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Exponential response
An easy way to derive the relationship between   A,B,C,D and Hs is to consider
the input-output response of the state-space model to an exponential input,

t ≥ 0 : ut  expst, s    j.

Using the standard expression we have learned for the resulting evolution of the state
vector xt,

xt  expAtx0  expAt 
0

t
dexp−ABu

→ expAt x0  
0

t
dexp−AB exps

 expAt x0  
0

t
dexpsI − AB .

Here we have rearranged terms inside the integrand in a way that looks trivial, but it’s
worth making note of the implicit assumptions about what commutes with what:

exp−ABexps  exp−AexpsIB

 exp−AexpsIB

 expsI − AB.

At this point we are wondering how to integrate the expression with the matrix
exponential. Note that as long as M is invertible, we can write


0

t
dexpM  

0

t
d I  M  1

2
M2  1

3!
M3  1

4!
M4 

 I  1
2
M2  1

3!
M 23  1

4!
M 34  1

5!
M 45 

0

t

 M  1
2
M2  1

3!
M3  1

4!
M4  1

5!
M5 

0

t
M −1

 expM − I 0
t M −1

 expMtM −1 − M −1.

In our case we can use this result as long as sI − A is invertible, i.e., as long as s is
not an eigenvalue of A. Assuming this holds, we can use M ≡ sI − A and (leaving B
outside the integrand)

xt  expAt x0  
0

t
dexpsI − AB

 expAt x0  expsI − AtsI − A−1B − sI − A−1B

 expAt x0 − sI − A−1B  expAtexpsI − AtsI − A−1B

 expAt x0 − sI − A−1B  expstsI − A−1B

 expAt x0 − sI − A−1B  sI − A−1B expst.
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We can now easily compute the output signal,

yt  Cxt  D expst

 CexpAt x0 − sI − A−1B  CsI − A−1B expst  Dexpst.

Hence we finally have the result that yt corresponds to the free evolution of a
modified initial condition (first term in curly-braces) plus a steady-state response that
can be written

CsI − A−1B  D expst ≡ Hyus expst.

If we assume that the initial condition is carefully set to

x0  sI − A−1B,

we can ignore the initial-condition contribution to yt and the transfer function
completely summarizes the overall steady-state exponential response. Defining

ayu ≡ ReHyus, byu ≡ ImHyus,

gyu ≡ |Hyus|  ayu2  byu2 , yu ≡ tan−1
byu
ayu ,

we have (as long as s is not an eigenvalue of A)

yt  Hyus expst

 gyu expst  jyu.
We thus see that for s not an eigenvalue of A, the Laplace transfer function Hyus is
very much like a frequency response, but for general exponential functions on t ≥ 0.
Don’t forget however that we are making a special assumption about the initial
conditions in writing this simple relation. In case s  j we recover the fact that the
frequency response (gain and phase) of  correspond to the magnitude and phase of
the complex-valued function Hyu j. If we restrict our attention to the case of
frequency response and A happens to be stable, note that we have more general
grounds for ignoring the initial-condition contribution to yt as Hyu jexp jt is
guaranteed to dominate for t sufficiently large.

Poles of the transfer function; input-output stability
As was mentioned earlier, the input-output transfer function derived from a
state-space model can always be written in the form of a rational function (the ratio of
two polynomials in s),

Hyus 
ns
ds

.

It was noted that the zeros of ds, which generally correspond to the complex
eigenvalues of A, are special values of s called the poles of Hyus, as it would appear
to casual inspection that the transfer function should diverge there. Although the
relation yt  Hyusexpst is only valid for s not an eigenvalue of A (so that sI − A is
invertible), one might wonder whether the form of Hyus could imply that the
input-output system has divergent response to an exponential input ut  expspt,
where sp is any pole of the transfer function. This would be especially worrisome if we
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were talking about a pole with negative real part!
Let’s examine a SISO system with two-dimensional state space and D  0. Writing

A 
a11 a12

a21 a22

, B 
b1

b2

, C  c1 c2 ,

we have

Hyus  CsI − A−1B

 c1 c2
s − a11 −a12

−a21 s − a22

−1
b1

b2

 − 1
a12a21 − s − a11s − a22

c1 c2
a22 − s −a12

−a21 a11 − s

b1

b2

 − b2−c1a12  c2−s  a11  b1−c2a21  c1−s  a22
a12a21 − s2 − a11s − a22s  a11a22


s−b1c1 − b2c2  b1c1a22 − b1c2a21 − b2c1a12  b2c2a11

s2 − sa11  a22  a11a22 − a12a21
.

As promised this is a rational function, with the order of ns less than or equal to the
order of ds. Looking at ds we recognize the characteristic polynomial of A,

detA − sI  det
a11 − s a12

a21 a22 − s

 a11 − sa22 − s − a12a21

 s2 − sa11  a22  a11a22 − a12a21.

It would seem to follow from this (together with the exponential-response calculation
above) that for any s with negative real part, which is not an eigenvalue of A, then
Hyusexpst should be bounded. But we are still not entirely sure what happens if s is
an eigenvalue of A, stable or unstable.

To check this explicitly let’s pick a specific form for the dynamics,

A 
r w

w r
,   r  w,

which can thus be forced to have real and distinct eigenvalues. Note that the
eigenvectors of A are simply

r  w ↔ 1
2

1

1
≡ , r − w ↔ 1

2

1

−1
≡ −.

For simplicity let’s assume x0  0, and consider the evolution of the state vector in
response to ut  expst :
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xt  expAt 
0

t
d exp−AB exps

 expAt 
0

t
d expsI − AB.

If we now assume that s  r  w, which is an eigenvalue of A, we cannot use the
general expression from above and therefore must explicitly calculate:

xt  expAt 
0

t
d exp

w −w

−w w
 B

 expAt 
0

t
d

1
2 e

2w  1
2 − 1

2 e
2w  1

2

− 1
2 e

2w  1
2

1
2 e

2w  1
2

B.

Here the integral is to be done component-wise, so we just need to evaluate

1
2 0

t
d1  e2w  1

2
  1

2w
e2w

0

t

 1
2
t  1

2w
e2wt ∓ 1

2w
.

Hence,

xt  expAt
1
2 t 

1
2w e

2wt − 1
2w

1
2 t −

1
2w e

2wt  1
2w

1
2 t −

1
2w e

2wt  1
2w

1
2 t 

1
2w e

2wt − 1
2w

B.

Noting

expAt  exp
rt wt

wt rt


1
2 e

rwt  1
2 e

r−wt 1
2 e

rwt − 1
2 e

r−wt

1
2 e

rwt − 1
2 e

r−wt 1
2 e

rwt  1
2 e

r−wt
,

we have

xt  1
4

erwt  er−wt erwt − er−wt

erwt − er−wt erwt  er−wt
t  1

w e2wt − 1
w t − 1

w e2wt  1
w

t − 1
w e2wt  1

w t  1
w e2wt − 1

w

B

 1
4

2tertetw  2
w ertetw − 2

w
ert

etw
2tertetw − 2

w ertetw  2
w

ert

etw

2tertetw − 2
w ertetw  2

w
ert

etw
2tertetw  2

w ertetw − 2
w

ert

etw

B

 1
2

t  1
w erwt − 1

w er−wt t − 1
w erwt  1

w er−wt

t − 1
w erwt  1

w er−wt t  1
w erwt − 1

w er−wt
B.

For simplicity let’s now assume

C  1 0 , B 
1

0
 yt  1

2
t  1

w erwt − 1
2w
er−wt.

If both r  w and r − w are negative (e.g., r  −2, w  1), meaning that both
eigenvalues of A are negative, then we see that the output decays to zero as t → . If
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r  w is positive (e.g., r  2, w  1), then yt will diverge but we are not suprised
because in this case ut is itself unbounded. However, an odd situation can occur if
r  w is negative but the other eigenvalue r − w is positive (e.g., r  1, w  −2). In this
case we can be driving the system with input

ut  expst  expr  wt  exp−t,
whcih is a decaying exponential, and yet

yt  1
2
t  1

w erwt − 1
2w
er−wt

 1
2
t  1

w e−t − 1
2w
e3t,

which clearly diverges as t → . This is therefore an example of a state-space system
for which yt is unbounded even for a bounded ut, and the divergence is clearly
associated with the unstable eigenvalue of A.

This result seems rather counter-intuitive, so let’s try to convince ourselves that it’s
real (we didn’t just make an algebra mistake). For example, we can use Matlab’s
ODE45 integrator to solve an appropriate initial-condition problem. For r,w  1,−2 :
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(This unstable system also has divergent impulse and step responses). But for
r,w  −2,1 :
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Note that if we check the frequency response of the r,w  1,−2 case:
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and of the r,w  −2,1 case:
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Both of these look innocent enough, but the rather severe instability does not translate
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into any divergences in the frequency response input-output gain. This illustrates a
very important point about linear input-output systems: ‘pointwise’ consideration of the
frequency response doesn’t tell you everything, and not all qualitative properties are
reflected in an obvious way in the Bode plot. Apparently some important features are
more subtly encoded in the ‘shape’ of the Bode plot over a range of frequencies.

In our example we haven’t been sufficiently general to prove this, but it is a fact
that asymptotically stable linear systems (all eigenvalues of A have negative real part)
have bounded response to bounded inputs. Hence one only needs to worry about this
sort of input-output instability when A has some unstable eigenvalues.

Earlier in the term we learned to associate eigenvalues of the A matrix with positive
real part with instability. Indeed, continuing with our simple example with

A 
r w

w r
, B 

1

0
, C  1 0 ,

r  w ↔ 1
2

1

1
≡ , r − w ↔ 1

2

1

−1
≡ −,

in the absence of any control input u we have that an initial state

x0 
x10

x20

x10

2
  − 

x20
2

 − −

 1
2
x10  x20  1

2
x10 − x20−,

will evolve as

xt  expAtx0

 1
2
x10  x20erwt   1

2
x10 − x20er−wt −.

We thus see that in general, unless x0 is equal to one of the eigenvectors, both
eigenvalues will appear in the evolution. Hence in situations where even just one of
the eigenvalues is positive, for example r  w, we would need very special conditions
in order to avoid exponential divergence (x0 would need to be exactly proportional to
the stable eigenvector).

Returning to the issue of exponential-input response, we noted above that we can
use yt  Hyu−exp−t as long as − is not an eigenvalue of A and neglecting the
(modified) initial-value response. Unless all the eigenvalues of A have real parts that
are more negative than −, we can only neglect the initial-value response if we make
the specific choice

x0  sI − A−1B.

In order to understand this let us consider the exponential-input response in the
context of our current example system,
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xt  expAt 
0

t
dexp−ABu,

where

exp−AB 
1
2 e
−rw  1

2 e
−r−w 1

2 e
−rw − 1

2 e
−r−w

1
2 e
−rw − 1

2 e
−r−w 1

2 e
−rw  1

2 e
−r−w

1

0


1
2 e
−rw  1

2 e
−r−w

1
2 e
−rw − 1

2 e
−r−w

 1
2
e−rw  1

2
e−r−w−,

and thus

expAtexp−ABu  1
2
et−rw  1

2
et−r−w− u.

If we now consider ut  exp−t with − not equal to either of the eigenvalues r  w
or r − w,

xt  1
2
etrw 

0

t
de−rwe− v  1

2
etr−w 

0

t
de−r−we− v−

 1
2
etrw 1

− − r − w e
−trw − 1 v  1

2
etr−w 1

− − r  w e
−tr−w − 1 v−

 − e−t − etrw
2   r  w

v − e−t − etr−w
2   r − w

v−

 − e
−t

2
v

  r  w  v−
  r − w  1

2
etrw

  r  w v 
etr−w

  r − w v− .

If one of the eigenvalues has positive real part we see that there is a diverging
contribution to xt. Recall however that we are supposed to set

x0  sI − A−1B →
− − r −w

−w − − r

−1
1

0

 1
  r2 − w2

− − r w

w − − r

1

0

 1
  r2 − w2

− − r

w
,

which decomposes as
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x0  1
  r2 − w2

−   r
2

v  v−  w
2
v − v−

 1
  r2 − w2

− 1
2
  r − wv − 1

2
  r  wv−

 − 1
2   r  w

v − 1
2   r − w

v−.

Hence with this special choice of initial state expAtx0 will exactly cancel out the part
of the exponential response not proportional to exp−t, including any possible
divergent contribution.

To sum up what we have learned from our simple example, the simple
exponential-response relation yt  Hyusexpst holds in the limit of large t when s is
not an eigenvalue of A and the eigenvalues of A all have real part more negative than
the real part of s. It can also hold for arbitrary t when the special initial condition
x0  sI − A−1B is chosen; this special choice cancels terms in the response to
ut  expst that are not proportional to expst. Arranging for this cancellation is
especially important when A has some unstable eigenvalues. The response to
ut  expspt where sp is an eigenvalue of A can be explicitly computed. Instability of
an input-output system is not necessarily reflected in any divergences of its frequency
response.

Closed-loop poles with feedback
Earlier we saw that the feedback system

y1  H1u1,

u2  y1, y2  H2u2,

u1  r − y2,

has overall transfer function

Hy1r 
H1

1  H1H2
.

Let’s set H2  1 (unit feedback) and look at the poles that result. At the beginning of
this set of notes we did a fairly general calculation

A 
a11 a12

a21 a22

, B 
b1

b2

, C  c1 c2 , D  0,

Hyus 
s−b1c1 − b2c2  b1c1a22 − b1c2a21 − b2c1a12  b2c2a11

s2 − sa11  a22  a11a22 − a12a21
.

For simplicity let’s set a11  a22  r, a12  a21  w, b1  c1  1, b2  c2  0, (which
corresponds to the example we just looked at) and call the result H1s. Then
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H1s  1 0
s − r −w

−w s − r

−1
1

0

 1
s − r2 − w2

1 0
s − r w

w s − r

1

0

 s − r
s2 − 2rs  r2 − w2

 s − r
s − r  ws − r − w

,

and

Hy1r →
s − r

s2 − 2rs  r2 − w2 1  s−r
s2−2wsr2−w2

 s − r
s2 − 2rs  r2 − w2  s − r

 s − r
s2  s1 − 2r  r2 − w2 − r

.

The denominator has roots

s  2r − 1  1 − 4r  4r2 − 4r2  4w2  4r
2

 2r − 1  4w2  1
2

.

If we check the cases that we have previously considered,

r,w  −2,1 → s  −5  5
2

,

r,w  1,−2 → s  1  17
2

,

r,w  2,1 → s  3  5
2

.

Clearly these poles are shifted relative to the case without feedback r  w. Which
systems to you expect to exhibit unstable behavior?

Note that we could model the sort of feedback system considered above directly in
the state-space model. Generalizing to proportional feedback with gain K,

ẋ  Ax  Bu  Ax  Br − Ky  Ax  Br − KCx
 A − KBCx  Br.

This has effective dynamical matrix

A ′ 
r − K w

w r
,

whose eigenvalues are
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  2r − K  4w2  K 2

2
,

in agreement of course with the transfer-function calculation we performed with K  1.
It would appear that it is not possible simply by choice of K to turn a general unstable
r,w instance into a stable closed-loop system. Note that the Matlab function rlocus
provides a convenient tool for tracking the changes in the poles and zeros of a system
under proportional feedback.

Note that the reachability and observability matrices here are

Wr 
1 r

0 w
, Wo 

1 0

r w
,

which in general will both be full-rank, so it should be the case that we can use
feedback to stabilize the system; we just can’t do it via proportional feedback. From
the general form of the H1 transfer function,

H1s  s − r
s − r  ws − r − w

,

we have the general closed-loop transfer function

Hcls  s − r
s − r  ws − r − w  s − rH2s

.

If we try a simple form

H2s 
s  as  b

s − r ,

we have the new denominator polynomial

dcls  s − r  ws − r − w  s  as  b
 2s2  a  b − 2rs  r2 − w2  ab,

with solutions

cl 
2r − a − b  a  b − 2r2 − 8r2 − w2  ab

4


2r − a − b  a  b − 2r2 − 8r2 − w2  ab

4
.

If we try a  r, b  r  1, then

cl →
−1  1 − 82r2  r − w2

4
.

In the case where r,w  2,1 (both open-loop eigenvalues positive) we thus have
a  2, b  3 and

cl 
−1  1 − 88  2 − 1

4
 −1  i 71

4
,

which is stable. We should note however that we did one not-so-robust thing in our
design, which was to add a RHP pole in the controller transfer function H2s that
cancels the RHP zero in H1s. While technically valid, in practice this is a very bad
idea because if the pole of the controller as implemented varies just a little bit from the
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actual zero of the plant, the closed-loop system will be left with an uncancelled
unstable pole. For example if we set

H2s 
s  2s  3
s − 2.1

,

we end up with a closed-loop transfer function with a RHP pole at s ≈ 1.995.
We could instead try a separated design. If we use pole-placement to design a

Luenberger observer with eigenvalues −5,−6 we obtain

L 
15

57
,

working still with our r,w  2,1 instance, and if we try to design a state-feedback
law to obtain final eigenvalues −1,−2 we obtain

K  7 13 .

Checking the latter design first we note that

A − BK 
2 1

1 2
−

1

0
7 13


2 1

1 2
−

7 13

0 0


−5 −12

1 2
,

which indeed has eigenvalues −1,−2 under state-feedback. As for the observer
design,

A − LC 
2 1

1 2
−

15

57
1 0


2 1

1 2
−

15 0

57 0


−13 1

−56 2
,

which indeed has eigenvalues −5,−6. Can we put these into a transfer-function
notation?

For the combined observer-controller system we will use u  −Kx̂, where x̂ is the
estimate produced by the observer. For the observer, we have

d
dt
x̂  Ax̂  Bu  Ly − Cx̂,

where y is the output of the plant and u  −Kx̂, so
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d
dt
x̂  Ax̂ − BKx̂  Ly − Cx̂

 A − BK − LCx̂  Ly.
For the observer transfer function we think of y as the input and we can set Kx̂ as the
output to send directly back to the plant. Hence the separated controller is a
state-space system with

Â  A − BK − LC →
−20 −12

−56 2
, B̂  L, Ĉ  K,

which has transfer function CsI − A−1B equal to

H2s  846s − 1098
s2  18s − 712

≈ 846s − 1.298
s  37.16s − 19.16

.

Feedback interconnection with H1s leads to

Hcls  s3  16s2 − 748s  1424
s  6s  5s  2s  1

,

which is indeed stable. There does not appear to be any attempt to cancel the RHP
zero of H1s in this design.
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