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Principal curves are smooth one-dimensional curves that pass through the middle of a p-dimensional data set, providing a 
nonlinear summary of the data. They are nonparametric, and their shape is suggested by the data. The algorithm for constructing 
principal curves starts with some prior summary, such as the usual principal-component line. The curve in each successive 
iteration is a smooth or local average of the p-dimensional points, where the definition of local is based on the distance in arc 
length of the projections of the points onto the curve found in the previous iteration. In this article principal curves are defined, 
an algorithm for their construction is given, some theoretical results are presented, and the procedure is compared to other 
generalizations of principal components. Two applications illustrate the use of principal curves. The first describes how the 
principal-curve procedure was used to align the magnets of the Stanford linear collider. The collider uses about 950 magnets 
in a roughly circular arrangement to bend electron and positron beams and bring them to collision. After construction, it was 
found that some of the magnets had ended up significantly out of place. As a result, the beams had to be bent too sharply and 
could not be focused. The engineers realized that the magnets did not have to be moved to their originally planned locations, 
but rather to a sufficiently smooth arc through the middle of the existing positions. This arc was found using the principal- 
curve procedure. In the second application, two different assays for gold content in several samples of computer-chip waste 
appear to show some systematic differences that are blurred by measurement error. The classical approach using linear errors 
in variables regression can detect systematic linear differences but is not able to account for nonlinearities. When the first linear 
principal component is replaced with a principal curve, a local "bump" is revealed, and bootstrapping is used to verify its 
presence. 
KEY WORDS: Errors in variables; Principal components; Self-consistency; Smoother; Symmetric. 

1. INTRODUCTION 

Consider a data set consisting of n observations on two 
variables, x and y. We can represent the n points in a 
scatterplot, as in Figure la. It is natural to try and sum- 
marize the pattern exhibited by the points in the scatter- 
plot. The type of summary we choose depends on the goal 
of our analysis; a trivial summary is the mean vector that 
simply locates the center of the cloud but conveys no in- 
formation about the joint behavior of the two variables. 

It is often sensible to treat one of the variables as a 
response variable and the other as an explanatory variable. 
Hence the aim of the analysis is to seek a rule for predicting 
the response using the value of the explanatory variable. 
Standard linear regression produces a linear prediction 
rule. The expectation of y is modeled as a linear function 
of x and is usually estimated by least squares. This pro- 
cedure is equivalent to finding the line that minimizes the 
sum of vertical squared deviations (as depicted in Fig. la). 

In many situations we do not have a preferred variable 
that we wish to label "response," but would still like to 
summarize the joint behavior of x and y. The dashed line 
in Figure la shows what happens if we used x as the re- 
sponse. So, simply assigning the role of response to one 
of the variables could lead to a poor summary. An obvious 
alternative is to summarize the data by a straight line that 
treats the two variables symmetrically. The first principal- 
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component line in Figure lb does just this-it is found by 
minimizing the orthogonal deviations. 

Linear regression has been generalized to include non- 
linear functions of x. This has been achieved using 
predefined parametric functions, and with the reduced 
cost and increased speed of computing nonparametric 
scatterplot smoothers have gained popularity. These 
include kernel smoothers (Watson 1964), nearest-neighbor 
smoothers (Cleveland 1979), and spline smoothers (Sil- 
verman 1985). In general, scatterplot smoothers produce 
a curve that attempts to minimize the vertical deviations 
(as depicted in Fig. lc), subject to some form of smooth- 
ness constraint. The nonparametric versions referred to 
before allow the data to dictate the form of the nonlinear 
dependency. 

We consider similar generalizations for the symmetric 
situation. Instead of summarizing the data with a straight 
line, we use a smooth curve; in finding the curve we treat 
(he two variables symmetrically. Such curves pass through 
the middle of the data in a smooth way, whether or not 
the middle of the data is a straight line. This situation is 
depicted in Figure ld. These curves, like linear principal 
components, focus on the orthogonal or shortest distance 
to the points. We formally define principal curves to be 
those smooth curves that are self-consistent for a distri- 
bution or data set. This means that if we pick any point 
on the curve, collect all of the data that project onto this 
point, and average them, then this average coincides with 
the point on the curve. 

The algorithm for finding principal curves is equally 
intuitive. Starting with any smooth curve (usually the larg- 
est principal component), it checks if this curve is self- 
consistent by projecting and averaging. If it is not, the 
procedure is repeated, using the new curve obtained by 
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Figure 1. (a) The linear regression line minimizes the sum of squared deviations in the response variable. (b) The principal-component line 
minimizes the sum of squared deviations in all of the variables. (c) The smooth regression curve minimizes the sum of squared deviations in the 
response variable, subject to smoothness constraints. (d) The principal curve minimizes the sum of squared deviations in all of the variables, 
subject to smoothness constraints. 

averaging as a starting guess. This is iterated until (hope- 
fully) convergence. 

The largest principal-component line plays roles other 
than that of a data summary: 

1. In errors-in-variables regression it is assumed that 
there is randomness in the predictors as well as the re- 
sponse. This can occur in practice when the predictors are 
measurements of some underlying variables and there is 
error in the measurements. It also occurs in observational 
studies where neither variable is fixed by design. The er- 
rors-in-variables regression technique models the expec- 
tation of y as a linear function of the systematic component 
of x. In the case of a single predictor, the model is esti- 
mated by the principal-component line. This is also the 
total least squares method of Golub and van Loan (1979). 
More details are given in an example in Section 8. 

2. Often we want to replace several highly correlated 
variables with a single variable, such as a normalized linear 
combination of the original set. The first principal com- 
ponent is the normalized linear combination with the larg- 
est variance. 

3. In factor analysis we model the systematic compo- 
nent of the data by linear functions of a small set of unob- 

servable variables called factors. Often the models are 
estimated using linear principal components; in the case 
of one factor [Eq. (1), as follows] one could use the largest 
principal component. Many variations of this model have 
appeared in the literature. 

In all the previous situations the model can be written as 

Xi = UO + aAi + ei, (1) 

where u0 + a)i is the systematic component and ei is the 
random component. If we assume that cov(ei) = a21, then 
the least squares estimate of a is the first linear principal 
component. 

A natural generalization of (1) is the nonlinear model 

xi= f(A1) + ei. (2) 

This might then be a factor analysis or structural model, 
and for two variables and some restrictions an errors-in- 
variables regression model. In the same spirit as before, 
where we used the first linear principal component to es- 
timate (1), the techniques described in this article can be 
used to estimate the systematic component in (2). 

We focus on the definition of principal curves and an 
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algorithm for finding them. We also present some theo- 
retical results, although many open questions remain. 

2. THE PRINCIPAL CURVES OF A 
PROBABILITY DISTRIBUTION 

We first give a brief introduction to one-dimensional 
curves, and then define the principal curves of smooth 
probability distributions in p space. Subsequent sections 
give algorithms for finding the curves, both for distribu- 
tions and finite realizations. This is analogous to motivat- 
ing a scatterplot smoother, such as a moving average or 
kernel smoother, as an estimator for the conditional ex- 
pectation of the underlying distribution. We also briefly 
discuss an alternative approach via regularization using 
smoothing splines. 

2.1 One-Dimensional Curves 

A one-dimensional curve in p-dimensional space is a 
vector f(A) of p functions of a single variable A. These 
functions are called the coordinate functions, and 2 pro- 
vides an ordering along the curve. If the coordinate func- 
tions are smooth, then f is by definition a smooth curve. 
We can apply any monotone transformation to 2, and by 
modifying the coordinate functions appropriately the 
curve remains unchanged. The parameterization, how- 
ever, is different. There is a natural parameterization for 
curves in terms of the arc length. The arc length of a curve 
f from 2A to Al is given by 1 = fAl Jf'(z)IIdz. If IIf'(z)jj- 
1, then 1 = Al - 20. This is a desirable situation, since if 
all of the coordinate variables are in the same units of 
measurement, then 2 is also in those units. 

The vector f'(A) is tangent to the curve at 2 and is 
sometimes called the velocity vector at A. A curve with 
Ilf'll 1 is called a unit-speed parameterized curve. We 
can always reparameterize any smooth curve with Ilf'll > 
O to make it unit speed. In addition, our intuitive concept 
of smoothness relates more naturally to unit-speed curves. 
For a unit-speed curve, smoothness of the coordinate func- 
tions translates directly into smooth visual appearance 
of the point set {f(A), 2 E A} (absence of sharp bends). 
If v is a unit vector, then f(A) = vo + Av is a unit-speed 
straight line. This parameterization is not unique: 1*(i) 
= u + av + Av is another unit-speed parameterization 
for the same line. In the following we always assume that 
(u, v) = 0. 

The vector f"(A) is called the acceleration of the curve 
at 2, and for a unit-speed curve it is easy to check that it 
is orthogonal to the tangent vector. In this case f"/llf"ll is 
called the principal normal to the curve at A. The vectors 
f'(2) and f"(2) span a plane. There is a unique unit-speed 
circle in the plane that goes through f(A) and has the same 
velocity and acceleration at f(A) as the curve itself (see 
Fig. 2). The radius rf(A) of this circle is called the radius 
of curvature of the curve f at A; it is easy to see that r,(A) 
- 1/IIf"(2)II. The center Cf(2) of the circle is called the 
center of curvature of f at 2. Thorpe (1979) gave a clear 
introduction to these and related ideas in differential ge- 
ometry. 

rf(X) 

Figure 2. The radius of curvature is the radius of the circle tangent 
to the curve with the same acceleration as the curve. 

2.2 Definition of Principal Curves 

Denote by X a random vector in RP with density h and 
finite second moments. Without loss of generality, assume 
E(X) = 0. Let f denote a smooth (COO) unit-speed curve 
in RP parameterized over A C R1, a closed (possibly in- 
finite) interval, that does not intersect itself (2A $ A2 => 
f(A1) $ f(A2)) and has finite length inside any finite ball 
in RP. 

We define the projection index Af: RP R- as 

if(X) = sup{A:IJx - f(A)II = infllx - f(C)I}. (3) 
A J 

The projection index if(X) of x is the value of A for which 
f(1) is closest to x. If there are several such values, we 
pick the largest one. We show in the Appendix that if(x) 
is well defined and measurable. 

Definition 1. The curve f is called self-consistent or 
a principal curve of h if E(X I Af(X) = A) = f(A) for 
a.e. A. 

Figure 3 illustrates the intuitive motivation behind our 
definition of a principal curve. For any particular param- 
eter value A we collect all of the observations that have 
f(A) as their closest point on the curve. If f(A) is the av- 
erage of those observations, and if this holds for all A, then 
f is called a principal curve. In the figure we have actually 
averaged observations projecting into a neighborhood on 
the curve. This gives the flavor of our data algorithms to 
come; we need to do some kind of local averaging to 
estimate conditional expectations. 

The definition of principal curves immediately gives rise 
to several interesting questions: For what kinds of distri- 
butions do principal curves exist, how many different prin- 
cipal curves are there for a given distribution, and what 
are their properties? We are unable to answer those ques- 
tions in general. We can, however, show that the definition 
is not vacuous, and that there are densities that do have 
principal curves. 

It is easy to check that for ellipsoidal distributions the 
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Figure 3. Each point on a principal curve is the average of the points 
that project there. 

principal components are principal curves. For a spheri- 
cally symmetric distribution, any line through the mean 
vector is a principal curve. For any two-dimensional 
spherically symmetric distribution, a circle with the cen- 
ter at the origin and radius EIIXII is a principal curve. 
(Strictly speaking, a circle does not fit our definition, be- 
cause it does intersect itself. Nevertheless, see our note at 
the beginning of the Appendix, and Sec. 5.6, for more 
details.) 

We show in the Appendix that for compact A it is always 
possible to construct densities with the carrier in a thin 
tube around f, which have f as a principal curve. 

What about data generated from the model X = f(A) 
+ c, with f smooth and E(e) = O? Is f a principal curve 
for this distribution? The answer generally seems to be 
no. We show in Section 7 in the more restrictive setting 
of data scattered around the arc of a circle that the mean 
of the conditional distribution of x, given A(x) = 4O, lies 
outside the circle of curvature at 2O; this implies that f 
cannot be a principal curve. So in this situation the prin- 
cipal curve is biased for the functional model. We have 
some evidence that this bias is small, and it decreases to 
O as the variance of the errors gets small relative to the 
radius of curvature. We discuss this bias as well as esti- 
mation bias (which fortunately appears to operate in the 
opposite direction) in Section 7. 

3. CONNECTIONS BETWEEN PRINCIPAL CURVES 
AND PRINCIPAL COMPONENTS 

In this section we establish some facts that make prin- 
cipal curves appear as a reasonable generalization of linear 
principal components . 

Proposition 1. If a straight line 1(A) = u0 + 2v0 is self- 
consistent, then it is a principal component. 

Proof. The line has to pass through the origin, because 

O = E(X) = EAE(X I Af(X) = A) 

= E2(uO + Avo) 

= UO + AVo. 

Therefore, uo = 0 (recall that we assumed uo I vo). It 
remains to show that vo is an eigenvector of Y., the co- 
variance of X: 

Ivo= E(XX)vo 

= EAE(XX'vo I )AX) = A) 

= E,E(XXtvo I Xtvo = A) 

= EAE(AX I Xtvo = A) 

= ElA2vo. 

Principal components need not be self-consistent in the 
sense of the definition; however, they are self-consistent 
with respect to linear regression. 

Proposition 2. Suppose that 1(A) is a straight line, and 
that we linearly regress the p components Xj of X on the 
projection R1(X) resulting in linear functions fj(A). Then, 
f = I iff vo is an eigenvector of X and uo = 0. 

The proof of this requires only elementary linear algebra 
and is omitted. 

A Distance Property of Principal Curves 
An important property of principal components is that 

they are critical points of the distance from the observa- 
tions. 

Let d(x, f) denote the usual euclidean distance from a 
point x to its projection on f: d(x, f) = llx - f(hf(x))IJ, 
and define D2(h, f) = Ehd2(X, f). Consider a straight line 
1(A) = u + Av. The distance D2(h, f) in this case may be 
regarded as a function of u and v: D2(h, 1) = D2(h, u, v). 
It is well known that grad",D2(h, u, v) = 0 iff u = 0 and 
v is an eigenvector of 1, that is, the line 1 is a principal- 
component line. 

We now restate this fact in a variational setting and 
extend it to principal curves. Let 9 denote a class of curves 
parameterized over A. For g E 9 define f, = f + tg. This 
creates a perturbed version of f. 

Definition 2. The curve f is called a critical point of 
the distance function for variations in the class 9 iff 

dD2(h, ft) - vgE . 
dt t=0 

Proposition 3. Let 91 denote the class of straight lines 
g(A) = a + Ab. A straight line lo(A) = ao + Abo is a critical 
point of the distance function for variations in X, iff bo is 
an eigenvector of cov(X) and a0 = 0. 

The proof involves straightforward linear algebra and 
is omitted. A result analogous to Proposition 3 holds for 
principal curves. 
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Proposition 4. Let gB denote the class of smooth (Cx) 
curves parameterized over A, with IlgIl - 1 and lIg'll c 1. 
Then f is a principal curve of h iff f is a critical point of 
the distance function for perturbations in %B. 

A proof of Proposition 4 is given in the Appendix. The 
condition that IlglI is bounded guarantees that f, lies in a 
thin tube around f and that the tubes shrink uniformly, as 
t -- 0. The boundedness of llg'll ensures that for t small 
enough, f, is well behaved and, in particular, bounded 
away from 0 for t < 1. Both conditions together guarantee 
that, for small enough t, lf, is well defined. 

4. AN ALGORITHM FOR FINDING 
PRINCIPAL CURVES 

By analogy to linear principal-component analysis, we 
are particularly interested in finding smooth curves cor- 
responding to local minima of the distance function. Our 
strategy is to start with a smooth curve, such as the largest 
linear principal component, and check if it is a principal 
curve. This involves projecting the data onto the curve 
and then evaluating their expectation conditional on where 
they project. Either this conditional expectation coincides 
with the curve, or we get a new curve as a by-product. 
We then check if the new curve is self-consistent, and so 
on. If the self-consistency condition is met, we have found 
a principal curve. It is easy to show that both of the op- 
erations of projection and conditional expectation reduce 
the expected distance from the points to the curve. 

The Principal-Curve Algorithm 

The previous discussion motivates the following itera- 
tive algorithm. 

Initialization: Set f(O)(A) = x + aA, where a is the first 
linear principal component of h. Set A(?)(x) = Afm(X). 

Repeat: Over iteration counter j 
1. Set f(i)(.) = E(X I f(j-)(X =) 
2. Define A(i)(x) = Af(j)(X) V x E h; transform A(i) so 

that f(i) is unit speed. 
3. Evaluate D2(h, f(i)) = EA(j)E[X- f(2(i)(X))112 I 

A(i)(X)]. 
Until: The change in D2(h, f(i)) is below some threshold. 

There are potential problems with this algorithm. Al- 
though principal curves are by definition differentiable, 
there is no guarantee that the curves produced by the 
conditional-expectation step of the algorithm have this 
property. Discontinuities can certainly occur at the end- 
points of a curve. The problem is illustrated in Figure 4, 
where the expected values of the observations projecting 
onto f(Amin) and f(Amax) are disjoint from the new curve. 
If this occurs, we have to join f(min) and f(Amax) to the 
rest of the curve in a differentiable fashion. In light of the 
previous discussion, we cannot prove that the algorithm 
converges. All we have is some evidence in its favor: 

1. By definition, principal curves are fixed points of the 
algorithm. 

2. Assuming that each iteration is well defined and pro- 
duces a differentiable curve, we can show that the expected 
distance D2(h, f(i)) converges. 

Figure 4. The mean of the observations projecting onto an endpoint 
of the curve can be disjoint from the rest of the curve. 

3. If the conditional-expectation operation in the prin- 
cipal-curve algorithm is replaced by fitting a least squares 
straight line, then the procedure converges to the largest 
principal component. 

5. PRINCIPAL CURVES FOR DATA SETS 

So far, we have considered principal curves of a mul- 
tivariate probability distribution. In reality, however, we 
usually work with finite multivariate data sets. Suppose 
that X is an n x p matrix of n observations on p variables. 
We regard the data set as a sample from an underlying 
probability distribution. 

A curve f(A) is represented by n tuples (Ai, fi), joined 
up in increasing order of A to form a polygon. Clearly, the 
geometric shape of the polygon depends only on the order, 
not on the actual values of the Ai. We always assume that 
the tuples are sorted in increasing order of A, and we use 
the arc-length parameterization, for which Al = 0 and Ai 
is the arc length along the polygon from f1 to fi. This is 
the discrete version of the unit-speed parameterization. 

As in the distribution case, the algorithm alternates be- 
tween a projection step and an expectation step. In the 
absence of prior information we use the first principal- 
component line as a starting curve; the fi are taken to be 
the projections of the n observations onto the line. 

We iterate until the relative change in the distance ID2(h, 
f(i-1)) - D2(h, f(i))I/D2(h, f(-1)) is below some threshold 
(we use .001). The distance is estimated in the obvious 
way, adding up the squared distances of the points in the 
sample to their closest points on the current curve. We 
are unable to prove that the algorithm converges, or that 
each step guarantees a decrease in the criterion. In prac- 
tice, we have had no convergence problems with more 
than 40 real and simulated examples. 

5.1 The Projection Step 

For fixed f(i)(.) we wish to find for each xi in the sample 
the value )i = i()x) 

Define d1,, as the distance between xi and its closest point 
on the line segment joining each pair (f(1)(ASi)), f(i)(4ki)1)). 
Corresponding to each d11, is a value )iEk E [4k), 4i 1]. We 
then set )i to the iik corresponding to the smallest value 



Hastie and Stuetzle: Principal Curves 507 

of dik: 
n-i 

Ai = Aik* if dik' = min dik. (4) 
k=1 

Corresponding to each Ai is an interpolated f J); using 
these values to represent the curve, we replace Ai by the 
arc length from fi) to f i). 

5.2 The Conditional-Expectation Step: 
Scatterplot Smoothing 

The goal of this step is to estimate f(i+l)(A) = E(X I 
Af(i = A). We restrict ourselves to estimating this quantity 
at n values of A, namely Al, .. ., An found in the projection 
step. A natural way of estimating E(X I if(j) = Ai) would 
be to gather all of the observations that project onto f(i) 
at 2i and find their mean. Unfortunately, there is generally 
only one such observation, xi. It is at this stage that we 
introduce the scatterplot smoother, a fundamental building 
block in the principal-curve procedure for finite data sets. 
We estimate the conditional expectation at Ai by averaging 
all of the observations Xk in the sample for which Ak is close 
to Ai. As long as these observations are close enough and 
the underlying conditional expectation is smooth, the bias 
introduced in approximating the conditional expectation 
is small. On the other hand, the variance of the estimate 
decreases as we include more observations in the neigh- 
borhood. 

Scatterplot Smoothing. Local averaging is not a new 
idea. In the more common regression context, scatterplot 
smoothers are used to estimate the regression function 
E( Y I x) by local averaging. Some commonly used smooth- 
ers are kernel smoothers (e.g., Watson 1964), spline 
smoothers (Silverman 1985; Wahba and Wold 1975), and 
the locally weighted running-line smoother of Cleveland 
(1979). All of these smooth a one-dimensional response 
against a covariate. In our case, the variable to be 
smoothed is p-dimensional, so we simply smooth each co- 
ordinate separately. Our current implementation of the 
algorithm is an S function (Becker, Chambers, and Wilks 
1988) that allows any scatterplot smoother to be used. We 
have experience with all of those previously mentioned, 
although all of the examples were fitted using locally 
weighted running lines. We give a brief description; for 
details see Cleveland (1979). 

Locally Weighted Running-Lines Smoother. Consider 
the estimation of E(x I A), that is, a single coordinate 
function based on a sample of pairs (Al, xl), . . . , (2,, 
xn), and assume the Ai are ordered. To estimate E(x i A), 
the smoother fits a straight line to the wn observations {xj} 
closest in 4j to A2. The estimate is taken to be the fitted 
value of the line at 2i. The fraction w of points in the 
neighborhood is called the span. In fitting the line, 
weighted least squares regression is used. The weights are 
derived from a symmetric kernel centered at 2i that dies 
smoothly to 0 within the neighborhood. Specifically, if hi 
is the distance to the wnth nearest neighbor, then the 
points 2j in the neighborhood get weights w,1 = (1 - I(2A 

5.3 A Demonstration of the Algorithm 

To illustrate the principal-curve procedure, we gener- 
ated a set of 100 data points from a circle in two dimensions 
with independent Gaussian errors in both coordinates: 

(x) sin(iD) + (ei) (5) 

where A is uniformly distributed on [0, 27r) and el and e2 
are independent N(O, 1). 

Figure 5 shows the data, the circle (dashed line), and 
the estimated curve (solid line) for selected steps of the 
iteration. The starting curve is the first principal compo- 
nent (Fig. 5a). Any line through the origin is a principal 
curve for the population model (5), but this is not generally 
the case for data. Here the algorithm converges to an 
estimate for another population principal curve, the circle. 
This example is admittedly artificial, but it presents the 
principal-curve procedure with a particularly tough job. 
The starting guess is wholly inappropriate and the projec- 
tion of the points onto this line does not nearly represent 
the final ordering of the points when projected onto the 
solution curve. Points project in a certain order on the 
starting vector (as depicted in Fig. 6). The new curve is a 
function of AM() obtained by averaging the coordinates of 
points close in A(?). The new A(1) values are found by pro- 
jecting the points onto the new curve. It can be seen that 
the ordering of the projected points along the new curve 
can be very different from the ordering along the previous 
curve. This enables the successive curves to bend to shapes 
that could not be parameterized as a function of the linear 
principal component. 

a b 

' 1 . 

Figure 5. Selected Iterates of the Principal-Curve Procedure for the 
Circle Data. In all of the figures we see the data, the circle from which 
the data are generated, and the current estimate produced by the 
algorithm: (a) the starting curv/e is the principal-component linew with 
average squared distance D2(f(o)) = 12.91; (b) iteration 2: D2(f~(2)) = 
10.43; (c) iteration 4: D2(f(4)) = 2.58; (d) final iteration 8: D2(f (8)) = 7.55. 
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a b 

Figure 6. Schematics Emphasizing the Iterative Nature of the Algorithm. The curve of the first iteration is a function of AM?O measured along the 
starting vector (a). The curve of the second iteration is a function of A(1) measured along the curve of the first iteration (b). 

5.4 Span Selection for the Scatlerplot Smoother 

The crucial parameter of any local averaging smoother 
is the size of the neighborhood over which averaging takes 
place. We discuss the choice of the span w for the locally 
weighted running-line smoother. 

A Fixed-Span Strategy. The common first guess for f 
is a straight line. In many interesting situations, the final 
curve is not a function of the arc length of this initial curve 
(see Fig. 6). It is reached by successively bending the orig- 
inal curve. We have found that if the initial span of the 
smoother is too small, the curve may bend too fast, and 
follow the data too closely. Our most successful strategy 
has been to initially use a large span, and then to decrease 
it gradually. In particular, we start with a span of .6n 
observations in each neighborhood, and let the algorithm 
converge (according to the criterion outlined previously). 
We then drop the span to .5n and iterate till convergence. 
Finally, the same is done at .4n, by which time the pro- 
cedure has found the general shape of the curve. The 
curves in Figure 5 were found using this strategy. 

Spans of this magnitude have frequently been found 
appropriate for scatterplot smoothing in the regression 
context. In some applications, especially the two-dimen- 
sional ones, we can plot the curve and the points and select 
a span that seems appropriate for the data. Other appli- 
cations, such as the collider-ring example in Section 8, 
have a natural criterion for selecting the span. 

Automatic Span Selection by Cross-Validation. Assume 
the procedure has converged to a self-consistent (with re- 
spect to the smoother) curve for the span last used. We 
do not want the fitted curve to be too wiggly relative to 
the density of the data. As we reduce the span, the average 
distance decreases and the curve follows the data more 

closely. The human eye is skilled at making trade-offs 
between smoothness and fidelity to the data; we would 
like a procedure that makes this judgment automatically. 

A similar situation arises in nonparametric regression, 
where we have a response y and a covariate x. One ra- 
tionale for making the smoothness judgment automatically 
is to ensure that the fitted function of x does a good job 
in predicting future responses. Cross-validation (Stone 
1974) is an approximate method for achieving this goal, 
and proceeds as follows. We predict each response yi in 
the sample using a smooth estimated from the sample with 
the ith observation omitted; let A(i) be this predicted value, 
and define the cross-validated residual sum of squares as 
CVRSS = y7 , (y, - 9(,))2. CVRSS/n is an approxi- 
mately unbiased estimate of the expected squared predic- 
tion error. If the span is too large, the curve will miss 
features in the data, and the bias component of the pre- 
diction error will dominate. If the span is too small, the 
curve begins to fit the noise in the data, and the variance 
component of the prediction error will increase. We pick 
the span that corresponds to the minimum CVRSS. 

In the principal-curve algorithm, we can use the same 
procedure for estimating the spans for each coordinate 
function separately, as a final smoothing step. Since most 
smoothers have this feature built in as an option, cross- 
validation in this manner is trivial to implement. Figure 
7a shows the final curve after one more smoothing step, 
using cross-validation to select the span-nothing much 
has changed. 

On the other hand, Figure 7b shows what happens if we 
continue iterating with the cross-validated smoothers. The 
spans get successively smaller, until the curve almost in- 
terpolates the data. In some situations, such as the Stan- 
ford linear collider example in Section 8, this may be 
exactly what we want. It is unlikely, however, that in this 
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Figure 7. (a) The Final Curve in Figure 6 With One More Smoothing 
Step, Using Cross-Validation Separately for Each of the Coordinates- 
DY(f1()) = 1.28. (b) The Curve Obtained by Continuing the Iterations 
(-.12), Using Cross-Validation at Every Step. 

event cross-validation would be used to pick the span. A 
possible explanation for this behavior is that the errors in 
the coordinate functions are autocorrelated; cross-vali- 
dation in this situation tends to pick spans that are too 
small (Hart and Wehrly 1986). 

5.5 Principal Curves and Splines 

Our algorithm for estimating principal curves from sam- 
ples is motivated by the algorithm for finding principal 
curves of densities, which in turn is motivated by the 
definition of principal curves. This is analogous to the 
motivation for kernel smoothers and locally weighted 
running-line smoothers. They estimate a conditional ex- 
pectation, a population quantity that minimizes a popu- 
lation criterion. They do not minimize a data-dependent 
criterion. 

On the other hand, smoothing splines do minimize data- 
dependent criteria. The cubic smoothing spline for a set 
of n pairs (Al, xi), . . . , (An4 xn) and penalty (smoothing 
parameter) ,u minimizes 

n 

D2(f) = D(xi - f(Ai))2 + u (f'(AD)2 d), (6) 
i=1 

among all functions f with f' absolutely continuous and f" 
E L2 (e.g., see Silverman 1985). We suggest the following 
criterion for defining principal curves in this context: Find 
f(A) and Ai E [0, 1] (i = 1,.. ,n) so that 

n ( 

D2(f, )= E x, - f(A,)112 + t lIff(A)II2 dA (7) 
i=l1 

is minimized over all f with fj E S2[0, 1]. Notice that we 
have confined the functions to the unit interval and thus 
do not use the unit-speed parameterization. Intuitively, 
for a fixed smoothing parameter ,, functions defined over 
an arbitrarily large interval can satisfy the second-deriv- 
ative smoothness criterion and visit every point. It is easy 
to make this argument rigorous. 

We now apply our alternating algorithm to these cri- 
teria: 

1. Given f, minimizing D2(f, A) over Ai only involves the 
first part of (7) and is our usual projection step. The 2, 
are rescaled to lie in [0, 1]. 

2. Given Ai, (7) splits up into p expressions of the form 
(6), one for each coordinate function. These are optimized 
by smoothing the p coordinates against Ai using a cubic 
spline smoother with parameter p. 

The usual penalized least squares arguments show that 
if a minimum exists, it must be a cubic spline in each 
coordinate. We make no claims about its existence, or 
about global convergence properties of this algorithm. 

An advantage of the spline-smoothing algorithm is that 
it can be computed in 0(n) operations, and thus is a strong 
competitor for the kernel-type smoothers that take 0(n2) 
unless approximations are used. Although it is difficult to 
guess the smoothing parameter u, alternative methods 
such as using the approximate degrees of freedom (see 
Cleveland 1979) are available for assessing the amount of 
smoothing and thus selecting the parameter. 

Our current implementation of the algorithm allows a 
choice of smoothing splines or locally weighted running 
lines, and we have found it difficult to distinguish their 
performance in practice. 
5.6 Further Illustrations and Discussion of 

the Algorithm 
The procedure worked well on the circle example and 

several other artificial examples. Nevertheless, sometimes 
its behavior is surprising, at least at first glance. Con- 
sider a data set from a spherically symmetric unimodal 
distribution centered at the origin. A circle with radius 
Ellxll is a principal curve, as are all straight lines passing 
through the origin. The circle, however, has smaller 
expected squared distance from the observations than the 
lines. 

The 150 points in Figure 8 were sampled indepen- 
dently from a bivariate spherical Gaussian distribution. 
When the principal-curve procedure is started from the 
circle, it does not move much, except at the endpoints (as 
depicted in Fig. 8a). This is a consequence of the smooth- 
ers' endpoint behavior in that it is not constrained to be 
periodic. Figure 8b shows what happens when we use a 
periodic version of the smoother, and also start at a circle. 
Nevertheless, starting from the linear principal component 
(where theoretically it should stay), and using the non- 
periodic smoother, the algorithm iterates to a curve that, 
apart from the endpoints, appears to be attempting to 
model the circle. (See Fig. 8c; this behavior occurred re- 
peatedly over several simulations of this example. The 
ends of the curve are stuck and further iterations do not 
free them.) 

The example illustrates the fact that the algorithm tends 
to find curves that are minima of the distance function. 
This is not surprising; after all, the principal-curve algo- 
rithm is a generalization of the power method for finding 
eigenvectors, which exhibits exactly the same behavior. 
The power method tends to converge to an eigenvector 
for the largest eigenvalue, unless special precautions are 
taken. 

Interestingly, the algorithm using the periodic smoother 
and starting from the linear principal component finds a 
circle identical to that in Figure 8b. 
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Figure 8. Some Curves Produced by the Algorithm Applied to Bivariate Spherical Gaussian Data: (a) The Curve Found When the Algorithm 
Is Started at a Circle Centered at the Mean; (b) The Circle Found Starting With Either a Circle or a Une but Using a Periodic Smoother; (c) The 
Curve Found Using the Regular Smoother, but Starting at a Une. A periodic smoother ensures that the curve found is closed. 

6. BIAS CONSIDERATIONS: MODEL AND 
ESTIMATION BIAS 

Model bias occurs when the data are of the form x = 
f(L) + e and we wish to recover f(A). In general, if f(e) 
has curvature, it is not a principal curve for the distribution 
it generates. As a consequence, the principal-curve pro- 
cedure can only find a biased version of f({), even if it 
starts at the generating curve. This bias goes to 0 with the 
ratio of the noise variance to the radius of curvature. 

Estimation bias occurs because we use scatterplot 
smoothers to estimate conditional expectations. The bias 
is introduced by averaging over neighborhoods, which usu- 
ally has a flattening effect. We demonstrate this bias with 
a simple example. 

A Simple Model for Investigating Bias 

Suppose that the curve f is an arc of a circle centered 
at the origin and with radius p, and the data x are generated 
from a bivariate Gaussian, with mean chosen uniformly 
on the arc and variance c2I. Figure 9 depicts the situation. 
Intuitively, it seems that more mass is put outside the circle 
than inside, so the circle closest to the data should have 
radius larger than p. Consider the points that project onto 
a small arc A6(A) of the circle with angle 0 centered at A, 
as depicted in the figure. As we shrink this arc down to a 
point, the segment shrinks down to the normal to the curve 
at that point, but there is always more mass outside the 
circle than inside. This implies that the conditional ex- 
pectation lies outside the circle. 

We can prove (Hastie 1984) that E(x I Af(X) E Ao(A)) 
- (rolpf)(A), where 

r=* sin(012)(8 ro= rF (/2 (8) 

and 

r*= E[(p + el)2 + e2]1/2 

p + (a212p). 

Finally, r* ---p as alp-> 0. 
Equation (8) nicely separates the two components of 

bias. Even if we had infinitely many observations and thus 
would not need local averaging to estimate conditional 
expectation, the circle with radius p would not be a sta- 

tionary point of the algorithm; the principal curve is a 
circle with radius r* > p. The factor sin(012)I(012) is at- 
tributable to local averaging. There is clearly an optimal 
span at which the two bias components cancel exactly. In 
practice, this is not much help, since we require knowledge 
of the radius of curvature and the error variance is needed 
to determine it. Typically, these quantities will change as 
we move along the curve. Hastie (1984) gives a demon- 
stration that these bias patterns persist in a situation where 
the curvature changes along the curve. 

7. EXAMPLES 

This section contains two examples that illustrate the 
use of the procedure. 

7.1 The Stanford Linear Collider Project 

This application of principal curves was implemented 
by a group of geodetic engineers at the Stanford Linear 
Accelerator Center (SLAC) in California. They used the 
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uniformly. The best fitting circle (dashed) has radius larger than the 
generating curve. 
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software developed by the authors in consultation with the 
first author and Jerome Friedman of SLAC. 

The Stanford linear collider (SLC) collides two intense 
and finely focused particle beams. Details of the collision 
are recorded in a collision chamber and studied by particle 
physicists, whose major goal is to discover new subatomic 
particles. Since there is only one linear accelerator at 
SLAC, it is used to accelerate a positron and an electron 
bunch in a single pulse, and the collider arcs bend these 
beams to bring them to collision (see Fig. 10). 

Each of the two collider arcs contain roughly 475 mag- 
nets (23 segments of 20 plus some extras), which guide 
the positron and electron beam. Ideally, these magnets 
lie on a smooth curve with a circumference of about 
3 kilometers (km) (as depicted in the schematic). The 
collider has a third dimension, and actually resembles a 
floppy tennis racket, because the tunnel containing the 
magnets goes underground (whereas the accelerator is 
aboveground). 

Measurement errors were inevitable in the procedure 
used to place the magnets. This resulted in the magnets 
lying close to the planned curve, but with errors in the 
range of ?1.0 millimeters (mm). A consequence of these 
errors was that the beam could not be adequately focused. 

The engineers realized that it was not necessary to move 

collision chamber 

collider arcs 

linear 
accelerator 

Figure 10. A Rough Schematic of the Stanford Linear Accelerator 
and the Linear Collider Ring. 

the magnets to the ideal curve, but rather to a curve 
through the existing magnet positions that was smooth 
enough to allow focused bending of the beam. This strat- 
egy would theoretically reduce the amount of magnet 
movement necessary. The principal-curve procedure was 
used to find this curve. The remainder of this section de- 
scribes some special features of this simple but important 
application. 

Initial attempts at fitting curves used the data in the 
measured three-dimensional goedetic coordinates, but it 
was found that the magnet displacements were small rel- 
ative to the bias induced by smoothing. The theoretical 
arc was then removed, and subsequent curve fitting was 
based on the residuals. This was achieved by replacing the 
three coordinates of each magnet with three new coordi- 
nates: (a) the arc length from the beginning of the arc till 
the point of projection onto the ideal curve (x), (b) the 
distance from the magnet to this projection in the hori- 
zontal plane (y), and (c) the distance in the vertical plane 
(z). 

This technique effectively removed the major compo- 
nent of the bias and is an illustration of how special sit- 
uations lend themselves to adaptations of the basic 
procedure. Of course, knowledge of the ideal curve is not 
usually available in other applications. 

There is a natural way of choosing the smoothing pa- 
rameter in this application. The fitted curve, once trans- 
formed back to the original coordinates, can be rep- 
resented by a polygon with a vertex at each magnet. 
The angle between these segments is of vital importance, 
since the further it is from 1800, the harder it is to launch 
the particle beams into the next segment without hitting 
the wall of the beam pipe [diameter 1 centimeter (cm)]. 
In fact, if 6i measures the departure of this angle from 
1800, the operating characteristics of the magnet specify a 
threshold .max of .1 milleradian. Now, no smoothing results 
in no magnet movement (no work), but with many mag- 
nets violating the threshold. As the amount of smoothing 
(span) is increased, the angles tend to decrease, and the 
residuals and thus the amounts of magnet movement in- 
crease. The strategy was to increase the span until no 
magnets violated the angle constraint. Figure 11 gives the 
fitted vertical and horizontal components of the chosen 
curve, for a section of the north arc consisting of 149 
magnets. This relatively rough curve was then translated 
back to the original coordinates, and the appropriate ad- 
justments for each magnet were determined. The system- 
atic trend in these coordinate functions represents sys- 
tematic departures of the magnets from the theoretical 
curve. Only 66% of the magnets needed to be moved, 
since the remaining 34% of the residuals were below 60 
,um in length and thus considered negligible. 

There are some natural constraints on the system. Some 
of the magnets were fixed by design and thus could not 
be moved. The beam enters the arc parallel to the accel- 
erator, so the initial magnets do no bending. Similarly, 
there are junction points at which no bending is allowed. 
These constraints are accommodated by attaching weights 
to the points representing the magnets and using a 
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Figure 11. The Fitted Coordinate Functions for the Magnet Positions 
for a Section of the Standard Unear Collider. The data represent re- 
siduals from the theoretical curve. Some (35%) of the deviations from 
the fitted curve were small enough that these magnets were not moved. 

weighted version of the smoother in the algorithm. By 
giving the fixed magnets sufficiently large weights, the 
constraints are met. Figure 11 has the parallel constraints 
built in at the endpoints. 

Finally, since some of the magnets were way off target, 
we used a resistant version of the fitting procedure. Points 
are weighted according to their distance from the fitted 
curve, and deviations beyond a fixed threshold are given 
weight 0. 

7.2 Gold Assay Pairs 

A California-based company collects computer-chip 
waste to sell it for its content of gold and other precious 

metals. Before bidding for a particular cargo, the company 
takes a sample to estimate the gold content of the whole 
lot. The sample is split in two. One subsample is assayed 
by an outside laboratory, and the other by their own in- 
house laboratory. The company eventually wishes to use 
only one of the assays. It is in their interest to know which 
laboratory produces on average lower gold-content assays 
for a given sample. 

The data in Figure 12 consist of 250 pairs of gold assays. 
Each point represents an observation xi with xji = log(1 
+ assay yield for the ith assay pair for lab j), where j = 
1 corresponds to the outside lab and j = 2 to the in-house 
lab. The log transformation stabilizes the variance and 
produces a more even scatter of points than the untrans- 
formed data. [There were many more small assays (1 
ounce (oz) per ton) than larger ones (>10 oz per ton).] 

Our model for these data is 

(Xi (fi) + (el) (9) 
where Ti is the expected gold content for sample i using 
the in-house lab assay, f(ri) is the expected assay result 
for the outside lab relative to the in-house lab, and eji is 
measurement error, assumed iid with var(e1i) = var(e2i) 
V i. 

This is a generalization of the linear errors-in-variables 
model, the structural model (if we regard the Ti themselves 
as unobservable random variables), or the functional 
model (if the Ti are considered fixed): 

(x2,) (a +i) + (e') (10) 

Model (10) essentially looks for deviations from the 450 
line, and is estimated by the first principal component. 

Model (9) is a special case of the principal-curve model, 

a b c 
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Figure 12. (a) Plot of the Log Assays for the In-House and Outside Labs. The solid curve is the principal curve, the dotted curve the scatterplot 
smooth, and the dashed curve the 450 line. (b) A Band of 25 Bootstrap Curves. Each curve is the principal curve of a bootstrap sample. A 
bootstrap sample is obtained by randomly assigning errors to the principal curve for the original data (solid curve). The band of curves appears 
to be centered at the solid curve, indicating small bias. The spread of the curves gives an indication of variance. (c) Another Band of 25 Bootstrap 
Curves. Each curve is the principal curve of a bootstrap sample, based on the linear errors-in-variables regression line (solid line). This simulation 
tests the null hypothesis of no kink. There is evidence that the kink is real, since the principal curve (solid curve) lies outside this band in the 
region of the kink. 
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where one of the coordinate functions is the identity. This 
identifies the systematic component of variable x2 with the 
arc-length parameter. Similarly, we estimate (9) using a 
natural variant of the principal-curve algorithm. In the 
smoothing step we smooth only xl against the current value 
of r, and then update z by projecting the data onto the 
curve defined by (f(r), T). 

The dotted curve in Figure 12 is the usual scatterplot 
smooth of xl against x2 and is clearly misleading as a scat- 
terplot summary. The principal curve lies above the 450 
line in the interval 1.4-4, which represents an untrans- 
formed assay content interval of 3-15 oz/ton. In this in- 
terval the in-house assay tends to be lower than that of 
the outside lab. The difference is reversed at lower levels, 
but this is of less practical importance, since at these levels 
the lot is less valuable. 

A natural question arising at this point is whether the 
bend in the curve is real, or whether the linear model (10) 
is adequate. If we had access to more data from the same 
population we could simply calculate the principal curves 
for the additional samples and see for how many of them 
the bend appeared. 

In the absence of such additional samples, we use the 
bootstrap (Efron 1981, 1982) to simulate them. We com- 
pute the residual vectors of the observed data from the 
fitted curve in Figure 12a, and treating them as iid, we 
pool all 250 of them. Since these residuals are derived 
from a projection essentially onto a straight line, their 
expected squared length is half that of the residuals in 
Model (9). We therefore scale them up by a factor of 
\/2. We then sampled with replacement from this pool, 
and reconstructed a bootstrap replicate by adding a sam- 
pled residual vector to each of the fitted values of the 
original fit. For each of these bootstrapped data sets the 
entire curve-fitting procedure was applied and the fitted 
curves were saved. This method of bootstrapping is aimed 
at exposing both bias and variance. 

Figure 12b shows the errors-in-variables principal curves 
obtained for 25 bootstrap samples. The spreads of these 
curves give an idea of the variance of the fitted curve. The 
difference between their average and the original fit es- 
timates the bias, which in this case is negligible. 

Figure 12c shows the result of a different bootstrap ex- 
periment. Our null hypothesis is that the relationship is 
linear, and thus we sampled in the same way as before but 
we replaced the principal curve with the linear errors-in- 
variables line. The observed curve (thick solid curve) lies 
outside the band of curves fitted to 25 bootstrapped data 
sets, providing additional evidence that the bend is indeed 
real. 

8. EXTENSION TO HIGHER DIMENSIONS: 
PRINCIPAL SURFACES 

We have had some success in extending the definitions 
and algorithms for curves to two-dimensional (globally 
parameterized) surfaces. 

A continuous two-dimensional globally parameterized 
surface in RP is a function f: A -+RP for A C R2, where 

f is a vector of continuous functions: 
11f(Al, A2) 

f(A) - (2(AM , A2) (11) 

fp(A, A2) 
Let X be defined as before, and let f denote a smooth 

two-dimensional surface in RP, parameterized over A C 
R2. Here the projection index Af(x) is defined to be the 
parameter value corresponding to the point on the surface 
closest to x. 

The principal surfaces of h are those members of q2 that 
are self-consistent: E(X I Af(X) = X) = f(A) for a.e. X. 
Figure 13 illustrates the situation. We do not yet have a 
rigorous justification for these definitions, although we 
have had success in implementing an algorithm. 

The principal-surface algorithm is similar to the curve 
algorithm; two-dimensional surface smoothers are used 
instead of one-dimensional scatterplot smoothers. See 
Hastie (1984) for more details of principal surfaces, the 
algorithm to compute them, and examples. 

9. DISCUSSION 
Ours is not the first attempt at finding a method for 

fitting nonlinear manifolds to multivariate data. In dis- 
cussing other approaches to the problem we restrict our- 
selves to one-dimensional manifolds (the case treated in 
this article). 

The approach closest in spirit to ours was suggested by 
Carroll (1969). He fit a model of the form xi = p(Ai) + 
ei, where p(A) is a vector of polynomials pj(A) = EklO 
ajkAk of prespecified degrees K1. The goal is to find the 
coefficients of the polynomials and the Ai (i = 1, . . . , n) 
minimizing the loss function E 11ei112. The algorithm makes 
use of the fact that for given Al, . . ., An, the optimal 

f (X)w 

L~~ ~ ~~~~~~~ - S 

Fiur 1.Eah oitona ricpa srfc i te vrae fSh 

points tat projet there 



514 Joumal of the American Statistical Association, June 1989 

polynomial coefficients can be found by linear least 
squares, and the loss function thus can be written as a 
function of the Ai only. Carroll gave an explicit formula 
for the gradient of the loss function, which is helpful in 
the n-dimensional numerical optimization required to find 
the optimal A's. 

The model of Etezadi-Amoli and McDonald (1983) is 
the same as Carroll's, but they used different goodness- 
of-fit measures. Their goal was to minimize the off-diag- 
onal elements of the error covariance matrix E = EtE, 
which is in the spirit of classical linear factor analysis. 
Various measures for the cumulative size of the off-diag- 
onal elements are suggested, such as Eij a;-. Their algo- 
rithm is similar to ours in that it alternates between 
improving the A's for given polynomial coefficients and 
finding the optimal polynomial coefficients for given A's. 
The latter is a linear least squares problem, whereas the 
former constitutes one step of a nonlinear optimization in 
n parameters. 

Shepard and Carroll (1966) proceeded from the as- 
sumption that the p-dimensional observation vectors lie 
exactly on a smooth one-dimensional manifold. In this 
case, it is possible to find parameter values Al, . . . ,n 

such that for each one of the p coordinates, xij varies 
smoothly with Ai. The basis of their method is a measure 
for the degree of smoothness of the dependence of xij on 
Ai. This measure of smoothness, summed over the p co- 
ordinates, is then optimized with respect to the A's: one 
finds those values of Al,. . ., An that make the dependence 
of the coordinates on the A's as smooth as possible. 

We do not go into the definition and motivation of the 
smoothness measure; it is quite subtle, and we refer the 
interested reader to the original source. We just wish to 
point out that instead of optimizing smoothness, one could 
optimize a combination of smoothness and fidelity to the 
data as described in Section 5.5, which would lead to 
modeling the coordinate functions as spline functions and 
should allow the method to deal with noise in the data 
better. 

In view of this previous work, what do we think is the 
contribution of the present article? 

* From the operational point of view it is advantageous 
that there is no need to specify a parametric form for the 
coordinate functions. Because the curve is represented as 
a polygon, finding the optimal A's for given coordinate 
functions is easy. This makes the alternating minimization 
attractive and allows fitting of principal curves to large 
data sets. 

* From the theoretical point of view, the definition of 
principal curves as conditional expectations agrees with 
our mental image of a summary. The characterization of 
principal curves as critical points of the expected squared 
distance from the data makes them appear as a natural 
generalization of linear principal components. This close 
connection is further emphasized by the fact that linear 
principal curves are principal components, and that the 
algorithm converges to the largest principal component if 
conditional expectations are replaced by least squares 
straight lines. 

APPENDIX: PROOFS OF PROPOSITIONS 

We make the following assumptions: Denote by X a random 
vector in RP with density h and finite second moments. Let f 
denote a smooth (CX) unit-speed curve in RP parameterized over 
a closed, possibly infinite interval A C R1. We assume that f does 
not intersect itself [A, 54 2 = f(Al) # f(2)] and has finite length 
inside any finite ball. Under these conditions, the set {f(1), A E 
A} forms a smooth, connected one-dimensional manifold diffeo- 
morphic to the interval A. Any smooth, connected one-dimen- 
sional manifold is diffeomorphic either to an interval or a circle 
(Milnor 1965). The results and proofs following could be slightly 
modified to cover the latter case (closed curves). 

Existence of the Projection Index 

Existence of the projection index is a consequence of the fol- 
lowing two lemmas. 

Lemma 5.1. For every x E RP and for any r > 0, the set Q 
= I llx - f(i)II c r} is compact. 
Proof. Q is closed, because lix - f(A)lI is a continuous func- 

tion of A. It remains to show that Q is bounded. Suppose that 
it were not. Then, there would exist an unbounded monotone 
sequence A, 2, . . . , with lix - f(Ai)ll '< r. Let B denote the 
ball around x with radius 2r. Consider the segment of the curve 
between f(Ai) and f(Ai,l). The segment either leaves and reenters 
B, or it stays entirely inside. This means that it contributes at 
least min(2r, lAi+ - Ail) to the length of the curve inside B. As 
there are infinitely many such segments, and the sequence {(A} 
is unbounded, f would have infinite length in B, which is a con- 
tradiction. 

Lemma 5.2. For every x E RP, there exists A E A for which 
lix - f(A)lI = inf,EA lIx - f(u)li. 

Proof. Define r = infEA lix - f(,O)1. Set B = {,u I llx - f(,u)l 
c 2r}. Obviously, inf,EA lIx - f(c)li = infpeB lIx - f(p)l1. Since 
B is nonempty and compact (Lemma 5.1), the infimum on the 
right side is attained. 

Define d(x, f) = inf,EA lIx - f(ii)ii. 

Proposition 5. The projection index i(x) = sup,fA I lix - 
f(A)ll = d(x, f)} is well defined. 

Proof. The set {1 l lix - f(A)11 = d(x, f)} is nonempty (Lemma 
5.2) and compact (Lemma 5.1), and therefore has the largest 
element. 

It is not hard to show that Af(x) is measurable; a proof is 
available on request. 

Stationarity of the Distance Function 
We first establish some simple facts that are of interest in 

themselves. 

Lemma 6.1. If f(A0) is a closest point to x and A4 E AO, the 
interior of the parameter interval, then x is in the normal hy- 
perplane to f at f(AO): (x - f(A0), f'(L0)) = 0. 

Proof. dlix - f(A)li2IdA = 2(x - f(A), f'(A)). If f(A0) is a 
closest point and the derivative is defined (4O E AO), then it has 
to vanish. 

Definition. A point x E RP is called an ambiguity point 
for a curve f if it has more than one closest point on the curve: 
card{)R I llx - f()ii1 = d(x, f)} > 1. 

Let A denote the set of ambiguity points. Our next goal is to 
show that A is measurable and has measure 0. 

Define M,., the orthogonal hyperplane to f at A~, by MA = 
{x l (x - f(e), f'(1i)) = 0}. Now, we know that if f(A) is a closest 
point to x on the curve and i~ E A0, then x E MS. It is useful to 
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define a mapping that maps A x RP-I into Up. M). Choose p - 
1 smooth vector fields n,(A),.. , npl(i) such that for every A 
the vectors fU(A) and n,(A), . . , np-l(i) are orthogonal. It is 
well known that such vector fields do exist. Define X: A x RP -I 
-3 RP by X(A, v) = f(A) + =-j' vini(A), and set M = X(A7 
RP-I), the set of all points in RP lying in some hyperplane for 
some point on the curve. The mapping X is smooth, because f 
and n1, . . . , np,l are assumed to be smooth. 

We now present a few observations that simplify showing that 
A has measure 0. 

Lemma 6.2. u(A n Mc) = o. 
Proof. Suppose that x E A n Mc. According to Lemma 6. 1, 

this is only possible if A is a finite closed interval [Am.i, 2max] and 
x is equidistant from the endpoints f(Amin) and f(ilmax). The set 
of all such points forms a hyperplane that has measure 0. There- 
fore A n Mc, as a subset of this measure-0 set, is measurable 
and has measure 0. 

Lemma 6.3. Let E be a measure-0 set. It is sufficient to show 
that for every x E RP\E there exists an open neighborhood N(x) 
with,u(A f N(x)) = 0. 

Proof. The open covering {N(x) I x E RP\E} of RP\E con- 
tains a countable covering {NiJ, because the topology of RP has 
a countable base. 

Lemma 6.4. We can restrict ourselves to the case of com- 
pact A. 

Proof. SetAn = A n [-n, n], f. = f/An, and An as the set 
of ambiguity points of fn. Suppose that x is an ambiguity point 
of f; then {2 I llx - f(A)ll = d(x, f)} is compact (Lemma 5.1). 
Therefore, x E An for some n, and A C Ul An. 

We are now ready to prove Proposition 6. 

Proposition 6. The set of ambiguity points has measure 0. 
Proof. We can restrict ourselves to the case of compact A 

(Lemma 6.4). As ,u(A n Mc) = 0 (Lemma 6.2) it is sufficient 
to show that for every x E M, with the possible exception of a 
set C of measure 0, there exists a neighborhood N(x) with u(A 
n N(x)) = 0. 

We choose C to be the set of critical values of X. [A point y 
E M is called a regular value if rank(X'(x)) = p for all x E 
x '(y); otherwise y is called a critical value.] By Sard's theorem 
(Milnor 1965), C has measure 0. 

Pick x E M n Cc. We first show that X-I(x) is a finite set {(Al, 
VI), . . ., (2k, Vk)}. Suppose that on the contrary there was an 
infinite set {(g,, wj), (42, W2), . . .} with x(fi, wi) = x. By com- 
pactness of A and continuity of X, there would exist a cluster 
point 4o of {4,, 2, .} and a corresponding w0 with X(o,, w0) 
= x. On the other hand, x was assumed to be a regular value 
of X, and thus X would be a diffeomorphism between a neigh- 
borhood of (2,, w0) and a neighborhood of x. This is a contra- 
diction. 

Because x is a regular value, there are neighborhoods Li(Ai, 
v;) and a neighborhood N(x) such that X is a diffeomorphism 
between Li and N. Actually, a stronger statement holds. We can 
find N(x) C N(x), for which X-'(N) C UI Li. Suppose that this 
were not the case. Then, there would exist a sequence x,, x2, . . . 
-* x and corresponding (4i, wi) 0 U,k l Li with X(4j, wi) = xi. 
The set {l, 42, . .} has a cluster point 4o 0 U Li, and by 
continuity x(40, w0) = x, which is a contradiction. 

We have now shown that for y E N(x) there exists exactly one 
pair (2i(y), vi(y)) E L,, with X(2i(y), ve(y)) = y, and ii(Y) is a 
smooth function of y. Define 2o(Y) = 2min and 2k+1(Y) =2max. 
Set dj(y) = IIY = f(2i(y))112. A simple calculation using the chain 
rule and the fact that (y - f(2j(y)), f'(2,(y))) = 0 (Lemma 6.1) 

shows that grad(di(y)) = 2(y - f(Ai(y))). A point y E N(x) can 
be an ambiguity point only if y E Ai for some i j i, where A1j 
= {z E N(x) I di(z) = dj(z), )j(z) # )j(z)}. Nevertheless, for 
lj(z) # Aj(z), grad(di(z) - d1(z)) # 0, because the curve f(A) 
was assumed not to intersect itself. Thus A ij is a smooth, possibly 
not connected manifold of dimension p - 1, which has measure 
0, and (A n N(x)) ' Xj, jp(A1j) = 0. 

We have glossed over a technicality: Sard's theorem requires 
h to be defined on an open set. Nevertheless, we can always 
extend f in a smooth way beyond the boundaries of the interval. 

In the following, let 9B denote the class of smooth curves 
parameterized over A, with IIg(A)ii c 1 and llg'(A)4I : 1. For g E 
%B, define f,(2) = f()) + tg(A). It is easy to see that f, has finite 
length inside any finite ball and for t < 1, if, is well defined. 
Moreover, we have the following lemma. 

Lemma 4.1. If x is not an ambiguity point for f, then lim,10 
if,(X) = Ar(x). 

Proof. We have to show that for every E > 0 there exists ( 
> 0 such that for all t < 6, lAf,(x) - A,(x)l < e. Set C = A n 
(21x) - C, if(x) + e)c and dc = inf),c lix - f(A)ii. The infimum 
is attained and d, > llx - f(Af(x))li, because x is not an ambiguity 
point. Set 5 = A(dc - lix - f(Af(x))l1). Now, Af,(X) E (if(X) - 
e and if(X) + E) V t < 6, because 

inf (lix - fQ(A)li - llx - f,(Af(x))ll) 
)eC 

2 dc- ( - llx - f(Af(x))Ii - ( 

= (5>0. 

Proof of Proposition 4. The curve f is a principal curve of h 
iff 

dD 2(h, f,) -o VEB 

dt t = 0 V g E 9'. 

We use the dominated convergence theorem to show that we can 
interchange the orders of integration and differentiation in the 
expression 

dt D2(h, f1) = d EhIiX - ft(Afh(X))112. (A.l) 
We need to find a pair of integrable random variables that almost 
surely bound 

= lix - fI(Af,(X))1ii - lix - f(A,(X))l2 
t 

for all sufficiently small t > 0. 
Now, 

z ix - f,(A,(X))Di2 - IIX - f(Af(X))II2 
t 

Expanding the first norm we get 
iX - f,(Af(X))112 = liX - f(Af(X))i12 + t2llg(Af(X))112 

- 2t(X - f(f(X))) *g(f(X)), 
and thus 

Zt < -2(X -f(f(X))) * g(A,(X)) + tllg(Af(X))li2. (A.2) 
Using the Cauchy-Schwarz inequality and the assumption that 
lgl g 1, Z, < 21lX - f(Af(X))l + 1 - 2lX - f(Ao)il + 1 V t < 
1 and arbitrary 40 As itiX} was assumed to be integrable, so is 
IX - f(20)ii, and therefore Z,. 
Similarly, we have 

iix - ftGR,,(x))112 - iix - (,X)2 
Z, 2 ~~~~~~~ 
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Expanding the first norm as before, we get 
Z,- -2(X - f(Af,(X))) * g(Ar(X)) 

2 -211X - f44,(X))II 
2 -211X - f(Ao)II, (A.3) 

which is once again integrable. By the dominated convergence 
theorem, the interchange is justified. From (A.1) and (A.2), 
however, and because f and g are continuous functions, we see 
that the limit lim, Z, exists whenever A^,(X) is continuous in t 
at t = 0. We have proved this continuity for a.e. x in Lemma 
4.1. Moreover, this limit is given by lim, Z, = -2[X - 
f(Af(X))] * g(Ai(X)), by (A.1) and (A.2). 

Denoting the distribution of Ai(X) by hA, we get 

d D2(h, f,)I,t= = -2Eh,[(E(X I Af(X) = A) - f(A)) g(A)]. dt 

(A.4) 
If f(A) is a principal curve of h, then by definition E(X I if(X) 
= A) = f(A) for a.e. A, and thus 

dt dt D2(h, f,)jr=0 = 0 v g E 
fWB. 

Conversely, suppose that 

EhJE(X - f(A) A(X) = A) g(A)] = 0, (A.5) 
for all g E CB. Consider each coordinate separately, and reex- 
press (A.5) as 

EhAk(A)g(A) = 0 V g E 9B- (A.6) 
This implies that k(A) = 0 a.s. 

Construction of Densities With Known 
Principal Curves 

Let f be parameterized over a compact interval A. It is easy 
to construct densities with a carrier in a tube around f, for which 
f is a principal curve. 

Denote by B, the ball in RP-I with radius r and center at the 
origin. The construction is based on the following proposition. 

Proposition 7. If A is compact, there exists r > 0 such that 
X A A x Br is a diffeomorphism. 

Proof. Suppose that the result were not true. Pick a sequence 
r- O. There would exist sequences (Ai, vi) # (ci, wi), with Ilvil 
< ri, Ilwill - ri, and X(Ai, ci) = X(4i, wi). 

The sequences Ai and Xi have cluster points A0 and 40. We must 
have AO = cO, because 

f(GO) = XG(O 0) 
- lim X(4i, vi) 

- (AO, 0) 
- f(Ao), 

and by assumption f does not intersect itself. So there would be 

sequences (AQ, vi) and (ci, wi) converging to (),, 0), with X(Ai, 
vi) = X(4i, wi). Nevertheless, it is easy to see that (4,, 0) is a 
regular point of X and thus maps a neighborhood of (4,, 0) 
diffeomorphically into a neighborhood of f(AO), which is a con- 
tradiction. 

Define T(f, r) = X(A X Br). Proposition 7 assures that there 
are no ambiguity points in T(f, r) and A)(x) = A for x E X(A, 
Br). 

Pick a density 4(i) on A and a density y(v) on Br, with f Br 

vv(v) = 0. The mapping X carries the product density 4(i) - 
y/ (v) on A x B, into a density h(x) on T(f, r). It is easy to verify 
that f is a principal curve for h. 

[Received December 1984. Revised December 1988.] 
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