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1 Introduction

In single-person decision theory, Bayesian rationality requires the agent first
to attach subjective probabilities to each uncertain event, and then to max-
imize the expected value of a von Neumann–Morgenstern utility function
(or NMUF) that is unique up to a cardinal equivalence class. When the
agent receives new information, it also requires subjective probabilities to
be revised according to Bayes’ rule.

In social choice theory and ethics, Harsanyi (1953, 1955, 1975a, 1975b,
1976, 1978) has consistently advocated Bayesian rationality as a norma-
tive standard, despite frequent criticism and suggestions for alternatives. In
game theory, however, Bayesian rationality is almost universally accepted,
not only as a normative standard, but also in models intended to describe
players’ actual behaviour. Here too Harsanyi (1966, 1967–8, 1977a, b, 1980,
1982a, b, 1983a, b) has been a consistent advocate. In particular, his work
on games of incomplete information suggests that one should introduce ex-
tra states of nature in order to accommodate other players’ types, especially
their payoff functions and beliefs. Later work by Bernheim (1984), Pearce
(1984), Tan and Werlang (1988), and others emphasizes how subjective
probabilities may be applied fruitfully to other players’ strategic behaviour
as well.

In the past I have tried to meet the social choice theorists’ understand-
able criticisms of the Bayesian rationality hypothesis. To do so, I have found
it helpful to consider normative standards of behaviour in single-person de-
cision trees. In particular, it has been useful to formulate a surprisingly
powerful “consequentialist” hypothesis. This requires the set of possible
consequences of behaviour in any single-person decision tree to depend only
on the feasible set of consequences in that tree. In other words, behaviour
must reveal a consequence choice function mapping feasible sets into choice
subsets.
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Previous work (Hammond, 1988a, b, 1997a, b) has applied this conse-
quentialist hypothesis to dynamically consistent behaviour in an (almost)
unrestricted domain of finite decision trees. The only restriction is that
objective probabilities must all be positive at any chance node. Then, pro-
vided that behaviour is continuous as objective probabilities vary, provided
that there is state independence, and provided also that Anscombe and Au-
mann’s (1963) reversal of order axiom is satisfied, it follows that behaviour
must be Bayesian rational. Moreover, null events are excluded, so strictly
positive subjective probabilities must be attached to all states of the world.
Of course, these arguments do not really justify Bayesian rationality; they
merely indicate that critics and proponents of alternative theories should go
beyond discussions of simple “one-shot” problems and explain how to make
sequential decisions in trees.

The aim of this paper and some associated work (Hammond, 1997c) is
to extend the consequentialist hypothesis from single-person decision trees
to n-person games. The appropriate extension appears to be the consequen-
tialist normal form invariance hypothesis, with antecedents in von Neumann
and Morgenstern (1944, 1953). Yet the results concerning consequentialist
behaviour in single-person decision trees rely on being able to consider, if
not necessarily a completely unrestricted domain of decision trees with a
fixed set of states of the world, then at least one that is rich enough. In
particular, a player i’s preferences over the random consequences of two
different strategies are revealed by forcing i to choose between just those
two strategies. Now, when such alterations in the options available to an
agent occur in a single-person decision tree, there is no reason to believe
that nature’s exogenous “choice” will change. But as Mariotti (1996) and
Battigalli (1996) have pointed out, when such changes apply to an n-person
game, they typically affect that player’s anticipated behaviour in a way that
makes other players want to change their strategies. Then, of course, it is
illegitimate to treat these other players’ strategies as exogenous.

In order to surmount this difficulty, Battigalli’s (1996) comment on Mar-
iotti’s paper suggests introducing, for each player i whose subjective prob-
abilities are to be determined, one extra player i∗ who is an exact copy or
clone of i. Player i∗ faces a variable opportunity to bet on how players other
than i will play the original game, but is unable to affect the consequences
available to all the other players, including i. With this useful and ingenious
device, player i∗ can be faced with each possible single-person decision tree
in turn. This allows i∗’s subjective probabilities over strategy profiles for
players other than i to be inferred. Moreover, they apply to i∗’s behaviour
when facing a single-person decision problem equivalent to that which i faces
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in the game itself. Because i∗ is an exact copy of i, it follows that i’s be-
haviour in the original game matches i∗’s in this equivalent single-person
decision problem; in particular, i will maximize subjective expected utility
using i∗’s subjective probabilities.

Hence, Battigalli’s device can be used to provide a consequentialist jus-
tification for behaviour in n-person games to be Bayesian rational. There is
a need, however, to attach strictly positive probabilities to all other players’
strategies which are not ruled out as completely impossible and so irrele-
vant to the game. This suggests that strictly positive probabilities should
be attached to all other players’ rationalizable strategies, at least — i.e., to
all those that are not removed by iterative deletion of strictly dominated
strategies.

In the remainder of the paper, Section 2 reviews in somewhat more detail
the earlier results characterizing consequentialist behaviour in single-person
decision trees. Then Section 3 defines a “consequentialist” n-person normal
game form G, in which payoffs are replaced by personal consequences, to-
gether with associated families Gi. For each i ∈ N , these consist of game
forms G(i, T ) which differ from G in having an extra player i∗ who is an
exact copy of i and faces the decision tree T . Next, Section 4 introduces
three different kinds of “consequentialist” player type in order to describe
each player’s behaviour in every family Gi. Last, Section 5 explains why the
consequentialist hypotheses imply that there should be subjective probabil-
ities for each player that are attached to the profiles of all other players’
strategies.

2 Consequentialist Single-Person Decision Theory:
A Brief Review

In single-person decision theory, the basic “consequentialist” hypothesis re-
quires that actions should be evaluated purely on the basis of their con-
sequences. More specifically, if two decision trees face the decision maker
with identical feasible sets of consequences, then behaviour in those trees
should generate, or reveal as “chosen”, identical sets of consequences in the
two trees. This consequentialist hypothesis has strong implications when
applied to an unrestricted domain of finite decision trees involving a given
consequence domain Y , on which behaviour is required to satisfy a mild
“dynamic consistency” requirement.

The first and simplest result applies to finite decision trees T in the do-
main T1(Y ) which contain decision nodes and also terminal nodes having
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consequences in the specified domain Y . In any tree T ∈ T1(Y ), behaviour
has sure consequences in the domain Y . On the unrestricted domain T1(Y ),
consequentialist dynamically consistent behaviour must be ordinal in the
sense that it both reveals and maximizes a (complete and transitive) weak
preference ordering R over the feasible set of consequences. This can be
proved either indirectly by means of Arrow’s (1959) characterization of or-
dinal choice, or directly — see Hammond (1977, 1988b, 1997a) for more
details. Moreover, ordinality is a complete characterization of behaviour
satisfying the three “consequentialist” axioms.

A second result applies to finite decision trees T in the domain T2(Y )
which, in addition to decision nodes and terminal nodes having consequences
in the specified domain Y , also contain chance nodes at which strictly pos-
itive objective probabilities are specified.1 In any such tree, behaviour has
random consequences in the domain ∆(Y ) of simple (finitely supported)
lotteries on Y . Then, on the unrestricted domain T2(Y ), consequential-
ist dynamically consistent behaviour not only maximizes a weak prefer-
ence ordering R over the feasible set of consequence lotteries; the inde-
pendence axiom due to Marschak (1950) and Samuelson (1952) is also sat-
isfied. Again, this is a complete characterization of behaviour satisfying
the three axioms. If behaviour is also required to vary continuously as
objective probabilities vary, in the sense of generating a closed graph be-
haviour correspondence from probabilities to decisions, then R must also
satisfy a familiar continuity axiom ensuring the existence of a unique cardi-
nal equivalence class of NMUFs on Y , all of whose expected values repre-
sent R.

A final third result is required in order to justify subjective expected
utility maximization. It is necessary to consider a new class of finite decision
trees T in the family of domains T3(E, Y ) (∅ �= E ⊂ S), where Y is the
consequence domain, S is a finite set of possible uncertain states of the
world, and each non-empty E ⊂ S respresents an event. Trees in each
domain T3(E, Y ) contain “natural” nodes where nature refines a partition of
the subset of E that corresponds to the set of states which remain possible.
These nodes are in addition to the decision nodes, to the terminal nodes
having consequences in the specified domain Y , and to the chance nodes
at which strictly positive objective probabilities are specified. In any tree
T ∈ T3(E, Y ), behaviour has random consequences in the domain ∆(Y E)
of simple lotteries on the Cartesian product space Y E =

∏
s∈E Ys whose

1Allowing zero probabilities at chance nodes yields the unacceptably strong conclusion
that all lotteries in ∆(Y ) should be indifferent.
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members yE = 〈Ys〉s∈E specify a function s 	→ ys mapping states of the
world s ∈ E to consequences ys ∈ Ys = Y . Of course, each such yE is what
Savage (1954) calls an “act”.

Now, given the family T3(E, Y ) (∅ �= E ⊂ S) of unrestricted domains,
consequentialist dynamically consistent behaviour in any tree T ∈ T3(E, Y )
must not only maximize a conditional weak preference ordering RE over the
feasible set of consequence lotteries in ∆(Y E). In addition, RE must sat-
isfy the Marschak–Samuelson independence axiom. Moreover, different the
orderings RE (∅ �= E ⊂ S) must together satisfy Anscombe and Aumann’s
(1963) extension to “random acts” of the sure thing principle originally for-
mulated by Savage (1954). As before, this is a complete characterization
of behaviour satisfying the three axioms. If behaviour is also continuous
as objective probabilities vary, then for each event E there must exist a
unique cardinal equivalence class of NMUFs on Y E whose expected values
all represent RE . Moreover, under two additional axioms like those used
by Anscombe and Aumann (1963) — namely reversal of order and state
independence — there must exist a unique and strictly positive family of
subjective conditional probabilities P (s|E) (s ∈ E ⊂ S) satisfying Bayes’
rule, together with a unique cardinal equivalence class of state-independent
NMUFs on Y whose subjective conditionally expected values all represent
each ordering RE . In this sense, when supplemented by mild additional
conditions, consequentialism implies the Bayesian rationality hypothesis.

3 A Family of Consequentialist Normal Game Forms

It would seem highly desirable to have a single integrated theory of nor-
mative decisions which applies to all n-person games, and which reduces
to consequentialist single-person decision theory in the special case of one-
person games “against nature”. Accordingly, it appears natural to formulate
the consequentialist normal form invariance hypothesis. This requires that,
whenever two game forms have identical or “equivalent” normal forms, any
player’s strategic behaviour in those two games should give rise to identi-
cal sets of consequences that are revealed as chosen. The hypothesis is an
obvious adaptation of a claim that figured so prominently in von Neumann
and Morgenstern’s book (1944, 1953). Obviously, it is also a natural ex-
tension to extensive form games of the consequentialist hypothesis that was
previously advanced for decision trees. The aim of this paper is to sketch
the main implications of this hypothesis, to be discussed elsewhere in more
detail later on.
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The first step in such a theory is to formulate an appropriate extension
of single-person decision trees to n-person “consequentialist extensive game
forms”. These are like decision trees and game forms, but they differ from
orthodox extensive form games in that they have consequences rather than
payoffs attached to terminal nodes. This seems entirely appropriate for
a theory in which the existence of a payoff function, in the form of a von
Neumann–Morgenstern utility function, should be a major result rather than
a questionable assumption.

However, to save space, I shall proceed directly to the definition of an
associated consequentialist normal game form. This consists of a list

G = 〈N, Y N , SN , φN 〉
Here N denotes the finite set of players. Each player i ∈ N is assumed
to have a personal consequence domain Yi which is one component of the
Cartesian product Y N :=

∏
i∈N Yi of consequence profiles, and also a finite

strategy space Si making up one component of the Cartesian product SN :=∏
i∈N Si of strategy profiles. Finally, φN : SN → ∆(Y N ) is the outcome

function determining the random consequence profile that results from each
possible strategy profile. For each i ∈ N , let φi(sN ) ∈ ∆(Yi) denote the
marginal distribution on Yi that is induced by φN (sN ) on Y N .

Given any such game form G, it will also be necessary to consider a
family G = {G} ∪ (∪i∈NGi) of game forms derived from G, where

Gi = {G(i, T ) | T ∈ T3(S−i, Yi) }
That is, for each player i ∈ N and tree T ∈ T3(S−i, Yi), there is a corre-
sponding game form in G(i, T ) in Gi specified by

G(i, T ) = 〈{i∗} ∪ N, Yi × Y N , ST × SN , φ̄{i∗}∪N 〉
As explained in the introduction, this involves one extra player i∗ who is a
copy of player i. So player i∗’s consequence space, like i’s, is Yi. It is assumed
that player i∗ effectively faces a single-person decision tree T ∈ T3(S−i, Yi),
in which the set of possible states of nature is S−i. The finite set of i∗’s
strategies in tree T is denoted by ST , and the outcome function is assumed
to be φT : ST → ∆(Y S−i). In G(i, T ) the outcome function is given by

φ̄i∗(sT , sN ) := φT (sT ) and φ̄j(sT , sN ) := φj(sN ) (all j ∈ N)

for all (sT , sN ) ∈ ST × SN . Note that, for each player j ∈ N , the random
outcome in G(i, T ) of each strategy profile sN ∈ SN that can be played in
G is the same as the random outcome of sN in G itself. In particular, this
random outcome must independent both of T and of i∗’s choice of strategy
sT ∈ ST in T .
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4 Players’ Type Spaces

It may be useful to think of a game form as a book of rules, specifying what
strategies players are allowed to choose, and what random consequence re-
sults from any allowable profile of strategic choices. So the family G of conse-
quentialist game forms needs fleshing out with descriptions of players’ prefer-
ences, beliefs, and behaviour. The Bayesian rationality hypothesis involves
preferences represented by expected values of von Neumann–Morgenstern
utility functions (NMUFs) attached to consequences. Also, beliefs take the
the form of subjective probabilities attached jointly to combinations of other
players’ preferences, strategies, and beliefs. And behaviour should maximize
subjectively expected utility. It has yet to be shown, however, that the con-
sequentialist hypotheses imply such preferences, beliefs, and behaviour. To
do so satisfactorily requires a framework for describing preferences, beliefs,
and behaviour in game forms before the consequentialist hypotheses have
been imposed. We shall postulate type spaces similar to those considered
by Harsanyi (1967–8) in his discussion of games of incomplete information.
However, each player will have three separate types, corresponding to pref-
erences, beliefs, and behaviour respectively.

Indeed, since one cannot directly assume that preferences exist, it is
necessary to consider instead, for each player i ∈ N , a decision type di ∈ Di

which determines what is acceptable behaviour for i in any single-person
finite decision tree T ∈ T2(Yi) having random consequences in ∆(Yi). Of
course, consequentialist normal form invariance implies the consequentialist
hypotheses for single-person decision theory. So if continuity of behaviour
is added to these hypotheses, we know already that each player i ∈ N will
have a unique cardinal equivalence class of NMUFs vi(yi; di) on Yi which
are parametrized by their decision type di. Together, the list of all players’
types forms a decision type profile dN ∈ DN :=

∏
i∈N Di.

As in orthodox game theory, each player i ∈ N is assumed next to
have beliefs or an epistemic type ei ∈ Ei, with EN :=

∏
i∈N Ei as the

set of all possible epistemic type profiles. It will be a result rather than
an assumption of the theory that all such beliefs can be represented by
subjective probabilities on an appropriately defined space. For the moment,
each ei ∈ Ei is assumed to determine parametrically player i’s strategic
behaviour in the form of a non-empty set σi(G′, di, ei) ⊂ Si defined for
every game form G′ ∈ G and each possible decision type di for player i. In
orthodox game theory, σi(G′, di, ei) is the set of i’s “best responses” given
the NMUF vi(yi; di) and subjective probability beliefs over other players’
strategies determined by ei. The assumption that such a parameter ei exists
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is without loss of generality because if necessary this parameter could be
the correspondence (G′, di) 	→→σi itself. Finally, it is also necessary to define
σi∗(G′, di, ei) for the copy i∗ of player i in every game G′ ∈ Gi. Note that,
because i∗ is a copy of i, player i∗’s behaviour depends on i’s type pair
(di, ei), as the above notation reflects.

From the normative point of view, each set σi(G′, di, ei) already describes
how i with decision type di and epistemic type ei should play G′. However,
in forming beliefs, it is not enough for player i (and also i∗ if G′ ∈ Gi) to know
the other players’ sets σj(G′, dj , ej) (j ∈ N \ {i}); also relevant are the tie-
breaking rules which the other players j ∈ N \{i} use to select one particular
strategy sj from the set σj(G′, dj , ej) whenever this set has more than one
member. Accordingly, each player i ∈ N is assumed to have in addition a be-
haviour type bi ∈ Bi, with BN :=

∏
i∈N Bi as the set of all possible behaviour

type profiles. Each bi ∈ Bi is assumed to determine parametrically player
i’s selection rule yielding a single member si(G′, di, ei, bi) ∈ σi(G′, di, ei) of
each strategic behaviour set. The assumption that bi exists is without loss
of generality because it could be the function (G′, di, ei) 	→ si itself. Note
that player i∗’s behaviour type need not be specified because i∗’s behaviour
has no effect on any other player.

To simplify notation in future, define for each player i ∈ N a combined
type space Θi := Di × Ei × Bi, whose members are triples θi := (di, ei, bi).
Note that each player’s selection rule can then be expressed as si(G′, θi).
Let ΘN := DN × EN × BN be the space of combined type profiles, with
typical member θN := (dN , eN , bN ), and let Θ−i :=

∏
j∈N\{i} Θi denote the

set of all possible types for players other than i. A complete epistemic type
ei ∈ Ei should then describe in full player i’s beliefs about the other players’
types θ−i ∈ Θ−i, including their epistemic types e−i. This creates a problem
of circularity or infinite regress which is an inevitable and fundamental part
of modern game theory.

5 Subjective Probabilities over Other Players’ Strate-
gies

First, given any game G′ = G(i, T ) ∈ Gi, suppose that player i∗ moves
first, before any player j ∈ N , without these players knowing what i∗ has
chosen. Then after i∗ has moved, G is effectively a “subgame of incomplete
information”. Now, given any player j ∈ N , and any combined type θj ∈ Θj

that player j may have, applying an obvious dynamic consistency hypothesis
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to the subgame G of G′ = G(i, T ) yields the result that

σj(G′, dj , ej) = σj(G, dj , ej) and sj(G′, θj) = sj(G, θj)

In particular, for each j ∈ N , both σj(G′, dj , ej) and sj(G′, θj) are effec-
tively independent of whatever player i ∈ N is copied and of whatever tree
T ∈ T3(S−i, Yi) is given to the copy i∗ of player i. So variations in i∗’s
decision tree within the domain T3(S−i, Yi) are possible without inducing
changes in the behaviour of other players j ∈ N . This justifies applying the
consequentialist hypotheses to the whole domain T3(S−i, Yi) of single-person
decision trees faced by i∗ and so by i, while treating each s−i ∈ S−i as a
state of nature determined entirely outside the tree. So the usual arguments
imply the existence of unique and strictly positive subjective probabilities
Pi(s−i) (s−i ∈ S−i) such that i∗’s decisions in trees T ∈ T3(S−i, Yi) maxi-
mize the subjectively expected value of a von Neumann–Morgenstern utility
function vi(yi; di) parametrized by i’s decision type di ∈ Di.

It remains to consider player i’s behaviour in the game form G itself. To
do so, consider the special decision tree TG

i ∈ T3(S−i, Yi) in which the set of
i∗’s strategies is Si, equal to i’s strategy set in G, and the random outcome
of each strategy si ∈ Si is specified by

φG
i (si)(yS−i) =

∏
s−i∈S−i

φ(si, s−i)(ys−i)

for all yS−i = 〈ys−i〉s−i∈S−i ∈ Y S−i . Then, at least under Anscombe and Au-
mann’s reversal of order axiom, both the strategy set Si and the outcome
function φG

i are exactly the same as in G itself. In this case TG
i and G are

consequentially equivalent from i’s (or i∗’s) point of view, so consequential-
ism requires i’s behaviour in G to match that of i∗ in TG

i or G(i, TG
i ). This

implies that σi∗(G(i, TG
i ), di, ei) = σi(G, di, ei).

It follows that player i should behave according to the hypothesis of
Bayesian rationality and choose si ∈ Si to maximize subjectively expected
utility based on the subjective probabilities Pi(s−i) (s−i ∈ S−i) that are ap-
propriate for all decision trees in T3(S−i, Yi). Really, one should write these
probabilities as Pi(s−i, ei) to indicate that they represent player i’s epis-
temic type ei and so characterize i’s acceptable behaviour sets σi(G′, di, ei)
on the domain G of game forms, including G itself. This is the promised con-
sequentialist justification of the Bayesian rationality hypothesis in normal
form n-person games.
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