
APPPHYS217 Thursday 22 April 2010

Continuous-time Markov Chains
[See for example R. Durrett, Essentials of Stochastic Processes (Springer, 2004)]
We consider a random process xt, t ≥ 0 taking values in a discrete set of states
a1,a2,… ,aK with Markovian transition probabilities

pi jh ≡ Prxth  aj |xt  ai,

satisfying (Chapman-Kolmogorov equation)

∑
k

pikspkjt  pi js  t,

and

lim
h→0

pi jh  1 − ih  oh, j  i,

 i j h  oh, j ≠ i,

where the i j are non-negative rate coefficients with

i ≡ ∑
j≠i

i j.

Such a process can be associated with random flights on a graph whose nodes
correspond to the states ai and whose directed edges correspond to the non-zero
transition rates i j  0.

Example [Durrett Ch. 4, Ex. 1.1]: Let the ai be non-negative integers correspond to
the number of events accumulated by a Poisson process with rate . Then

i j   j, i  1,

and xt is a process that starts at zero and jumps in unit increments. The corresponding
graph is linear with unidirectional edges.

Example [Durrett Ch. 4, Ex. 1.3]: The ‘M/M/s queue’ with s tellers, customer arrival
rate , and service rate  : the ai are non-negative integers corresponding to the
number of customers in line, and

i i1  ,

i i−1  i, 0 ≤ i ≤ s,

 s, i  s.

The corresponding graph is again linear but now with edges in both directions.
Example: Michaelis-Menten-like enzyme kinetics [H. Qian, Biophys. J. 95, 10

(2008)].

It is common practice to study the ‘dynamics’ of a continuous-time Markov Chain
(CTMC) using a probability vector on the state space,
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pt ≡

Prxt  a1

Prxt  a2



Prxt  aK

,

which evolves according to
d
dt

pit ∑
j≠i

ji pjt −∑
j≠i

i j pit,

which we can rewrite as a simple matrix multiplication
d
dt

pit ∑
j

ji pjt,

if we define

ii ≡ −∑
j≠i

i j.

Note that this is a kind of master equation that evolves our state of knowledge about xt

if we know the transition rates but can’t observe the actual jumps.
Example: Evolution of pt for the Poisson example.

Hidden Markov Models
A Hidden Markov Model (HMM) is basically a Markov Chain observed in noise.
Working for the moment in discrete time we can think of an HMM as a pair of random
processes Xt,Yt where Xt is an unobserved Markov Chain while, at each value of t,
Yt is an observed random variable whose statistics are determined by Xt. The usual
problem formulation is, given observations of the Yt and knowledge of the transition
probabilities for Xt, try to infer the evolution of Xt. Note that we can pose this problem
either as a recursive (‘real-time’) estimation problem as would be relevant for feedback
control, in which you are required to estimate Xt at time t on the basis of the Ys with
s ≤ t only, or as a ‘smoothing’/‘interpolation’ problem in which you can use the Ys at all
times s in order to estimate Xt (more like an offline data processing scenario).

In what follows we will consider the specific case of an observed signal with
gaussian noise, where the mean of yt (returning to continuous time) is determined by
xt but the variance of yt is constant:

dyt  xt dt  dWt.

In this case (and in some simple generalizations) we can solve the recursive
estimation problem using the Wonham filter.

The Wonham filter
[W. M. Wonham, “Some applications of stochastic differential equations to optimal
nonlinear filtering,” J. SIAM Control Ser. A 2, 347 (1965)]
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Assume the setup described above: the underlying CTMC xt, t ≥ 0 takes values in a
finite set of real numbers a1,… ,aK and has transition probabilities given by

lim
h→0

pi jh  1 − ih  oh, j  i,

 i j h  oh, j ≠ i.

The observed process is dyt with

dyt  xt dt  dWt.

Our task is to compute the posterior (conditional) probabilities

pjt  Pr xt  aj |dys, 0 ≤ s ≤ t , j  1,… ,K.

Wonham uses stochastic calculus methods to show that these evolve according to

dpjt  −j pjt ∑
i1
i≠j

K

i j pit dt − −2 〈xt aj − 〈xt pjtdt  −2aj − 〈xt pjtdyt,

where 〈xt is the conditional mean defined by

〈xt ≡ ∑
i1

K

pitai.

Wonham notes that the terms not in the curly braces correspond to the filter one would
use for a constant signal in gaussian noise i j  0, and we have seen above that the
term in curly braces is the master equation for the evolution of p without observations.
The observation term can be rewritten

− −2 〈xt aj − 〈xt pjtdt  −2aj − 〈xt pjtdyt  −−2aj − 〈xt 〈xt dt − dytpjt,

which we see has an ‘innovations’ structure. The ‘gain’ of the corrector term scales
with −2, which is perhaps not surprising. If the observed signal dyt is below the
expected signal 〈xtdt, the conditional probability of any state aj whose value is above
the conditional mean 〈xt is decreased while that of any state whose value is above
the conditional mean is increased. Likewise, if the observed signal is above the
expected signal, updates are applied in the opposite directions.

Note that the Wonham filter is a nonlinear SDE since we have terms like 〈xt pjt.

We finish with an example from [“Continuous quantum error correction as classical
hybrid control,” New J. Phys. 11, 105044 (2009)].
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