we wanted to choose K, given A and B, such that A − BK had
desired eigenvalues. Indeed, one can map between the two problems by noting that
the transpose of a matrix MT has the same eigenvalues as M. Thus we can view our
observer design problem as being the choice of LT such that

A − LCT  AT − CTLT

has nice stable eigenvalues, and this now has precisely the same structure as before.
Indeed, there is a complete ‘duality’ between state feedback and observer design, with
correspondences

A ↔ AT, B ↔ CT, K ↔ LT, Wr ↔ Wo
T.

Hence it should be clear, for example, how Matlab’s place function can be used for
observer design. And as long as the observability matrix has full rank, we are
guarenteed to be able to find an L such that A − LC has arbitrary desired
eigenvalues.

Pole-placement with output feedback
As discussed in section 7.3 of Åström and Murray, the following theorem holds (here
we simplify to the r  0 case):

For a system

ẋ  Ax  Bu,

y  Cx,

the controller described by

u  −Kx̂,
d
dt

x̂  Ax̂  Bu  Ly − Cx̂

gives a closed-loop system with the characteristic polynomial
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detsI − A  BKdetsI − A  LC.

This polynomial can be assigned arbitrary roots if the system is observable
and reachable.

The overall setup is summarized in the following cartoon:

Next time we’ll have a look at how this sort of strategy performs in the presence of
noise.
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