
ElasticNet Hui Zou, Stanford University 1

Regularization and Variable
Selection via the Elastic Net

Hui Zou and Trevor Hastie
Department of Statistics

Stanford University



ElasticNet Hui Zou, Stanford University 2

Outline

• Variable selection problem

• Sparsity by regularization and the lasso

• The elastic net
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Variable selection

• Want to build a model using a subset of “predictors”

• Multiple linear regression; logistic regression (GLM); Cox’s
partial likelihood, . . .

– model selection criteria: AIC, BIC, etc.

– relatively small p (p is the number of predictors)

– instability (Breiman, 1996)

• Modern data sets: high-dimensional modeling

– microarrays (the number of genes � 10,000)

– image processing

– document classification

– . . .
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Example: Leukemia classification

• Leukemia Data, Golub et al. Science 1999

• There are 38 training samples and 34 test samples with total
p = 7129 genes.

• Record the expression for sample i and gene j.

• Tumors type: AML or ALL.

• Golub et al. used a Univariate Ranking method to select
relevant genes.
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The p � n problem and grouped selection

• Microarrays: p � 10, 000 and n < 100. A typical “large p, small
n” problem (West et al. 2001).

• For those genes sharing the same biological “pathway”, the
correlations among them can be high. We think of these genes
as forming a group.

• What would an “oracle” do?

✔ Variable selection should be built into the procedure.

✔ Grouped selection: automatically include whole groups into
the model if one variable amongst them is selected.
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Sparsity via �1 penalization

• Wavelet shrinkage and Basis pursuit; Donoho et al. (1995)

• Lasso; Tibshirani (1996)

• Least Angle Regression (LARS); Efron, Hastie, Johnstone and
Tibshirani (2004)

• COSSO in smoothing spline ANOVA; Lin and Zhang (2003)

• �0 and �1 relation; Donoho et al. (1999,2004)
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Lasso

• Data (X,y). X is the n × p predictor matrix of standardized
variables; and y is the response vector.

min
β

‖y − Xβ‖2 s.t. ‖β‖1 =
p∑

j=1

|βj | ≤ t

• Bias-variance tradeoff by a continuous shrinkage

• Variable selection by the �1 penalization

• Survival analysis: Cox’s partial likelihood + the �1 penalty
(Tibshirani 1998)

• Generalized linear models (e.g. logistic regression)

• LARS/Lasso: Efron et al. (2004).
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The limitations of the lasso

• If p > n, the lasso selects at most n variables. The number of
selected genes is bounded by the number of samples.

• Grouped variables: the lasso fails to do grouped selection. It
tends to select one variable from a group and ignore the others.
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Elastic Net regularization

β̂ = arg min
β

‖y − Xβ‖2 + λ2‖β‖2 + λ1‖β‖1

• The �1 part of the penalty generates a sparse model.

• The quadratic part of the penalty

– Removes the limitation on the number of selected variables;

– Encourages grouping effect;

– Stabilizes the �1 regularization path.
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Geometry of the elastic net

β1

β2

Ridge
Lasso
Elastic Net

2-dimensional illustration α = 0.5

The elastic net penalty

J(β) = α‖β‖2+(1−α)‖β‖1

(with α = λ2
λ2+λ1

)

min
β

‖y−Xβ‖2 s.t. J(β) ≤ t.

• Singularities at the
vertexes (necessary for
sparsity)

• Strict convex edges.
The strength of con-
vexity varies with α

(grouping)
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A simple illustration: elastic net vs. lasso

• Two independent “hidden” factors z1 and z2

z1 ∼ U(0, 20), z2 ∼ U(0, 20)

• Generate the response vector y = z1 + 0.1 · z2 + N(0, 1)

• Suppose only observe predictors

x1 = z1 + ε1, x2 = −z1 + ε2, x3 = z1 + ε3

x4 = z2 + ε4, x5 = −z2 + ε5, x6 = z2 + ε6

• Fit the model on (X,y)

• An “oracle” would identify x1,x2, and x3 (the z1 group) as the
most important variables.
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Results on the grouping effect

Regression

Let ρij = ĉor(xi,xj). Suppose β̂i(λ1)β̂j(λ1) > 0, then
1
|y| |β̂i(λ1) − β̂j(λ1)| ≤

√
2

λ2

√
1 − ρij .

Classification Let φ be a margin-based loss function, i.e.,
φ(y, f) = φ(yf) and y ∈ {1,−1}. Consider

β̂ = arg min
β

n∑
k=1

φ
(
ykxT

k β
)

+ λ2‖β‖2 + λ1‖β‖1

Assume that φ is Lipschitz, i.e., |φ(t1) − φ(t2)| ≤ M |t1 − t2| ,
then ∀ a pair of (i, j), we have

∣∣∣β̂i − β̂j

∣∣∣ ≤ M

λ2

n∑
k=1

|xk,i − xk,j | ≤
√

2M

λ2

√
1 − ρij .
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Elastic net with scaling correction

β̂enet
def= (1 + λ2)β̂

• Keep the grouping effect and overcome the double shrinkage by
the quadratic penalty.

• Consider Σ̂ = XT X and Σ̂λ2 = (1− γ)Σ̂ + γI, γ = λ2
1+λ2

. Σ̂λ2 is
a shrunken estimate for the correlation matrix of the predictors.

• Decomposition of the ridge operator: β̂ridge = 1
1+λ2

Σ̂−1
λ2

XT y.

• We can show that

β̂lasso = arg min
β

βT Σ̂β − 2yT Xβ + λ1‖β‖1

β̂enet = arg min
β

βT Σ̂λ2β − 2yT Xβ + λ1‖β‖1

• With orthogonal predictors, β̂enet reduces to the (minimax)
optimal soft-thresholding estimator.
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Computation

• The elastic net solution path is piecewise linear.

• Given a fixed λ2, a stage-wise algorithm called LARS-EN
efficiently solves the entire elastic net solution path.

– At step k, efficiently updating or downdating the Cholesky
factorization of XT

Ak−1
XAk−1 + λ2I, where Ak is the active

set at step k.

– Only record the non-zero coefficients and the active set at
each LARS-EN step.

– Early stopping, especially in the p � n problem.

• R package: elasticnet
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Simulation example 1: 50 data sets consisting of 20/20/200

observations and 8 predictors. β = (3, 1.5, 0, 0, 2, 0, 0, 0) and σ = 3.

cor(xi,xj) = (0.5)|i−j|.

Simulation example 2: Same as example 1, except βj = 0.85 for all j.

Simulation example 3: 50 data sets consisting of 100/100/400

observations and 40 predictors.

β = (0, . . . , 0
| {z }

10

, 2, . . . , 2
| {z }

10

, 0, . . . , 0
| {z }

10

, 2, . . . , 2
| {z }

10

) and σ = 15; cor(xi, xj) = 0.5

for all i, j.

Simulation example 4: 50 data sets consisting of 50/50/400

observations and 40 predictors. β = (3, . . . , 3
| {z }

15

, 0, . . . , 0
| {z }

25

) and σ = 15.

xi = Z1 + εx
i , Z1 ∼ N(0, 1), i = 1, · · · , 5,

xi = Z2 + εx
i , Z2 ∼ N(0, 1), i = 6, · · · , 10,

xi = Z3 + εx
i , Z3 ∼ N(0, 1), i = 11, · · · , 15,

xi ∼ N(0, 1), xi i.i.d i = 16, . . . , 40.
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Median MSE for the simulated examples

Method Ex.1 Ex.2 Ex.3 Ex.4

Ridge 4.49 (0.46) 2.84 (0.27) 39.5 (1.80) 64.5 (4.78)

Lasso 3.06 (0.31) 3.87 (0.38) 65.0 (2.82) 46.6 (3.96)

Elastic Net 2.51 (0.29) 3.16 (0.27) 56.6 (1.75) 34.5 (1.64)

No re-scaling 5.70 (0.41) 2.73 (0.23) 41.0 (2.13) 45.9 (3.72)

Variable selection results

Method Ex.1 Ex.2 Ex.3 Ex.4

Lasso 5 6 24 11

Elastic Net 6 7 27 16
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Leukemia classification example

Method 10-fold CV error Test error No. of genes

Golub UR 3/38 4/34 50

SVM RFE 2/38 1/34 31

PLR RFE 2/38 1/34 26

NSC 2/38 2/34 21

Elastic Net 2/38 0/34 45

UR: univariate ranking (Golub et al. 1999)
RFE: recursive feature elimination (Guyon et al. 2002)

SVM: support vector machine (Guyon et al. 2002)
PLR: penalized logistic regression (Zhu and Hastie 2004)
NSC: nearest shrunken centroids (Tibshirani et al. 2002)
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Effective degrees of freedom

• Effective df describes the model complexity.

• df is very useful in estimating the prediction accuracy of the
fitted model.

• df is well studied for linear smoothers: µ̂ = Sy, df(µ̂) = tr(S).

• For the �1 related methods, the non-linear nature makes the
analysis difficult.

• Conjecture by Efron et al. (2004): Starting at step 0, let mk be
the index of the last model in the Lasso sequence containing
exact k predictors. Then df(mk) .= k.
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Elastic Net: degrees of freedom

• df = E[d̂f ], where d̂f is an unbiased estimate for df , and

d̂f = Tr (Hλ2(A))

where A is the active set and

Hλ2(A) = XA
(
XT

AXA + λ2I
)−1

XT
A.

• For the lasso (λ2 = 0),

d̂f(lasso) = the number of nonzero coefficients.

• Proof: SURE+LARS+convex analysis
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Elastic Net: other applications

• Sparse PCA

– Obtain (modified) principal components with sparse
loadings.

• Kernel elastic net

– Generate a class of kernel machines with support vectors.
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Sparse PCA

• Xn×p and xi is the i-th row vector of X.

• α and β are p-vectors.
SPCA: the leading sparse PC

min
α,β

n∑
i=1

‖xi − αβT xi‖2 + λ2‖β‖2 + λ1‖β‖1

subject to ‖α‖2 = 1.

v̂ = β̂

‖β̂‖ , the loadings.

• A large λ1 generates sparse loadings.

• The equivalence theorem: consider the SPCA with λ1 = 0

1. ∀λ2 > 0, SPCA ≡ PCA;

2. When p > n, SPCA ≡ PCA if only if λ2 > 0.
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Sparse PCA (cont.)

• Ap×k = [α1, · · · , αk] and Bp×k = [β1, · · · , βk]
SPCA: the first k sparse PCs

min
A,B

n∑
i=1

‖xi − ABT xi‖2 + λ2

k∑
j=1

‖βj‖2 +
k∑

j=1

λ1j‖βj‖1

subject to AT A = Ik×k.

Let v̂j = β̂j

‖β̂j‖
, for j = 1, . . . , k.

• Solution:

– B given A: k independent elastic net problems.

– A given B: exact solution by SVD.
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SPCA algorithm

1. Let A start at V[ , 1 : k], the loadings of the first k

ordinary principal components.

2. Given a fixed A = [α1, · · · , αk], solve the following elas-
tic net problem for j = 1, 2, . . . , k

βj = arg min
β

(αj −β)T XT X(αj −β)+λ2‖β‖2 +λ1,j‖β‖1

3. For a fixed B = [β1, · · · , βk], compute the SVD of
XT XB = UDVT , then update A = UVT .

4. Repeat steps 2–3, until convergence.

5. Normalization: v̂j = βj

‖βj‖ , j = 1, . . . , k.
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Sparse PCA: pitprops data example

• There are 13 measured variables. First introduced by Jeffers
(1967) who tried to interpret the first 6 principal components.

• A classic example showing the difficulty of interpreting
principal components.

• The original data have 180 observations. The sample
correlation matrix (13 × 13) is sufficient in our analysis.



ElasticNet Hui Zou, Stanford University 28

PCA SPCA

topdiam -.404 .218 -.207 -.477

length -.406 .186 -.235 -.476

moist -.124 .541 .141 .785

testsg -.173 .456 .352 .620

ovensg -.057 -.170 .481 .177 .640

ringtop -.284 -.014 .475 .589

ringbut -.400 -.190 .253 -.250 .492

bowmax -.294 -.189 -.243 -.344 -.021

bowdist -.357 .017 -.208 -.416

whorls -.379 -.248 -.119 -.400

clear .011 .205 -.070

knots .115 .343 .092 .013

diaknot .113 .309 -.326 -.015

variance 32.4 18.3 14.4 28.0 14.0 13.3
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Kernel Machines

• Binary classification: y ∈ {1,−1}.

• Take a margin-based loss function φ(y, f) = φ(yf).

• A kernel matrix Ki,j = k(xi,xj). We consider
f̂(x) =

∑n
i=1 α̂ik(xi,x) with

α̂ = arg min
α

1
n

n∑
i=1

φ(yi

n∑
i=1

αik(xi,x)) + λ2α
T Kα

• SVMs uses φ(y, f) = (1 − yf)+, the hinge loss (Wahba, 2000).

✔ maximizes the margin

✔ directly approximates the Bayes rule (Lin, 2002)

✔ only a fraction of α are non-zero: support vectors

✖ no estimate for p(y|x)
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Kernel elastic net

• Take φ(y, f) = log(1 + exp(−yf)). We consider
f̂(x) =

∑n
i=1 α̂ik(xi,x) with

α̂ = arg min
α

1
n

n∑
i=1

φ(yi

n∑
i=1

αik(xi,x)) + λ2α
T Kα + λ1

n∑
i=1

|αi|

✔ estimates p(y|x)

• KLR: λ1 = 0, no support vectors

✔ a large λ1 generates genuine support vectors

✔ combines margin maximization with boosting

– λ1 is the main tuning parameter: the regularization method
in boosting (Rosset, Zhu and Hastie, 2004).

– small positive λ2: the limiting solution (λ1 → 0) is close to
the margin-maximization classifier.
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Summary

• The elastic net performs simultaneous regularization and
variable selection.

• Ability to perform grouped selection

• Appropriate for the p � n problem

• Analytical results on the df of the elastic net/lasso

• Interesting implications in other areas: sparse PCA and new
support kernel machines
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