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Abstract: Previous work on consequentialism (especially in Theory and Decision, 1988, pp. 25–

78) has provided some justification for regarding an agent’s behaviour as “structurally rational” if

and only if there are subjective probabilities, and expected utility is maximized. The key axiom is

that rational behaviour should be explicable as the choice of good consequences. This and other

axioms will be re-assessed critically, together with their logical implications. Their applicability to

behaviour in n-person games will also be discussed. The paper concludes with some discussion of

modelling bounded rationality.

I. THREE CONSEQUENTIALIST AXIOMS

In the little space and brief time allowed to me, I shall try to impart some of the key

ideas of the “consequentialist” approach to rational behaviour. At the same time, I shall

try to assess its significance and to explain its limitations.

Consequentialism relies on the presumption that behaviour is rational if and only if it

is explicable by its consequences. More specifically, the set of consequences which can result

from behaviour should depend only on the set of feasible consequences. And, as the key

assumption, this should be true for an (almost) unrestricted domain of finite decision trees

whose terminal nodes have specified consequences.
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More formally, let Y denote a fixed domain of possible consequences. Let T (Y ) denote

the domain of finite decision trees with consequences in Y .1 Each member T of T (Y ) takes

the form of a list:

〈N, N∗, X, n0, N+1(·), γ(·)〉

whose six components are:

(i) the finite set of nodes N ;

(ii) the subset N∗ ⊂ N of decision nodes;

(iii) the complementary set X = N \ N∗ of terminal nodes;

(iv) the initial node n0 ∈ N ;

(v) the correspondence N+1(·) : N →→N determining what set N+1(n) of nodes immedi-

ately succeeds each node n ∈ N , which satisfies obvious properties ensuring that N

has a tree structure with X as the set of terminal nodes because N+1(x) is empty for

all x ∈ X;

(vi) the mapping γ : X → Y from terminal nodes to associated consequences.

At any decision node n ∈ N∗, each immediate successor n′ ∈ N+1(n) of node n

corresponds to a particular move from n to n′ which the agent can make. Thus behaviour

at n ∈ N∗ can be described by a non-empty “chosen” subset β(T, n) of the set N+1(n) of

all immediate successors of node n.2 The first assumption is:

Axiom 1 (unrestricted domain). There is a behaviour correspondence β whose

values satisfy ∅ 
= β(T, n) ⊂ N+1(n) at every decision node n ∈ N∗ of every decision tree

T ∈ T (Y ).

1 Of course, it is restrictive in general to consider only finite decision trees. But not when
discussing the implications of consequentialism, as is done here. The issue with infinite decision
trees is whether behaviour can be well defined in a way that naturally extends consequentialist
behaviour in finite trees. Obviously, this will require a technical analysis of compactness and
continuity conditions.

2 This formulation does exclude stochastic behaviour, according to which β(T, n) is a probability
distribution over N+1(n). Under the consequentialist axioms set out below, it turns out that a very
strong transitivity axiom — or what Luce (1958, 1959) describes as a “choice axiom” — must be
satisfied. In fact, there must exist a preference ordering over consequences which is maximized by all
the consequences that can occur with positive probability given the agent’s stochastic behaviour.
Thus randomization occurs only over consequences in the highest indifference class of feasible
consequences available to the agent. Furthermore, each consequence must have a positive real
number attached indicating the relative likelihood of that consequence occurring, in case it belongs
to the highest indifference class that the agent can reach.
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It should be noted that Axiom 1 is not entirely innocuous. For example, suppose that

the consequences were extended to include a list of what would result from the different

actions available to the agent at each moment of time. Then important facts about the

structure of the decision tree could be inferred from these extended consequences. So the

domain of decision trees on which behaviour is defined would be limited accordingly. Thus,

Axiom 1 makes sense only when the consequences themselves are do not depend on the

structure of the tree.3 Of course, such independence has been the standard assumption in

classical decision theory.

An important and natural property of the behaviour correspondence concerns subtrees,

which take the form

T (n) = 〈N(n), N∗(n), X(n), n, N+1(·), γ(·)〉

for some initial node n which is any node of T . Here N(n) consists of all nodes in N

which succeed n, including n itself. Of course n becomes the initial node of T (n). Also

N∗(n) = N∗ ∩ N(n), X(n) = X ∩ N(n), while the mappings N+1(·) and γ(·) apply to the

restricted domains N(n) and X(n) respectively. The relevant property I shall assume is:

Axiom 2 (dynamic consistency). In every subtree T (n) of each decision tree T ∈ T (Y ),

and at every decision node n∗ of T (n), one has β(T (n), n∗) = β(T, n∗).

The justification for this second assumption is that both β(T (n), n∗) and β(T, n∗)

describe behaviour at n∗; whether n∗ is regarded as a decision node of the full tree T or

of the subtree T (n) should be irrelevant. It turns out that, for an agent whose tastes are

changing endogenously, even näıve behaviour in decision trees is dynamically consistent in

this sense; for such an agent the inconsistency will be between plans and actual behaviour.4

The most important axiom of consequentialism is the third, which will be stated next. It

involves considering, for any tree T ∈ T (Y ), the feasible set F (T ) of all possible consequences

3 Actually, Prasanta Pattanaik and Robert Sugden tried to convince me of essentially this point
many years ago. Jean-Michel Grandmont and Bertrand Munier were finally more successful during
the conference. I am grateful to all four, and would like to apologize to the first two.

4 See Hammond (1976) for more discussion of näıve behaviour in decision trees, especially the
“potential addict” example. Also, Amos Tversky has suggested that Axiom 2 be called “subtree
consistency.” I am sympathetic, but have not followed this suggestion for two reasons: (i) earlier
papers used the term “dynamic consistency,” and I would like to be consistent myself; (ii) subtrees
do represent dynamic choice possibilities when the tree models decisions which will be made in real
time.
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which can result from the agent’s decisions in T . This set, and the feasible sets F (T (n))

for each subtree T (n) in turn, can be constructed by backward recursion. To do so, let

F (T (x)) be {γ(x)} when x ∈ X is any terminal node, and then define

F (T (n)) =
⋃

n′∈N+1(n)

F (T (n′))

for all decision trees T (n) starting at the other nodes of T . Of course, F (T ) = F (T (n0)).

The following statement of the third axiom also involves the set Φβ(T ) of all possible

consequences which can result from the agent’s decisions when they lie in the behaviour

set β(T, n) at each decision node n ∈ N . This set can also be constructed by backward

recursion through the subtrees of T . The construction starts with Φβ(T (x)) = {γ(x)} for

the trivial subtree T (x) starting at any terminal node x ∈ X, and then proceeds by defining

Φβ(T (n)) =
⋃

n′∈β(T,n)

Φβ(T (n′))

for all other nodes n ∈ N \ X, until it arrives at Φβ(T ) = Φβ(T (n0)).

After these preliminary constructions, I can state:

Axiom 3 (consequentialist behaviour). On the domain of all non-empty finite subsets

of Y , there exists a revealed consequence choice function Cβ which is non-empty valued

and satisfies the property that Φβ(T ) = Cβ(F (T )) for all T ∈ T (Y ).

This means that the set of possible consequences of behaviour should depend only the

feasible set of consequences, so that behaviour can be interpreted as the pursuit of chosen

consequences. The assumption that Cβ(F ) is non-empty for every F in its domain loses no

generality. For, given any non-empty finite set of consequences F ⊂ Y , one can construct

a tree whose only decision node is the initial node n0, while each consequence y ∈ F has a

corresponding terminal node xy for which γ(xy) = y. Then, of course, T is a finite decision

tree in T (Y ) for which F (T ) = F and Φβ(T ) = { y ∈ F | xy ∈ β(T, n0) } 
= ∅.

It is the three “consequentialist” axioms presented above which have such strong im-

plications,5 and so play such a crucial role in all that follows. I want to emphasize very

strongly that none of the other usual rationality hypotheses are being invoked. There is no

5 For obvious reasons, one does not speak of (logical) “consequences.”
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presumption that a preference ordering exists. When we come to risk and uncertainty, there

will be no assumption of independence or of Savage’s sure thing principle. These standard

rationality hypotheses will turn out to be implications of the three axioms set out above,

however. That is what is so striking about them.

II. A REVEALED PREFERENCE ORDERING

In simple decision trees without risk or uncertainty, behaviour satisfying Axioms 1–3

must reveal a preference ordering6 over the consequence domain. Specifically, given the

revealed consequence choice function Cβ defined on the domain consisting of all non-empty

finite subsets of Y , there is a unique corresponding weak preference relation Rβ defined by

y Rβ y′ ⇐⇒ y ∈ Cβ({ y, y′ })

This is the preference revealed by behaviour in any decision tree T whose feasible set F (T )

consists of a pair of consequences { y, y′ } — or of a single consequence in case y = y′.

The relation Rβ is complete because Cβ(F ) is non-empty whenever F = { y, y′ }, so either

y Rβ y′, or y′ Rβ y, or both.

The above definition of Rβ already ensures that

Cβ(F ) = { y ∈ F | y′ ∈ F =⇒ y Rβ y′ } (1)

whenever F is a singleton or a pair set. Then Cβ(F ) consists of precisely those members of

F which maximize the preference relation Rβ . In fact it is not too difficult to prove that (1)

also holds for every finite set F ⊂ Y , no matter how large, and also that Rβ is a preference

ordering. Thus Axioms 1–3 imply:

Ordinal choice. The revealed choice function Cβ defined on the domain of all finite

non-empty subsets of Y corresponds to a preference ordering Rβ defined on the whole of Y .

To save space, however, the proof is not given here — see Hammond (1988, Section 5).

Instead, I just state:

6 Following the terminology of social choice theory, a “preference ordering” means a complete
and transitive binary weak preference relation.
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Theorem 1. Suppose that Y is any consequence domain. Then:

(A) Any behaviour correspondence β satisfying Axioms 1–3 reveals an ordinal choice func-

tion Cβ .

(B) Conversely, given any preference ordering R on Y , there exists an associated behaviour

correspondence β satisfying Axioms 1–3 whose revealed preference ordering Rβ is equal

to R.

Thus, one contentious axiom of structural rationality has become an implication of

other axioms that may be harder to question. Above all, those who argue that a preference

ordering is not necessary for structural rationality owe us an explanation of how they expect

agents to depart from the consequentialist axioms, and how they should behave in decision

trees.7 Perhaps the structure of the tree, as well as the set of feasible consequences, should

be allowed to affect the set of chosen consequences. But would this really be rational?

Note that Theorem 1 includes the converse of its first part. This is important because

it confirms that ordinality is a complete characterization of behaviour satisfying the three

consequentialist axioms. The converse is easily proved by ordinal dynamic programming

arguments, as in Section 8 of Hammond (1988).

III. UNCERTAINTY AND THE SURE THING PRINCIPLE

Formally, let Y denote the consequence domain, and E a fixed non-empty finite set of

possible states of the world. A decision tree with uncertainty is then defined as a list:

T = 〈N, N∗, N1, X, n0, N+1(·), γ(·), S(·)〉

Compared to the definition in Section I, the new features are: (i) N1, the set of natural nodes

at which nature’s move reveals information; and (ii) the event correspondence S : N →→E

specifying what non-empty set S(n) ⊂ E of states of the world is possible after reaching

node n ∈ N . Note that N is now partitioned into the three disjoint sets N∗, N1 and X. At

any natural node n ∈ N1, nature’s move partitions the set S(n) into the collection pairwise

7 Some critics of consequentialism, notably Machina (1989) and McClennen (1990), have offered
such explanations, especially for behaviour that maximizes a preference ordering and yet violates
the independence condition which, as will be discussed in Section V, is one other implication of
consequentialism.
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disjoint subsets S(n′) (n′ ∈ N+1(n)). At any decision node n ∈ N∗, however, the agent’s

move cannot refine what information there is already about the state of the world, and so

it is required that S(n′) = S(n) whenever n′ ∈ N+1(n). Finally, the consequence mapping

γ takes its value γ(x) in the relevant Cartesian product set Y S(x) :=
∏

s∈S(x) Ys at each

terminal node x ∈ X, where each Ys (s ∈ E) is just a copy of the consequence domain Y .8

Thus terminal nodes are associated with profiles γ(x) = 〈ys〉s∈S(x) ∈ Y S(x) of uncertain

contingent consequences rather than with certain consequences y ∈ Y .

An obvious modification of the unrestricted domain Axiom 1 is to require that β(T, n)

be defined throughout all finite decision trees with uncertainty. Axioms 2–3 (dynamic

consistency and consequentialist behaviour) can be applied virtually without change. The

revealed consequence choice function, however, should really be replaced by a collection

CS
β of such functions, one for each non-empty set S ⊂ E. The reason is that feasible sets

and revealed consequence choice sets will be subsets of different Cartesian product sets Y S

(∅ 
= S ⊂ E) rather than just of Y .

The backward recursion construction of Section I must also be adapted to treat natural

nodes n ∈ N1. At such nodes, because choices at different later decision nodes can be made

independently, it is natural to construct the following Cartesian products:

F (T (n)) =
∏

n′∈N+1(n)
F (T (n′)) ⊂

∏
n′∈N+1(n)

Y S(n′) = Y S(n);

Φβ(T (n)) =
∏

n′∈N+1(n)
Φβ(T (n′)) ⊂

∏
n′∈N+1(n)

F (T (n′)) = F (T (n)).

Given any non-empty S ⊂ E, consider the restricted domain T S(Y ) of finite decision

trees with no natural nodes, and with S(x) = S at every terminal node. This restricted

domain is effectively equivalent to T (Y S), the domain of finite decision trees with conse-

quences in Y S . Applying Theorem 1 to this domain establishes the existence of a conditional

preference ordering RS
β on Y S that is revealed by consequentialist behaviour in such trees.

Consequentialism also establishes an important relationship between the different re-

vealed preference orderings RS
β (∅ 
= S ⊂ E). Indeed, let S1 and S2 be two non-empty

disjoint subsets of E, and let S = S1 ∪ S2. Let aS1 , bS1 be two contingent consequences

8 An important generalization allows the consequence domain Ys to depend on the state s. As
one might expect, it then becomes harder to ensure that behaviour reveals subjective probabilities.
However, both the sure thing principle and independence do still follow from the consequentialist
axioms.
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n0

n1

xa

xb

xc

aS1

bS1

cS2

S1

S2

in Y S1 , and cS2 a contingent consequence in Y S2 . Consider the decision tree illustrated in

Figure 1, with an initial natural node n0 whose two successors are: (i) decision node n1,

at which S(n1) = S1; and (ii) terminal node xc, at which S(xc) = S2 and γ(xc) = cS2 .

Suppose that n1 offers the choice of going to either of the terminal nodes xa and xb, at

which S(xa) = S(xb) = S1 while γ(xa) = aS1 and γ(xb) = bS1 .

Figure 1

In this tree the non-trivial feasible sets are F (T (n1)) = { aS1 , bS1 } and

F (T ) = F (T (n0)) = F (T (n1)) × F (T (xc)) = { aS1 , bS1 } × {cS2} = { (aS1 , cS2), (bS1 , cS2) }.

Using the definition of the revealed preference relations RS
β on Y S and RS1

β on Y S1 , as well

as the dynamic consistency assumption that β(T, n1) = β(T (n1), n1), leads to the following

chain of logical equivalences:

aS1 RS1
β bS1 ⇐⇒ aS1 ∈ CS1

β ({ aS1 , bS1 }) = CS1
β (F (T (n1))) ⇐⇒ aS1 ∈ ΦS1

β (T (n1))

⇐⇒ xa ∈ β(T (n1), n1) ⇐⇒ xa ∈ β(T, n1) ⇐⇒ (aS1 , cS2) ∈ ΦS
β (T )

⇐⇒ (aS1 , cS2) ∈ CS
β ({ (aS1 , cS2), (bS1 , cS2) }) ⇐⇒ (aS1 , cS2) RS

β (bS1 , cS2).

Thus, to summarize, consequentialism implies:

Savage’s sure thing principle. Whenever S ⊂ E is partitioned into non-empty sets

S1 ∪ S2, and aS1 , bS1 ∈ Y S1 while cS2 ∈ Y S2 , then

aS1 RS1
β bS1 ⇐⇒ (aS1 , cS2) RS

β (bS1 , cS2).

The main result of this section is:
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Theorem 2. Suppose that Y is any consequence domain and that E is any finite non-empty

set of uncertain states of the world. Then:

(A) For any behaviour correspondence β satisfying Axioms 1–3, the hypothesized revealed

choice functions CS
β , defined for all non-empty S ⊂ E on the domain of finite non-empty

subsets of the appropriate Cartesian product set Y S , must correspond to preference

orderings RS
β which together satisfy the sure-thing principle.

(B) Conversely, given any family of orderings RS (for all non-empty S ⊂ E) defined on

each product set Y S that together satisfy the sure thing principle, there is an associated

behaviour correspondence β satisfying Axioms 1–3 whose revealed preference ordering

Rβ is equal to R.

Part (A) has already been explained, though not proved formally. Like part (B) of

Theorem 1, the converse can be proved by ordinal dynamic programming arguments. See

Hammond (1988) for complete proofs.

IV. UNORDERED EVENTS

One of the principal axioms used by Savage (1954) actually goes back to earlier work

by Keynes, Ramsey, de Finetti and others. This is the ordering of events. It requires the

existence of a weak ordering ≥ on subsets of E, with the idea that the associated strong

ordering S1 > S2 should mean that S1 is more likely, or more probable, than S2. More

specifically, suppose that ȳ and y are respectively “good” and “bad” consequences in Y ,

and that an agent is given the choice between the following two alternative contingent

consequences:

(i) (ȳ 1S1 , y 1S2), representing ȳ for sure if S1 occurs, and y for sure if S2 occurs;

(ii) (y 1S1 , ȳ 1S2), representing y for sure if S1 occurs, and ȳ for sure if S2 occurs.

Then S1 > S2 should be equivalent to (ȳ 1S1 , y 1S2) being preferred to (y 1S1 , ȳ 1S2) for all

pairs ȳ, y with ȳ preferred to y, because it is always preferable to “win” a good consequence

contingent upon a more likely event.

An important corollary of Theorem 2 is that this ordering of events property is not an

implication of the consequentialist axioms, because those axioms imply only the existence

of conditional preference orderings satisfying the sure-thing principle, and no more. To
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establish this, it is enough to exhibit a family of contingent preference orderings satisfying

the sure-thing principle but not the ordering of events.

Indeed, suppose that Y = { y1, y2, y3 }. Also let E = { s1, s2 }. Then let v : Y → � be

the real valued utility function defined by v(yi) := i − 2 (i = 1, 2, 3) whose values will be

assumed to represent the preference ordering Rs
β on Y for each single state s ∈ E. Suppose

too that RE on Y E is represented by the utility function φs1(v(ys1)) + φs2(v(ys2)), where

φs1(v) =
{

v if v ≥ 0

2 v if v < 0
and φs2(v) =

{ 2 v if v ≥ 0

v if v < 0

Because this utility function is additive, it is obvious that the sure thing principle is satisfied.

In this case the total utility of the pair (y1, y2) (meaning y1 if state s1, and y2 if state

s2) is φs1(−1)+φs2(0) = −2, while that of the pair (y2, y1) is φs1(0)+φs2(−1) = −1. Hence

(y2, y1) is preferred to (y1, y2), thus suggesting that s1 is more likely than s2. On the other

hand, the total utility of (y2, y3) is φs1(0) + φs2(1) = 2, while that of the pair (y3, y2) is

φs1(1) + φs2(0) = 1. Hence (y2, y3) is preferred to (y3, y2), thus suggesting that s2 is more

likely than s1. There is no well-defined ordering of the two events {s1} and {s2}.

V. RISK AND UNCERTAINTY COMBINED

Without objective probabilities, consequentialism in decision trees with uncertainty

does not imply the ordering of events, and so a fortiori does not imply that subjective

probabilities are revealed by the agent’s behaviour. With objective probabilities, however,

and given some additional structural assumptions, it will be true that consequentialist be-

haviour must maximize expected utility, where expectations are represented by appropriate

combinations of objective and subjective probabilities.

The first step is to extend once again the definition of a decision tree to accommodate

a set N0 of chance nodes at each of which there is a collection π(n′|n) (n′ ∈ N+1(n)) of

transition probabilities. Here π(n′|n) is the probability of reaching n′ conditional on having

reached n already. Of course π(n′|n) ≥ 0 for all n′ ∈ N+1(n) and
∑

n′∈N+1(n) π(n′|n) = 1

for all n ∈ N0. For reasons that will emerge in due course, in fact I shall consider only

probabilities satisfying π(n′|n) > 0 everywhere. One could argue that parts of the decision

tree that are reached with only zero probability should be pruned off anyway, though in

game theory this leads to severe difficulties in subgames.
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So a finite decision tree becomes a list

T = 〈N, N∗, N0, N1, X, n0, N+1(·), π(·|·), S(·), γ(·)〉

Now N is partitioned into the four sets N∗, N0, N1 and X (though any of the first three

sets could be empty). It is also appropriate to re-define the range of the consequence

mapping γ on X to consist of (simple) probability distributions on the appropriate set

Y S(x), rather than single members of Y S(x). Thus probabilities γ(yS(x)|x) must be defined

for each x ∈ X and yS(x) ∈ Y S(x). Moreover, it must be true that γ(yS(x)|x) > 0 only for

those yS(x) ∈ Y S(x) in the finite support of γ(·|x).

It is also necessary to modify once again the recursive construction of the two sets

F (T (n)) and Φβ(T (n)) for the subtree T (n) starting at each node n ∈ N so as to allow for

chance nodes and probabilistic contingent consequences. In fact, it is natural to take

F (T (n)) =
∑

n′∈β(T,n)
π(n′|n) F (T (n′)); Φβ(T (n)) =

∑
n′∈β(T,n)

π(n′|n) Φβ(T (n′))

at any chance node n ∈ N0 where the transition probabilities are π(n′|n) (n′ ∈ N+1(n)).

Thus each set consists of all possible appropriately probability weighted sums, as n′ ranges

over N+1(n), of the probability distributions belonging to the succeeding sets F (T (n′)) or

Φβ(T (n′)). Finally, at natural nodes the appropriate product sets are no longer Cartesian

products of sets, but rather sets consisting of all the independent joint probability distribu-

tions that can be created by multiplying members of the appropriate sets of probabilities

in every way possible.

The consequentialist axioms 1–3 of Section I, as modified in Section III, can now be

applied to this new extended domain of decision trees. They imply that there exists a

conditional revealed preference ordering RS
β for every non-empty S ⊂ E. The domain of

RS
β is no longer Y S , however, but the set ∆(Y S) of all “simple” probability distributions

over Y S — i.e., all distributions having finite support. Moreover, the sure thing principle

should now be re-stated so that, whenever S1, S2 are non-empty disjoint subsets of E, and

λ, µ ∈ ∆(Y S1) while ν ∈ ∆(Y S2), then

(λ × ν) RS
β (µ × ν) ⇐⇒ λ RS1

β µ

where S = S1 ∪ S2 and × denotes the usual product of the probability distributions.
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This does not exhaust the implications of consequentialism, however. In this new

framework with some objective probabilities, it is also possible to adapt the argument used

in Section III to derive the sure thing principle and establish the following:

Independence condition. Suppose that λ, µ, ν ∈ Y S for some non-empty S ⊂ E, and

that 0 < α ≤ 1. Then α λ + (1 − α) ν RS
β α µ + (1 − α) ν ⇐⇒ λ RS

β µ.

In fact, were zero probabilities allowed in decision trees, one could prove the same result

even when α = 0. The implication would be that ν RS
β ν ⇐⇒ λ RS

β µ for all λ, µ, ν ∈ Y S .

Since the left hand side of this equivalence is always true, so is the right hand side, and so

there must be universal indifference over Y S , for every non-empty S ⊂ E! To avoid this

absurdity with ordinary probabilities requires either restricting the domain to exclude zero

probability moves at chance nodes, as has been done in this paper, or else not imposing

the dynamic consistency condition β(T, n′) = β(T (n), n′) in decision subtrees T (n) which

can only be reached with zero probability. Neither escape is really appropriate in game

theory, however, which has led me to consider decision trees embodying non-Archimedean

probabilities in Hammond (1993a, 1994). Here, though, the exclusion of zero probabilities

can perhaps be forgiven as a simplifying assumption.

By now the following result, whose proof is once again to be found in Hammond (1988),

should come as no surprise:

Theorem 3. Suppose that Y is a given consequence domain, that E is a given non-empty

finite set of possible states of the world. Then:

(A) If behaviour satisfies axioms 1–3 for the domain of finite decision trees with chance

and/or natural nodes in which there are no zero probability moves at any chance

node, then there must exist a family of revealed conditional preference orderings RS
β

on ∆(Y S), one for each non-empty S ⊂ E, satisfying both independence and the sure

thing principle.

(B) Conversely, given any family RS of orderings on the sets ∆(Y S) ( ∅ 
= S ⊂ E) that

satisfies independence and the sure thing principle, there is an associated behaviour

correspondence β satisfying axioms 1–3 in all decision trees without zero probabilities

at any chance node, whose revealed conditional preference ordering RS
β is equal to RS

for each non-empty S ⊂ E.
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VI. SUBJECTIVE PROBABILITY

We remain some way short of Anscombe and Aumann’s (1963) formulation of subjective

probabilities. For one thing, the ratios of those probabilities amount to marginal rates of

substitution between expected von Neumann–Morgenstern utilities conditional on different

events; so far, we have not imposed any continuity on behaviour in a way that even ensures

the existence of a utility function. Another problem is that Anscombe and Aumann assumed

that two probability distributions λ, µ ∈ ∆(Y S) would be equivalent, and so indifferent,

whenever the marginal distributions λs, µs ∈ ∆(Ys) were equal for all s ∈ S. As pointed

out in Section 12 of Hammond (1988), this assumption is crucial in ruling out the kind of

preference pattern observed in Ellsberg’s (1961) “paradox.” Indeed, such patterns cannot

be excluded by the consequentialist axioms on their own without some help from additional

plausible assumptions.

The continuity issue is easily treated. Consider a family of finite decision trees Tπ

which are all identical except for the collection π = 〈π(·|n)〉n∈N0 ∈
∏

n∈N0 ∆0(N+1(n))

of strictly positive probability distributions at each chance node. For each common deci-

sion node n∗ ∈ N∗, there is an induced correspondence π �→→β(Tπ, n∗) from the domain∏
n∈N0 ∆0(N+1(n)) of allowable transition probability distributions at different chance

nodes to the range of non-empty subsets of N+1(n∗). Now, continuity of behaviour gener-

ally requires such a correspondence to be upper hemi-continuous. Where the domain and

the range are both compact sets, as they are here, upper hemi-continuity is equivalent to

the following closed graph property:

Axiom 4 (continuous behaviour as probabilities vary). For each decision node

n∗ ∈ N∗ the graph { (π, n′) ∈
∏

n∈N0 ∆0(N+1(n)) × N+1(n∗) | n′ ∈ β(Tπ, n∗) } of the

correspondence π �→→β(Tπ, n∗) is a relatively closed set.

As is fairly easy to show, it then follows that for each non-empty S ⊂ E, the revealed

conditional preference relation RS
β on ∆(Y S) must have the property that the two sets

{α ∈ [0, 1] | α λ + (1 − α)µ RS
β ν } and {α ∈ [0, 1] | ν RS

β α λ + (1 − α)µ }

are closed, for each triple λ, µ, ν ∈ ∆(Y S). This continuity property is one of Herstein and

Milnor’s (1953) three axioms, applied to the binary relation RS
β . The other two are that
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RS
β is an ordering and that the independence condition is satisfied. The implication of their

main theorem is the existence, for each non-empty S ⊂ E, of a unique cardinal equivalence

class of conditional von Neumann–Morgenstern utility functions (NMUFs) vS such that RS
β

is represented on ∆(Y S) by the expected value IEvS :=
∑

yS∈Y S pS(yS) vS(yS) of vS , where

pS(yS) denotes the probability of yS .

The second issue, regarding the sufficiency of considering only marginal probability

distributions, is much less straightforward. In fact, two extra assumptions are generally

needed to ensure the existence of subjective probabilities. Of these, the first is:

Axiom 5 (certainty equivalence). Suppose that T and T ′ are two decision trees with-

out any natural nodes in which the only differences are in the event sets S(n), S′(n) at each

node n of the common set of nodes N , and in the associated consequences γ(x), γ′(x) which

occur at each terminal node x of the common set of terminal nodes X = X ′. Specifically,

suppose that in tree T there exists a single state e ∈ E such that S(n) = {e} for all n ∈ N ,

while γ(x) is a riskless consequence in Y for all x ∈ X. On the other hand, suppose that

in tree T ′ one has S′(n) = S for all n ∈ N , while γ′(x) = γ(x)1S for all x ∈ X, where

γ(x)1S ∈ Y S denotes the particular constant contingent consequence function whose value

is γ(x) in each state of the world s ∈ S. Then the behaviour sets β(T, n∗) and β(T ′, n∗)

are equal at each common decision node n∗ ∈ N∗ of the two trees T and T ′.

Thus, the decision tree T ′ in which there is no uncertainty about the consequence at

each terminal node, even though there may be uncertainty about the state of the world,

is regarded as equivalent to the tree T in which there is not even any uncertainty about

the state of the world. In fact, given the special property of tree T ′, one can regard T

as an alternative “certainty equivalent” decision tree. Because of Theorem 3 it should be

no surprise that, together with Axioms 1–3, this new assumption implies the existence of a

state-independent revealed preference ordering R∗
β on ∆(Y ) which is equal to R

{s}
β on ∆(Ys)

for every s ∈ E, and also equal to the restriction of RS
β to ∆(Y 1S) for every non-empty

S ⊂ E (where Y 1S denotes the set of constant contingent consequences of the form y 1S ,

for some y ∈ Y ). In particular, Axiom 5 rules out awkward examples such as that presented

in Section IV.

The second additional assumption is:

14



Axiom 6 (three consequences). There exist at least three consequences y1, y2, y3 ∈ Y

such that y3 Pβ y2 Pβ y1, where Pβ denotes the strict preference relation corresponding to

the revealed preference ordering Rβ .

Axioms 5 and 6 together rule out rather strange conditional NMUFs such as vS(yS) =∏
s∈S vs(ys) or −

∏
s∈S [−vs(ys)], and instead imply that vS(yS) =

∑
s∈S vs(ys) for a

unique co-cardinal equivalence class of state contingent NMUFs vs : Ys → � (s ∈ E).

Moreover, Axiom 5 in particular, Axiom 5 implies that there exists a unique cardinal equiv-

alence class of state-independent NMUFs v∗ : Y → � with the property that each vs is

cardinally equivalent to v∗. Hence there must exist additive constants αs and positive mul-

tiplicative constants ρs (all s ∈ E) such that vs(y) ≡ αs + ρs v∗(y). In fact, the family

of constants ρs (s ∈ E) is unique up to a common multiplicative constant, and so there

are well defined revealed conditional probabilities given by P (s|S) := ρs/
∑

e∈S ρe when-

ever s ∈ S ⊂ E. Finally, as in Weller (1978), whenever s ∈ S ⊂ S′ ⊂ E these revealed

conditional probabilities must satisfy

P (s|S′) =
ρs∑

e∈S′ ρe
×

∑
e∈S ρe∑
e∈S′ ρe

= P (s|S)P (S|S′).

The important implication is:

Bayes’ rule. Whenever s ∈ S ⊂ S′ ⊂ E, it must be true that P (s|S′) = P (s|S)P (S|S′).

These arguments help to justify the following main theorem, also proved in Hammond

(1988):

Theorem 4 (subjective expected utility maximization). Suppose that Y is a given

consequence domain, that E is a given non-empty finite set of possible states of the world.

Then:

(A) Suppose that behaviour satisfies Axioms 1–6 for the domain of all finite decision trees

with chance and/or natural nodes in which there are no zero probability moves at

any chance node. Then there must exist a family of revealed conditional preference

orderings RS
β on ∆(Y S), one for each non-empty S ⊂ E. Moreover, these orderings

must in turn reveal a unique cardinal equivalence class of state independent NMUFs

v∗ : Y → � and unique positive conditional probabilities P (s|S) (s ∈ S ⊂ E) satisfying
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Bayes’ rule, such that RS
β is represented by the subjective expected utility expression

∑
yS∈Y S

pS(yS)
∑

s∈S
P (s|S) v∗(ys) ≡

∑
s∈S

P (s|S) ps(ys) v∗(ys)

where ps denotes the marginal probability distribution on Ys generated by pS on Y S .

(B) Conversely, given any state independent NMUF v∗ : Y → � and family of positive

conditional probabilities P (s|S) (s ∈ S ⊂ E) satisfying Bayes’ rule, the associated

behaviour correspondence β that maximizes subjectively expected utility must satisfy

Axioms 1–5 in all decision trees without zero probabilities at any chance node.9

VII. GAME THEORY AND RATIONALIZABILITY

Of late the most widespread use in economics of the expected utility model of decision-

making under uncertainty has been in non-cooperative game theory. Following prominent

works such as Aumann (1987) and Tan and Werlang (1988), most game theorists now

take the view that players in a game should have beliefs about other players’ strategies

described by subjective probabilities, and that they should then choose their strategies to

maximize their respective expected utilities. This seems at first to be an entirely natural

use of orthodox decision theory. Yet there is an important difference in extensive form

games between, on the one hand, natural nodes at which nature moves exogenously, and

on the other hand, players’ information sets at which moves are determined endogenously

by maximizing the relevant player’s expected utility. In particular, I have often seen it

claimed that, in this game theoretic context, the existence of subjective probabilities and

the maximization of subjectively expected utility are justified by Savage’s axioms. Apart

from betraying a fondness for Savage’s particular set of axioms which may be hard to justify,

this overlooks the fundamental issue of whether it makes any sense at all to apply Savage’s

axioms, the Anscombe–Aumann axioms, or some similar collection such as Axioms 1–6

above, to strategic behaviour in non-cooperative games.10

In fact there is one very clear difference between classical decision theory and orthodox

game theory. In decision theory, all subjective probability distributions over unknown states

9 Evidently Axiom 6 cannot be an implication of expected utility maximization if there are only
one or two consequences.

10 A similar point is the main concern of the paper by Mariotti presented to the same conference.
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of the world are regarded as equally valid and equally rational. Game theory, by contrast,

started out by attempting to determine players’ beliefs endogenously. Indeed, it appears

that the need Morgenstern (1928, 1935) had perceived to close certain economic models

by determining expectations was what aroused his interest in von Neumann’s (1928) early

work on the theory of “party games.” Much later, Johansen (1982) still felt able to argue

that, for games with a unique Nash equilibrium, that equilibrium would entirely determine

rational behaviour and rational beliefs within the game.

Since the work of Bernheim (1984, 1986) and Pearce (1984) on rationalizability, and

of Aumann (1987) on correlated equilibria, game theorists have begun to pay more careful

attention to the question of what rational beliefs players should hold about each other. Au-

mann follows the equilibrium tradition of Nash in looking for a set of common expectations

over everybody’s strategies (a “common prior”) that attaches probability one to all players

choosing optimal strategies given those common expectations. Bernheim and Pearce relax

this condition and look for “rationalizable” expectations which can differ between players,

but must attach probability one to all players choosing strategies that are rationalizable

— i.e., optimal given their own rationalizable expectations. Thus, in the work on rational-

izability, what becomes endogenous is each player’s set of rationalizable strategies, rather

than expectations about those strategies.

Rationalizable expectations are especially interesting because of the way in which they,

and the associated rationalizable strategies, can be constructed recursively. First order

rationalizable expectations are arbitrary; first order rationalizable strategies are optimal

given first order rationalizable expectations; second order rationalizable expectations at-

tach probability one to players choosing first order rationalizable strategies; second order

rationalizable strategies are optimal given second order rationalizable expectations; third

order rationalizable expectations attach probability one to players choosing second order

rationalizable strategies; and so on. The result of this recursive construction is a diminishing

sequence of sets of n-th order rationalizable strategies and of associated sets of rationaliz-

able beliefs or expectations. In the end, rationalizable strategies are those which are n-th

order rationalizable, for all natural numbers n. What is happening here is that our concept

of rationality (or rationalizability) is becoming more refined as n increases and we progress

further up the hierarchy.
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Though the usual consequentialist axioms cannot be applied to multi-person games,

it seems that a variant of them can be. This involves the idea of conditionally rational

behaviour for each player, based on hypothetical probabilities attached to the other players’

strategies. Specifically, it is assumed that each player’s behaviour satisfies the consequen-

tialist axioms in all decision trees that result from extensive games by attaching specific

hypothetical probabilities to all other players’ moves at each of their information sets. This

implies that each player maximizes expected utility, given these hypothetical probabilities.

It then remains to determine, as far as possible, what hypothetical probabilities represent

beliefs that are rational, or at least rationalizable. This, of course, is more or less what

non-cooperative game theory has been trying to accomplish since its inception.

At the moment, then, it seems that game theory says only that it is irrational to attach

positive probabilities to rational players choosing strategies that are not rationalizable.

Further restrictions on rational beliefs may emerge from subgame perfection and “forward

induction” arguments.11 But other restrictions beyond these are hard to motivate, at least

in the current state of game theory. Above all, only if rationalizable strategies are unique

should we expect rational beliefs to be determined uniquely.

VIII. STRUCTURAL RATIONALITY VERSUS BOUNDED RATIONALITY

Section VI concluded by showing that Axioms 1–5 and subjective expected utility

maximization are equivalent for a consequence domain satisfying Axiom 6. The behaviour so

described satisfies some well-known “structural” conditions which have often been regarded

as required for logical consistency or coherence. Hence I call such behaviour structurally

rational. It is important to understand that structural rationality is neither sufficient nor

necessary for full rationality.

Insufficiency of structural rationality is fairly evident. Maximizing the expected value

of any utility function with respect to any subjective probabilities is structurally rational.

So is minimizing expected utility! More seriously, a fuller concept of rationality clearly

requires the pursuit of appropriate ends and the holding of reasonal beliefs, neither of

which is entailed by structural rationality, or by consequentialism.

11 The relationship between forward induction and “conditional rationalizability” is discussed in
Hammond (1993b).
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Less evident is the fact that structural rationality is not necessary for rational behaviour

either. I am prepared to claim that it would be necessary if there were no bounds at all on an

agent’s rationality. If all our decision problems were straightforward, rationality could well

entail behaviour satisfying Axioms 1–5, for a suitable domain of consequences. In practice,

however, reality confronts us with enormously complex decision problems. Modelling these

as decision trees, and then constructing the sets F (T ) and Φβ(T ) as in Section II, is a task

which poses horrendous difficulties for the decision analyst, quite apart from any human

agent. After all, as has often been noted, it is impossible to model completely even a

problem as well structured as how to play chess. Simplification is inevitable.

I shall assume that simplification gives rise to a rather small finite decision tree which

models the true decision problem only imperfectly. Many nodes may be omitted, as may

many of the possibilities at each node. In this sense there is a bounded model. And bounded

rationality would seem to involve the use of such bounded models. Then there seems no

particular reason why an agent’s rational behaviour should exhibit structural rationality.

After all, behaviour cannot then be explained only by its consequences, but will also depend

upon what happens to be included in the agent’s decision model.

Nevertheless consequentialism, together with the structural rationality it entails, still

makes sense within whatever bounded model lies behind the agent’s decision. In tournament

chess it is rational not to analyse so deeply that one loses on time. But rationality does

demand appropriate patterns of thought in whatever analysis does get conducted within a

limited time. The incomplete plan (or “variation”) chosen by a player should be the best

given the possibilities that could be considered within the time which that player felt able

to devote to making that plan. A good player will not deliberately make an inferior move;

nor probably will a bad player! Bad moves and even blunders may occur, but only because

important considerations and possibilities have been “overlooked” — i.e., omitted from the

player’s bounded model.

What bounded rationality forces us to consider are vaguely formulated decision trees.

These will be just like ordinary decision trees, except that both consequences y ∈ Y and

states s ∈ E will be vaguely formulated — imprecisely described, in effect. It is impossible

to distinguish all the consequences of the true decision tree, or all the possible states.

Instead, the agent can only analyse a coarsening Y0 of the consequence domain Y , and a
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coarsening E0 of the state space E. The different elements y0 ∈ Y0 will determine a partition

∪y0∈Y0 Y 0(y0) of Y into sets of consequences that the agent fails to distinguish. There is a

similar partition ∪s0∈E0 E0(s0) of E. The latter partition is equivalent to Savage’s (1954)

model of “small worlds.”

Such coarsenings already imply that the agent can consider only decision trees in

the domain T (E0, Y0) = ∪∅�=S0⊂E0 T S0(Y0) rather than in the true domain T (E, Y ) =

∪∅�=S⊂E T S(Y ). But the game of chess, for example, already has very simple consequences

— win, lose or draw. Nor is there room for any intrinsic uncertainty. In chess, the nec-

essary coarsening affects the decision tree itself. The domain T (E0, Y0) gets coarsened to

T0(E0, Y0), each of whose members T0 corresponds to an enormous class T 0(E0, Y0;T0) of

undistinguished complex decision trees. Such coarsening of the set of possible trees can also

occur in any other decision problem, of course.

This approach to bounded rationality differs from the well know one due to Simon

(1972, 1982, 1986, 1987a, b), because he appears to allow an agent to “satisfice” even

within his own model. By contrast, I am asking for optimality within the agent’s own

model, though of course satisficing is allowed and even required in the choice of that model.

This seems much more reasonable as a standard for normative behaviour.

IX. EXPANDING SMALL WORLDS AND IMPROVING BOUNDED RATIONALITY

The discussion in Section VII on rationalizability in games suggests, however, that

one should go beyond such fixed bounded models. After all, there is a sense in which

rationalizable strategies emerge from increasingly complex models of a game. Initially other

players’ strategies are treated as entirely exogenous, then as best responses to exogenous

beliefs, then as best responses to best responses to exogenous beliefs, etc. A strategy is

rationalizable if and only if enriched models of the other players and of their models can

never demonstrate the irrationality of that strategy.

Similarly, consider a particular bounded model based on the particular coarsenings Y0 of

Y , E0 of E, and T0(E0, Y0) of T (E0, Y0). One feels that a rational agent who uses this model

should have some reason for not using a richer bounded model. Such a richer model would

be based on coarsenings Y1 of Y , E1 of E, and T1(E1, Y1) of T (E1, Y1) which are refinements

of Y0, E0 and T0 respectively. That is, for each y1 ∈ Y1, the class Y 1(y1) of consequences
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which the agents fails to distinguish from y1 should be a subset of Y 0(y0) for the unique

y0 ∈ Y0 such that y1 ∈ Y 0(y0). Similarly, for each e1 ∈ E1 and T1 ∈ T1(E1, Y1), it should

be true that E1(e1) ⊂ E0(e0) where e1 ∈ E0(e0), and also that T 1(E1, Y1;T1) ⊂ T 0(T0)

where T1 ∈ T 0(T0).

In fact, as Behn and Vaupel (1982) and Vaupel (1986) have suggested, what one really

expects of a rational boundedly rational agent are some some reasonable beliefs about

whether a more refined model would change the decision being made at the current node

of life’s decision tree, as well as reasonable beliefs about what the consequences of a revised

decision are likely to be. It is as though the agent were involved in a complicated game with

some other very imperfectly known players — namely, versions of the same agent who use

more complicated decision models. Should the agent take the trouble to enrich the decision

model and so become one of these other players, or is it better to remain with the existing

bounded model?

Note that an agent who does choose a more complicated model then has the same kind

of decision problem to face once again — namely, the decision whether to complicate the

model still further. In this way the agent can be viewed as facing an uncertain potentially

infinite hierarchy of vaguely formulated trees, with increasing refined consequence spaces

Yn, state spaces En, and tree spaces Tn(En, Yn) (n = 1, 2, . . .).

There should then be an associated sequence βn (n = 1, 2, . . .) of behaviour correspon-

dences, each satisfying Axioms 1–5 for the appropriate domain Tn(En, Yn) of decision trees.

So there will exist increasingly refined NMUFs vn : Yn → � and subjective probabilities

Pn(sn|En) (sn ∈ En).

At this stage one should look for consistency conditions which it is reasonable to impose

on different members of this hierarchy. And consider in more detail the decision when

to stop analysing the current decision problem more deeply. Thus, a model of rational

behaviour becomes hierarchical, and even self-referential, as in the theory of games. There

also seem to be some links, of which I am only dimly aware, with recent developments in

the theory of the mind and of self-awareness. This seems to be an inevitable implication

of bounds on rationality. Nor should such links be at all surprising. However, this is still

largely an unexplored topic, as far as I am aware. In fact, I may be proposing going at

least one step further in the hierarchy of more and more complicated collective decision
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problems concerning how best to describe rational behaviour. If so, who knows what the

next enriched models are likely to be?

Notes

1. Of course, it is restrictive in general to consider only finite decision trees. But not when

discussing the implications of consequentialism, as is done here. The issue with infinite

decision trees is whether behaviour can be well defined in a way that naturally extends

consequentialist behaviour in finite trees. Obviously, this will require a technical analysis

of compactness and continuity conditions.

2. This formulation does exclude stochastic behaviour, according to which β(T, n) is a

probability distribution over N+1(n). Under the consequentialist axioms set out below, it

turns out that a very strong transitivity axiom — or what Luce (1958, 1959) describes

as a “choice axiom” — must be satisfied. In fact, there must exist a preference ordering

over consequences which is maximized by all the consequences that can occur with positive

probability given the agent’s stochastic behaviour. Thus randomization occurs only over

consequences in the highest indifference class of feasible consequences available to the agent.

Furthermore, each consequence must have a positive real number attached indicating the

relative likelihood of that consequence occurring, in case it belongs to the highest indifference

class that the agent can reach.

3. Actually, Prasanta Pattanaik and Robert Sugden tried to convince me of essentially this

point many years ago. Jean-Michel Grandmont and Bertrand Munier were finally more

successful during the conference. I am grateful to all four, and would like to apologize to

the first two.

4. See Hammond (1976) for more discussion of näıve behaviour in decision trees, especially

the “potential addict” example. Also, Amos Tversky has suggested that Axiom 2 be called

“subtree consistency.” I am sympathetic, but have not followed this suggestion for two

reasons: (i) earlier papers used the term “dynamic consistency,” and I would like to be con-

sistent myself; (ii) subtrees do represent dynamic choice possibilities when the tree models

decisions which will be made in real time.

5. For obvious reasons, one does not speak of (logical) “consequences.”
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6. Following the terminology of social choice theory, a “preference ordering” means a com-

plete and transitive binary weak preference relation.

7. Some critics of consequentialism, notably Machina (1989) and McClennen (1990), have

offered such explanations, especially for behaviour that maximizes a preference ordering

and yet violates the independence condition which, as will be discussed in Section V, is one

other implication of consequentialism.

8. An important generalization allows the consequence domain Ys to depend on the state

s. As one might expect, it then becomes harder to ensure that behaviour reveals subjective

probabilities. However, both the sure thing principle and independence do still follow from

the consequentialist axioms.

9. Evidently Axiom 6 cannot be an implication of expected utility maximization if there

are only one or two consequences.

10. A similar point is the main concern of the paper by Mariotti presented to the same

conference.

11. The relationship between forward induction and “conditional rationalizability” is dis-

cussed in Hammond (1993b).
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