
1

1 Introduction and Outline

The expected utility (EU) hypothesis was originally formulated to be used with
specified or “objective” probabilities. Objectively expected utility is the subject
of Chapter 5. Not all uncertainty, however, can be described by a specified
or objective probability distribution. The pioneering work of Frank Ramsey
(1926) and Bruno de Finetti (1937, 1949) demonstrated how, under certain
assumptions, “subjective” probabilities could still be inferred from behaviour in
the face of such uncertainty.1 The task of this chapter is to set out some recent
developments in this decision-theoretic approach to subjective probability, and
in the closely associated theory of subjectively expected utility. As in Chapter 5,
an explicitly “consequentialist” perspective will be maintained. A much more
thorough survey of earlier developments can be found in Fishburn (1981) —
see also Karni and Schmeidler (1991) and Fishburn (1994).

An important body of earlier work, especially that most directly inspired by
Savage (1954), will not be covered here. One reason for this omission is that
extensive reviews of Savage’s particular approach can be found elsewhere, in-
cluding Arrow (1965, 1971, 1972) and Fishburn (1970, ch. 14). A second reason
is the continuing ready and affordable accessibility of Savage’s original work. A
third reason is that more recent writers such as Harsanyi (1977, 1983), Myerson
(1979) and Fishburn (1982) have chosen, as I do here, to derive subjective prob-
abilities from preferences for state dependent lotteries involving objective prob-
abilities. Of course, this latter approach was first set out in full by Anscombe
and Aumann (1963), though earlier related ideas can be found in Rubin (1949),
Arrow (1951), Chernoff (1954), Suppes (1956), and Ellsberg (1961).2

A rather better reason suggests itself, however. Following Keynes (1921), de
Finetti (1937) and many others, Savage (1954, pp. 30–32) used a crucial “order-
ing of events” assumption in order to derive “qualitative” probabilities. This
axiom is described in Section 2.4. Later these qualitative probabilities are made
quantitative as a result of additional assumptions. For example, Villegas (1964)
and DeGroot (1970) simply assume that, for every p ∈ [0, 1], there exists an
event whose objective probability is p. Then the ordering of events assumption
implies that every event E has subjective probability equal to the objective
probability of an equally likely event. For surveys of qualitative probability

1De Finetti, who founds subjective probabilities on the willingness of a risk-neutral agent
to take bets, cites the earlier work by Bertrand (1889) using a similar idea. But this concept
surely pre-dates Bertrand — see, for example, the original works by Hobbes (1650, IV, 10)
and Bayes (1763), as well as the recent commentaries by Hacking (1975) and Lindley (1987).

2Indeed, Ellsberg’s “paradox” concerns violations of an extended sure thing principle that
had not even been properly formulated before Anscombe and Aumann’s pioneering work.
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theory, see Narens (1980) and Fishburn (1986). However, in Section 3 it will be
shown that without more structure such as objective probabilities, the ordering
of events condition cannot be derived from the consequentialist axioms. For
this reason, the consequentialist approach followed both in Chapter 5 and here
does not lend support to Savage’s axiom system.

Instead of objective probabilities, another approach which was pioneered by
Ramsey uses a continuum of deterministic consequences and at least one even
chance event — see Gul (1992) for a more modern exposition and references
to other work. Here, an “even chance event” E has the property that, for all
consequences y, y′, the prospect of y if E occurs combined with y′ if E does
not occur is indifferent to the prospect of y′ if E occurs combined with y if E
does not occur. Thus, the events E and not E are regarded as equally likely,
implying that E has a subjective probability of 1

2 , in effect. This condition
turns out to be a significant weakening of the ordering of events assumption.
In a similar way de Finetti (1937), followed by Pratt, Raiffa and Schlaifer
(1964), proposed the uniformity axiom requiring that, for m = 2, 3, . . ., there
should be m equally likely events. Savage (1954, p. 33) also discusses this
approach. Not surprisingly, one can then avoid postulating a continuum of
deterministic consequences. Another implication of the examples in Section 3,
however, is that neither do such assumptions of equally likely events have any
consequentialist justification. Nevertheless, this chapter uses Anscombe and
Aumann’s assumption requiring objective probabilities to exist, which is in
some sense a stronger form of uniformity. The view taken here is that it is more
straightforward to assume directly that objective probabilities can appear in
decision problems.

Finally, Wakker (1989) has a connected topological space of consequences but
no even chance events. Instead, an assumption of “noncontradictory tradeoffs
on consequences” is used to ensure an appropriate additively separable util-
ity function. Once again, however, the examples in Section 3 show that this
assumption lacks a consequentialist justification.

Following this introduction and outline, Section 2 of the chapter presents four
key conditions which are necessary for behaviour to correspond to the maxi-
mization of subjective expected utility (or SEU) — i.e., expected utility with
subjective probabilities attached to events. Actually it will be convenient to
distinguish two different versions of the SEU hypothesis. Whereas maximizing
SEU in general allows null events whose subjective probabilities must be zero,
a stronger version of the hypothesis, called SEU*, excludes null events. Thus,
SEU* requires all subjective probabilities to be positive.
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Of the four necessary conditions for SEU maximization, the first states that,
for each non-null event, there must be a contingent preference ordering over
the possible consequences of acts, in Savage’s form of “state contingent con-
sequence functions” (or CCFs). Second, these orderings must satisfy Savage’s
sure thing principle (STP), which is the counterpart for subjectively expected
utility theory of the equally controversial independence axiom in objectively
expected utility theory. In fact, when SEU* is satisfied, a stronger version of
(STP), called (STP*), must hold. Third, when either the state of the world
is known, or the consequence is independent of the state of the world, there
must be a state independent contingent preference ordering over certain con-
sequences. Fourth and last, preferences over CCFs must induce an ordering of
events according to relative likelihood.

Section 3 turns to consequentialist foundations. So that different states of
the world may occur, decision trees are allowed to include “natural nodes”, at
which nature refines the set of possible states. The axioms that were set out
in Chapter 5 for finite decision trees are then adapted in a rather obvious way.
They imply the existence of a preference ordering over CCFs satisfying STP*.
There need not be an implied ordering of events, however, nor subjective prob-
abilities. Thus, SEU theory cannot be derived by applying consequentialism
only to decision trees with natural nodes.

Next, Section 4 turns instead to the Anscombe and Aumann theory of sub-
jective probability and subjectively expected utility. This approach is based
on combinations of “horse lotteries”, for which probabilities are not specified,
with “roulette lotteries”, for which they are. In fact, roulette lotteries involve
objective probabilities, as considered in Chapter 5, and so implicitly the pre-
viously mentioned uniformity axiom must be satisfied. Anyway, a version of
Anscombe and Aumann’s axioms is set out, and their main theorem proved.
This particular proof owes much to Fishburn (1970, ch. 13) and also to Myerson
(1991, ch. 1).

In Section 5 the discussion returns to consequentialist analysis in decision trees,
and a simplified version of the analysis set out in Hammond (1988). Corre-
sponding to the distinction between horse and roulette lotteries, decision trees
will contain “natural” nodes at whic nature moves but probabilities are not
specified, as opposed to chance nodes of the kind considered in Chapter 5,
where “objective” probabilities are specified. It will follow that decisions give
rise to lotteries over CCFs rather than to sure CCFs. The decision tree which
the agent faces will induce a strategic game against both chance and nature.
The consequentialist axiom is then somewhat re-formulated so that it becomes
normal form invariance in this strategic game. This axiom, together with both



4 Chapter 5

a form of state independence and also continuity of behaviour as probabilities
vary, will justify the axioms used by Anscombe and Aumann. And actually
these conditions imply rather more, since it will also turn out that null events
having zero subjective probability are excluded. Thus, consequentialism justi-
fies the stronger SEU* hypothesis.

The theories of Savage and of Anscombe and Aumann both rely on the assump-
tion that there are “constant acts” yielding the same consequence in all states
of the world. More precisely, they postulate that the domain of consequences
is state independent. But there is a whole class of decision problems where
this hypothesis makes no sense — for instance, where there is a risk of death
or serious injury. See the chapter in this Handbook by Drèze and Rustichini as
well as Karni (1993a, b). For such cases, Section 6 begins by finding sufficient
conditions for behaviour to maximize the expectation of an evaluation func-
tion (Wilson, 1968).3 Then it considers one possible way of deriving subjective
probabilities and utilities in this case also. Moreover, the utilities will be state
independent in the sense of giving equal value to any consequence that happens
to occur in more than one state dependent consequence domain. The key is to
consider decision trees having “hypothetical” probabilities attached to states
of nature, following the suggestion of Karni, Schmeidler and Vind (1983), and
even to allow hypothetical choices of these probabilities, as in Drèze (1961,
1987) and also Karni (1985).

The first part of the chapter will assume throughout that the set S of possible
states of the world is finite. Section 7 considers the implications of allowing S
to be countably infinite. Extra conditions of bounded utility, event continuity
and event dominance are introduced. When combined with the conditions of
Section 4, they are necessary and sufficient for the SEU hypothesis to hold.
Necessity is obvious, whereas sufficiency follows as a special case of the results
in Section 8.

Finally, Section 8 allows S to be a general measurable space, and considers
measurable lotteries mapping S into objective probability measures on the
consequence domain. For this domain, two more conditions were introduced
in Section 9 of Chapter 5 — namely measurability of singletons and of upper
and lower preference sets in the consequence domain, together with probability
dominance. Not surprisingly, these two join the list of necessary and sufficient
conditions for the SEU hypothesis. This gives eleven conditions in all, which
are summarized in a table at the end of the brief concluding Section 9. Only
this last part of the chapter requires some familiarity with measure theory,

3See also Myerson (1979) for a somewhat different treatment of this issue.
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and with corresponding results for objective probability measures set out in
Chapter 5.

2 Necessary Conditions

2.1 Subjective Expected Utility Maximization

Let Y be a fixed domain of possible consequences, and let S be a fixed finite set
of possible states of the world. No probability distribution over S is specified.
An act, according to Savage (1954), is a mapping a : S → Y specifying what
consequence results in each possible state of the world. Inspired by the Arrow
(1953) and Debreu (1959) device of “contingent” securities or commodities in
general equilibrium theory, I shall prefer to speak instead of contingent conse-
quence functions, or CCFs for short. Also, each CCF will be considered as a
list yS = 〈ys〉s∈S of contingent consequences in the Cartesian product space
Y S :=

∏
s∈S Ys, where each set Ys is a copy of the consequence domain Y .

The subjective expected utility (SEU) maximization hypothesis requires that
there exist non-negative subjective or personal probabilities ps of different
states s ∈ S satisfying

∑
s∈S ps = 1. Also, there must be a von Neumann–

Morgenstern utility function (or NMUF) v : Y → IR, as in the objective ex-
pected utility (EU) theory considered in Chapter 5. Moreover, it is hypoth-
esized that the agent will choose a CCF yS from the relevant feasible set in
order to maximize the subjectively expected utility function

US(yS) :=
∑

s∈S
ps v(ys) (1)

As in Chapter 5, the NMUF v could be replaced by any ṽ that is cardinally
equivalent, without affecting EU maximizing behaviour. The difference from
the earlier theory arises because the probabilities ps are not objectively speci-
fied, but are revealed by the agent’s behaviour. The SEU* hypothesis strength-
ens SEU by adding the requirement that the subjective probabilities satisfy
ps > 0 for all s ∈ S.

Obviously, if behaviour maximizes the utility function (1), there is a corre-
sponding complete and transitive preference ordering �∼ over the domain Y S .
This is the ordering condition (O). Let � and ∼ respectively denote the corre-
sponding strict preference and indifference relations. There is an uninteresting
trivial case of universal indifference when yS ∼ ỹS for all yS , ỹS ∈ Y S ; in the
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spirit of Savage’s P5 postulate, it will usually be assumed in this chapter that
there exists at least one pair yS , yS ∈ Y S such that yS � yS .

2.2 Contingent Preferences

and the Sure Thing Principle

An event E is any non-empty subset of S. Its subjective probability is defined
as P (E) :=

∑
s∈E ps.

Given the function US : Y S → IR defined by (1) and any event E, there is a
contingent expected utility function UE defined on the Cartesian subproduct
Y E :=

∏
s∈E Ys by the partial sum

UE(yE) :=
∑

s∈E
ps v(ys) (2)

Obviously, UE induces a contingent preference ordering �∼E on Y E satisfying

yE �∼E ỹE ⇐⇒ UE(yE) ≥ UE(ỹE)

for all pairs yE , ỹE ∈ Y E . This is intended to describe the agent’s preference
or behaviour given that E is the set of possible states, so that consequences
yS\E = 〈ys〉s∈S\E are irrelevant. Evidently, then, for all pairs yE , ỹE ∈ Y E

and all ȳS\E = 〈ys〉s∈S\E ∈ Y S\E :=
∏

s∈S\E Ys one has

yE �∼E ỹE ⇐⇒
∑

s∈E
ps v(ys) ≥

∑
s∈E

ps v(ỹs)

But the right hand side is true iff∑
s∈E

ps v(ys) +
∑

s∈S\E
ps v(ȳs) ≥

∑
s∈E

ps v(ỹs) +
∑

s∈S\E
ps v(ȳs)

and so
yE �∼E ỹE ⇐⇒ (yE , ȳS\E) �∼ (ỹE , ȳS\E) (3)

Furthermore, (yE , ȳS\E) ≺∼ (ỹE , ȳS\E) either for all ȳS\E because yE ∼E ỹE ,
or else for no ȳS\E because yE �E ỹE . It follows that yE �∼E ỹE iff yE �∼ ỹE

given E, in the sense specified in Savage (1954, definition D1).

The requirement that (3) be satisfied, with the contingent ordering �∼E on Y E

independent of ȳS\E ∈ Y S\E , will be called the sure thing principle (or STP).
It is a second implication of SEU maximization.4

4In Savage (1954) there is no formal statement of (STP), though the informal discussion
on p. 21 seems to correspond to the “dominance” result stated as Theorem 3 on p. 26. This
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When conditions (O) and (STP) are satisfied, say that the event E is null if
yE ∼E ỹE for all yE , ỹE ∈ Y E . Otherwise, if yE �E ỹE for some yE , ỹE ∈ Y E ,
say that E is non-null. When the SEU hypothesis holds, event E is null iff its
subjective probability P (E) :=

∑
s∈E ps satisfies P (E) = 0, and E is non-null

iff P (E) > 0. Note that S is null if and only if there is universal indifference;
outside this trivial case, S is non-null. Of course, one also says that the state
s ∈ S is null iff the event {s} is null, otherwise s is non-null. Obviously, under
the SEU hypothesis, state s ∈ S is null iff ps = 0 and non-null iff ps > 0.

The strong sure thing principle, or condition (STP*), requires that no state
s ∈ S be null. Thus, the difference between SEU* and SEU is that SEU*
excludes null states and null events, whereas SEU allows them. When SEU*
holds, so that no event is null, then condition (STP*) must be satisfied.

Suppose that E ⊂ E′ ⊂ S and that conditions (O) and (STP) are satisfied.
Clearly, for all yE , ỹE ∈ Y E and all ȳS\E ∈ Y S\E , it will be true that

yE �∼E ỹE ⇐⇒ (yE , ȳS\E) �∼ (ỹE , ȳS\E) ⇐⇒ (yE , ȳE′\E) �∼E′
(ỹE , ȳE′\E)

(4)

2.3 State Independent Preferences

Given any event E and any consequence y ∈ Y , let y 1E denote the constant
or sure consequence with ys = y for all s ∈ E. It describes a CCF for which,
even though there is uncertainty about the state of the world, the consequence
y is certain. Note how (2) implies that

UE(y 1E) =
∑

s∈E
ps v(y) = P (E) v(y)

for all y ∈ Y . Because P (E) > 0 whenever E is non-null, there is a state
independent preference ordering �∼∗ on Y such that

y �∼∗ ȳ ⇐⇒ v(y) ≥ v(ȳ) ⇐⇒ y 1E �∼E ȳ 1E (all non-null events E)

This condition (SI) is the third implication of SEU maximization.

Under conditions (O), (STP), and (SI), if y �∗ ȳ, then y 1E �E ȳ 1E for all
non-null events E.
theorem is a logical consequence of his postulates P1, which is condition (O), together with
P2, which is close to what I have chosen to call the “sure thing principle”, and P3 which, at
least when combined with conditions (O) and (STP), is equivalent to the state-independence
condition (SI) set out in Section 2.3 below.
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2.4 A Likelihood Ordering of Events

Given two events E1, E2 ⊂ S, their respective subjective probabilities induce
a clear “likelihood” ordering between them, depending on whether P (E1) ≥
P (E2) or vice versa. When the SEU hypothesis holds, this likelihood ordering
can be derived from preferences. Indeed, suppose that y, y ∈ Y with y �∗ y.
Consider then the two CCFs (y 1E1 , y 1S\E1) and (y 1E2 , y 1S\E2). Suppose that
the better consequence y is interpreted as “winning”, and the worse consequence
y as “losing”. Then the first CCF arises when the agent wins iff E1 occurs and
loses iff E2 occurs; the second when winning and losing are interchanged. The
subjective expected utilities of these two CCFs are

US(y 1E1 , y 1S\E1) =
∑

s∈E1
ps v(y) +

∑
s∈S\E1

ps v(y)

= P (E1) v(y) + [1 − P (E1)] v(y)

and US(y 1E2 , y 1S\E2) = P (E2) v(y) + [1 − P (E2)] v(y)

respectively. Therefore

US(y 1E1 , y 1S\E1) − US(y 1E2 , y 1S\E2) = [P (E1) − P (E2)] [v(y) − v(y)]

implying that

(y 1E1 , y 1S\E1) �∼E (y 1E2 , y 1S\E2) ⇐⇒ P (E1) ≥ P (E2)

Moreover, this must be true no matter what the consequences y, y ∈ Y may be,
provided only that y �∗ y. So the agent weakly prefers winning conditional
on E1 to winning conditional on E2 iff E1 is no less likely than E2. The
implication is condition (OE), which requires that a (complete and transitive)
likelihood ordering of events can be inferred from preferences for winning as
against losing conditional on those events. This is the fourth implication of
SEU maximization. It is equivalent to Savage’s (1954) P4 postulate.

The four conditions (O), (STP), (SI) and (OE) do not by themselves imply the
SEU hypothesis. For example, they amount to only the first four of Savage’s
seven postulates — or the first five if one excludes the trivial case of universal
indifference. I shall not present the last two postulates, except peripherally in
Sections 7.2 and 7.3. Instead, I shall turn to consequentialist axioms like those
set out in Section 5 of Chapter 5. It will turn out that these fail to justify (OE).
In my view, this detracts considerably from the normative appeal of Savage’s
approach, though it remains by far the most important and complete theory of
decision-making under uncertainty prior to 1960.
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3 Consequentialist Foundations

3.1 Decision Trees with Natural Nodes

Chapter 5 was concerned with objective EU maximization. There the ordering
and independence properties were derived from consequentialist axioms applied
to decision trees incorporating chance nodes, at which random moves occurred
with specified objective probabilities. Here, similar arguments will be applied
to decision trees in which no probabilities are specified. The chance nodes that
have specified probabilities will be replaced by natural nodes at each of which
nature has a move that restricts the remaining set of possible states of nature.

Formally, then, the finite decision trees considered in this section all take the
form

T = 〈N, N∗, N1, X, n0, N+1(·), S(·), γ(·) 〉 (5)

As in Chapter 5, N denotes the set of all nodes, N∗ the set of decision nodes, X
the set of terminal nodes, n0 the initial node, N+1(·) : N →→N the immediate
successor correspondence, and γ(·) the consequence mapping. The three new
features are as follows.

First, N1 denotes the set of natural nodes, replacing the earlier set N0 of chance
nodes.

Second, S(·) : N →→S denotes the event correspondence, with S(n) ⊂ S as the
set of states of the world which are still possible after reaching node n. Within
the decision tree the agent is assumed to have perfect recall in the sense that
S(n′) ⊂ S(n) whenever node n′ follows node n in the decision tree. In fact, the
event correspondence should have the properties that: (i) whenever n ∈ N∗ and
n′ ∈ N+1(n), then S(n′) = S(n) because the agent’s decision at node n does not
restrict the set of possible states; (ii) whenever n ∈ N1, then ∪n′∈N+1(n) S(n′)
is a partition of S(n) into pairwise disjoint events because nature’s move at n
creates an information partition of S(n).

Third, at each terminal node x ∈ X, where S(x) is the set of states that
remain possible, the consequence mapping γ determines a CCF γ(x) ∈ Y S(x)

specifying, for each state s ∈ S(x), a state contingent consequence γs(x) in the
fixed domain Y of possible consequences.5

5It might seem more natural to define each decision tree so that by the time a terminal
node x ∈ X is reached, all uncertainty must be resolved and so S(x) is a singleton {s(x)}. I
have avoided doing this, not just to increase generality, but more important, to allow results
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3.2 Feasible and Chosen CCFs

Let T be any decision tree with natural nodes, as defined in (5). Then F (T ) will
denote the set of feasible CCFs in T , whereas Φβ(T ) will denote the possible
CCFs which can result from behaviour β. As in Chapter 5, these two sets are
respectively equal to the values at n = n0 of the sets

F (T, n) := F (T (n)) and Φβ(T, n) := Φβ(T (n))

where T (n) denotes the continuation subtree T that starts with initial node n.
Moreover, F (T, n) and Φβ(T, n) can be constructed by backward recursion,
starting at terminal nodes x ∈ X where

F (T, x) := Φβ(T, x) := {γ(x)} ⊂ Y S(x) (6)

At a decision node n ∈ N∗, one has S(n′) = S(n) (all n′ ∈ N+1(n)). Then

F (T, n) :=
⋃

n′∈N+1(n)

F (T, n′) and Φβ(T, n) :=
⋃

n′∈β(T (n),n)

Φβ(T, n′) (7)

where both are subsets of Y S(n) = Y S(n′). At a natural node n ∈ N1, on
the other hand, where S(n) is partitioned into the pairwise disjoint sets S(n′)
(n′ ∈ N+1(n)), one has Cartesian product sets of CCFs given by

F (T, n) =
∏

n′∈N+1(n)
F (T, n′) and Φβ(T, n) =

∏
n′∈N+1(n)

Φβ(T, n′)

(8)
Both of these are subsets of Y S(n) =

∏
n′∈N+1(n) Y S(n′). It is easy to prove by

backward induction that, for all n ∈ N , including n = n0, one has

∅ �= Φβ(T, n) ⊂ F (T, n) ⊂ Y S(n) (9)

3.3 Consequentialism and Contingent Orderings

As in Section 5.5 of Chapter 5, the consequentialist hypothesis requires that
there exist a consequence choice function specifying how the behaviour set (of
possible consequences of behaviour) depends upon the feasible set of conse-
quences. Here, however, any such consequence is a CCF yS ∈ Y S . In fact, each
different event E ⊂ S gives rise to a different domain Y E of possible CCFs. Ac-
cordingly, for each event E ⊂ S there must be a corresponding event-contingent

in Section 5 of Chapter 5 to be applied directly, especially Theorem 5 concerning the existence
of a preference ordering.
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choice function CE
β defined on the domain of non-empty finite subsets of Y E ,

and satisfying
Φβ(T ) = CE

β (F (T )) ⊂ F (T ) ⊂ Y E (10)

for all decision trees T such that S(n0) = E at the initial node n0 of T .

Consider now any fixed event E, and the restricted domain of all finite decision
trees with no natural nodes which have the property that S(n) = E at all nodes
n ∈ N , including at all terminal nodes. On this restricted domain, impose the
dynamic consistency hypothesis that β(T (n), n′) = β(T, n′) at any decision
node n′ of the continuation tree T (n). Then the arguments in Section 5.6 of
Chapter 5 apply immediately and yield the result that CE

β must correspond to
a preference ordering RE

β on the set Y E . Thus, the family of event-contingent
choice functions {CE

β | ∅ �= E ⊂ S } gives rise to a corresponding family of
contingent preference orderings {RE

β | ∅ �= E ⊂ S } such that, whenever Z is a
non-empty finite subset of Y E , then

CE
β (Z) = { yE | ỹE ∈ Z =⇒ yE RE

β ỹE } (11)

3.4 Consequentialism and the Sure Thing Principle

In Section 6 of Chapter 5 it was argued that, for decision trees with chance
nodes, consequentialism implied the independence axiom. Here, for decision
trees with natural nodes, a very similar argument establishes that consequen-
tialism implies the sure thing principle (STP) described in equation (3) of
Section 2.2. Indeed, suppose that E1 and E2 are disjoint events in S, whereas
E = E1 ∪ E2, and aE1 , bE1 ∈ Y E1 , cE2 ∈ Y E2 . Then consider the tree T as in
(5), with

N∗ = {n1}; N1 = {n0}; X = {xa, xb, xc };
N+1(n0) = {n1, xc }; N+1(n1) = {xa, xb };

S(n0) = E; S(n1) = S(xa) = S(xb) = E1; S(xc) = E2;
γ(xa) = aE1 ; γ(xb) = bE1 ; γ(xc) = cE2 .

This tree is illustrated in Figure 1. Notice how (6) and (7) imply that

F (T, n1) = F (T, xa) ∪ F (T, xb) = {aE1} ∪ {bE1} = { aE1 , bE1 }
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✉

n0
✘✘✘✘✘✘E1

n1
✘✘✘✘✘✘�xa

�xb
E2

�xc

Figure 1 Decision Tree Illustrating the Sure Thing Principle

Then (8) implies that

F (T ) = F (T, n0) = F (T, n1) × F (T, xc)
= F (T, n1) × {cE2} = { (aE1 , cE2), (bE1 , cE2) }

Also (11), (10) and (8) together imply that

aE1 RE1
β bE1 ⇐⇒ aE1 ∈ Cβ(F (T, n1)) = Φβ(T, n1)

⇐⇒ (aE1 , cE2) ∈ Φβ(T, n1) × {cE2} = Φβ(T, n1) × Φβ(T, xc)
= Φβ(T, n0) = Cβ(F (T, n0))

⇐⇒ (aE1 , cE2) RE
β (bE1 , cE2)

This is exactly the sure thing principle (STP), as expressed by (4) in Section
2.2, but applied to the contingent orderings RE1

β and RE
β instead of to �∼E and

�∼E′
respectively.

3.5 Consequentialism Characterized

In fact, consequentialist behaviour satisfying dynamic consistency on an un-
restricted domain of finite decision trees is possible whenever there exist, for
all events E ⊂ S, contingent orderings RE

β that satisfy (STP). To see this,
consider any family of contingent orderings RE (∅ �= E ⊂ S) satisfying (STP).
Essentially the same arguments as in Section 6.4 of Chapter 5 can then be
used to construct behaviour β satisfying the consequentialist axioms whose
family of contingent revealed preference orderings satisfies RE

β = RE whenever
∅ �= E ⊂ S. The proof of Lemma 6.1 in that chapter does need extending to
deal with one new case, which is when n ∈ N1 is a natural node. However, this
is a routine modification of the proof for when n ∈ N0 is a chance node, with
condition (STP) replacing condition (I). Also, see the subsequent Section 5.5
in this chapter for a proof which applies in a more general setting.
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3.6 Unordered Events

It has just been shown that consequentialist behaviour is completely charac-
terized by any family of contingent orderings satisfying (STP). Therefore, no
further restrictions on behaviour can be inferred from consequentialism, unless
these restrictions are implications of there being a family of orderings satisfying
(STP). In particular, the crucial ordering of events condition (OE) is generally
violated, implying that consequentialist behaviour does not maximize SEU.

To confirm this, it is enough to exhibit a family of contingent preference order-
ings that fails to induce an ordering of events despite satisfying (STP*). So,
let S = { s1, s2 } and Y = { a, b, c }. Then define the state independent utility
function v : Y → IR so that:

v(a) = 1; v(b) = 0; v(c) = −1. (12)

Now consider the preference ordering on Y S induced by the specific additive
utility function

US(yS) = φ1(v(ys1)) + φ2(v(ys2)) (13)

where φ1 and φ2 are increasing functions satisfying

φ1(1) = 2, φ1(0) = 0, φ1(−1) = −1
φ2(1) = 1, φ2(0) = 0, φ2(−1) = −2 (14)

Suppose that the two contingent orderings on Ys1 and Ys2 are represented by the
utility functions φ1(v(ys1)) and φ2(v(ys2)) respectively. Neither state is null,
because neither φ1(v(y)) nor φ2(v(y)) are constant functions independent of y.
Because (13) has an additive form, (STP*) is evidently satisfied. Moreover,
the preferences on Ys1 , Ys2 are even state independent, as are those on the set
Y 1S := { (ys1 , ys2) ∈ Ys1 × Ys2 | ys1 = ys2 }, since all are represented by the
same utility function v(y). Nevertheless

US(a, b) = 2, US(b, a) = 1
US(b, c) = −2, US(c, b) = −1

So the agent’s behaviour reveals a preference for winning a in state s1 to winning
it in state s2, when the alternative losing outcome is b. On the other hand,
it also reveals a preference for winning b in state s2 to winning it in state s1,
when the alternative losing outcome is c. Hence, there is no induced ordering
of the events {s1} and {s2}.

Savage, of course, introduced other postulates whose effect is to ensure a rather
rich set of states — see the later discussion in Section 7.2. Adding such pos-
tulates, however, in general will not induce an ordering of events. To see this,
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suppose that S is the entire interval [0, 1] of the real line instead of just the
doubleton { s1, s2 }. Instead of the additive utility function (13), consider the
integral

ŪS(yS) =
∫ 1/2

0

φ1(v(y(s)))ds +
∫ 1

1/2

φ2(v(y(s)))ds

with v given by (12) and φ1, φ2 by (14). Also, so that the integrals are well
defined, yS should be a measurable function from S to Y , in the sense that the
set { s ∈ S | y(s) = y } is measurable for all y ∈ Y . Then the particular CCF
yS =

(
a 1[0, 1

2 ], b 1( 1
2 ,1]

)
with

y(s) =
{

a if s ∈ [0, 1
2 ]

b if s ∈ ( 1
2 , 1]

is preferred to the lottery represented by
(
b 1[0, 1

2 ], a 1( 1
2 ,1]

)
in the same notation.

But
(
c 1[0, 1

2 ], b 1( 1
2 ,1]

)
is preferred to

(
b 1[0, 1

2 ], c 1( 1
2 ,1]

)
. So there is no induced

likelihood ordering of the two events [0, 1
2 ] and (1

2 , 1]. In fact, it is easy to
confirm that this example satisfies Savage’s six postulates P1–P3 and P5–P7;
only the ordering of events postulate P4 is violated. See Wakker and Zank
(1996) for a systematic study of the rather rich extra possibilities which arise
when all but P4 of Savage’s seven postulates are satisfied.

4 Anscombe and Aumann’s Axioms

4.1 Horse Lotteries versus Roulette Lotteries

Anscombe and Aumann’s (1963) article is the definitive statement of a different
approach to the derivation of subjective probabilities. They allowed subjective
probabilities for the outcomes of “horse lotteries” or CCFs to be inferred from
expected utility representations of preferences over compounds of horse and
“roulette lotteries”. Formally, the framework of Section 2 is extended to allow
preferences over, not only CCFs of the form yE ∈ Y E for some non-empty
E ⊂ S, but also (finitely supported) simple roulette lotteries in the space
∆(Y ), as considered in Chapter 5. And in fact general compound lotteries are
allowed, taking the form of simple lotteries λE ∈ ∆(Y E) attaching the objective
probabilities λE(yE) to CCFs yE ∈ Y E instead of to consequences y ∈ Y .
Then the finite collection of random variables ys (s ∈ E) has a multivariate
distribution with probabilities λE(yE).
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Within this extended framework, the SEU hypothesis extends that of Section 2
by postulating that there is a preference ordering �∼ over the domain ∆(Y S)
of mixed lotteries, and that �∼ is represented by the objective expected utility
function

US(λS) =
∑

yS∈Y S
λS(yS) vS(yS) (15)

where vS(yS) is the subjective expected utility function defined by

vS(yS) :=
∑

s∈S
ps v(ys) (16)

Thus US(λS) involves the double expectation w.r.t. both the objective proba-
bilities λS(yS) of different CCFs yS ∈ Y S and the subjective probabilities ps

of different states s ∈ S. The SEU* hypothesis implies in addition that ps > 0
for all s ∈ S.

4.2 Ratios of Utility Differences

Let aS , bS , cS be any three CCFs in Y S with vS(bS) �= vS(cS). As in Section
2.3 of Chapter 5, the ratio [vS(aS) − vS(cS)]/[vS(bS) − vS(cS)] of utility dif-
ferences is equal to the constant marginal rate of substitution (MRS) between,
on the one hand, an increase in the probability of aS that is compensated by
an equal decrease in the probability of cS , and on the other hand, an increase
in the probability of bS that is also compensated by an equal decrease in the
probability of cS . Furthermore, because only these ratios of utility differences
are uniquely determined, each NMUF vS is unique only up to a cardinal equiv-
alence class. Also, because of (16), one has vS(y 1S) = v(y) for all y ∈ Y
and

vS(a, b 1S\{s}) = ps v(a) + (1 − ps) v(b) = v(b) + ps [v(a) − v(b)]

for all a, b ∈ Y and all s ∈ S. Provided that v(a) �= v(b), it follows that the
subjective probability of each state s ∈ S is given by

ps =
vS(a, b 1S\{s}) − v(b)

v(a) − v(b)
=

vS(a, b 1S\{s}) − vS(b 1S)
vS(a 1S) − vS(b 1S)

(17)

It is therefore the constant MRS between an increase in the probability of the
CCF (a, b 1S\{s}) that is compensated by an equal decrease in the probability
of b 1S , and an increase in the probability of a 1S that is also compensated
by an equal decrease in the probability of b 1S . Note that this MRS must be
independent of the two consequences a, b. Of course, the uniqueness of each
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such MRS implies that each subjective probability ps (s ∈ S) is unique, even
though the utility function is unique only up to a cardinal equivalence class.

One particular advantage of Anscombe and Aumann’s version of the SEU hy-
pothesis is that subjective probabilities can be interpreted in this way. No
interpretation quite as simple emerges from Savage’s version of the theory.

4.3 Ordinality, Independence and Continuity

As obvious notation, let 1yS ∈ ∆(Y S) denote the degenerate lottery which
attaches probability 1 to the CCF yS . Next, define vS(yS) := US(1yS ) for
every CCF yS ∈ Y S . Note how (15) implies that vS(yS) =

∑
s∈S ps v(ys),

which is exactly the SEU expression that was introduced in (1) of Section 2.1.
Equation (15) also implies that

US(λS) =
∑

yS∈Y S
λS(yS) vS(yS) = IEλS vS

Hence, the preference ordering �∼ is represented by the objectively expected
value of the NMUF vS : Y S → IR. So, as discussed in Chapter 5, the following
three conditions must be satisfied:

(O) Ordering. There exists a preference ordering �∼ on ∆(Y S).

(I*) Strong Independence Axiom. For any λS , µS , νS ∈ ∆(Y S) and 0 < α ≤ 1,
it must be true that

λS �∼ µS ⇐⇒ αλS + (1 − α)νS �∼ αµS + (1 − α)νS

(C*) Strong Continuity as Probabilities Vary. For each λS , µS , νS ∈ ∆(Y S)
with λS � µS � νS , the two sets

A := {α ∈ [0, 1] | αλS + (1 − α)νS �∼ µS}
B := {α ∈ [0, 1] | αλS + (1 − α)νS ≺∼ µS}

must both be closed in [0, 1].

Indeed, these three properties are precisely those that were used to characterize
objective EU maximization in Chapter 5. More precisely, conditions (O), (I*)
and (C*) were shown to be necessary; for sufficiency, conditions (I*) and (C*)
could be replaced by the following two weaker conditions, which both apply for
each λS , µS , νS ∈ ∆(Y S):
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(I) Independence. Whenever 0 < α ≤ 1, then

λS � µS =⇒ αλS + (1 − α)νS � αµS + (1 − α)νS

(C) Continuity. Whenever λS � µS and µS � νS , there must exist α′, α′′ ∈
(0, 1) such that

α′λS + (1 − α′)νS � µS and µS � α′′λS + (1 − α′′)νS

4.4 Reversal of Order

For each y ∈ Y and s ∈ S, define Y S
s (y) := { yS ∈ Y S | ys = y } as the

set of CCFs yielding the particular consequence y in state s. Then, given any
λS ∈ ∆(Y S) and any s ∈ S, define

λs(y) :=
∑

yS∈Y S
s (y)

λS(yS) (18)

Note that λs(y) ≥ 0 and that
∑

y∈Y
λs(y) =

∑
yS∈Y S

λS(yS) = 1

Therefore λs is itself a simple probability distribution in ∆(Y ), called the
marginal distribution of the consequence ys occurring in state s. Moreover,
(15), (16) and (18) imply that

US(λS) =
∑

yS∈Y S
λS(yS)

∑
s∈S

ps v(ys) =
∑

s∈S
ps

∑
y∈Y

λs(y) v(y)

(19)
thus demonstrating that only the marginal probabilities λs(y) (s ∈ S, y ∈ Y )
matter in the end. So the SEU hypothesis also implies:

(RO) Reversal of Order. Whenever λS , µS ∈ ∆(Y S) have marginal distributions
satisfying λs = µs for all s ∈ S, then λS ∼ µS .

This condition owes its name to the fact that the compound lottery λS , in which
a roulette lottery determines the random CCF yS before the horse lottery that
resolves which s ∈ S occurs, is indifferent to the reversed compound lottery
in which the horse lottery is resolved first, and its outcome s ∈ S determines
which marginal roulette lottery λs generates the ultimate consequence y.

In particular, suppose that µS =
∏

s∈E λs is the product lottery defined, for
all yS = 〈ys〉s∈S ∈ Y S , by µS(yS) :=

∏
s∈S λs(ys). Thus, the different random
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consequences ys (s ∈ S) all have independent distributions. Then condition
(RO) requires λS to be treated as equivalent to µS , whether or not the dif-
ferent consequences ys (s ∈ S) are correlated random variables when the joint
distribution is λS . Only marginal distributions matter. So any λS ∈ ∆(Y S)
can be regarded as equivalent to the list 〈λs〉s∈S of corresponding marginal
distributions. This has the effect of reducing the space ∆(Y S) to the Cartesian
product space

∏
s∈S ∆(Ys), with Ys = Y for all s ∈ S.

4.5 Sure Thing Principle

For each event E ⊂ S, there is obviously a corresponding contingent expected
utility function

UE(λE) =
∑

s∈E
ps

∑
y∈Y

λs(y) v(y) (20)

which represents the contingent preference ordering �∼E on the set ∆(Y E).

Given λE , µE ∈ ∆(Y E) and νS\E ∈ ∆(Y S\E), let (λE , νS\E) denote the com-
bination of the conditional lottery λE if E occurs with νS\E if S \ E occurs.
Similarly for (µE , νS\E). Then the following extension of the sure thing prin-
ciple (STP) in Section 2.2 can be derived in exactly the same way as (3):

(STP) Sure Thing Principle. Given any event E ⊂ S, there exists a contingent
preference ordering �∼E on ∆(Y E) satisfying

λE �∼E µE ⇐⇒ (λE , νS\E) �∼ (µE , νS\E)

for all λE , µE ∈ ∆(Y E) and all νS\E ∈ ∆(Y S\E).

The following preliminary Lemma 4.1 shows that the four conditions (O), (I*),
(RO) and (STP) are not logically independent, In fact, as Raiffa (1961) im-
plicitly suggests in his discussion of the Ellsberg paradox, condition (STP) is
an implication of the three conditions (O), (I*) and (RO) — see also Blume,
Brandenburger and Dekel (1991).

Lemma 4.1: Suppose that the three axioms (O), (I*), and (RO) are satisfied
on ∆(Y S). Then so is (STP).

Proof: Consider any event E ⊂ S and also any lotteries λE , µE ∈ ∆(Y E),
ν̄S\E ∈ ∆(Y S\E) satisfying (λE , ν̄S\E) �∼ (µE , ν̄S\E). For any other lottery
νS\E ∈ ∆(Y S\E), axioms (I*) and (RO) respectively imply that

1
2 (λE , νS\E) + 1

2 (λE , ν̄S\E) �∼ 1
2 (λE , νS\E) + 1

2 (µE , ν̄S\E)
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∼ 1
2 (µE , νS\E) + 1

2 (λE , ν̄S\E)

But then transitivity of �∼ and axiom (I*) imply that (λE , νS\E) �∼ (µE , νS\E).
This confirms condition (STP).

4.6 State Independence

For each non-null state s ∈ S there is an associated event {s} ⊂ S. Because
ps > 0, according to (20) the corresponding contingent preference ordering �∼{s}

on the set ∆(Y ) is represented by the conditional objectively expected utility
function

∑
y∈Y λs(y) v(y). This makes the following condition (SI) an obvious

implication of the fact that the NMUF v is independent of s:

(SI) State Independence. Given any non-null state s ∈ S, the contingent prefer-
ence ordering �∼{s} over ∆(Y {s}) = ∆(Y ) is independent of s; let �∼∗ denote
this state independent preference ordering, which must satisfy conditions
(O), (I*) and (C*), of course.

To summarize, the SEU hypothesis implies the six conditions (O), (I), (C),
(RO), (STP), and (SI). Of course, the stronger SEU* hypothesis has the same
implications, except that there can be no null events.

4.7 Sufficient Conditions

for the SEU and SEU* Hypotheses

The principal contribution of Anscombe and Aumann (1963) was to demon-
strate how, in effect, these six conditions (O), (I), (C), (RO), (STP), and (SI)
are sufficient for the SEU hypothesis to hold.6 In particular, unlike Savage,
there was no explicit need for the ordering of events assumption. Nor for the
assumption that events can be refined indefinitely. Moreover, they were able to
give a much simpler proof, based on the corresponding result for the objective
version of the EU hypothesis. Their proof, however, requires that there exist
both best and worst consequences in the domain Y . The proof given here re-
laxes this unnecessary requirement. It proceeds by way of several intermediate
lemmas. The key Lemma 4.4 is proved by means of an elegant argument that
apparently originated with Fishburn (1970, p. 176).

6In fact Anscombe and Aumann assumed the EU hypothesis directly when the state of
the world is known. This has the effect of merging conditions (O), (I) and (C) into one.
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Of course, the six conditions (O), (I), (C), (RO), (STP), and (SI) are assumed
throughout.

Lemma 4.2: (a) Suppose that E ⊂ S is an event and that λE , µE ∈ ∆(Y E)
satisfy λs

�∼∗ µs for all s ∈ E. Then λE �∼E µE . (b) If in addition λE ∼E µE ,
then λs ∼∗ µs for every non-null state s ∈ E.

Proof: The proof is by induction on m, the number of states in E. For
m = 1, the result is trivial. Suppose that m > 1. As the induction hypothesis,
suppose that the result is true for any event with m − 1 states.

Let s′ be any state in E, and let E′ := E \ {s′}. If λs
�∼∗ µs for all s ∈ E,

then the same is true for all s ∈ E′ ⊂ E, so the induction hypothesis implies
that λE′ �∼E′

µE′
. But λs′ �∼∗ µs′ also, and so for every νS\E′ ∈ ∆(Y S\E′

),
applying (STP) twice yields

(λE , νS\E) = (λE′
, λs′ , νS\E) �∼ (µE′

, λs′ , νS\E) (21)
�∼ (µE′

, µs′ , νS\E) = (µE , νS\E)

Then (STP) implies λE �∼E µE , which confirms that (a) holds for E.

To prove (b), suppose in addition that λE ∼ µE . Then (STP) implies that
(λE , νS\E) ∼ (µE , νS\E). From (21) and transitivity of �∼, it follows that

(λE′
, λs′ , νS\E) ∼ (µE′

, λs′ , νS\E) ∼ (µE′
, µs′ , νS\E) (22)

But then (STP) implies λE′ ∼E′
µE′

, so the induction hypothesis implies that
λs ∼∗ µs for all non-null s ∈ E′. However, (22) and (STP) also imply that
λs′ ∼s′

µs′ and so, unless s′ is null, that λs′ ∼∗ µs′ . Therefore λs ∼∗ µs for all
non-null s ∈ E.

The proof by induction is complete.

Suppose it were true that λ ∼∗ µ for all pure roulette lotteries λ, µ ∈ ∆(Y ).
Because S is finite, Lemma 4.2 would then imply that λS ∼ µS for all λS , µS ∈
∆(Y S). However, the ordering �∼ could then be represented by the trivial
subjective expected utility function

∑
s∈E ps U∗(λs) for arbitrary subjective

probabilities ps and any constant utility function satisfying U∗(λ) = c for all
λ ∈ ∆(Y ). So from now on, exclude the trivial case of universal indifference
by assuming there exist two pure roulette lotteries λ, λ ∈ ∆(Y ) with λ �∗ λ.
Equivalently, assume that the set S is not itself a null event.
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The key idea of the following proof involves adapting the previous construction
of an NMUF for the objective version of the EU hypothesis in Chapter 5.
Because �∼∗ satisfies conditions (O), (I) and (C), Lemma 4.5 of Chapter 5 can
be applied. It implies that �∼∗ can be represented by a normalized expected
utility function U∗ : ∆(Y ) → IR which satisfies

U∗(λ) = 0 and U∗(λ) = 1 (23)

and also the mixture preservation property (MP) that, whenever λ, µ ∈ ∆(Y )
and 0 ≤ α ≤ 1, then

U∗(α λ + (1 − α)µ) = α U∗(λ) + (1 − α) U∗(µ) (24)

As an obvious extension of the notation introduced in Section 2.3, given any
event E ⊂ S and any lottery λ ∈ ∆(Y ), let λ 1E denote the lottery in ∆(Y E)
whose marginal distribution in each state s ∈ E is λs = λ, independent of s.

Lemma 4.3: Given any λ, µ ∈ ∆(Y ), one has

λ �∼∗ µ ⇐⇒ λ 1S �∼ µ 1S

Proof: Lemma 4.2 immediately implies that λ �∼∗ µ =⇒ λ 1S �∼ µ 1S . On
the other hand, because the event S cannot be null, Lemma 4.2 also implies
that µ �∗ λ =⇒ µ 1S � λ 1S . But �∼∗ and �∼ are complete orderings, so
λ 1S �∼ µ 1S =⇒ µ 1S �� λ 1S =⇒ µ ��∗ λ =⇒ λ �∼∗ µ.

By Lemma 4.3, λ 1S � λ 1S . Because the ordering �∼ on ∆(Y S) satisfies con-
ditions (O), (I) and (C), Lemma 4.5 of Chapter 5 shows that �∼ can also be
represented by a normalized expected utility function US : ∆(Y S) → IR which
satisfies

US(λ 1S) = 0 and US(λ 1S) = 1 (25)

and also (MP). Then Lemma 4.6 of Chapter 5 and Lemma 4.3 above imply that
US(λ 1S) and U∗(λ) must be cardinally equivalent functions of λ on the domain
∆(Y ). Because of the two normalizations (23) and (25), for all λ ∈ ∆(Y ) one
has

U∗(λ) = US(λ 1S) (26)

Next, define the functions gs : ∆(Y ) → IR and constants ps (all s ∈ S) by

gs(λ) := US(λ 1S\{s}, λ) and ps := gs(λ) (27)

Evidently, because of the normalization (25), it must be true that

gs(λ) = 0 (28)
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Lemma 4.4: For all λS ∈ ∆(Y S) one has

US(λS) ≡
∑

s∈S
ps U∗(λs) (29)

where ps = 0 iff s is null¿ Also p = 〈ps〉s∈S is a probability distribution in ∆(S)
because ps ≥ 0 for all s ∈ S and

∑
s∈S ps = 1.

Proof: Let m be the number of elements in the finite set S. For all λS ∈
∆(Y S), the two members

∑
s∈S

1
m

(λ 1S\{s}, λs) and
m − 1

m
λ 1S +

1
m

λS (30)

of ∆(Y S) have the common marginal distribution (1 − 1
m )λ + 1

m λs for each
s ∈ S. So condition (RO) implies that they are indifferent. Because US satisfies
(MP), applying US to the two indifferent mixtures in (30) gives the equality

∑
s∈S

1
m

US(λ 1S\{s}, λs) =
m − 1

m
US(λ 1S) +

1
m

US(λS) (31)

But US(λ 1S) = 0 by (25), so (31) and definition (27) imply that

US(λS) =
∑

s∈S
US(λ 1S\{s}, λs) =

∑
s∈S

gs(λs) (32)

Because of (27) and (28), if s is a null state, then gs(λ) = 0 for all λ ∈ ∆(Y ).
In particular, ps = gs(λ) = 0. Otherwise, if s is not null, then (STP) and (27)
jointly imply that ps := gs(λ) > 0.

Because the function US satisfies (MP), equations (26) and (27) evidently imply
that the functions U∗ and gs (s ∈ S) do the same. Also, by (STP), gs(λ) and
U∗(λ) both represent �∼{s} on ∆(Y ) while satisfying (MP). So by Lemma 4.6
of Chapter 5, they must be cardinally equivalent utility functions. By (23) and
(28), U∗(λ) = gs(λ) = 0. Hence, there exists ρ > 0 for which

gs(λ) ≡ ρ U∗(λ) (33)

By (27), putting λ = λ in (33) yields ps = gs(λ) = ρ U∗(λ) = ρ, where the
last equality is true because U∗(λ) = 1, by (23). Therefore (33) becomes
gs(λ) ≡ ps U∗(λ). Substituting this into (32) gives (29). Finally, (25), (29) and
(23) jointly imply that

1 = US(λ 1S) =
∑

s∈S
ps U∗(λ) =

∑
s∈S

ps

which completes the proof.
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Theorem 4: Under conditions (O), (I), (C), (RO), (STP), and (SI), there
exists a unique cardinal equivalence class of NMUFs v : Y → IR and, unless
there is universal indifference, unique subjective probabilities ps (s ∈ S) such
that the ordering �∼ on ∆(Y S) is represented by the expected utility function

US(λS) ≡
∑

s∈S
ps

∑
y∈Y

λs(y) v(y)

Proof: First, define v∗(y) := U∗(1y) for all y ∈ Y . Because λs is the
(finite) mixture

∑
y∈Y λs(y) 1y and U∗ satisfies (MP), it follows that U∗(λs) =∑

y∈Y λs(y) v∗(y) for all s ∈ S. But then, by Lemma 4.4, one has

US(λS) =
∑

s∈S
ps U∗(λs) =

∑
s∈S

ps

∑
y∈Y

λs(y) v∗(y)

As in Chapter 5, v∗ could be replaced by any cardinally equivalent NMUF
v : Y → IR. But, whenever s is non-null, any such replacement leaves the ratio
of utility differences on the right hand side of (17) in Section 4.2 unaffected.
On the other hand, ps = 0 iff s is null. So the subjective probabilities ps are
unique.

When there is no null event, ps > 0 for all s ∈ S, so SEU* is satisfed instead
of SEU.

5 Consequentialist Foundations Reconsidered

5.1 Decision Trees with Both

Chance and Natural Nodes

Simple finite decision trees were introduced in Section 5.2 of Chapter 5, and
trees with chance nodes in Section 6.1 of that chapter. Section 3.1 of this
chapter introduced decision trees with natural nodes but no chance nodes. Now,
in order to allow both horse and roulette lotteries to arise as consequences of
decisions, it is natural to consider decision trees with both natural and chance
nodes, like those in Hammond (1988). These take the form

T = 〈N, N∗, N0, N1, X, n0, N+1(·), π(·|·), S(·), γ(·) 〉

Compared with (5) of Section 3.1, the tree T now has the set of all nodes N
partitioned into four instead of only three sets; the new fourth set is N0, the
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set of chance nodes. Also, at each n ∈ N0 the transition probabilities π(n′|n)
are specified for all n′ ∈ N+1(n), just as in Section 6.1 of Chapter 5. For
reasons explained in that chapter, it is assumed that each π(n′|n) > 0. In
addition, at each terminal node x ∈ X the consequence takes the form of a
lottery γ(x) ∈ ∆(Y S(x)) over CCFs.

The construction of the feasible set F (T ) and of the behaviour set Φβ(T ) pro-
ceeds by backward recursion, much as it did in Sections 5.5 and 6.2 of Chapter 5
and in Section 3.2 of this chapter. When n is a natural node, however, (8) needs
reinterpreting because the sets

∏
n′∈N+1(n)

F (T, n′) and
∏

n′∈N+1(n)
Φβ(T, n′) (34)

are no longer Cartesian products. Instead, the set S(n) ⊂ S is partitioned into
the disjoint non-empty sets S(n′) (n′ ∈ N+1(n)), so that Y S(n) is the Cartesian
product

∏
n′∈N+1(n) Y S(n′). Now, given the finite collection of lotteries λ(n′) ∈

∆(Y S(n′)) (n′ ∈ N+1(n)), their probabilistic product
∏

n′∈N+1(n) λ(n′), like the
product lottery defined in Section 4.4, is the lottery λ(n) ∈ ∆(Y S(n)) which
satisfies

λ(n) (yS(n)) :=
∏

n′∈N+1(n)
λ(n′) (yS(n′))

for all combinations yS(n) = 〈 yS(n′) 〉n′∈N+1(n) ∈ Y S(n). That is, λ(n) is the
multivariate joint distribution of yS(n) which arises when each of its compo-
nents yS(n′) (n′ ∈ N+1(n)) is an independent random variable with distribution
λ(n′). Then the sets in (34) are probabilistic product sets consisting of all the
possible probabilistic products of independent lotteries λ(n′) which, for each
n′ ∈ N+1(n), belong to the sets F (T, n′) and Φβ(T, n′) respectively.

Furthermore, because γ(x) ∈ ∆(Y S(x)) at each terminal node x ∈ X, from (6)
and (7) it follows that, instead of (9), the constructed sets satisfy

∅ �= Φβ(T, n) ⊂ F (T, n) ⊂ ∆(Y S(n))

for all n ∈ N including n = n0.

5.2 Consequentialism and Contingent Utilities

In this new framework, the consequentialist hypothesis of Chapter 5 and of
Section 3.3 requires that, for each event E ⊂ S, there must be a contingent
choice function CE

β defined on the domain of non-empty finite subsets of ∆(Y E),
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and satisfying
Φβ(T ) = CE

β (F (T )) ⊂ F (T ) ⊂ ∆(Y E) (35)

for all decision trees T such that S(n0) = E at the initial node n0 of T . Suppose
also that behaviour is dynamically consistent on the almost unrestricted domain
of finite decision trees in which all transition probabilities π(n′|n) (n ∈ N0;
n′ ∈ N+1(n)) are positive.

Consider the restricted domain of decision trees with no natural nodes. Argu-
ing as in Sections 5.6 and 6.3 of Chapter 5, in the first place each CE

β must
correspond to a contingent revealed preference ordering RE

β on the set ∆(Y E);
this is condition (O), of course. Second, each contingent ordering RE

β must
satisfy the strong independence condition (I*).

Moreover, the following sure thing principle for independent lotteries must be
satisfied. Suppose that the two events E1, E2 ⊂ S are disjoint, and that E =
E1 ∪ E2. Then, whenever λE1 , µE1 ∈ ∆(Y E1), and νE2 ∈ ∆(Y E2), arguing as
in Section 3.4 shows that

λE1 RE1
β µE1 ⇐⇒

(
λE1 × νE2

)
RE

β

(
µE1 × νE2

)
(36)

where λE1 × νE2 and µE1 × νE2 denote probabilistic products. Condition (36)
remains weaker than (STP). Nevertheless, the next subsection introduces an
extra assumption that implies condition (RO). Then (STP) will follow from
(36) because λE1 × νE2 and µE1 × νE2 will be indifferent to (λE1 , νE2) and
(µE1 , νE2) respectively; only the marginal distributions will matter.

Suppose that behaviour also satisfies the continuity hypothesis discussed in
Section 7.1 of Chapter 5. Then, for each non-empty E ⊂ S, there is a unique
cardinal equivalence class of NMUFs vE : Y E → IR whose expected values
represent the revealed preference ordering RE

β . The complete family of all
possible NMUFs vE (∅ �= E ⊂ S) is characterized in Hammond (1988).

5.3 Consequentialist Normal Form Invariance

and Condition (RO)

One of the six conditions discussed in Section 4 was (RO) — reversal of order.
An implication of the results in Hammond (1988) is that this condition cannot
be deduced from the other consequentialist axioms introduced so far. But one
can argue that it is reasonable to impose it anyway as an additional axiom.
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Indeed, let λS be any lottery in ∆(Y S). Then there exist CCFs yS
i ∈ Y S and

associated probabilities qi ≥ 0 (i = 1, 2, . . . , k) such that
∑k

i=1 qi = 1 and
λS =

∑k
i=1 qi 1yS

i
. For each s ∈ S the corresponding marginal distribution

is λs =
∑k

i=1 qi 1yis
. Now consider two decision trees T and T ′ described as

follows.
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Figure 2 Decision trees T and T ′ (when k = 2 and E = { s′, s′′ })

Tree T begins with the chance node n0, which is succeeded by the set of nat-
ural nodes N+1(n0) = {ni | i = 1, 2, . . . , k }. The transition probabilities are
π(ni|n0) = qi (i = 1, 2, . . . , k). Each ni ∈ N+1(n0) is succeeded by the set of
terminal nodes N+1(ni) = {xis | s ∈ S }. The tree T is illustrated in the left
half of Figure 2 for the case when k = 2 and S = { s′, s′′ }. The consequences
are assumed to be given by γ(xis) = 1yis ∈ ∆(Y ) (all s ∈ S).

On the other hand, tree T ′ begins with the natural node n′
0, whose successors

form the set N ′
+1(n

′
0) = {n′

s | s ∈ S }. Then each n′
s ∈ N ′

+1(n
′
0) is a chance

node whose successors form the set N ′
+1(n

′
s) = {x′

is | i = 1, 2, . . . , k } of termi-
nal nodes. The transition probabilities are π′(x′

is|n′
s) = qi (i = 1, 2, . . . , k).

The tree T ′ is illustrated in the right half of Figure 2, again for the case
when k = 2 and S = { s′, s′′ }. The consequences are assumed to be given
by γ′(x′

is) = 1yis ∈ ∆(Y ) (all s ∈ S).

Both trees represent a three-person extensive game between chance, nature, and
the decision maker, who actually has no decision to make. In tree T it is natural
to assume that N+1(n0) is a single information set for nature. Similarly, in tree
T ′ it is natural to assume that N ′

+1(n
′
0) is a single information set for chance.

Then the extensive form games represented by the two trees will have identical
normal forms, in which the decision maker has only one strategy, whereas
chance’s strategies are indexed by i ∈ { 1, 2, . . . , k } and nature’s strategies
are indexed by s ∈ S. Furthermore, in either extensive form game, when
chance chooses i and nature chooses s, the consequence is yis ∈ Y . In fact, the
consequentialist normal form invariance condition is that trees like T and T ′

with identical three-person normal forms should be regarded as giving rise to
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equivalent feasible sets, and that behaviour should generate equivalent choice
sets of consequences in each case. This is a natural extension of the normal
form invariance hypothesis which will be discussed in a later chapter on utility
in non-cooperative games.

Evidently, in tree T the only feasible consequence is λS =
∑k

i=1 qi 1yS
i
, whereas

in tree T ′ it is 〈λs〉s∈S = 〈
∑k

i=1 qi 1yis
〉s∈S . Consequentialist normal form

invariance requires these consequences to be regarded as equivalent. But this
is precisely condition (RO), as stated in Section 4.4.

5.4 State Independent Consequentialism,

No Null Events, and Continuity

Let T and T ′ be two finite decision trees such that S(n) = {s} for all n ∈ N
and S′(n′) = {s′} for all n′ ∈ N ′, so only a single state of nature is possible
in each tree. Thus, there is really no uncertainty about the state. Suppose
also that the feasible sets F (T ) and F (T ′) of random consequences are equal
when regarded as subsets of the set ∆(Y ). Then a very minor extension of
the consequentialist hypothesis (35), to be called state independent consequen-
tialism, requires that the behaviour sets Φβ(T ) and Φβ(T ′) should be equal
subsets of F (T ) = F (T ′) ⊂ ∆(Y ). Thus, because only consequences matter
and the state is certain, that state should not affect the consequences of be-
haviour. Equivalently, there must be a state independent consequence choice
function C∗

β satisfying C∗
β = C

{s}
β for all s ∈ S. Obviously, this implies that the

preference orderings R
{s}
β are state independent, so condition (SI) of Section

4.6 must be satisfied — i.e., there must exist R∗
β such that R

{s}
β = R∗

β for all
s ∈ S.

Next, note that s ∈ S will be a null state iff λ I
{s}
β µ for all λ, µ ∈ ∆(Y ).

Now, state independent consequentialism implies that C∗
β must equal C

{s}
β for

all s ∈ S, not only for all non-null s ∈ S. In particular, the indifference relation
I
{s}
β must be state independent. It follows that, if any state s ∈ S is null, then

all states are null. Because S is finite, Lemma 4.2 implies that then we must
be in the trivial case of universal indifference throughout the domain ∆(Y S),
with Φβ(T ) = F (T ) for every finite decision tree T . This is similar to the
result noted in Section 6.3 of Chapter 5 that, if zero probabilities are allowed
into decision trees, the consequentialist axioms imply universal indifference.
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Outside this trivial case, therefore, state independent consequentialism implies
that there can be no null events.

As for the continuity conditions (C) and (C*) of Section 4.3, the stronger con-
dition (C*) follows provided that behaviour satisfies the continuity hypothesis
set out in Section 7.1 of Chapter 5. Then all six conditions of Section 4 in
this chapter must be satisfied. It has therefore been shown that the usual con-
sequentialist axioms, supplemented by the continuity hypothesis of Chapter 5
and by the above state independence hypothesis, imply that all six conditions
of Theorem 4 are met and also that null events are impossible. By Theorem 4,
the SEU* hypothesis must be satisfied.

5.5 Sufficient Conditions for Consequentialism

State independent consequentialist behaviour that is dynamically consistent on
the almost unrestricted domain of finite decision trees is completely character-
ized by the existence of a preference ordering �∼ on ∆(Y S) satisfying conditions
(I*), (RO), (STP), and (SI), as well as the absence of null states. It has been
shown that these conditions are necessary. Conversely, if these conditions are
all satisfied, then consequentialist and dynamically consistent behaviour β can
be defined on an almost unrestricted domain of finite decision trees in order
to satisfy the property that, for each event E ⊂ S, the contingent revealed
preference ordering RE

β is equal to the contingent preference ordering �∼E on
∆(Y E). This can be proved by essentially the same argument as in Chapter 5.
Indeed, for each node n of each finite decision tree T , define

Ψ(T, n) := {λ ∈ F (T, n) | µ ∈ F (T, n) =⇒ λ �∼S(n) µ } (37)

as in Section 6.4 of Chapter 5. Also, for any decision node n ∈ N∗, let
β(T (n), n) be any subset of N+1(n) with the property that

⋃
n′∈β(T (n),n)

Ψ(T, n′) = Ψ(T, n)

As was argued in Chapter 5, Ψ(T, n) �= ∅ for all n ∈ N , and β(T, n) �= ∅ at
every decision node n of tree T . Obviously, to make β dynamically consistent,
put β(T, n∗) = β(T (n∗), n∗) whenever n∗ is a decision node of tree T .

Now Lemma 6.1 of Chapter 5 can be proved almost as before, showing in
particular that Φβ(T, n) = Ψ(T, n) everywhere. This last equality evidently
implies that R

S(n)
β = �∼S(n). Apart from minor changes in notation, with
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�∼S(n) replacing �∼ throughout, the only new feature of the proof by backward
induction is the need to include an extra case 3, when n ∈ N1 is a natural
node. The following proof is a routine modification of that for when n ∈ N0 is
a chance node.

When n ∈ N1 is a natural node, the relevant new version of the induction
hypothesis used in proving Lemma 6.1 of Chapter 5 is that Φβ(T, n′) = Ψ(T, n′)
for all n′ ∈ N+1(n). Recall too that

Φβ(T, n) =
∏

n′∈N+1(n)
Φβ(T, n′) and F (T, n) =

∏
n′∈N+1(n)

F (T, n′)

(38)
where, as in (34) of this chapter, the products are probabilistic.

Suppose that λ ∈ Φβ(T, n) and µ ∈ F (T, n). By (38), for all n′ ∈ N+1(n) there
exist λ(n′) ∈ Φβ(T, n′) = Ψ(T, n′) and µ(n′) ∈ F (T, n′) such that

λ =
∏

n′∈N+1(n)
λ(n′), µ =

∏
n′∈N+1(n)

µ(n′) (39)

For all n′ ∈ N+1(n), because λ(n′) ∈ Ψ(T, n′), one has λ(n′) �∼S(n′) µ(n′). By
repeatedly applying condition (STP) as in the proof of Lemma 4.2, it follows
that λ �∼S(n) µ. This is true for all µ ∈ F (T, n), so (37) implies that λ ∈ Ψ(T, n).

Conversely, suppose that λ ∈ Ψ(T, n). For all n′ ∈ N+1(n), there must then
exist λ(n′) ∈ F (T, n′) such that λ =

∏
n′∈N+1(n) λ(n′). So for any n′′ ∈ N+1(n)

and any µ(n′′) ∈ F (T, n′′) it must be true that

λ =
∏

n′∈N+1(n)
λ(n′) �∼S(n) µ(n′′) ×

∏
n′∈N+1(n)\{n′′}

λ(n′) (40)

Applying condition (STP) to (40) implies that λ(n′′) �∼S(n′′) µ(n′′). Since
this holds for all µ(n′′) ∈ F (T, n′′), it follows that λ(n′′) ∈ Ψ(T, n′′). But
this is true for all n′′ ∈ N+1(n). Hence, by the induction hypothesis, λ(n′) ∈
Ψ(T, n′) = Φβ(T, n′) for all n′ ∈ N+1(n). So (38) and (39) together imply that
λ ∈ Φβ(T, n).

Therefore Φβ(T, n) = Ψ(T, n) also when n ∈ N1. The proof by induction is
complete for this third case as well.

5.6 Dynamic Programming and Continuous Behaviour

Suppose that there are no null states in S. Suppose too that, for each event
E ⊂ S, the contingent preference ordering �∼E is represented by the conditional
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expected utility function
∑

s∈E
ps

[∑
y∈Y

λs(y) v(y)
]
/

∑
s∈E

ps

This is proportional to UE(λE) given by (20) in Section 4.5, but with the
strictly positive subjective probabilities ps replaced by conditional probabilities
ps/

∑
s∈E ps. Let T be any finite decision tree. As in Section 7.2 of Chapter 5,

a node valuation function w(T, ·) : N → IR can be constructed by backward
recursion. The process starts at each terminal node x ∈ X, where w(T, x)
is simply the conditional expected utility of the random consequence γ(x) =
〈γs(x)〉s∈S(x) ∈ ∆(Y S(x)). That is,

w(T, x) :=
∑

s∈S(x)
ps

∑
y∈Y

γs(x)(y) v(y)/
∑

s∈S(x)
ps

As in Section 7.2 of Chapter 5, at any decision node n ∈ N∗ one has

w(T, n) := max
n′

{w(T, n′) | n′ ∈ N+1(n) }

while at any chance node n ∈ N0 one has

w(T, n) :=
∑

n′∈N+1(n)
π(n′|n) w(T, n′)

Now, at any natural node n ∈ N1 one constructs in addition

w(T, n) :=
∑

n′∈N+1(n)
P (S(n′)|S(n))w(T, n′)

where P (S(n′)|S(n)) :=
∑

s∈S(n′) ps/
∑

s∈S(n) ps is the well defined condi-
tional subjective probability that nature will select a state in the set S(n′),
given that a state in S(n) is already bound to occur after reaching node n. As
in Section 7.2 of Chapter 5, the principle of optimality in dynamic programming
still holds, with subjective expected utility maximizing behaviour β satisfying

∅ �= β(T, n) ⊂ arg max
n′

{w(T, n′) | n′ ∈ N+1(n) } (41)

at any decision node n ∈ N∗. Also, at any node n ∈ N , one has

Φβ(T, n) = arg
w(T, n) =

}
max

λ
{US(n)(λ) | λ ∈ F (T, n) } (42)

The proof of Lemma 7.2 in Chapter 5 can then be adapted easily to show that
SEU behaviour β must satisfy continuity condition (CB). Indeed, it is only
necessary to realize that each natural node n ∈ N1 can be replaced with an
equivalent chance node where nature moves to each node n′ ∈ N+1(n) with
positive conditional probability P (S(n′)|S(n)).
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5.7 Main Theorem

Corresponding to the main result in Section 7.3 of Chapter 5 is the following:

Theorem 5:

(1) Let β be non-trivial state independent consequentialist behaviour which, for
the almost unrestricted domain of finite decision trees with only positive prob-
abilities at all chance nodes, satisfies consequentialist normal form invariance,
dynamic consistency, and the continuous behaviour condition (CB) stated in
Section 7.1 of Chapter 5. Then there exists a unique cardinal equivalence class
of NMUFs v : Y → IR and unique strictly positive subjective probabilities such
that β maximizes subjectively expected utility.

(2) Conversely, let v : Y → IR be any NMUF, and ps (s ∈ S) any strictly
positive subjective probabilities. Then state independent consequentialist be-
haviour β satisfying consequentialist normal form invariance, dynamic consis-
tency and condition (CB) can be defined on the almost unrestricted domain of
finite decision trees with only positive probabilities at all chance nodes in order
that the associated preference ordering Rβ revealed by behaviour β should be
represented by the subjective expected value of v.

6 State-Dependent Consequence Domains

6.1 Evaluation Functions

Up to this point, it has been assumed throughout that there is a fixed conse-
quence domain Y , independent of the state of the world s ∈ S. Yet, as discussed
in the accompanying chapter by Rustichini and Drèze, this is a poor assumption
in many practical examples — for example, if some states lead to the death or
permanent impairment of the decision maker. Consequences arising in such dis-
astrous states seem quite different from those that can be experienced while the
decision maker still enjoys good health. Accordingly, this section considers the
implications of allowing there to be a consequence domain Ys that depends on
the state of the world s ∈ S. Also, in contrast to Karni (1993a, b), it will not be
assumed that consequences in different state-dependent consequence domains
are in any way related through “constant valuation acts” or “state invariance”.
Evidently, the state independence condition (SI) must be dropped.
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Eventually, Lemma 6.1 in this Section will demonstrate what happens when the
five axioms of Sections 4.3–4.5 are applied to the domain ∆(Y S), where Y S is
now the Cartesian product

∏
s∈S Ys of state dependent consequence domains,

and S is once again the finite domain of possible states of the world. In order
to state the result, first let YSs := {s} × Ys for each s ∈ S, and then define
the corresponding universal domain of state–consequence ordered pairs (s, y)
as the set

YS := ∪s∈SYSs (43)

This is an obvious generalization of the domain of “prize–state lotteries” consid-
ered by Karni (1985) — see also the chapter by Rustichini and Drèze. Second,
define an evaluation function (Wilson, 1968; Myerson, 1979) as a real-valued
mapping w(s, y) on the domain YS with the property that the preference or-
dering �∼ on ∆(Y S) is represented by the expected total evaluation, which is
defined for all λS ∈ ∆(Y S) by

US(λS) =
∑

s∈S

∑
ys∈Ys

λs(ys) w(s, ys) (44)

We shall see that evaluation functions differ from state-dependent utility func-
tions because the latter are separate from and independent of subjective prob-
abilities, whereas the former conflate utility functions with subjective proba-
bilities. Also, say that two evaluation functions w(s, y) and w̃(s, y) are co-
cardinally equivalent if and only if there exist real constants ρ > 0, independent
of s, and δs (s ∈ S), such that

w̃(s, y) = δs + ρ w(s, y) (45)

Note then that the transformed expected evaluation satisfies

ŨS(λS) =
∑

s∈S

∑
ys∈Ys

λs(ys) w̃(s, ys) =
∑

s∈S
δs + ρ US(λS) (46)

because
∑

ys∈Ys
λs(ys) = 1 for each s ∈ S. Hence ŨS and US are cardinally

equivalent, so they both represent the same contingent preference ordering on
∆(Y S).

Conversely, suppose that (44) and (46) both represent the same ordering �∼ on
∆(Y S). Let s, s′ be any pair of states in S, and a, b ∈ Ys, c, d ∈ Ys′ any four
consequences with w(s, a) �= w(s, b) and w(s′, c) �= w(s′, d). As was argued in
Section 2.3 of Chapter 5 as well as in connection with (17) of Section 4.2, the
common ratio

w(s, a) − w(s, b)
w(s′, c) − w(s′, d)

=
w̃(s, a) − w̃(s, b)
w̃(s′, c) − w̃(s′, d)

(47)
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of evaluation differences is the constant MRS between shifts in probability from
consequence b to a in state s and shifts in probability from consequence d to
c in state s′. So for all such configurations of s, s′, a, b, c, d there must exist a
constant ρ such that

w̃(s, a) − w̃(s, b)
w(s, a) − w(s, b)

=
w̃(s′, c) − w̃(s′, d)
w(s′, c) − w(s′, d)

= ρ (48)

Moreover ρ > 0 because the non-zero numerator and denominator of each
fraction in (48) must have the same sign. Then (45) follows, so w̃(s, y) and
w(s, y) must be co-cardinally equivalent functions on the domain YS .

For the rest of this section, assume that for every state s ∈ S there exist λs, λs ∈
∆(Ys) such that the contingent ordering �∼{s} on ∆(Ys) satisfies λs �{s} λs.
This loses no generality because, by (STP), states without this property are
null states which can be omitted from S without affecting preferences.

Lemma 6.1: Under the five conditions (O), (I), (C), (RO) and (STP), there
exists a unique co-cardinal equivalence class of evaluation functions w(s, y) such
that the expected sum US(λS) defined by (44) represents the corresponding
preference ordering �∼ on ∆(Y S).

Proof: Because the ordering �∼ satisfies conditions (O), (I) and (C), The-
orem 4 of Chapter 5 shows that �∼ can be represented by a unique cardinal
equivalence class of expected utility functions US : ∆(Y S) → IR which satisfy
the mixture property (MP) on ∆(Y S) (like (24) in Section 4.7). Then normalize
US so that

US(λS) = 0 and US(λ
S
) = 1 (49)

Next, for each state s ∈ S and lottery λ ∈ ∆(Ys), define

us(λ) := US(λS\{s}, λ) (50)

Note that whenever s ∈ S is a null state, then (λS\{s}, λ) ∼ λS for all λ ∈
∆(Ys). In this case, it follows from (50) and (49) that us(λ) ≡ 0 on ∆(Ys).

By an argument similar to that used in the proof of Lemma 4.4, if m is the
number of elements in the finite set S and λS ∈ ∆(Y S), the two lotteries

∑
s∈S

1
m

(λS\{s}, λs) and
m − 1

m
λS +

1
m

λS (51)

in ∆(Y S) both have the common marginal distribution (1 − 1
m ) λs + 1

m λs for
each s ∈ S. So condition (RO) implies that they are indifferent. Because US
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satisfies (MP), applying US to the two indifferent mixtures in (51) gives the
equality

∑
s∈S

1
m

US(λS\{s}, λs) =
m − 1

m
US(λS) +

1
m

US(λS) (52)

But US(λS) = 0 by (49), so (52) and (50) together imply that

US(λS) =
∑

s∈S
US(λS\{s}, λs) =

∑
s∈S

us(λs) (53)

Finally, define w(s, y) := us(1y) for each s ∈ S and y ∈ Ys. Because US satisfies
(MP), (50) implies that so does each function us on the corresponding domain
∆(Ys). It follows that us(λs) ≡

∑
y∈Ys

λs(y)w(s, y) and so, because of (53),
that US(λS) is given by (44).

The fact that there is a unique co-cardinal equivalence class of the functions
w(s, y) follows easily from the discussion preceding the lemma.

6.2 Chosen Probabilities and State Dependent Utilities

An extreme case occurs if the state dependent consequence domains Ys and
Ys′ are disjoint whenever s �= s′. In this case, there seems no hope of inferring
subjective probabilities from behaviour. To see why, suppose that an agent’s
behaviour is observed to maximize the SEU function

US(yS) =
∑

s∈S
ps v(ys)

where ps > 0 for all s ∈ S. Then the same behaviour will also maximize the
equivalent SEU function

US(yS) =
∑

s∈S
p̃s ṽ(ys)

for any positive subjective probabilities p̃s satisfying
∑

s∈S p̃s = 1, provided
that ṽ(y) = ps v(ys)/p̃s for all y ∈ Ys. Without further information, there is no
way of disentangling subjective probabilities from utilities.

Following a suggestion of Karni, Schmeidler and Vind (1983), such additional
information could be inferred from hypothetical behaviour when probabilities
ps (s ∈ S) happen to be specified. The idea is that, though the agent does not
know the true probabilities of the different states of the world, nevertheless it
should be possible for coherent decisions to emerge if the agent happened to
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discover what the true probabilities are. In particular, if those true probabil-
ities happen to coincide with the agent’s subjective probabilities, the agent’s
behaviour should be the same whether or not these true probabilities are known.

A somewhat extreme version of this assumption will be used here. Following
Karni (1985, Section 1.6), Schervish, Seidenfeld and Kadane (1990), and also
Karni and Schmeidler (1991), it will be assumed that the decision-maker can
handle problems involving not only hypothetical probabilities, but also hypo-
thetical choices of probabilities. Take, for instance, problems where the states
of nature are indeed natural disasters, weather events, etc. It will be assumed
that the decision-maker can rank prospects of the following general kind: A
probability of 2% each year of a major earthquake? Or 1% each year of a
devastating hundred year flood? Or 4% each year of a serious forest fire set off
by lightning? More specifically, the assumption is that the decision-maker can
resolve such issues within a coherent framework of decision analysis. Certainly,
if the SEU hypothesis holds, it can be applied to decide such issues. Drèze’s
(1961, 1987) theory of “moral hazard” is based on a somewhat related idea.
But Drèze assumes that the agent can influence the choice of state, as opposed
to the choice of probabilities of different states.

For this reason, it will be assumed that there exists an additional preference
ordering �∼S on the whole extended lottery domain ∆(YS), where YS , defined
by (43), is the universal state–consequence domain of pairs (s, y). Thus, �∼S

satisfies condition (O). Furthermore, assume that �∼S satisfies the obvious coun-
terparts of conditions (I) and (C) for the domain ∆(YS). Obviously, these con-
ditions (O) and (I) can be given a consequentialist justification, along the lines
of that in Sections 5 and 6 of Chapter 5, by considering a suitably extended
domain of decision trees in which natural nodes become replaced by chance
nodes, and there are even several copies of natural nodes so that opportunities
to affect the probabilities attached to states of nature are incorporated in the
tree. Arguing as in that chapter, there must exist a unique cardinal equiva-
lence class of extended NMUFs vS on the domain YS whose expected values all
represent the ordering �∼S on ∆(YS). As a function vS(s, y) of both the state
s ∈ S and the consequence y ∈ Ys, each such function is a state-dependent
utility of the kind considered in the accompanying chapter by Rustichini and
Drèze.

Note next that each ∆(Ys) is effectively the same as the set

∆(YSs) := {λ ∈ ∆(YS) | λ({s} × Ys) = 1 } (54)

of lotteries attaching probability one to the state s ∈ S. So, after excluding
states in which the contingent preference ordering �∼{s} on ∆(Ys) is trivial, as
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in Section 6.1, it will be assumed that each �∼{s} is identical to the ordering �∼S

restricted to the corresponding set ∆(YSs). But these orderings are represented
by the expected values of the two respective NMUFs w(s, y) and vS(s, y) on
the common domain Ys. So these NMUFs are cardinally equivalent functions
of y. Hence, there must exist constants ρs > 0 and δs such that on Ys one has

w(s, y) ≡ δs + ρs vS(s, y) (55)

Now define ρ :=
∑

s∈S ρs > 0 and, for all s ∈ S, the ratios ps := ρs/ρ. Clearly
each ps > 0 and

∑
s∈S ps = 1. Therefore the ratios ps can be interpreted as

subjective probabilities. Furthermore, because �∼ on ∆(Y S) is represented by
the expected total evaluation (44), it is also represented by the expectation
of the cardinally equivalent NMUF vS(yS) :=

∑
s∈S ps vS(s, ys). Note that

each CCF yS ∈ Y S is subjectively equivalent to the lottery in ∆(Y ) with
corresponding objective probabilities ps(ys) for all s ∈ S.

Because of (55), one has w(s, ỹs) − w(s, ys) = ρs [vS(s, ỹs) − vS(s, ys)] for any
state s ∈ S and any pair of consequences ys, ỹs ∈ Ys. Therefore,

ps

ps′
=

ρs

ρs′
=

w(s, ỹs) − w(s, ys)
w(s′, ỹs′) − w(s′, ys′)

· vS(s′, ỹs′) − vS(s′, ys′)
vS(s, ỹs) − vS(s, ys)

(56)

This formula enables ratios of subjective probabilities to be inferred uniquely
in an obvious way from marginal rates of substitution (MRSs) between shifts in
objective probability, expressed in the form of ratios of utility differences. The
first term of the product is the MRS between changes in the probabilities of
consequences in two different states of the kind considered in (47). The second
term is a four-way ratio of utility differences that equals the MRS between shifts
in probability from (s′, ỹs′) to (s′, ys′) and shifts in probability from (s, ỹs) to
(s, ys).

To summarize the results of the above discussion:

Lemma 6.2. Suppose that:

1. conditions (O), (I), and (C) apply to the ordering �∼S on the domain ∆(YS);

2. conditions (O), (I), (C), (RO) and (STP) apply to the ordering �∼ on
∆(Y S);

3. for each s ∈ S, the contingent preference ordering �∼{s} on ∆(Ys) is iden-
tical to the restriction of the ordering �∼S to this set, regarded as equal to
∆(YSs) defined by (54);



Subjective Expected Utility 37

4. for each s ∈ S, there exist λ̄s, λs ∈ ∆(Ys) such that λ̄s �{s} λs.

Then there exist unique positive subjective probabilities ps (s ∈ S) and a unique
cardinal equivalence class of state independent NMUFs vS : YS → IR such that
the ordering �∼ on ∆(Y S) is represented by the expected utility function

US(λS) ≡
∑

s∈S
ps

∑
ys∈Ys

λs(ys) vS(s, ys)

6.3 State Independent Utilities

So far, no attention has been paid to the possibility of the same consequence
arising in different states of the world. Apart from being unrealistic, this also
means that the theory set out in the previous sections of this chapter has
not really been generalized. In fact, we have merely gone from one extreme of
identical consequence domains in all states to the other extreme of consequence
domains in different states being treated as if they were pairwise disjoint. Here
the implications of treating the same consequence in a different state of the
world as really the same consequence will be explored.

First introduce the notation
Ŷ = ∪s∈SYs (57)

for the union domain of all consequences that can occur in some state of the
world. Then there is a natural embedding φ : ∆(YS) → ∆(Ŷ ) from lotteries
λS over the universal domain YS defined by (43) to lotteries over Ŷ . After
adopting the convention that λS(s, y) = 0 whenever y �∈ Ys, this embedding
can be defined by

φ(λS)(y) :=
∑

s∈S
λS(s, y) (58)

for all λS ∈ ∆(YS) and all y ∈ Ŷ . Thus, φ(λS)(y) is the total probability of
all state–consequence pairs (s, y) in which the particular consequence y occurs.
Evidently, for all λS , µS ∈ ∆(YS) and all α ∈ (0, 1), definition (58) implies that

φ(α λS + (1 − α) µS) = α φ(λS) + (1 − α) φ(µS) (59)

Lemma 6.3: The mapping φ : ∆(YS) → ∆(Ŷ ) is onto.

Proof: Given any λ ∈ ∆(Ŷ ), let Kλ := { y ∈ Ŷ | λ(y) > 0 } denote the
(finite) support of the distribution λ. For each consequence y ∈ Kλ, choose
any state s(y) ∈ S with the property that y ∈ Ys(y); at least one such state
always exists. Then define λS ∈ ∆(YS) so that λS(s(y), y) = λ(y) for all
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y ∈ Kλ, but λS(s, y) = 0 unless both y ∈ Kλ and s = s(y). Evidently
φ(λS)(y) = λS(s(y), y) = λ(y) for all y ∈ Kλ, and φ(λS)(y) = λ(y) = 0 for all
y �∈ Kλ. This shows that φ(λS) = λ.

The pre-image correspondence ΦS : ∆(Ŷ )→→∆(YS) of φ can be defined, for all
λ ∈ ∆(Ŷ ), by

ΦS(λ) := {λS ∈ ∆(YS) | φ(λS) = λ }
Because of Lemma 6.3, ΦS(λ) is never empty. In this framework, it now seems
natural to impose the following modified state independence condition (SI*):
there exists a “state independent consequence” preference relation �∼Y on ∆(Ŷ )
with the property that, for all pairs λS , µS ∈ ∆(YS), one has

λS
�∼S µS ⇐⇒ φ(λS) �∼Y φ(µS) (60)

Thus, in deciding between the pair λS , µS ∈ ∆(YS), it is enough to consider
the induced consequence lotteries φ(λS), φ(µS); the states in which the various
consequences occur are irrelevant.

In the special case of a state independent consequence domain, so that Ys = Y
for all s ∈ S, condition (SI*) evidently implies that �∼S reduces to an ordering
on ∆(Y ). But condition (SI*) can also hold when the domains Ys depend on
the state; they could even be pairwise disjoint.

Lemma 6.4: Suppose that conditions (O), (I), (C) and (SI*) apply to the
ordering �∼S on the domain ∆(YS). Then the relation �∼Y satisfies conditions
(O), (I), and (C) on ∆(Ŷ ).

Proof: Throughout the following proof, given any three lotteries λ, µ, ν ∈
∆(Ŷ ), let λS , µS , νS ∈ ∆(YS) denote arbitrarily chosen members of ΦS(λ),
ΦS(µ) and ΦS(ν) respectively. That is, suppose λ = φ(λS), µ = φ(µS), and
ν = φ(νS). Because of (59), it follows that

φ(α λS + (1 − α) νS) = α λ + (1 − α) ν

and φ(α µS + (1 − α) νS) = α µ + (1 − α) ν (61)

Condition (O). First, for any λ ∈ ∆(Ŷ ) one has λS
�∼S λS and so λ �∼Y λ,

thus confirming that �∼Y is reflexive. Second, for any λ, µ ∈ ∆(Ŷ ) one has
λS

�∼S µS or µS
�∼S λS , and so λ �∼Y µ or µ �∼Y λ, thus confirming that

�∼Y is complete. Finally, if λ, µ, ν ∈ ∆(Ŷ ) satisfy λ �∼Y µ and µ �∼Y ν, then
λS

�∼S µS and µS
�∼S νS . Therefore transitivity of �∼S implies λS

�∼S νS

and so λ �∼Y ν, thus confirming that �∼Y is transitive. So �∼Y is a preference
ordering.
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Condition (I). Suppose that 0 < α < 1. Because �∼S satisfies condition (I), it
follows from (60) and (61) that

λ �Y µ =⇒ λS �S µS =⇒ α λS + (1 − α) νS �S α µS + (1 − α) νS

=⇒ α λ + (1 − α) ν �Y α µ + (1 − α) ν

Therefore �∼Y also satisfies condition (I).

Condition (C). Suppose that λ �Y µ and µ �Y ν. Then λS �S µS and
also µS �S νS . Because �S satisfies condition (C), it follows that there exist
α′, α′′ ∈ (0, 1) such that α′ λS+(1−α′) νS �S µS and µS �S α′′ λS+(1−α′′) νS .
Then (59) and (61) together imply that α′ λ + (1 − α′) ν �Y µ, and also that
µ �Y α′′ λ + (1 − α′′) ν. Therefore �∼Y also satisfies condition (C).

The following is the main result in this chapter for state-dependent consequence
domains:

Theorem 6. Suppose that:

1. conditions (O), (I), (C) and (SI*) apply to the ordering �∼S on the domain
∆(YS);

2. conditions (O), (I), (C), (RO) and (STP) apply to the ordering �∼ on the
domain ∆(Y S);

3. for each s ∈ S, the contingent preference ordering �∼{s} on ∆(Ys) is identi-
cal to the restriction of the ordering �∼S to this set, when ∆(Ys) is regarded
as equal to ∆(YSs) defined by (54);

4. for each s ∈ S, there exist consequences y
s
, ys ∈ Ys such that (s, ys) �S

(s, y
s
).

Then there exists a unique cardinal equivalence class of state-independent
NMUFs v̂ defined on the union consequence domain Ŷ , as well as unique posi-
tive subjective probabilities ps (s ∈ S) such that, for every v̂ in the equivalence
class, the ordering �∼ on ∆(Y S) is represented by the expected value of

vS(yS) ≡
∑

s∈S
ps v̂(ys) (62)

Proof: By the first hypothesis and Lemma 6.4, the associated ordering �∼Y

on ∆(Ŷ ) satisfies conditions (O), (I), and (C). So Theorem 4 which concludes
Section 4 of Chapter 5 implies that there exists a unique cardinal equivalence
class of NMUFs Û : ∆(Ŷ ) → IR which represent �∼Y while satisfying the mixture
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property (MP). Define v̂(y) := Û(1y) for all y ∈ Ŷ . Then v̂ is state independent
and belongs to a unique cardinal equivalence class. Because Û satisfies (MP),
condition (SI*) implies that �∼S on ∆(YS) must be represented by the expected
utility function US defined by

US(λS) := Û(φ(λS)) =
∑

y∈Y
φ(λS)(y) v̂(y)

=
∑

s∈S

∑
y∈Ys

λS(s, y) v̂(y)

where the last equality follows from (58).

Let s ∈ S be any state. Note that each λs ∈ ∆(Y {s}) = ∆(Ys) corresponds
uniquely to the lottery λSs ∈ ∆(YS) satisfying λSs(s, y) = λs(y) for all y ∈
Ys, and so λSs({s} × Ys) = 1. It follows that the restriction �∼{s} of the
preference ordering to ∆(Y {s}) is represented by both the expected utility
functions

∑
y∈Ys

λs(y) v̂(y) and
∑

y∈Ys
λs(y)w(s, y) of λs. Hence, the two

functions v̂ and w(s, ·) of y must be cardinally equivalent on ∆(Y {s}) and on
∆(Ys). This implies that for each state s ∈ S, there exist constants ρs > 0 and
δs such that w(s, y) ≡ δs + ρs v̂(y) on Ys.

Now let ps := ρs/ρ, where ρ :=
∑

s∈S ρs > 0. Also ps > 0. Then
∑

s∈S ps = 1,
so the constants ps (s ∈ S) are probabilities. Also, w(s, y) ≡ δs + ρ ps v̂(y).
Therefore, by Lemma 6.1 in Section 6.1 and (44), the preference ordering �∼ on
∆(Y S) is represented by the expected value of

vS(yS) := US(1yS ) =
∑

s∈S
w(s, ys) =

∑
s∈S

δs + ρ
∑

s∈S
ps v̂(ys)

It follows that �∼ is also represented by the objectively expected value of the
NMUF (62).

Finally, the subjective conditional probabilities ps (s ∈ S) are unique because
each ratio ps/ps′ is given by the unique corresponding ratio (56) of utility
differences.

7 Countable Events

7.1 Bounded Preferences

Up to now, the set S of possible states of the world has been finite throughout.
Here, this assumption will be relaxed to allow both S and some conditioning
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events E ⊂ S to be countably infinite. The Anscombe and Aumann framework
of Section 4 will still be used. Then the SEU hypothesis remains unchanged
except that the summation

∑
s∈S in (16) may be over infinitely many states.

Of course, the six conditions that were set out in Section 4 all remain necessary.

Suppose that the set S is countably infinite and that ps (s ∈ S) are any sub-
jective probabilities. Then any λS ∈ ∆(Y S) is subjectively equivalent to the
lottery λ with λ(y) =

∑
s∈S ps λs(y). Because λ(y) can be positive for in-

finitely many y ∈ Y , it follows that λ is not in general a member of ∆(Y ),
the set of simple or finitely supported lotteries on Y . Instead, λ belongs to
∆∗(Y ), the set of all discrete lotteries over Y , whose support can be count-
ably infinite rather than finite. In order to extend the objective EU hypothesis
to ∆∗(Y ), Section 8.2 of Chapter 5 introduced condition (B), requiring each
NMUF v : Y → IR to be bounded. Thus, following the argument of that section,
if subjective expected utility is to be well defined for all possible λS ∈ ∆(Y S),
even when S is infinite, then condition (B) must hold. But also necessary is the
appropriately reformulated dominance condition (D) requiring that, whenever
λi, µi ∈ ∆∗(Y ) and αi > 0 with λi

�∼∗ µi (i = 1, 2, . . .) and
∑∞

i=1 αi = 1,
then

∑∞
i=1 αi λi

�∼∗ ∑∞
i=1 αi µi. Section 8.5 of Chapter 5 shows how (D) can

replace (B) in the set of sufficient conditions, and Section 8.7 of that chapter
shows how (D) can be given a consequentialist justification. For this reason,
condition (D) will be included in the following discussion, but condition (B)
will be excluded.

7.2 Event Continuity

However, the seven conditions (O), (I*), (C*), (RO), (STP), (SI) and (D) are
not sufficient on their own for the SEU hypothesis to hold. Indeed, there exist
utility functions UE(λE) (E ⊂ S) satisfying (MP) such that, whenever E and
E′ are infinite sets but E \ E′ and E′ \ E are finite, then

UE∪E′
(λE∪E′

) = UE(λE) = UE′
(λE′

) = UE∩E′
(λE∩E′

)

whereas whenever E1 and E2 are disjoint sets, then

UE1∪E2(λE1∪E2) = UE1(λE1) + UE2(λE2)

In this case, each individual state of the world s ∈ S and each finite event E ⊂ S
must be null. In particular, any subjective probabilities must satisfy ps = 0
for all s ∈ S. Therefore, except in the trivial case of universal indifference, it
cannot be true that US(λS) =

∑
s∈S ps U∗(λs) when S is infinite.
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One attempt to exclude such awkward possibilities would be to postulate, fol-
lowing Savage (1954, p. 39, P6), that if E is any infinite subset of S, and if
λE , µE ∈ ∆(Y E) satisfy λE �E µE , then for any ν ∈ ∆(Y ) there is a finite
partition ∪r

k=1Ek of E into r small enough pairwise disjoint subsets such that,
for k = 1, 2, . . . , r, both (λE\Ek , ν 1Ek) �E µE and λE �E (µE\Ek , ν 1Ek).
However, as shown by Fishburn (1970, ch. 14), this axiom implies that S must
be uncountably infinite and also that ps = 0 for all s ∈ S.

So a more suitable alternative seems to be the following condition, suggested
by Fishburn (1982, p. 126, axiom F7). Suppose that

E1 ⊂ E2 ⊂ . . . ⊂ Ek ⊂ Ek+1 ⊂ . . . ⊂ S and E∗ = ∪∞
k=1 Ek (63)

Then the event continuity condition (EC) requires that, for all events E and
all λ, µ ∈ ∆(Y ) satisfying both λ �∗ µ and (λ 1E∗

, µ 1S\E∗
) � (λ 1E , µ 1S\E),

there must exist a finite k such that (λ 1Ek , µ 1S\Ek) � (λ 1E , µ 1S\E).

To see why this condition is necessary for the SEU hypothesis to hold, note
how the hypotheses of condition (EC) imply that U∗(λ) > U∗(µ) and also that

P (E∗) U∗(λ) + [1 − P (E∗)]U∗(µ) > P (E) U∗(λ) + [1 − P (E)]U∗(µ)

Hence P (E∗) > P (E). But E∗ = E1 ∪ [
⋃∞

k=1 (Ek+1 \ Ek)], where E1 and
Ek+1 \ Ek (k = 1, 2, . . .) are all pairwise disjoint events. So

P (E∗) = P (E1) +
∑∞

k=1
[P (Ek+1) − P (Ek)] = lim

k→∞
P (Ek)

From this it follows that, for all large enough k, one has P (Ek) > P (E) and so
(λ 1Ek , µ 1S\Ek) � (λ 1E , µ 1S\E). This confirms condition (EC).

7.3 Event Dominance

One other condition will be needed in order to establish the SEU hypothesis
for a countably infinite state space. This is the event dominance condition
(ED) requiring that, whenever the lotteries µS ∈ ∆∗(Y S) and λ ∈ ∆(Y ) are
given, then µs

�∼∗ λ (all s ∈ S) implies µS �∼ λ 1S , and µs
≺∼∗ λ (all s ∈ S)

implies µS ≺∼ λ 1S . Clearly, this condition is closely related to the probability
dominance condition (PD) discussed in Section 9 of Chapter 5. It even has a
similar consequentialist justification. Moreover, Savage’s (1954) postulate P7
is analogous — it requires that whenever yS , zS ∈ Y S , then yS �∼ zs 1S (all
s ∈ S) implies yS �∼ zS , and yS ≺∼ zs 1S (all s ∈ S) implies yS ≺∼ zS . In fact, a
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postulate which evidently strengthens both (ED) and Savage’s P7 is the strong
event dominance condition (ED*) requiring that, whenever λS , µS ∈ ∆∗(Y S)
are given, then µs

�∼∗ λs 1S (all s ∈ S) implies µS �∼ λS , and µs
≺∼ λs 1S (all

s ∈ S) implies µS ≺∼ λS .

Obviously, condition (ED*) is necessary for the SEU hypothesis to hold when
S is countably infinite.

7.4 Sufficient Conditions for SEU and SEU*

Whenever S is a countably infinite set, the nine conditions (O), (I), (C), (RO),
(STP), (SI), (D), (EC), and (ED) are sufficient for the SEU hypothesis to be
valid on the domain ∆∗(Y S). This will not be proved here, however, since it is
an obvious corollary of a more general result in the next section, and much of
the proof would then have to be repeated there.

8 Subjective Probability Measures

8.1 Measurable Expected Utility

In this section, the set S of possible states of the world can be an infinite set, not
necessarily even countably infinite. However, S will be equipped with a σ-field
S, to use the standard terminology set out in Section 9.1 of Chapter 5. Thus
the pair (S,S) constitutes a measurable space. So, in this section, an event E
will be defined as any member of S, implying that all events are measurable.

As in Section 9.2 of Chapter 5, let F denote the σ-field generated by the
singleton sets {y} (y ∈ Y ) together with the upper and lower preference sets
that correspond to the state independent preference ordering �∼∗ defined on
sure consequences in Y . Indeed, condition (M) of that chapter states precisely
that all sets in F should be measurable. Finally, let ∆(Y,F) denote the set of
(countably additive) probability measures on the σ-field F .

Next, for any event E ∈ S, let SE denote the σ-field consisting of all sets
G ∈ S such that G ⊂ E. Of course SS = S. Then define ∆(Y E ,F) as
the set of mappings πE : E → ∆(Y,F) with the property that, for every
measurable set K ∈ F , the real-valued mapping s �→ π(s, K) on the domain
E is measurable when E is given the σ-field SE and the real line is given its
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Borel σ-field. In other words, given any Borel measurable set B ⊂ [0, 1], the
set { s ∈ E | π(s, K) ∈ B } must belong to S. The following result is important
later in Section 8.2:

Lemma 8.1: The set ∆(Y S ,F) is a convex mixture space.

Proof (cf. Fishburn, 1982, p. 134): Suppose that πS , π̃S ∈ ∆(Y S ,F) and
0 < α < 1. Given any δ ∈ [0, 1] and any K ∈ F , define the two sets

A+
δ := { s ∈ S | α π(s, K) + (1 − α) π̃(s, K) > δ }

A−
δ := { s ∈ S | α π(s, K) + (1 − α) π̃(s, K) < δ }

Clearly, in order to show that α πS + (1 − α) π̃S ∈ ∆(Y S ,F), it is enough to
prove that, for all δ ∈ [0, 1], both A+

δ and A−
δ are measurable sets in S. In fact,

it will be proved that A+
δ ∈ S; the proof that A−

δ ∈ S is similar.

Let Q ⊂ IR denote the set of rational numbers. Given any pair r, r̃ ∈ Q with
r + r̃ > δ, define

E(r, r̃) := { s ∈ S | π(s, K) > r/α and π̃(s, K) > r̃/(1 − α) }

Note that E(r, r̃) is measurable as the intersection of two measurable sets in S.
Obviously E(r, r̃) ⊂ A+

δ whenever r + r̃ > δ. Also, for all s ∈ A+
δ , there

exist rational numbers r, r̃ satisfying r + r̃ > δ such that α π(s, K) > r and
(1 − α) π̃(s, K) > r̃. Therefore

A+
δ =

⋃
r,r̃∈Q

{E(r, r̃) | r + r̃ > δ }

Because A+
δ is the union of a subfamily of the countable family of measurable

sets E(r, r̃) with r and r̃ both rational, A+
δ must also be measurable.

The SEU hypothesis requires that there exist an NMUF v : Y → IR and
a subjective probability measure P (·) defined on S such that the preference
ordering �∼ on the domain ∆(Y S ,F) is represented by a subjective expected
utility function in the form of the double integral

US(πS) =
∫

Y

[∫
S

π(s, dy)P (ds)
]

v(y)

A standard result in the theory of integration is Fubini’s theorem, stating that
the order of integration in a double integral is immaterial. A useful extension
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of this result, due to Halmos (1950, Section 36, exercise 3), here implies that
the mapping s �→ U∗(π(s)) :=

∫
Y

π(s, dy) v(y) is measurable, and moreover

US(πS) =
∫

S

[∫
Y

π(s, dy) v(y)
]

P (ds) =
∫

S

U∗(π(s))P (ds) (64)

Next, for any measurable event E ∈ S, the contingent ordering �∼E on the
domain ∆(Y E ,F) is represented by the double integral

UE(πE) =
∫

Y

∫
E

π(s, dy)P (ds) v(y) =
∫

E

U∗(π(s))P (ds)

In an obvious extension of previous notation, for any measurable event E ∈ S
and any π ∈ ∆(Y,F), let π 1E ∈ ∆(Y E ,F) denote the state independent
measure with π(s, K) = π(K) for all s ∈ E and all K ∈ F . Observe that, for
all π ∈ ∆(Y,F), one has

UE(π 1E) = P (E)
∫

Y

π(dy) v(y) = P (E) U∗(π) (65)

and in particular, US(π 1S) = U∗(π).

Note that the previous state independence condition (SI) should be changed
because when S is uncountably infinite, it is possible for every state to be null
without being forced into the trivial case of universal indifference. Instead, a
reformulated condition (SI) will require the existence of a state independent
preference ordering �∼∗ on ∆(Y,F) with the property that, for all pairs π, π̃ ∈
∆(Y,F) and any non-null event E ∈ S, one has π �∼∗ π̃ iff π 1E �∼E π̃ 1E . Then
(65) implies that the expected utility function U∗ must represent the preference
ordering �∼∗ on ∆(Y,F). Furthermore, note that condition (PD) of Chapter 5
is satisfied — i.e., whenever π ∈ ∆(Y,F) and λ ∈ ∆(Y ), then:

π({ y ∈ Y | 1y
�∼∗ λ }) = 1 =⇒ π �∼ λ; π({ y ∈ Y | 1y

≺∼∗ λ }) = 1 =⇒ π ≺∼ λ.

The event continuity condition (EC) of Section 7.2 and the event dominance
condition (ED) of Section 7.3 will also be slightly modified so that they ap-
ply to probability measures. Indeed, the reformulation of condition (EC) in
Section 7.2 requires that, whenever E1 ⊂ E2 ⊂ . . . ⊂ Ek ⊂ Ek+1 ⊂ . . . ⊂ S,
E∗ = ∪∞

k=1 Ek and π, π̃ ∈ ∆(Y,F) satisfy both π �∗ π̃ and (π 1E∗
, π̃ 1S\E∗

) �
(π 1E , π̃ 1S\E), then there must exist a finite k such that (π 1Ek , π̃ 1S\Ek) �
(π 1E , π̃ 1S\E). On the other hand, suppose that the event E ⊂ S, the measure
πE ∈ ∆(Y E ,F), and the simple lottery λ ∈ ∆(Y ) are all given. The refor-
mulated condition (ED) will then require that π(s) �∼∗ λ (all s ∈ E) implies
πE �∼E λ 1E , and also that π(s) ≺∼∗ λ (all s ∈ E) implies πE ≺∼E λ 1E .
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Finally, arguing as in Sections 4 and 7 above and as in Chapter 5, the eleven
conditions (O), (I), (C), (RO), (STP), (SI), (D), (EC), (ED), (M) and (PD),
appropriately modified so that they apply to the domain ∆(Y S ,F), are clearly
necessary for the SEU hypothesis to extend to suitable probability measures.

8.2 Sufficient Conditions for SEU and SEU*

The purpose of this section is to prove that the eleven conditions (O), (I), (C),
(RO), (STP), (SI), (D), (EC), (ED), (M) and (PD) are together sufficient for
the SEU hypothesis to apply to ∆(Y S ,F). Much of the proof below is adapted
from Fishburn (1982, ch. 10).

First, suppose that π, π ∈ ∆(Y,F) satisfy π �∗ π. If no such pair existed, there
would be universal indifference, in which case any subjective probabilities and
any constant NMUF would allow the SEU hypothesis to be satisfied. Now,
arguing as in Section 4 and using the result of Lemma 8.1, conditions (O),
(I), and (C) imply that there exist a real-valued expected utility function US

defined on the mixture space ∆(Y S ,F) which represents �∼ while satisfying
the mixture preservation property (MP). Moreover, US can be normalized to
satisfy

US(π 1S) = 1 and US(π 1S) = 0 (66)

Then define the revealed subjective probability of each event E ∈ S by

p(E) := US(π 1E , π 1S\E) (67)

Later, Lemma 8.4 will confirm that this definition does yield a countably ad-
ditive probability measure on the σ-field S.

Lemma 8.2: Suppose that the events Ek (k = 1, 2, . . .) and E∗ in S satisfy
the conditions that E1 ⊂ E2 ⊂ . . . ⊂ Ek ⊂ Ek+1 ⊂ . . . ⊂ S and E∗ = ∪∞

k=1 Ek,
as in (63) of Section 7.2. Then for any event E satisfying p(E) < p(E∗), one
has p(E) < p(Ek) for some finite k.

Proof: The proof involves applying condition (EC) for probability measures
to the pair of lotteries π, π ∈ ∆(Y,F). Because of (67), for any event E
satisfying p(E) < p(E∗) one has US(π 1E∗

, π 1S\E∗
) > US(π 1E , π 1S\E). Then

condition (EC) implies that for some finite k one has US(π 1Ek , π 1S\Ek) >
US(π 1E , π 1S\E) and so, because of (67), that p(Ek) > p(E).

For the following lemmas, let U∗ : ∆(Y,F) → IR be the normalized ex-
pected utility function satisfying U∗(π) = US(π 1S) for all π ∈ ∆(Y,F).
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Then U∗ satisfies (MP) because US does. Next, let v : Y → IR satisfy
v(y) = U∗(1y) for all y ∈ Y . Then, as in Chapter 5, because conditions
(O), (I), (C), (D), (M) and (PD) are satisfied on ∆(Y,F), it will be true that
U∗(π) =

∫
Y

π(dy) v(y) for all π ∈ ∆(Y,F). Also, for any πS ∈ ∆(Y S ,F), the
mapping s �→ U∗(π(s)) :=

∫
Y

π(s, dy) v(y) must be measurable, as was argued
in Section 8.1 when demonstrating (64).

Lemma 8.3: Let {Ek | k = 1, 2, . . . , r } be a partition of S into a finite
collection of pairwise disjoint measurable subsets. Whenever πk ∈ ∆(Y,F)
(k = 1, 2, . . . , r) one has

US
(
〈πk 1Ek〉rk=1

)
=

∑r

k=1
p(Ek) U∗(πk) (68)

Proof: Argue as in Lemma 4.4 of Section 4.7, but with the finite set of states
s ∈ S replaced by the finite collection of events Ek (k = 1, 2, . . . , r), and the
lotteries λs replaced by the measures πk.

Lemma 8.4: The function p(E) on the domain S of measurable subsets of S
is a (countably additive) probability measure.

Proof: First, it is obvious from definition (67) and the normalizations in
(66) that p(S) = 1 and p(∅) = 0. So, from (65) and (68), it follows that

U∗(π) = US(π 1S) = 1 and U∗(π) = US(π 1S) = 0 (69)

Also, given any E ∈ S, because of (67) and (66), (STP) implies that

p(E) = US(π 1E , π 1S\E) ≥ US(π 1S) = 0

Next, given any disjoint pair E1, E2 of measurable events, by (67), (68) and
(69) one must have

p(E1 ∪ E2) = US(π 1E1∪E2 , π 1S\(E1∪E2)) = US(π 1E1 , π 1E2 , π 1S\(E1∪E2))
= [ p(E1) + p(E2)]U∗(π) + p(S \ (E1 ∪ E2))U∗(π)
= p(E1) + p(E2)

An easy induction argument now shows that, whenever r > 2 and the events
Ek (k = 1, 2, . . . , r) are pairwise disjoint, then p(∪r

k=1Ek) =
∑r

k=1 p(Ek).
Therefore p(·) is finitely additive.

Next, suppose that G is the countable union ∪∞
k=1Gk of pairwise disjoint events

Gk ∈ S. For r = 1, 2, . . ., define Er := ∪r
k=1Gk. Then G and all the sets Er
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are measurable. Also,

E1 ⊂ E2 ⊂ . . . ⊂ Ek ⊂ Ek+1 ⊂ . . . ⊂ S and G = ∪∞
k=1 Ek

Because p(·) is finitely additive, p(Er) =
∑r

k=1 p(Gk). Because each p(Gk) ≥ 0,
the sequence p(Er) (r = 1, 2, . . .) is non-decreasing. Define p∗ as the supremum
of the probabilities p(Er) (r = 1, 2, . . .). Then

p∗ = lim
r→∞

p(Er) =
∑∞

k=1
p(Gk) ≤ p(G) (70)

In particular, p(Gk) → 0 as k → ∞.

Now, one possibility is that, for some finite r, one has p(Gk) = 0 for all k > r.
Then p(Er) =

∑r
k=1 p(Gk) =

∑∞
k=1 p(Gk) = p∗. In particular, p(Er) ≥ p(Ek)

for k = 1, 2, . . .. By Lemma 8.2, p(Er) < p(G) would imply that p(Er) < p(Ek)
for some finite k, a contradiction. Therefore p∗ = p(Er) ≥ p(G) in this first
case.

Because p(Gk) → 0, the only other possibility is that, for every ε > 0, there
exists r (which depends on ε) such that 0 < p(Gr) < ε. Because p(G \ Gr) =
p(G) − p(Gr), it follows that

p(G) > p(G \ Gr) > p(G) − ε (71)

Then Lemma 8.2 implies that, for some finite k, one has

p(Ek) > p(G \ Gr) (72)

Yet the definition of p∗ implies that p∗ ≥ p(Ek). So from (71) and (72) one has

p∗ ≥ p(Ek) > p(G \ Gr) > p(G) − ε

But this is true for all ε > 0, so p(G) ≤ p∗ in this case as well.

Thus, p(G) ≤ p∗ in both cases. But then (70) implies that p(G) = p∗ =∑∞
k=1 p(Gk), verifying that p is countably additive.

For the next lemma, given any πS ∈ ∆(Y S ,F), define the two bounds

U(πS) := inf
s
{U∗(π(s)) | s ∈ S } and U(πS) := sup

s
{U∗(π(s)) | s ∈ S } (73)

Lemma 8.5: For all πS ∈ ∆(Y S ,F) one has U(πS) ≤ US(πS) ≤ U(πS).
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Proof: First, by Lemma 8.5 of Chapter 5, the bounded utility condition (B)
is also satisfied. Therefore U∗ must be bounded both above and below. So (73)
implies that −∞ < U(πS) ≤ U(πS) < ∞.

The general case occurs when there exists µ ∈ ∆(Y ) such that U∗(µ) < U(πS).
Then there must exist an infinite sequence of lotteries λk (k = 1, 2, . . .) in ∆(Y )
such that U∗(λk) is increasing and U∗(λk) → U(πS) as k → ∞. Clearly, then
U∗(λk) > U∗(µ) for k large enough. In this case, define

αk :=
U∗(λk) − U∗(µ)
U(πS) − U∗(µ)

Then, whenever 0 < α < αk, one has U∗(λk) > α U(πS) + (1 − α) U∗(µ).
Because U∗(π(s)) ≤ U(πS) for all s ∈ S, it follows that λk �∗ α π(s)+(1−α) µ.
By condition (ED), λk 1S �∼ α πS + (1 − α)µ 1S and so

α US(πS) + (1 − α)U∗(µ) ≤ U∗(λk) ≤ U(πS)

Now, as k → ∞, so αk → 1, implying that α US(πS) + (1 − α)U∗(µ) ≤ U(πS)
for all α < 1. Therefore US(πS) ≤ U(πS).

The other, special, case is when U∗(µ) ≥ U(πS) for all µ ∈ ∆(Y ). Given any
fixed s̄ ∈ S, note that U(πS) ≥ U∗(π(s̄)) =

∫
Y

π(s̄, dy) v(y). So, given any
ε > 0, there certainly exists a simple lottery λε ∈ ∆(Y ) such that

U∗(λε) =
∑

y∈Y
λε(y) v(y) ≤ U(πS) + ε (74)

But v(y) = U∗(1y) ≥ U(πS) for all y ∈ Y . Hence U∗(λε) ≥ U(πS) ≥ U∗(π(s))
and so λε

�∼∗ π(s) for all s ∈ S. By condition (ED), it follows that λε 1S �∼ πS .
Because of (74), this implies that U(πS) + ε ≥ U∗(λε) ≥ US(πS). This is true
for all ε > 0. Hence, US(πS) ≤ U(πS) in this second case as well.

The proof that US(πS) ≥ U(πS) is similar, with each inequality sign reversed.

Lemma 8.6: For all πS ∈ ∆(Y S ,F) one has US(πS) =
∫

S
U∗(π(s)) p(ds).

Proof: Let U(πS) and U(πS) be as in (73). Then, for n = 2, 3, . . ., define:

δn := 1
n [ U(πS) − U(πS)]; J1n := [U(πS), U(πS) + δn ];

Jin := (U(πS) + (i − 1) δn, U(πS) + i δn ] (i = 2, 3, . . . , n);
and Ein := { s ∈ S | U∗(π(s)) ∈ Jin } (i = 1, 2, . . . , n).



50 Chapter 5

The sets Jin (i = 1, 2, . . . , n) are pairwise disjoint intervals of the real line, whose
union is the closed interval [U(πS), U(πS)]. Also, as remarked in connection
with showing (64) in Section 8.1, the mapping s �→ U∗(π(s)) is measurable.
Hence, each set Ein is also measurable. But the family Ein (i = 1, 2, . . . , n) is
a partition of S into n pairwise disjoint events, so Lemma 8.4 implies that

∑n

i=1
p(Ein) = 1 (75)

For each i = 1, 2, . . . , n, let λi be any lottery in ∆(Y ) with the property that
U∗(λi) ∈ Jin. By Lemma 8.5, it must be true that

(i − 1) δn ≤ US
(
πEin , λi1S\Ein

)
− U(πS) ≤ i δn (76)

Also, condition (RO) implies that the two members of ∆(Y S ,F) specified by

1
n

∑n

i=1

(
πEin , λi1S\Ein

)
,

1
n

πS +
n − 1

n

〈
1

n − 1

(∑
j �=i

λj

)
1Ein

〉n

i=1

(77)

respectively are indifferent because, for each state s ∈ S, the common marginal
measure is (1− 1

n )λi+ 1
n π(s). But then, because US satisfies (MP), and because

of Lemma 8.3, applying US to the two indifferent prospects in (77) gives

1
n

∑n

i=1
US

(
πEin , λi1S\Ein

)

=
1
n

US(πS) +
n − 1

n

∑n

i=1
p(Ein) · 1

n − 1

∑
j �=i

U∗(λj)

Therefore, because of (75),

US(πS) =
∑n

i=1
US

(
πEin , λi1S\Ein

)
−

∑n

i=1
p(Ein)

∑
j �=i

U∗(λj)

=
∑n

i=1
US

(
πEin , λi1S\Ein

)
−

∑n

i=1
[1 − p(Ein)]U∗(λi)

which implies that

US(πS) − U(πS) =
∑n

i=1

[
US

(
πEin , λi1S\Ein

)
− U(πS)

]

−
∑n

i=1
[1 − p(Ein)] [U∗(λi) − U(πS)] (78)

To simplify notation later, define

Qn :=
∑n

i=1
i p(Ein) (79)
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First, consider what happens when, for each i = 1, 2, . . . , n, the lottery λi ∈
∆(Y ) with U∗(λi) ∈ Jin satisfies the extra restriction

U∗(λi) − U(πS) ≤
(

i − 1 +
1

n − 1

)
δn (80)

Then (78), (76), (80), (75) and (79) together imply that

US(πS) − U(πS)

≥ δn

∑n

i=1
(i − 1) − δn

∑n

i=1

(
i − 1 +

1
n − 1

)
[1 − p(Ein)]

= −δn

∑n

i=1

1
n − 1

[1 − p(Ein)] + δn

∑n

i=1
(i − 1) p(Ein)

= −2 δn + δn Qn (81)

Alternatively, consider what happens when, for each i = 1, 2, . . . , n, the lottery
λi ∈ ∆(Y ) with U∗(λi) ∈ Jin satisfies the extra restriction(

i − 1
n − 1

)
δn ≤ U∗(λi) − U(πS) (82)

Then (78), (76), (82), (75) and (79) together imply that

US(πS) − U(πS) ≤ δn

∑n

i=1
i − δn

∑n

i=1

(
i − 1

n − 1

)
[1 − p(Ein)]

= δn

∑n

i=1

1
n − 1

[1 − p(Ein)] + δn

∑n

i=1
i p(Ein)

= δn + δn Qn (83)

But the definitions of the intervals Jin and of the Lebesgue integral imply that

δn

∑n

i=1
(i − 1) p(Ein) ≤

∫
S

U∗(π(s)) p(ds) − U(πS) ≤ δn

∑n

i=1
i p(Ein)

So, by (75) and (79), it follows that

−δn + δn Qn ≤
∫

S

U∗(π(s)) p(ds) − U(πS) ≤ δn Qn (84)

Now subtract the second inequality in (84) from (81), and the first from (83).
These two operations lead to the double inequality

−2 δn ≤ US(πS) −
∫

S

U∗(π(s)) p(ds) ≤ 2 δn (85)

Finally, because δn = 1
n [U(πS) − U(πS)], the result follows from taking the

limit of (85) as n → ∞ and so δn → 0.
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8.3 Eleven Sufficient Conditions

Theorem 8: Conditions (O), (I), (C), (RO), (STP), (SI), (D), (EC), (ED),
(M) and (PD) are sufficient for the SEU hypothesis to apply to ∆(Y E ,F).

Proof: Lemma 8.6 shows that the ordering �∼ on ∆(Y S ,F) is represented
by the utility integral US(πS) =

∫
S

U∗(π(s)) p(ds), where U∗(π(s)) is defined
by

∫
Y

π(s, dy) v(y). So US(πS) takes the form (64), as required. Also, by
Lemma 8.4, p is a probability measure on the space (S,S).

The above result used eleven sufficient conditions for the SEU model. With so
many conditions, it may help to group them in order to assess the contribution
each makes to the overall result. This is done in Table 1.

domain of
probability simple discrete measures

distributions

domain ∆(Y ) ∆∗(Y ) ∆(Y,F)

conditions for (O), (I), (C) + (D) + (M), (PD)
objective EU [3 conditions] [4 conditions] [6 conditions]

domain ∆(Y S) ∆∗(Y S) ∆(Y S ,F)

extra
conditions for + (RO), (STP), (SI) + (EC), (ED)
subjective EU [6 conditions] [9 conditions] [11 conditions]

(Extra conditions enter as one moves either down or to the right.)

Table 1 Eleven Sufficient Conditions for Expected Utility Maximization

First come the three conditions that were introduced in Chapter 5 as suffi-
cient for objectively expected utility with simple lotteries. These are ordinal-
ity (O), independence (I), and continuity (C). Second, the same chapter
introduced one extra condition for objectively expected utility with discrete
lotteries: dominance (D). Third, the same chapter also introduced two extra
conditions for objectively expected utility with probability measures: measur-
ability (M) and probability dominance (PD). It was noted that conditions
(O), (I), (C) and (D) imply that utility is bounded.
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This chapter first introduced three extra conditions (in addition to (O), (I) and
(C)) for subjectively expected utility with simple lotteries. These are reversal
of order (RO), the sure thing principle (STP), and state independence
(SI). Second, it introduced two extra conditions (in addition to (O), (I), (C),
(D), (RO), (STP) and (SI)) for subjectively expected utility with discrete lot-
teries and an infinite set of states of the world: event continuity (EC) and
event dominance (ED). Finally, adding the two conditions (M) and (PD)
that had already been included for objectively expected utility with probabil-
ity measures gives the entire list of all eleven conditions that are sufficient for
subjectively expected utility with probability measures over both states and
consequences — no further conditions need be added.

Note that the eight conditions (O), (I), (D), (RO), (STP), (SI), (PD) and (ED)
are all justified by consequentialism (or weak extensions). Only the domain
condition (M) and two continuity conditions (C) and (EC) lack a consequen-
tialist justification.

9 Summary and Conclusions

In Section 2, the subjective expected utility (or SEU) hypothesis was stated for
the case when there are no events with objective probabilities. It was shown to
imply the ordering of events condition (OE) in particular. Turning to sufficient
conditions like those in Chapter 5 for the EU hypothesis, Section 3 showed how
consequentialist axioms justify the existence of a preference ordering satisfying
(STP), which is a form of Savage’s sure thing principle. Furthermore, the
axioms rule out null events, but they fail to justify condition (OE), and so do
not imply the SEU hypothesis.

After this essentially false start, Section 4 turned to the framework inspired by
Anscombe and Aumann (1963), with roulette as well as horse lotteries. Par-
ticular ratios of utility differences can then be interpreted as subjective prob-
abilities. For the space ∆(Y S) whose members are simple lotteries with finite
support on the space Y S of contingent consequence functions, Section 4 showed
that necessary and sufficient conditions for the SEU hypothesis are ordinality
(O), independence (I), continuity (C), reversal of order (RO), the sure-thing
principle (STP), and state independence (SI). In fact, as in Chapter 5, stronger
versions of conditions (I) and (C) are also necessary.
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In order to provide a consequentialist justification for conditions (O), (I), (RO),
(STP), and even (SI), Section 5 considered decision trees including moves made
by chance which have objective probabilities, as well as moves made by nature
which lack objective probabilities. It was also shown that these conditions
exhaust all the implications of consequentialism because consequentialist be-
haviour is always possible whenever conditions (O), (I), (RO), (STP), and (SI)
are all satisfied.

Next, Section 6 considered conditions for the SEU model to apply with state
dependent consequence domains, but with state independent utility for con-
sequences which arise in more than one state of the world. These conditions
involve the hypothetical choice of the objective probabilities which might apply
to different states of the world.

The corresponding space ∆∗(Y S) of discrete lotteries on Y S that can have
countably infinite support was considered in Section 7. In addition, S was
allowed to be an arbitrary infinite set. Apart from the dominance condition (D)
that was introduced in Chapter 5, two new conditions of event continuity (EC)
and event dominance (ED) enter the set of necessary and sufficient conditions
for the SEU hypothesis to hold.

Finally, Section 8 considered the space ∆(Y S ,F) of measurable mappings from
states of the world s ∈ S to probability measures on the σ-field F of measurable
sets generated by the singleton and preference subsets of Y S . Here, as in
Chapter 5, two extra conditions enter the list — the obvious measurability
condition (M), and a probability dominance condition (PD) that is different
from condition (D).
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