
APPPHYS 217 Thursday 15 April 2010

We begin by illustrating some of the concepts we examined last time (linear
observers).

Consider, as our plant, a simple harmonic oscillator:

d
dt

x1

x2

0 1

−0
2 0

x1

x2

0

1
u,

d
dt

x Ax Bu,

where as usual x1 ↔ q, x2 ↔ q̇. The dynamics as given fix A and B, and let us
consider a general output signal related linearly to the state:

y Cx C1 C2
x1

x2

.

We have seen that the observability criterion is that we have full rank for the matrix

Wo
C

CA
,

and since

CA C1 C2
0 1

−0
2 0

 −0
2C2 C1 ,

we have

detW0 det
C1 C2

−0
2C2 C1

 C1
2 0

2C2
2.

Hence as long as 0 ≠ 0, the system is observable as long as C is nonzero.
For general C, our linear (Luenberger) observer structure is

d
dt

x̂ Ax̂ Bu Ly − Cx̂,

which induces the following dynamics for the estimation error:
d
dt

x̃ A − LCx̃.

We thus want to design L to make the eigenvalues of A − LC have negative real part.
Last time we noted that we could do this by using Matlab’s pole-placement routine,
place, with

A ↔ AT, B ↔ CT, K ↔ LT.

We try the following examples, setting 0 1 and designing for eigenvalues −1,−2:

1

C 1 0 : L
3

1
, Ly − Cx̂

3

1
x1 − x̂1,

C 0 1 : L
−1

3
, Ly − Cx̂

−1

3
x2 − x̂2,

C 1 1 : L
1

2
, Ly − Cx̂

1

2
x1 − x̂1 x2 − x̂2.

To examine how the observers work, we perform some numerical integrations. Setting
u 0 and

x0
1

1
,

we have for the plant evolution

xt expAtx0
cos t sin t

− sin t cos t

1

1

cos t sin t

cos t − sin t
.

For the observer we assume no knowledge of the initial state, and thus set

x̂0
0

0
.

The dynamics of the state estimate is

d
dt

x̂
0 1

−0
2 0

x̂1

x̂2

 Ly − LCx̂

0 1

−0
2 0

− LC
x̂1

x̂2

 Ly.

For the purposes of this example we could actually integrate this analytically, treating y
as a driving term. However in the spirit of recursive state estimation we instead
integrate numerically (Matlab example).

Ttot10; Nsteps5000;
tlinspace(0,Ttot,Nsteps); dtt(2)-t(1);
x[cos(t)sin(t);cos(t)-sin(t)];
xhatzeros(2,Nsteps);
for ii2:Nsteps,

yC*x(:,ii);
xhat(:,ii) xhat(:,ii-1)

dt*(A*xhat(:,ii-1)L*(y-C*xhat(:,ii-1)));
end;

In the following we plot the results, with x1 as solid black, x2 as solid red, x̂1 as dashed

2

black, and x̂2 as dashed red. The results for C 1 0 :

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

The results for C 0 1 :

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

3

The results for C 1 1 , with y in blue:

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Could we have guessed the forms of these observers?

For C 1 0 , note that we can construct an “intuitive” observer by setting

x̂1 y, x̂2 ẏ, which should work well as long as there is negligible measurement
noise.

For C 0 1 we obviously have x̂2 y, and we can guess

x̂1
0

t
dsys,

but it is not entirely clear how we should choose x̂10. Note that the Luenberger
observer does something more complicated, as it integrates

4

d
dt

x̂
0 1

−1 0
− LC

x̂1

x̂2

 Ly

≡ A ′x̂ Ly, A ′
0 2

−1 −3

1 1

−1 − 1
2

−2 0

0 −1

−1 −2

2 2
,

expA ′t
1 1

−1 − 1
2

e−2t 0

0 e−t
−1 −2

2 2

2e−t − e−2t 2e−t − 2e−2t

e−2t − e−t 2e−2t − e−t
,

x̂t expA ′t x̂0
0

t
ds exp−A ′sLy

2e−t − e−2t 2e−t − 2e−2t

e−2t − e−t 2e−2t − e−t
x̂0

0

t
ds

4e−s − 5e−2s

5e−2s − 2e−s
y ,

with x̂0 arbitrary.

There doesn’t seem to be an obvious intuitive strategy for C 1 1 .

Before turning to consider noisy observation scenarios, we take a brief look at the
behavior of the Luenberger observer for C 1 0 and varying gain. Recall that

when we designed for eigenvalues −1,−2 we obtained

L →
3

1
.

What happens if we try simply multiplying this gain by 10?

5

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

If instead we design for eigenvalues −10,−20 we get

L →
30

199
,

and the performance is transiently bad, but does indeed settle quite quickly:

6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1

0

1

2

3

4

5

6

Stochastic models (notation)
We will normally write linear stochastic control models in the form

dxt Axt dt But dt FdVt,

dyt Cxt dt GdWt.

Here the subscripts serve to remind us of things that depend on time, and the vector
nature of x and/or y is implicit. The stochastic increments dVt and dWt satisfy

〈dVt 〈dWt 0,

dVt
2 dWt

2 dt,

dVtdt dWtdt 0,

and for s ≠ t we have 〈dVsdVt 〈dWsdWt 0. We can informally think of dVt /dt and
dWt /dt as gaussian white noises with zero mean and unit variance. It is conventional to
refer to dVt as process noise and to dWt as measurement noise or observation noise.

It is important to be aware of the fact that stochastic differential equations (SDE’s)
of the type we have written are, rigorously speaking, a sort of shorthand notation for
stochastic integrals. There is an important distinction between Itô and Stratonovich
stochastic integrals, and therefore between Itô and Stratonovich SDE’s. In control
theory one normally works with Itô SDE’s, and in any case there is a straightforward
recipe for converting a model between Itô and Stratonovich forms.

The Stratonovich form is sometimes preferred (especially in physics) because
Stratonovich SDE’s can be manipulated using standard calculus. For Itô SDE’s,

7

however, one must in general be careful to observe the Itô Rule, which says that if xt

obeys the Itô SDE

dxt Axtdt BxtdWt,

then a variable yt related to xt via

yt Uxt

evolves according to

dyt Axt ∂U∂x
 1

2
B2xt ∂

2U
∂x2 dt Bxt ∂U∂x

dWt,

where the second-derivative term in the square brackets is known as the Itô
correction. Note that if U is a linear function the Itô correction vanishes and we recover
the prediction of normal calculus.

An important advantage of working with Itô SDE’s is that if xt obeys the Itô SDE

dxt Axtdt BxtdWt,

then xt is uncorrelated with dWt. This considerably simplifies the computation of
statistical moments.

For example consider the linear SDE model

dxt Axt dt FdVt,

with xt a scalar and A 0 (the Ornstein-Uhlenbeck model). We then have

d〈xt A〈xt dt F〈dVt

 A〈xt dt,

〈xt 〈x0 expAt,

and if yt xt
2, so that 〈yt is the variance of xt,

dyt 2Axt
2 F 2 dt 2Fxt dVt,

d〈yt 2A〈yt F 2 dt 2F〈xt dVt

 2A〈yt F 2 dt 2F〈xt 〈dVt

 2A〈yt F 2 dt,

〈yt exp2At 〈y0
0

t
dsexp−2AsF 2

 exp2At 〈y0 F 2
0

t
dsexp−2As .

If we assume that xt evolves from a known value x0 at t 0, then 〈x0 x0 and
〈y0 x0

2, and the mean-square uncertainty in xt is

〈xt
2 − 〈xt 2 〈yt − 〈xt 2

 exp2AtF 2
0

t
dsexp−2As

 exp2AtF 2 − 1
2A

exp−2At − 1

 − F2

2A
1 − exp2At.

8

The mean-square uncertainty thus has a steady-state value as t → ,

〈xt
2 − 〈xt 2 → F2

2|A|
.

In numerical simulations, we can simply update xt according to

xtdt xt Axt dt But dt FdVt,

dyt Cxt dt GdWt,

where dVt and dWt are independent normal random variables with variance dt. In
Matlab, if dt is a variable with some assigned numerical value,

dVtsqrt(dt)*randn(1); dWtsqrt(dt)*randn(1);
This simple procedure is known as the Itô-Euler stochastic integration routine, which is
easy to implement but has the disadvantage that it only converges to order dt1/2.
Higher-order integrators can be found in various computer packages (including SDE
toolboxes for Matlab), and are described in textbooks.

State observers - performance with noise
First we consider the case of process noise only. Returning to our simple harmonic
oscillator with C 1 0 , we can add a noisy force acting on the oscillator by

setting

F
0

0.3
.

Simulating both the plant and the response of the Luenberger observer, which we now
write as

x̂tdt x̂t A − LC x̂t dt But dt Ldyt,

we obtain:

9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Here we used the L computed for target eigenvalues −1,−2. It is clear that the
observer still tracks the state but with degraded performance due to the process noise.
If we try turning up the observer gain by using values computed for target eigenvalues
−10,−20, we do much better:

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Next we set F to zero but G 0.001. The results are:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Here the blue shows the performance of a naive velocity estimator, x̂2 ẏ (note that
there is some aliasing). The Luenberger observer does much better, as expected.

11

In order to bother the Luenberger observer we turn G all the way up to 0.1:

0 0.5 1 1.5 2 2.5 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Now if we try to get greedy with this much observation noise, by turning up L to the
values that would achieve eigenvalues −10,−20 in the noiseless system,

0 0.5 1 1.5 2 2.5 3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

12

and we see that the estimation of velocity becomes very poor. So apparently too much
observer gain is a bad thing, when there is noise. Is there an optimal value of the
Luenberger gain? This would seem to be an especially important question when there
is both process noise and measurement noise.

The Kalman-Bucy filter
To answer this sort of question we first have to state how we judge the observer’s
performance quantitatively. It is most common to adopt a minimum-least-squares
framework, in which our objective is to design the estimator (method of generating x̂t

from knowledge of ys with s ≤ t) that achieves the lowest possible value of
〈xt − x̂txt − x̂tT . As discussed in A&M section 7.4, for the plant and observation
model

dxt Axt dt But dt FdVt,

dyt Cxt dt GdWt,

we have the following Theorem:
(Kalman-Bucy, 1961) The optimal estimator has the form of a linear observer

dx̂t Ax̂t Butdt Lt dyt − Cx̂tdt, x̂0 〈x0 ,

where Lt Pt CTGGT −1 and Pt 〈xt − x̂txt − x̂tT is the (symmetric and
positive-definite) estimation error covariance matrix that satisfies the following
matrix Riccati equation:

d
dt

Pt FFT APt Pt AT − Pt CTGGT −1CPt, P0 〈x0x0
T .

It is important to note that the Kalman filter provides both a point estimate of the
evolving system state and a computation of the estimation error covariance matrix - it
gives you its best guess and a numerical uncertainty. When the system is stationary
and if Pt converges, the observer gain settles to a constant:

L PCTGGT −1, FFT AP PAT − PCTGGT −1CP 0.

The second equation is called the algebraic Riccati equation, and may be solved using
Matlab’s lqe function.

We see that the essence of Kalman filtering is an optimal choice of the observer
gain, which may be time-dependent in a way that reflects our evolving degree of
confidence in our state estimate. The general structure is to apply high observer gain
when we have large uncertainty, and to reduce it when our uncertainty approaches a
limiting value set by the process and measurement noises.

As an example let us compute the Kalman gain for our simple harmonic oscillator
example with

F
0

0.3
, G 0.1.

This results in

13

L ≈
2.08

2.16
,

and a simulation looks as follows:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

It is interesting to note that, as a consequence of its least-squares optimality, the
Kalman-Bucy filter achieves what is known as “whitening” of the innovations process
dyt − Cx̂tdt. That is, if x̂t is propagated by the Kalman-Bucy filter then dyt − Cx̂tdt
becomes a completely random signal (Gaussian white noise); roughly we can think
that x̂t becomes good enough that subtracting Cx̂t dt from dyt removes all the
information from the observed signal. The notions of least-squares optimal state
estimation, the innovations process, and whitening all carry over to nonlinear
scenarios.

14

