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Abstract

In smooth exchange economies with a continuum of agents, any Walrasian mechanism is

Pareto efficient, individually rational, anonymous, and strategy-proof. Barberà and Jack-

son’s recent results imply that no such efficient mechanism is the limit of resource-balanced,

individually rational, anonymous and non-bossy strategy-proof allocation mechanisms for

an expanding sequence of finite economies. For a broad class of smooth random exchange

economies, relaxing anonymity and non-bossiness admits mechanisms which, as the econ-

omy becomes infinitely large, are asymptotically Walrasian for all except one “balancing”

agent, while being manipulable with generically vanishing probability. Also considered are

some extensions to non-Walrasian mechanisms.

JEL classification: D82, D61, D5

Keywords: strategy-proofness, mechanism design, random economies, Walrasian equilib-
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Asymptotic Strategy-Proofness

1. Introduction and Outline

1.1. Strategy-Proofness in Continuum Economies

In the literature on incentive compatibility, an important class of economic allocation mech-

anisms are those satisfying strategy-proofness — i.e., for each profile of individual character-

istics or types, the outcome is the same as that of an equivalent direct mechanism in which

each agent has truthful revelation as a dominant strategy. For general economic environ-

ments, there has been much past work on (usually symmetric or anonymous) strategy-proof

mechanisms in continuum economies having a non-atomic measure space of agents. Such

continuum economies can be viewed as limits of finite economies, with a large but finite

number of agents. Accordingly, it would be desirable to find strategy-proof mechanisms for

finite economies that converge to strategy-proof mechanisms for continuum economies as

the number of agents tends to infinity. So far, no such limit theorem has been provided for

general economic environments.

In general equilibrium theory, continuum economies were first considered by Aumann

[2, 3]. His path-breaking articles led to a body of significant work that is well summarized in

Hildenbrand [18]. Early work that pays attention to incentive issues in continuum economies

can be found in the Vickrey [35] and Mirrlees [27] discussions of optimal redistributive

income taxation. See also Rothschild and Stiglitz [32] and many other works embodying

self-selection constraints. As argued in [15, 16, 17], an important motivation for studying

incentive constraints in continuum economies is to understand better some of the limitations

on economic policy imposed by private information. This is especially true in connection

with financing public goods, with redistributive welfare programs, and with ensuring that

free trade or other market liberalization policies lead to actual Pareto improvements when

gainers are required to over-compensate those who would otherwise lose.

One good reason for considering continuum economies is that, unlike in finite economies,

each individual’s attempt to manipulate the economic environment has no effect on the ap-

parent statistical distribution of relevant personal characteristics in the economy. This

greatly simplifies the incentive constraints because the allocation that is chosen for one
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distribution of characteristics puts no restriction on what can be chosen for other distri-

butions. Such independence between different continuum economies allows an abundance

of strategy-proof mechanisms. It also permits relatively simple decentralization results of

the kind presented in [17] — see also [8, 9, 25]. First-best Pareto efficiency is achievable

and, in particular, any Walrasian mechanism is strategy-proof, anonymous, and individually

rational.

In fact incentive constraints in continuum economies become identical to the often

studied self-selection constraints that would apply if the distribution of characteristics were

commonly known. In that case, truthful revelation turns out to be a dominant strategy

provided the mechanism designer imposes a high enough penalty whenever the reported

distribution of characteristics differs from the true one. However, when there is private

information, it is hard to believe that the distribution of agents’ characteristics could be

known to the mechanism designer. For this reason, self-selection constraints acquire much

of their interest only because they happen to correspond to incentive constraints in contin-

uum economies. In this paper, we do not assume that the mechanism designer knows the

distribution of characteristics which prevails in any finite economy; nor do we presume any

knowledge of the limiting distribution of characteristics. The mechanisms we construct will

depend only on agents’ revelations concerning their unknown profile of characteristics. In

this sense, our mechanisms will be “non-parametric”, as defined by Hurwicz [20, p. 310].

This makes them more widely applicable than the “parametric” mechanisms considered by

Dierker and Haller [11] and by Mas-Colell and Vives [26], among others, which rely on prior

information about the distribution of characteristics.

1.2. Strategy-Proofness in Large Finite Economies

Despite their frequent use, the interpretation and practical relevance of continuum economy

mechanisms has long remained unsatisfactory. There are still no good counterparts for

finite economies. This is in marked contrast to results concerning the core of an exchange

economy, for instance — see especially the surveys by Hildenbrand [19], Mas-Colell [24,

Section 7.4], and Anderson [1]. The core is non-empty in economies with a finite number

of agents for which a Walrasian equilibrium exists. Moreover, the core often converges as

a “competitive sequence” of economies tends to a continuum economy, with limit equal to

the set of Walrasian equilibrium allocations.
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With few exceptions, limit theorems for strategy-proof mechanisms have been proved

only for Vickrey–Clarke–Groves mechanisms that apply to special public good environments

where agents are assumed to have quasi-linear preferences. For these mechanisms, Green

and Laffont [14] proved that, when the project space is finite, the expected per capita tax

and the expected total taxes collected in a Vickrey–Clarke–Groves mechanism both con-

verge to zero as the number of participants goes to infinity. This result was generalized

by Rob [30] to permit more general probability distributions on the sample space of par-

ticipants’ project valuations, and by Mitsui [28] for the case of an infinite project space.

Since the size of the surplus is a direct measure of the inefficiency loss, these mechanisms

are asymptotically efficient. But for strategy-proof mechanisms applying to more general

economic environments such as exchange economies, no such general limit theorem is yet

available.

One reason for this lack may be that it seems difficult to construct any satisfactory

strategy-proof mechanism at all for a general exchange economy with a finite set of agents.

In this connection, an important recent result is due to Barberà and Jackson [5]. They

prove that, on the domain of utility functions that are continuous, strictly quasi-concave,

and increasing, an allocation rule for an exchange economy is resource-balanced, strategy-

proof, individually rational, anonymous, and non-bossy if and only if it is the result of

anonymous fixed-proportion trading. This result suggests that, for general finite exchange

economies, strategy-proofness entails a significant loss of efficiency. As stated in [5, p. 65]:

“. . . the intuition is roughly as follows. To satisfy strategy-proofness, a rule cannot

choose the direction of trade based on the size of desired trades in various direc-

tions. Such a rule would be vulnerable to manipulability due to potential gains

from overstating or understating the desire to trade. Strategy-proofness thus re-

stricts the choice of the direction to trade to depend only on the signs of desired

trades in various directions.”

As these authors also remark [5, p. 60]:

“Such rules are not efficient since the selection of the trading price is not responsive

to the exact demands of the agents, but only to whether they are positive or

negative.”
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In fact the conditions in [5] imply that trade can occur along only a finite collection of

predefined straight lines whose maximum number is proportional to the number of agents.

As the number of agents tends to infinity, so does the maximum number of lines. But so also

does the dimension of the generalized Edgeworth–Bowley box describing the set of feasible

allocations. Hence, even in the limit these lines form a nowhere dense set of measure zero in

the commodity space. So generically an efficient allocation of an exchange economy will not

be close to such a set. As concluded in [5, p. 66]: “These . . . restrictions on strategy-proof

rules make it clear that there is no hope for any sort of approximate efficiency result in the

limit (as the economy grows).”

In particular, their result seems to suggest that a Pareto-efficient mechanism (for in-

stance, the Walrasian mechanism) in a continuum economy cannot be the limit of any

sequence of strategy-proof mechanisms for an expanding sequence of finite economies hav-

ing the continuum economy as a limit. Such a conclusion calls into question both the

practical relevance of existing work on strategy-proofness in continuum economies and the

scope of standard asymptotic results on incentive compatibility for expanding economies.

1.3. A Conjecture

Ideally, for a general profile of characteristics and for the general domain of increasing, con-

tinuous and strictly convex preferences, one would like to construct a convergent sequence of

strategy-proof allocation mechanisms which are individually rational and resource-balanced

for each large economy in a converging sequence. Moreover, one would like the limit alloca-

tion mechanism to be efficient in the continuum limit economy. Obviously, we know from

[5] that the assumptions of anonymity and/or non-bossiness would have to be violated.

We conjecture that this ideal is unattainable because, over the general domain of in-

creasing, strictly convex and continuous preferences, no mechanism is simultaneously in-

dividually rational, resource-balanced, strategy-proof and asymptotically Walrasian. Our

intuition is that the uni-dimensionality of the range of the mechanisms analysed in [5] is

not implied by non-bossiness or even by anonymity: rather, our conjecture is that no indi-

vidually rational and strategy-proof rationing mechanism for unrestricted preferences has a

range that includes, even in its closure, any connected component having dimension greater

than one. If correct, this would make it impossible to reconcile strategy-proofness and

asymptotic efficiency for general preference profiles.
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1.4. Asymptotic Strategy-Proof Walrasian Mechanisms

Our mechanisms rely on separating out one balancing agent who, like Wilson’s auctioneer in

[37], is virtually passive. Wherever possible, this agent will be allocated a net trade vector

that preserves balance, given what is allocated to the others. Then the other agents will

be divided into two roughly equal groups. To try to ensure both individual rationality and

strategy-proofness, each group is faced with a budget constraint that contains the no-trade

option and otherwise depends only on the other group’s reported types. In order to make

individual rationality likely even for the balancing agent, other agents’ demands are limited

by imposing quadratic transaction fees. These fees and associated adjustments to the price

vectors are intended to generate an aggregate net trade vector for the non-balancing agents

whose components all converge to minus infinity as the economy becomes large, even as the

net trade vector per head converges to zero.

We will define an economy as a probability distribution over agents’ characteristics.

We will consider increasing and nested finite sets of agents with characteristics drawn inde-

pendently from this given distribution. We introduce a sequence of resource-balanced and

individually rational mechanisms over this sequence of expanding economies and ensure, by

construction, that the limiting mechanism is Walrasian.

Say that a mechanism is locally strategy-proof for a particular type profile if truthful

revelation is a Nash equilibrium of the direct revelation game for that profile. It will turn out

that, for a generic set of well-behaved limiting economies, our sequence of mechanisms makes

the probability that the random type profile satisfies local strategy-proofness converge to 1

as the economy becomes infinitely large. Thus, in addition to satisfying resource-balance and

individual rationality, the sequence of mechanisms is not only “asymptotically Walrasian”,

but is also “asymptotically strategy-proof” in an obvious sense.

In the rest of the paper, the preliminary Section 2 sets out notation, as well as the main

definitions and assumptions. Section 3 describes the asymptotic Walrasian mechanisms to

which our sequence of mechanisms converges almost surely as the number of agents tends

to infinity. Then, for an expanding sequence of finite exchange economies, the key Section 4

constructs mechanisms that are resource-balanced, individually rational and asymptotically

Walrasian. It is argued informally that, for a generic class of limit economies, these mech-

anisms are indeed asymptotically strategy-proof as the number of agents tends to infinity.
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Section 5 proves formally that, under smoothness assumptions set out in Sections 3 and 4,

this sequence of mechanisms has the claimed asymptotic properties. The final Section 6

discusses variations and possible extensions of the main result.

2. Preliminaries: Economies as Distributions

2.1. Agents’ Smooth Characteristics

Let G denote the finite set of � = #G different commodities, so that �G is the (finite

dimensional Euclidean) commodity space. Let ∆ := { p ∈ �G |
∑

g∈G pg = 1 } be the unit

simplex of normalized price vectors in �G, with relative interior ∆0 := ∆ ∩ �G
++ and with

boundary bd ∆ := ∆ \ ∆0.

Let I := { 0, 1, 2, . . . } be the countable set of possible agent names or identifiers i.

Let Θ be the set of possible agent characteristics or types θ, each of which determines an

ordered pair (X(θ), u(·; θ)) made up of an individually feasible set X(θ) of net trade vectors

x ∈ �G, together with an ordinal equivalence class of utility functions u(x; θ) defined for all

x ∈ X(θ).

Let ΘS denote the set of all smooth agent characteristics, defined as those θ satisfying

the following assumptions:

(i) the feasible set X(θ) is closed and convex, with a lower bound x(θ) such that x ∈ X(θ)

implies x >−− x(θ);

(ii) 0 is in the interior int X(θ) of X(θ);

(iii) X(θ) allows free disposal in the sense that, if x ∈ X(θ) and x′ >−− x, then x′ ∈ X(θ);

(iv) there exists a utility function u(x; θ) of x which is C2 for all x ∈ X(θ), with gradient

vector satisfying ∂u(x; θ) 
 0, and which is also differentiably strictly quasi-concave

in the sense that the Hessian quadratic form v�∂2u(x; θ) v is negative definite for all

v �= 0 satisfying the constraint ∂u(x; θ) v = 0;

(v) there exists u(θ) ∈ � such that u(x; θ) ≥ u(θ) for all x ∈ X(θ), with u(x; θ) = u(θ) iff

x ∈ bd X(θ).

Of these assumptions, only (v) is stronger than usual. Smoothness is generally taken

to require that, whenever x̄ ∈ int X(θ), then the upper-contour set

R(x̄) := {x ∈ X(θ) | u(x; θ) ≥ u(x̄; θ) }
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must remain within int X(θ). In this paper, assumption (v) is innocuous because it loses

no generality to replace X(θ) with R(x̄) for some x̄ ∈ int X(θ) with x̄ 
 0.

2.2. Smooth Demands

Given any θ ∈ ΘS , define the minimum feasible net wealth for all p ∈ ∆0 as

w(p; θ) := min
x

{ p x | x ∈ X(θ) }

Evidently, the above conditions (i) and (ii) imply that w(p; θ) < 0 everywhere. For each

θ ∈ ΘS , consider the domain

D(θ) := { (p, w) ∈ ∆0 ×� | w ≥ w(p; θ) }

of price–wealth pairs that are feasible for a θ-agent. Each price–wealth pair (p, w) ∈ D(θ)

determines a Walrasian budget set

BW (p, w) := {x ∈ �G | p x ≤ w }

that is non-empty, convex, and compact. There is an associated single-valued Walrasian

net trade function defined for (p, w) ∈ D(θ) by

(p, w) �→ xW (p, w; θ) := arg max
x

{u(x; θ) | x ∈ X(θ) ∩ BW (p, w) }

Conditions (i) to (v) ensure that for each θ ∈ ΘS all “points of demand are regular” in

the sense of [24, Definition 2.7.1], even at the boundary of the feasible set X(θ). Hence,

each xW (p, w; θ) is a C1 function of (p, w) throughout the domain D(θ). Also, each w(p; θ)

is a C1 function of p throughout the domain ∆0. Finally, note that ‖xW (p, w; θ)‖ → ∞
whenever p converges to any p∗ ∈ bd ∆, where at least one good has a zero price.

By standard results in consumer demand theory, each θ ∈ ΘS corresponds to a unique

ordinal equivalence class of indirect utility functions defined by

v(p, w; θ) := u(xW (p, w; θ); θ) = max
x

{u(x; θ) | x ∈ X(θ) ∩ BW (p, w) }

which are homogeneous of degree zero throughout the domain of (p, w) ∈ D(θ). Note too

that Roy’s identity ∂pv(p, w; θ) = −λ(p, w; θ) xW (p, w; θ) holds everywhere with λ(p, w; θ) =
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∂wv(p, w; θ) and can be differentiated continuously w.r.t. p and w. This implies that

v(p, w; θ) is a C2 function of (p, w) which must also be differentiably strictly quasi-convex.

By the inverse function theorem, because ∂wv(p, w; θ) > 0, each θ ∈ ΘS also corre-

sponds to a unique class of expenditure functions E(p, u; θ) satisfying E(p, v(p, w; θ); θ) = w

whenever (p, w) ∈ D(θ) and u ≥ u(θ). These functions are C2 in (p, u), homogeneous of

degree one in p, and have a negative semi-definite Hessian matrix ∂2
pE(p, u; θ) of rank �−1,

while satisfying ∂uE(p, u; θ) > 0 and also E(p, u(θ); θ) = w(p; θ).

2.3. A Metric Space of Smooth Characteristics

Now ΘS must be given a suitable topology. There are two difficulties in doing so. One

is that the domain X(θ) of each utility function varies with θ. On its own, this might be

remedied using an approach similar to that of Back [4]. The second difficulty is that putting

a typical metric on the space of utility functions seems unsatisfactory to us because it is

bound to specify a positive distance between even ordinally equivalent pairs.1 Instead, we

modify an idea due to Kurt Hildenbrand and give a suitable family of demand functions a

metric — see [8, Appendix to Ch. 2] as well as [10, p. 815].

First, for each θ ∈ ΘS and for the fixed domain ∆0 × �+ of pairs (p, y), independent

of θ, define the function g(·, ·; θ) : ∆0 ×�+ → �G ×� by

g(p, y; θ) := (xW (p, w(p; θ) + y; θ), w(p; θ))

This makes g(p, y; θ) a C1 function of (p, y), whose derivative ∂g w.r.t. p and y is an �×(�+1)

matrix. Moreover, as θ ranges over the space ΘS of smooth characteristics satisfying (i)

to (v) above, standard demand theory establishes a one-to-one correspondence between, on

the one hand, the set of pairs (X(θ), u(·; θ)), and on the other hand, the set of functions

g(p, y; θ). Indeed, we have just shown how to construct g(p, y; θ) uniquely from X(θ) and

u(·; θ). Conversely, for any function g(p, y; θ) generated from X(θ) and u(·; θ) in this way,

one can easily reconstruct both the domain D(θ) and the function xW (p, w; θ) defined on

this domain; then the feasible set X(θ) must equal the closure of the range of xW (p, w; θ),

1 In fact, this difficulty might also be met by using the topology that Back [4] constructs for
locally non-satiated preferences by establishing a homeomorphism with a subset of utility functions.
However, it seems more natural to put a metric directly on demand functions.
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whereas the utility function u(x; θ) is any suitable C2 representation of the unique smooth

preference ordering that is revealed by xW (p, w; θ).

In this way, ΘS is equivalent to a subset ΓS of the space of C1 functions g : ∆0×�+ →
�G ×�. But to give ΘS a suitable metric, first we extend the range space �G ×� of each

function g ∈ ΓS to its one-point compactification (�G × �) ∪ {∞}. Then we extend the

domain of each function g ∈ ΓS from ∆0×�+ to ∆×�+ by defining g∗(p, y) = ∞ whenever

p ∈ bd ∆. The resulting function g∗ : ∆×�+ → (�G ×�)∪{∞} is continuous throughout

its compact domain.

Next, recall that � = #G. Then, for each n = �, � + 1, � + 2, . . ., define the closed set

∆n := { p ∈ ∆0 | pg ≥ 1/n (g ∈ G) }

of price vectors with no component less than 1/n. Then, using the Euclidean norm ‖ · ‖ for

the spaces �G × � and �G×G × �G respectively, define the two pseudo-metrics d0
n, d1

n on

ΘS by

d0
n(θ1, θ2) := sup

p,y
{ ‖g(p, y; θ1) − g(p, y; θ2)‖ | (p, y) ∈ ∆0 × [0, n] }

d1
n(θ1, θ2) := sup

p,y
{ ‖∂g(p, y; θ1) − ∂g(p, y; θ2)‖ | (p, y) ∈ ∆n × [0, n] }

where d0
n is allowed to take the value +∞. Finally, define the bounded metric d on ΘS by

d(θ1, θ2) :=
∑∞

n=

2−n

[
d0

n(θ1, θ2)
1 + d0

n(θ1, θ2)
+

d1
n(θ1, θ2)

1 + d1
n(θ1, θ2)

]

where ∞
1+∞ should be regarded as equal to 1. This metric induces the topology of uniform

C1-convergence on compact subsets of the domain ∆0 × �+. As discussed by Mas-Colell

[24, p. 50], this topology is separable and complete. So we can regard ΘS as a complete

separable metric space. In addition, when the product space ∆0 × �+ × ΘS is given its

product topology, the mapping (p, y; θ) �→ (g(p, y; θ), ∂g(p, y; θ)) must be jointly continuous

in all three variables.
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2.4. Distributions of Characteristics

In the limit as the number of agents becomes infinite, an economy will be regarded as a

distribution of characteristics, taking the form of a probability measure defined on the Borel

sets of ΘS . We follow Mas-Colell [24, pp. 223–4] in restricting the domain of measures to

have compact support, since we rely on some results that require such an assumption (for

instance, continuity of mean demand and existence of Walrasian equilibrium, as well as

local uniqueness of regular equilibria).

In this connection, it may be worth noting a sufficient condition for a given subset

K ⊂ ΘS to be compact. It is enough that K consist of C2 functions of (p, y), while being

both closed and (uniformly) bounded in the topology of uniform C2-convergence on compact

subsets of ∆0 × �+. This can be demonstrated using the equicontinuity argument in [33,

p. 35].

So let M denote the set of all probability measures whose support is a compact subset

of the metric space (ΘS , d). The space M can be given the topology of weak convergence of

measures, which corresponds to the Prohorov metric. Following Mas-Colell [24, p. 25], we

endow M with a finer topology than that of weak convergence. In fact, we define a metric

ρ on M so that, for all ν′, ν′′ ∈ M, the distance ρ(ν′, ν′′) is the sum of: (i) the Prohorov

metric distance between ν′ and ν′′; (ii) the Hausdorff distance between the two supports

supp ν′ and supp ν′′.

3. The Asymptotic Walrasian Mechanism

3.1. Walrasian Excess Demands

Given any distribution ν ∈ M of agents’ characteristics, let

z(p; ν) :=
∫

ΘS

xW (p, 0; θ) dν

denote the corresponding Walrasian mean excess demand function, with well–defined Jaco-

bian

J(p) :=
(

∂zg

∂ph

)
g,h∈G

of partial derivatives w.r.t. prices. Because z(p; ν) must be homogeneous of degree 0 as

a function of p, Euler’s equation implies that p J(p) = 0 and so this matrix is singular.
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However, we can ignore one good altogether, say good 1, since each agent’s Walrasian

demand must satisfy the budget constraint. Indeed, from now on let x−1 denote the vector

〈xg〉g∈G\{1}. Also, re-normalize prices throughout so that commodity 1 is the numéraire

with p1 = 1. Thus, given equilibrium prices p = (1, p−1), each agent’s net trade vector

f(p; θ) := xW
−1(p, 0; θ) will suffice to determine the Walrasian equilibrium allocation, with

each agent’s net trade of good 1 given by xW
1 (p, 0; θ) = −(1/p1) p−1 f(p; θ). Moreover,

to describe the local comparative statics of the equilibrium price vector, it is enough to

consider the (� − 1) × (� − 1) reduced Jacobian matrix

∂z(p) :=
(

∂zg

∂ph

)
g,h∈G\{1}

Because each ν ∈ M has compact support, ∂z(p) must be a continuous function of p on ∆0.

3.2. The Open Set of Regular Distributions

Given any ν ∈ M, compactness of supp ν guarantees the existence of a non-empty set Π(ν)

of Walrasian equilibrium price vectors pW ∈ �G
++ satisfying z(pW ; ν) = 0. In addition, by

[18, Prop. 4, p. 152], the Walrasian equilibrium price correspondence ν �→→Π(ν) has a closed

graph.

Say that a particular Walrasian equilibrium price vector pW ∈ Π(ν) is regular if ∂z(pW )

is invertible, but that it is critical if ∂z(pW ) is singular.

The distribution ν is said to be regular if every Walrasian equilibrium price vector

pW ∈ Π(ν) is regular; it is singular if some Walrasian equilibrium price vector is critical.

Let M∗ denote the set of regular distributions in M. Because ∂z(p) and its determinant

are continuous on ∆0, it follows as in [24, Prop. 5.8.14] that M∗ is open relative to M.

3.3. Regular Distributions Are Generic

Given any θ ∈ ΘS and b ∈ �G with b ∈ int X(θ), there is a unique corresponding character-

istic θb ∈ ΘS with feasible set X(θb) := X(θ)−{b} and utility function u(x; θb) := u(x+b; θ).

In fact, the change from θ to θb is equivalent to giving a θ-agent the vector b as an extra en-

dowment. The corresponding minimum wealth function satisfies w(p; θb) = w(p; θ)−p b, and

the corresponding Walrasian demand function is given by xW (p, w; θb) = xW (p, w+p b; θ)−b.

Hence g(p, y; θb) = g(p, y + p b; θ) − b. Routine calculations then confirm that d(θb, θ) → 0

as b → 0.

11



Let e denote the �-dimensional vector (1, 1, . . . , 1) ∈ �G. Note that there exists a

continuous function α : ΘS → (0, 1] such that −α(θ) e ∈ int X(θ) for all θ ∈ ΘS — for

example, α(θ) := min { 1, 1
2 max {α | −α e ∈ X(θ) } }. Given any c >−− −e, let νc denote

the distribution which is obtained from ν when each agent’s characteristic shifts from θ to

the corresponding θb, where b = α(θ)c. Thus, for every measurable set K ⊂ ΘS , one has

νc(K) = ν({ θ ∈ ΘS | θα(θ)c ∈ K }). Also, θ ∈ supp νc ⇐⇒ θ−α(θ)c ∈ supp ν. This implies

that the Hausdorff distance between the supports of νc and ν converges to 0 as c → 0. In

addition, for every bounded continuous function φ : ΘS → �, one has

∫
ΘS

φ(θ) dνc =
∫

ΘS

φ(θ−α(θ)c) dν →
∫

ΘS

φ(θ) dν

as c → 0, because the support of any ν ∈ M is compact. This shows that νc → ν in the

topology we have given M.

Next, note that the mean net trade function takes the form

z(p; νc) =
∫

ΘS

xW (p, p b; θ) dν − ᾱ c, where ᾱ :=
∫

ΘS

α(θ) dν > 0.

Consider the associated � × � matrix

∂cz(p; νc) =
∫

ΘS

∂wxW (p, p b; θ) p� dν − ᾱ I

of derivatives w.r.t. the components of c. For every a ∈ �G satisfying p a = 0, it follows

that the vector equation ∂cz(p; νc) v = a has a solution v = −(1/ᾱ) a. Also, p ∂cz(p; νc) = 0.

Hence, there is a neighbourhood N of 0 in �G such that the matrix ∂cz(p; νc) has rank �−1

for all p ∈ ∆0 and all c ∈ N . So therefore does the � × 2� matrix (∂pz(p; νc), ∂cz(p; νc)).

From the transversality theorem, it follows as in [24, Prop. 5.8.16] that the distribution νc

is regular for almost all c in some neighbourhood of 0. This proves that M∗ is dense as well

as open in M.
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3.4. A Walrasian Selection

A selection from the equilibrium correspondence is a mapping ν �→ p(ν) satisfying p(ν) ∈
Π(ν) for all ν ∈ M. So far there is nothing to guarantee the existence of a continuous

selection that is defined on the whole domain M, or even on the whole sub-domain M∗

of regular distributions. However, adapting the proof of Mas-Colell [24, Prop. 5.8.18] to

our topology establishes that a continuous selection does exist on some open and dense set

M′ ⊂ M∗. Moreover, because the set M is closed and the correspondence ν �→→Π(ν) has a

closed graph in M× ∆, it follows from [18, Lemma 1, p. 55 and Prop. 1, p. 22] that there

exists a selection which is measurable everywhere. This makes it possible to choose, with

some degree of arbitrariness, a particular selection ν �→ pW (ν) ∈ Π(ν) from the Walrasian

equilibrium price correspondence which is measurable everywhere and continuous on an

open and dense subset M′ of M∗, the set of regular distributions. This particular selection

pW (·) will be used to construct our asymptotically strategy-proof Walrasian mechanisms.

To summarize, the following assumption is not vacuous because an appropriate selection

does exist:

Assumption A.1. The mapping ν �→ pW (ν) defined on M is a measurable selection from

the correspondence ν �→→Π(ν), and is continuous on some set M′ ⊂ M∗ of regular distri-

butions which is open and dense in M.

3.5. Weak Dispersion

Recall that our objective is to construct mechanisms for an expanding sequence of finite

economies which generate allocations that converge to a Walrasian allocation in the limit.

It is assumed that in each successive finite economy, agents’ characteristics are drawn inde-

pendently at random from an indefinitely large population with unknown true distribution

ν̄ ∈ M. Clearly, if the selection pW (·) happens to be discontinuous at or near ν̄, it will be

virtually impossible to use this selection rule to determine a mechanism which converges

to a Walrasian allocation in the limit economy with distribution ν̄. Accordingly, it will be

assumed that ν̄ is in the open dense subset M′, implying that pW (·) is continuous in some

neighbourhood N of ν̄.

From now on, let p̄ := pW (ν̄) denote the value of the Walrasian price selection for the

limit distribution ν̄.

13



Because ν̄ ∈ M′ and M′ is a subset of the set of regular economies M∗, at p̄ the

mean (� − 1) × (� − 1) reduced Jacobian matrix ∂z(p) of the partial price derivatives of

the mean excess demand must be invertible. We now impose one extra assumption to

simplify later arguments by guaranteeing an invertible variance–covariance matrix for the

net trade vectors and their price derivatives. The same assumption also guarantees that

S :=
∫
ΘS

‖f(θ)‖2dν̄ > 0 which, as will be made clear below, ensures that the balancing

agent can be paid a positive amount from the transaction costs which other agents are

willing to pay. In the formal proofs this will enable proper estimates of the speed at which

the Walrasian price sequence converges and of the probability that the mechanism fails to

be locally strategy-proof.

To introduce the extra assumption, for each h ∈ G \ {1}, define f ′
h(θ) := ∂f

∂ph
(θ) ∈

�G\{1}. Then say that the distribution ν̄ is weakly dispersed if the � different (�−1)×(�−1)

symmetric matrices
∫
ΘS

f(θ) [f(θ)]�dν̄ and
∫
ΘS

f ′
h(θ) [f ′

h(θ)]�dν̄ (h ∈ G\{1}) are all positive

definite. This requires that, as θ varies over the support of the distribution ν̄, so each of

the � different vectors f(θ) and f ′
h(θ) (h ∈ G \ {1}) in �G\{1} must range over a set of full

dimension � − 1. It also requires all the above matrices to be non-singular.

To summarize, we assume that:

Assumption A.2. The unknown true distribution satisfies ν̄ ∈ M′ and is weakly dispersed.

3.6. Weakly Dispersed Distributions are Generic

Because the relevant determinants are continuous functions of the distribution ν̄, the set

of weakly dispersed distributions is open relative to M. This subsection shows that the

set of distributions satisfying a stronger dispersion condition is dense, so the set of weakly

dispersed distributions is open and dense relative to M.

First, given any symmetric �× � matrix A with all its elements non-negative and a zero

diagonal, we follow an idea due to Diewert [12] in defining the generalized Leontief price

index

PA(p) :=
∑

g∈G

∑
h∈G\{g}

agh
√

pg ph

Note that on the domain ∆0 the function PA(p) is non-decreasing, concave, and homoge-

neous of degree 1.

14



Next, consider any non-negative symmetric matrix A as above, together with a vector

b ∈ �G
+ and a smooth characteristic θ ∈ ΘS . As argued in Section 2.2, there is a unique

corresponding smooth characteristic θAb ∈ ΘS defined for all p ∈ ∆0 and all u ≥ u(θ) =

u(θAb) by the expenditure function E(p, u; θAb) := E(p, u; θ)−p b+PA(p) which is concave,

homogeneous of degree 1, and C2. The associated minimum expenditure functions are

related by the equation w(p; θAb) := w(p; θ) − p b + PA(p), and on the respective domains

D(θ) and D(θAb), the corresponding indirect utility functions are related by the equation

v(p, w; θAb) := v(p, w + p b − PA(p); θ). Because xW (p, w; θ) = ∂pE(p, u; θ) where u =

v(p, w; θ), with a similar relation when θ is replaced by θAb, it follows that

xW (p, w; θAb) = xW (p, w + p b − PA(p); θ) − b + ∂PA(p)

The domain of characteristics θAb ∈ ΘS which can be derived from any given θ in this

way is homeomorphic to the non-negative orthant �m
+ of a Euclidean space of dimension

m := 1
2�(� + 1) because routine calculations establish that d(θAnbn

, θAb) → 0 as n → ∞ for

the metric d given to ΘS if and only if ‖(An − A, bn − b)‖ → 0 in the norm of �m.

Now, given any fixed p∗ 
 0 and b ∈ �G satisfying p∗ b = 0, choosing A = 0 ensures

that xW (p∗, w; θAb) = xW (p∗, w; θ) − b. Also, when b = ∂pPA(p∗) and so p∗ b = PA(p∗)

because of Euler’s theorem for homogeneous functions, it follows that

∂px
W (p∗, w; θAb) = ∂px

W (p∗, w; θ) + ∂2PA(p∗)

Note that
∂2

∂pg∂ph
PA(p∗) = 1

2 agh/
√

pg ph if g �= h,

whereas
∂2

∂pg
2
PA(p∗) = − 1

2

∑
h�=g

agh

√
ph/pg

3.

Consider any non-zero vector c = 〈cg〉g∈G with p∗ c = 0 and cg ≥ 0 for each g �= h, so

ch < 0. Then one can make ∂
∂ph

xW
g (p∗, w; θAb) = ∂

∂ph
xW

g (p∗, w; θ) + cg for each g ∈ G by

choosing A and b so that

agh = 2 cg

√
p∗g p∗h for each g �= h,

and bg =
∂

∂pg
PA(p∗) =

∑
h∈G\{g}

agh

√
p∗h/p∗g = 2 cg

∑
h∈G\{g}

p∗h for all g ∈ G.

In effect, this merely confirms that E(p, u; θAb) really is a “flexible functional form” in the

sense described by Diewert [12, p. 113].
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Finally, given any θ ∈ ΘS and ε > 0, define the compact set

Θε(θ) := { θAb ∈ ΘS | (A, b) ∈ �m
+ ; ‖A‖ + ‖b‖ ≤ ε }

which has a non-empty interior in the homeomorphic subset �m
+ . Then, say that the

distribution ν̄ ∈ M is dispersed if there exist θ̄ ∈ ΘS and ε > 0 such that Θε(θ̄) ⊂ supp ν̄.

With this definition, the analysis of the previous paragraph makes it obvious that dispersion

implies weak dispersion.

To verify that the set of dispersed distributions is dense, consider any ν̄ ∈ M and any

θ̄ ∈ supp ν̄. Define the nested sequence of compact sets Vn := Θ1/n(θ̄) (n = 1, 2, . . .), each

of which can be regarded as a subset of �m
+ . Let µ denote Lebesgue measure on �m. Then

one can define ν∗
n ∈ M so that ν∗

n(K) := µ(K ∩ Vn)/µ(V1) for each measurable K ⊂ ΘS .

Next, construct the distributions ν̄n := [1 − ν∗
n(Vn)] ν̄ + ν∗

n ∈ M for n = 1, 2, . . .. Then

supp ν̄n = supp ν̄ ∪ Vn ⊃ Θ1/n(θ̄), so ν̄n must be dispersed. As n → ∞, the Hausdorff

distance in ΘS between supp ν̄n and supp ν̄ evidently converges to 0. Also, µ(Vn) → 0 as

n → ∞. Therefore, given any bounded continuous function φ : ΘS → �, one must have

∫
ΘS

φ(θ)dν̄n = [1 − ν∗
n(Vn)]

∫
ΘS

φ(θ)dν̄ +
1

µ(V1)

∫
Vn

φ(θ)dµ →
∫

ΘS

φ(θ)dν̄

Hence, ν̄n must converge to ν̄ in the topology of weak convergence, and so in the topology

we are using. Thus, the set of distributions ν̄ satisfying A.2 is dense as well as open in M,

so is generic.

4. Constructing a Sequence of Mechanisms

4.1. An Expanding Sequence of Random Economies

For n = 2, 3, . . ., consider any economy with the finite set In := { 0, 1, 2, . . . , n } of n + 1

agents. In order to describe a general non-anonymous mechanism in this economy, it will

be necessary to consider the entire profile θIn of different agents’ types, rather than just

the distribution νn. In fact, it will be assumed that θIn is a collection of n + 1 independent

and identically distributed (i.i.d.) random draws from ΘS with probability distribution ν̄.

Moreover, the profile θIn is assumed to be θIn−1 extended by the additional characteristic

θn of the (n + 1)th person — in other words, we have an expanding sequence of economies.
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Given θIn , let νn ∈ M denote the associated empirical distribution defined for every Borel

set K ⊂ ΘS by

νn(K) :=
1

n + 1
#{ i ∈ In | θi ∈ K } =

1
n + 1

∑n

i=0
1K(θi)

where each 1K(θi) is the indicator variable satisfying 1K(θi) = 1 iff θi ∈ K, and 1K(θi) = 0

otherwise. As the mean of n + 1 i.i.d. bounded random variables, the law of large numbers

implies that νn(K) converges almost surely to its expected value ν̄(K) as n → ∞. In

particular, almost surely νn will converge weakly to ν̄.2

Because the sequence of economies is expanding, one must have supp νm ⊂ supp νn

whenever n > m. Moreover, since νn is constructed through sampling from ν̄, it must be

true that supp νn ⊂ supp ν̄. Let V be any open set that intersects supp ν̄. Then ν̄(V ) > 0,

implying that νn(V ) > 0 for all large n. So V intersects supp νn. It follows that the set

supp ν̄ \ ∪∞
n=1 supp νn has empty interior, so ∪∞

n=1 supp νn must have supp ν̄ as its closure.

The Hausdorff distance between supp νn and supp ν̄ must therefore converge to 0 as n → ∞.

It follows that νn → ν̄ in the topology of M we are using.

4.2. Budget Constraints and the Balancing Agent

For each n = 2, 3, . . . and each random type profile θIn , we will construct an allocation

mechanism Fn(θIn) = 〈Fn,i(θIn)〉i∈In . As mentioned above, these mechanisms will be

“non-parametric”, in the sense that they depend only on agents’ revelations concerning

the unknown profile θIn ; no information about the limiting distribution ν̄ is used in their

construction.

Each mechanism Fn of the sequence will single out agent 0 to play a special balancing

role. Also, the remaining n agents will be divided into the two approximately equally sized

groups I1
n = { 1, 2, . . . , rn } and I2

n = { rn+1, . . . , n }, where rn (n = 2, 3, . . .) is any sequence

of integers such that n−1rn → 1
2 as n → ∞. Sometimes we will write rj

n = #Ij
n (j = 1, 2),

implying that r1
n = rn and r2

n = n − rn. Given the type profile θIn , let θI1
n and θI2

n denote

the type profiles of the two groups I1
n and I2

n, with corresponding empirical distributions

ν1
n, ν2

n ∈ M respectively.

2 Because ΘS is a separable metric space, this accords with the Glivenko–Cantelli theorem in
the form due to Parthasarathy [29, Theorem 7.1, p. 53], also cited by Hildenbrand [18, pp. 52–53].
But the result we need is slightly stronger because the supports must also converge.
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The measurable selection pW (·) of A.1 will be used to confront agents i ∈ I1
n with

the same budget constraint which depends on ν2
n, the distribution of characteristics for

individuals in the complementary set I2
n. Similarly, the mechanism confronts the agents i ∈

I2
n with a different budget constraint which depends on ν1

n, the distribution of characteristics

for individuals in I1
n. Both budget constraints involve separate transactions fees for buying

and selling all except the numéraire commodity 1. These fees are assumed to be quadratic in

order to preserve smoothness of individual demand functions. In the later formal analysis,

this will permit the use of linear approximations to agents’ demand functions.

Specifically, all except the balancing agent 0 will face one of two price vectors p ∈ ∆0

and one of two transaction fees τ > 0. Then each p and τ jointly determine a non-linear

budget set

B(p, τ) := {x ∈ �G | p x + τ ‖x−1‖2 ≤ 0 }

Of course, because τ > 0, the budget set B(p, τ) is convex.

Next, for each possible agent type θ ∈ ΘS , define the utility-maximizing net trade

vector

x(p, τ ; θ) := arg max
x

{u(x; θ) | x ∈ X(θ) ∩ B(p, τ) }

Obviously, when τ = 0 the budget set B(p, 0) becomes the Walrasian budget set BW (p, 0),

implying that x(p, 0; θ) = xW (p, 0; θ) for each θ ∈ ΘS .

4.3. Budget Constraints

Smoothness Proposition. Under A.2, there exists ε > 0 such that the utility-maximizing

demand function (p, τ, θ) �→ x(p, τ ; θ) is jointly continuous in (p, τ, θ) and continuously

differentiable in (p, τ) on the domain D of (p, τ, θ) satisfying ‖p − p̄‖ < ε, 0 ≤ τ < ε and

θ ∈ supp ν̄, with partial Jacobian matrix and partial gradient vector denoted by

x′
p(p, τ ; θ) =

(
∂xg

∂ph
(p, τ ; θ)

)
g,h∈G\{1}

and x′
τ (p, τ ; θ) =

〈
∂xg

∂τ
(p, τ ; θ)

〉
g∈G\{1}

where x′
p(p, 0; θ) is continuous in (p, θ) and uniformly bounded on D.

Proof: By the definition of smooth characteristics in Section 2.1, for all θ ∈ ΘS , all p ∈ ∆0,
and all small enough τ ≥ 0, the net trade vector x(p, τ ; θ) is “a regular point of demand” in
the interior of X(θ). So the conclusion follows from applying the implicit function theorem
to the total derivative of the first-order conditions, as in [24, Prop. 2.7.2].
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Now for each n, given the two empirical distributions νk
n and the associated Walrasian

equilibrium normalized price vectors pk
n := pW (νk

n) (k = 1, 2), define

Sk
n = Sk

n(νk
n) :=

1
rk
n

∑
i∈Ik

n

∑
g∈G\{1}

[
xg(pk

n, 0; θi)
]2

X ′
p(ν

k
n) :=

1
rk
n

∑
i∈Ik

n

x′
p(p

k
n, 0; θi) and x′

τ (νk
n) :=

1
rk
n

∑
i∈Ik

n

x′
τ (pk

n, 0; θi)

Next, let e−1 denote the (�− 1)-dimensional vector (1, 1, . . . , 1) ∈ �G\{1}. Then, given

the two empirical distributions νk
n (k = 1, 2), define the associated transaction fees τk

n > 0

and price adjustments vk
n ∈ �g∈G\{1} by

τk
n = τ(νk

n) :=

{∑
g∈G pg(νk

n)/Sk
n(νk

n) if Sk
n(νk

n) �= 0

1 if Sk
n(νk

n) = 0

vk
n = v(νk

n) :=
{ (

0,−[X ′
p(ν

k
n)]−1 [e−1 + τk

n x′
τ (νk

n)]
)

if X ′
p(ν

k
n) is invertible

0 otherwise

The price adjustment vector vk
n will be zero if pk

n is a critical equilibrium, which is only

possible if νk
n is a singular distribution. This will almost surely not occur for n large enough,

because ν̄ ∈ M′ ⊂ M∗ and so all distributions near the limiting regular distribution ν̄ must

be regular. Note that the mechanism is well defined over the whole domain M.

The specification of the price adjustments and transaction fees is intended to ensure

that, for n large enough, with high probability both groups of agents I1
n and I2

n will generate

an excess supply of every commodity. Concretely, choose any sequence {λn}n=1,2,... of

positive scalars such that λn → 0 and yet λn
2 n/ lnn → ∞ as n → ∞ — for example,

λn = λ nρ−1/2 for some constants λ, ρ satisfying λ > 0 and 0 < ρ < 1
2 . Given each sub-

distribution νk
n (k = 1, 2), the vectors of Walrasian equilibrium prices pk

n, price adjustments

vk
n, and transaction fees τk

n , every agent in the complementary group Ij
n (j �= k) will be

confronted with the budget set

Bj
n(νk

n) = B(pk
n + λn vk

n, λn τk
n) = {x ∈ �G | (pk

n + λn vk
n)x + λn τk

n ‖x′
−1‖2 ≤ 0 }

Note that Bj
n(νk

n) depends only on n and on the distribution νk
n of types in the other group

Ik
n (k �= j); it is entirely independent of θIj

n . In fact, Bj
n(νk

n) is the Walrasian equilibrium

net trade budget set that would arise in the economy with distribution νk
n, except that
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it is corrected by the small adjustments λn vk
n in the price vector and by the quadratic

transaction charges that are also proportional to λn. The purpose of the price adjustments

is to create negative excess demand, after correcting for the effects of the transaction fees.

The precise choices of vk
n and τk

n will be justified in Section 5, in the course of proving

Lemma 5.

For each empirical distribution νk
n (k = 1, 2), define for each possible agent type θ ∈ Θ

the appropriate utility maximizing net trade

xn(νk
n; θ) := x(pk

n + λn vk
n, λn τk

n ; θ)

and

x0
n(ν1

n, ν2
n) := −

∑
i∈I1

n

xn(ν2
n; θi) −

∑
i∈I2

n

xn(ν1
n; θi)

as the net trade vector required to balance the resulting net trades of the n agents. Then

x̂0
n(ν1

n, ν2
n; θ0) :=

{
0 if x0

n(ν1
n, ν2

n) �∈ X(θ0) or u(x0
n(ν1

n, ν2
n); θ0) < u(0; θ0)

x0
n(ν1

n, ν2
n) otherwise,

represents the balancing agent 0’s preferred net trade vector, given the choice between

x0
n(ν1

n, ν2
n) and autarky.

4.4. A Sequence of Mechanisms

For all i ∈ Ij
n where j �= k (k = 1, 2) and for i = 0, the sequence of mechanisms Fn for

n = 1, 2, . . . is defined as follows:

Fn,i(ν1
n, ν2

n; θi, θ0) :=

{
xn(νk

n; θi) if x̂0
n(ν1

n, ν2
n; θ0) �= 0 or x0

n(ν1
n, ν2

n) = 0,

0 if x̂0
n(ν1

n, ν2
n; θ0) = 0 �= x0

n(ν1
n, ν2

n),

and Fn,0(ν1
n, ν2

n; θ0) := x̂0
n(ν1

n, ν2
n; θ0)

Note that each mechanism Fn allows agent 0 to choose autarky for everybody if bal-

ancing would violate individual rationality. Thus, Fn is individually rational. It is also

resource-balanced by construction.

Because λn → 0 as n → ∞ and each x(p, τ ; θ) (θ ∈ ΘS) is a continuous function of

(p, τ) at (p, τ) = (p̄, 0), the net trade vector x(pk
n + λn vk

n, λn τk
n ; θ) of each non-balancing
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agent i ∈ I1
n ∪ I2

n will converge to the Walrasian net trade vector x(p(ν̄), 0; θ) = xW (p̄; θ)

provided that vk
n and τk

n both remain bounded as n → ∞. Thus, the sequence of mecha-

nisms will be asymptotically Walrasian in the sense that, except for the balancing agent 0,

each agent i’s allocation Fn,i(θIn) converges to the Walrasian allocation xW (p̄; θi) almost

surely because the empirical distributions ν1
n, ν2

n corresponding respectively to θI1
n , θI2

n both

converge almost surely to ν̄.

Evidently, truthfulness is always a dominant strategy for the balancing agent 0, who

faces either the choice between 0 and x0
n(ν1

n, ν2
n), or else no choice at all; in particular, agent

0’s option set is independent of θ0. As for the agents in either group Ij
n (j = 1, 2), their

common budget set Bj
n(νk

n) (k �= j) is independent of all their types. However, in some

cases, the mechanism Fn grants them the power as individuals to determine whether the

economy is reduced to autarky or not. In fact, given any particular characteristic profile

θIn , truthfulness is always a dominant strategy for all i ∈ I1
n ∪ I2

n unless the mechanism

generates autarky. This situation could arise whenever the balancing agent strictly prefers

autarky to the balancing net trade vector. Even then, an individual agent h ∈ Ij
n of type

θh can only manipulate advantageously if an alternative type ηh ∈ ΘS can be found such

that u
(
xh

n(νk
n; ηh); θh

)
> u(0; θh) and also

u
(
x0

n(ν̃j
n(ηh), νk

n; θ0

)
≥ u(0; θ0) > u

(
x0

n(ν1
n, ν2

n); θ0

)

where ν̃j
n(ηh) denotes the overall distribution of characteristics reported by agents in Ij

n

when θh is replaced by ηh.

Thus, according to the definition given in Section 1.4, the mechanism Fn may not be

locally strategy-proof for some profiles of individual characteristics. But this breakdown

cannot occur unless the balancing agent strictly prefers autarky to the balancing trade

prescribed by the mechanism. Under the above assumptions, it will be proved that, as

n → ∞, there is a zero limiting probability that the allocation determined by Fn is autarkic.

Intuitively, by introducing quadratic transaction fees and then adjusting the equilibrium

prices slightly, the equilibrium gets perturbed in a way that generates an expected surplus

of every commodity. Moreover, this surplus becomes large as the economy becomes large,

even though the expected surplus per head vanishes in the limit. In this way, even though

the prices facing each group may be only approximately market clearing for that group,
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it is still possible to ensure that the balancing net trade vector x0
n(ν1

n, ν2
n) for agent 0 is

non-negative — or even strictly positive — with a probability which tends to 1 as n → ∞.

The implication will be that, with probability which converges to 1, the balancing net trade

vector will be individually rational for agent 0. The sequence of mechanisms will then

be asymptotically strategy-proof, as well as resource-balanced, individually rational, and

asymptotically Walrasian.

Note that the condition defined above for truthfulness not to be an optimal strategy for

a given agent — whenever all other agents are assumed to report truthfully — is met with

considerably lower probability than the condition required for the existence of a surplus

in every commodity. For this reason, the estimates we present below for autarky to be

avoided overstates the probability of advantageous manipulation by a single agent. Note also

that, whenever all other agents are assumed to report truthfully, a given agent’s incentives

to manipulate will decrease rapidly as the size of the economy grows and will eventually

disappear. Not only does the benefit from any fixed attempt to manipulate tend to zero,

as shown by Roberts and Postlewaite [31], but also its expected value becomes negative

for large enough economies (under the expected utility hypothesis). For a given agent, the

cost of an unnecessary attempt to manipulate is an inappropriate allocation — namely,

a net trade vector that would be optimal for the distorted characteristic instead of the

true characteristic; this happens whenever the economy stays away from autarky, which

occurs with a probability that converges to 1 whenever all other agents report truthfully;

moreover, for any fixed attempt to manipulate, this cost is independent of n. On the other

hand, each agent’s benefit from successful manipulation — i.e., the possibility of steering

the economy away from autarky — will materialize with a probability that converges to zero

as the economy grows infinitely large, provided that all other agents report truthfully. So,

in this case, the expected value of any fixed attempt to manipulate will become negative for

large enough economies. This ensures that, if a given agent expects everyone else to report

truthfully, the best response will converge to truthful revelation. Obviously, this does not

imply that every sequence of Bayesian equilibria converges to truthful revelation.
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5. Formal Proofs

The previous section presented only a very informal argument. This section contains a more

rigorous treatment based upon Bhattacharya and Majumdar’s [6] approach to a somewhat

similar problem — see also Weller [36].

Main Theorem. Under A.1–A.2, each mechanism Fn(θIn) is well defined as a function

of the list θIn of n + 1 i.i.d. random characteristics drawn from the distribution ν̄ ∈ M′.

Also, except for the balancing agent 0, each agent i’s allocation Fn,i(θIn) generated by

each mechanism converges to the Walrasian allocation xW
i (p̄; θi) almost surely as n → ∞.

Furthermore, there exists a constant δ > 0 depending only on the distribution ν̄ such that,

for all large n, the mechanism Fn(θIn) is always balanced and individually rational, and is

also locally strategy-proof at θIn with probability at least 1 − δ n−1/2 (lnn)−3/2.

The proof will proceed through a series of lemmas. First, note that pk
n → p̄ as n → ∞

because Section 4.1 shows that νk
n → ν̄ almost surely, whereas ν̄ ∈ M′ and λn → 0 by

definition. It follows from the Smoothness Proposition of Section 4.3 that Fn,i(θIn) →
x(p(ν̄), 0; θi) = xW (p̄; θi) almost surely for all i ∈ I1

n ∪ I2
n. In this sense, the mechanism will

be asymptotically Walrasian. The sixth and last lemma shows that the balancing agent

0’s net trade vector satisfies x0
n(ν1

n, ν2
n) >−− 0 with probability at least 1 − δ n−1/2 (lnn)−3/2

for a suitable positive constant δ > 0. From this, the above theorem follows immediately.

Finally, because the set of distributions satisfying A.2 is open and dense in the domain

M, the properties of individual rationality, asymptotic efficiency and asymptotic strategy-

proofness hold generically.

The first lemma is a useful result in mathematical statistics due to Bhattacharya and

Rao [7, Corollary 17.13], also cited by Weller [36, p. 75], as applied to a sequence of random

variables that are not only independent, but also identically distributed.

Lemma 1. Let Xn (n = 1, 2, . . .) be a sequence of �G-valued i.i.d. random variables with

common zero mean, variance–covariance matrix V , and sth absolute moments IE ||X||s

(s = 1, 2, . . .). Let γ and Γ respectively denote the smallest and largest eigenvalues of V .

Suppose that γ > 0 and that IE ||X||s < ∞ for some integer s ≥ 3. Then there exists a
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uniformly bounded sequence δn (n = 1, 2, . . .) such that

Prob

( ∥∥∥∥ 1
n

∑n

j=1
Xj

∥∥∥∥
2

>
1
n

(s − 1) Γ lnn

)
≤ δn n−(s−2)/2 (lnn)−s/2

From now on, A.1–A.2 are postulated throughout.

Lemma 2. Let Λ be the largest eigenvalue of the variance–covariance matrix of the random

Walrasian net trade vector xW
−1(p̄; θ). Then there exists δ0 > 0 such that

Prob

( ∥∥∥∥1
r

∑r

i=1
x−1

(
p(ν̄), 0; θi

)∥∥∥∥
2

>
2
r2

Λ ln r

)
≤ δ0 r−1/2 (ln r)−3/2

Proof: Following the argument of Weller [36], this is a direct application of Lemma 1
to the infinite sequence {xW

−1(p̄; θi)}i=1,2,... of i.i.d. random vectors, with s = 3 and δ0 =
supr {δr}. Indeed, each member of the sequence {xW (p̄; θi)} belongs to the compact set
{x ∈ �G | x >−− x and p̄ x ≤ 0 }. So every absolute moment of the distribution of xW

−1(p̄; θ)
is finite. Finally, because of A.2, each eigenvalue of the common variance–covariance matrix
of the net trade vectors is positive.

The following two lemmas both make use of the notation tkn := pk
n − p̄.

Lemma 3. There exist constant positive scalars dk
1 and δk

1 (k = 1, 2) such that

Prob
(
||tkn||2 > (dk

1/rk
n) ln rk

n

)
≤ εk

1,n

where εk
1,n := δk

1 (rk
n)−1/2 (ln rk

n)−3/2.

Proof: By construction, each sequence pk
n = pW (νk

n) is taken from the measurable selection
pW (·) from the Walrasian equilibrium price correspondence defined on the whole domain
M. Clearly, this gives a sequence of measurable equilibrium random prices. Because of
A.2, each eigenvalue of the common variance–covariance matrix of the price derivatives of
the net trade vectors is positive. So the result follows directly from [36, Theorem 2].
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Lemma 4. There exist constant positive scalars d2 and δ2 such that

Prob
( ∥∥∥∥ 1

rj
n

∑
i∈Ij

n

x(pk
n, 0; θi)

∥∥∥∥ > d2 n−1/2 (lnn)1/2

)
≤ δ2 n−1/2 (lnn)−3/2

for all large n, and for j, k = 1, 2 with j �= k.

Proof: Because ν̄ has compact support, the function ψj
n(ζ) :=

∑
i∈Ij

n
x−1(p̄ + ζ tkn, 0; θi)

of the single real variable ζ satisfies the assumptions of the mean value theorem. So, for
each n, there exists ζj

n ∈ [0, 1] such that ψj
n(1) = ψj

n(0) + ψj′
n (ζj

n) and so

∑
i∈Ij

n

x−1(pk
n, 0; θi) =

∑
i∈Ij

n

[
x−1(p̄, 0; θi) + x′

p(p̄ + ζj
n tkn, 0; θi) tkn

]
Now define the two vectors

aj
n :=

1
rj
n

∑
i∈Ij

n

x−1(p̄, 0; θi) and bj
n :=

1
rj
n

∑
i∈Ij

n

x′
p(p̄ + ζj

n tkn, 0; θi) tkn

in �G\{1}. Then obviously

1
rj
n

∑
i∈Ij

n

x−1

(
pk

n, 0; θi

)
= aj

n + bj
n

By Lemma 2, for j = 1, 2 there exists dj
3 > 0 such that ||aj

n|| > dj
3(r

j
n)−1 (ln rj

n)1/2 with
probability less than εn := δ0 (rj

n)−1/2 (ln rj
n)−3/2.

Because ν̄ has compact support, the continuous partial Jacobian matrix x′
p(p, 0; θ) is

uniformly bounded for all p in some neighbourhood of p̄ and for all θ in the compact set
supp ν̄. Also, the price sequence pk

n converges almost surely to p̄, so tkn converges almost
surely to 0. Hence, for large n, almost surely there exists ξn such that

∥∥x′
p(p̄ + ζ tkn, 0; θi)

∥∥ ≤
ξn for all ζ ∈ [0, 1] and all i ∈ Ij

n, so ||bj
n|| ≤ ξn ||tkn||. Therefore, by Lemma 3, if dj

4 :=
ξn (dj

1)
1/2, then ||bj

n|| > dj
4(r

j
n)−1/2 (ln rj

n)1/2 with probability less than 1 − εk
1,n.

The previous two paragraphs imply that, with probability no less than 1 − εn − εk
1,n,

one has both ||aj
n|| ≤ dj

3 (rj
n)−1 (ln rj

n)1/2 and ||bj
n|| ≤ dj

4 (rj
n)−1/2 (ln rj

n)1/2. But rj
n/n → 1

2

as n → ∞. Hence, given any d5 >
√

2 max{ d1
4, d

2
4 }, for large n one has ||aj

n + bj
n|| >

d5 n−1/2 (lnn)1/2 with probability no greater than ε2 = (δ0 + δ1) n−1/2 (lnn)−3/2. Also, the
budget constraints imply that

1
rj
n

∑
i∈Ij

n

x1 (p̄, 0; θi) = −p−1(ν̄) (aj
n + bj

n).

The result follows with d2 := [1 + ||p−1(ν̄)|| ] d5 and with δ2 := δ0 + δ1.
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Recall the notation e = (1, 1, . . . , 1) ∈ �G, e−1 = (1, 1, . . . , 1) ∈ �G\{1}, and

Sk
n(νk

n) =
1
rk
n

∑
i∈Ik

n

∑
g∈G\{1}

[
xg(pk

n, 0; θi)
]2

.

Denote also

xk
n(λ; v, τ) :=

1
rk
n

∑
i∈Ik

n

x
(
pk

n + λ v, λ τ ; θi

)
and S̄ :=

∫
ΘS

∑
g∈G\{1}

[xg (p̄, 0; θ)]2 dν̄

Lemma 5. For all large n, one has xk
n
′(0; v, τ) =

d

dλ
xk

n(λ; v, τ)
∣∣∣∣
λ=0

= −e almost surely

when v = vk
n and τ = τk

n .

Proof: Because the price sequence pk
n converges almost surely to p̄, the smoothness propo-

sition of Section 4.3 implies that

X ′
p(ν

k
n) :=

1
rk
n

∑
i∈Ik

n

x′
p(p

k
n, 0; θi) and x′

τ (νk
n) :=

1
rk
n

∑
i∈Ik

n

x′
τ (pk

n, 0; θi)

are almost surely well defined for all large n. Now write v in the partitioned form (0, v−1).

Then, after omitting good 1 from the gradient vector xk
n
′(0; v, τ) =

d

dλ
xk

n(λ; v, τ)
∣∣∣∣
λ=0

, the

remaining � − 1 components evidently satisfy

xk
n,−1

′(0; v, τ) = X ′
p(ν

k
n) v−1 + τ x′

τ (νk
n)

Now, by smoothness and A.1–A.2, the matrix X ′
p(ν

k
n) converges almost surely to X ′

p(ν̄).
By A.2, ν̄ is regular, so X ′

p(ν̄) is invertible. Hence, X ′
p(ν

k
n) is almost surely invertible

when n is large enough. Then one can ensure that xk
n,−1

′(0; v, τ) = −e−1 by choosing
v = (0, v−1(νk

n)) where

v−1(νk
n) := −[X ′

p(ν
k
n)]−1 [e−1 + τ x′

τ (νk
n)]

Next, note that xk
n(0; v, τ) = 0 because pk

n is a Walrasian equilibrium price vector for
the distribution νk

n. Also, taking the average of the budget constraints for the agents i ∈ Ik
n

implies that

xk
n,1(λ; v, τ) = −[pW

−1(ν
k
n) + λ v−1]xk

n,−1(λ; v, τ)

− λ

rk
n

∑
i∈Ik

n

τ
∑

g∈G\{1}

[
xg(pk

n + λ v, λ τ ; θi)
]2

Then, because xk
n,−1(0; v, τ) = 0, differentiating w.r.t. λ at λ = 0 gives

xk
n,1

′(0; v, τ) = −pW
−1(ν

k
n)xk

n,−1
′(0; v, τ) − τ Sk

n(νk
n) = pW

−1(ν
k
n) e−1 − τ Sk

n(νk
n)
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Now, A.2 implies that S̄ > 0. Because νk
n → ν̄ almost surely and so pk

n → p̄, whereas
supp ν̄ is compact, it follows that x(pk

n, 0; θ) tends to x(p̄, 0; θ) uniformly for all θ ∈ supp ν̄.
Therefore Sk

n → S̄ almost surely. This implies in particular that Sk
n > 0 almost surely for

large n. Hence, choosing τ = [1 + pW
−1(ν

k
n) e−1]/Sk

n(νk
n) ensures that xk

n,1
′(0; v, τ) = −1.

Recalling that pW
1 (νk

n) = 1, it follows that choosing

τk
n :=

∑
g∈G

pg(νk
n)/Sk

n(νk
n) and vk

n :=
(
0,−[X ′

p(ν
k
n)]−1 [e−1 + τk

n x′
τ (νk

n)]
)

does ensure that xk
n
′(0; vk

n, τk
n) = −e.

Lemma 6. For large n one has Prob
(
x0

n(ν1
n, ν2

n) >−− 0
)
≥ 1 − 2 δ2 n−1/2 (lnn)−3/2.

Proof: By definition, x0
n(ν1

n, ν2
n) = −

∑2
j=1

∑
i∈Ij

n
xn(νk

n; θi) where xn(νk
n; θi) denotes

x(pk
n + λn vk

n, λn τk
n ; θi). Now, expanding in a first-order Taylor series about λ = 0 gives

1
rj
n

∑
i∈Ij

n

xn(νk
n; θi) = cj

n + λn yj
n + o(λn)

where

cj
n :=

1
rj
n

∑
i∈Ij

n

x(pk
n, 0; θi); yj

n :=
1
rj
n

∑
i∈Ij

n

d

dλ
x(pk

n + λ vk
n, λ τk

n ; θi)
∣∣∣∣
λ=0

Excluding the numéraire commodity 1, Lemma 5 implies that

yj
n,−1 = X ′

p(ν
j
n) v−1(νk

n) + τk
n x′

τ (νj
n) e−1

Because the construction in Section 4.3 implies that X ′
p(ν

k
n) v−1(νk

n) = −[e−1 + τk
n x′

τ (νk
n)],

it follows that

yj
n,−1 = −e−1 + [X ′

p(ν
j
n) − X ′

p(ν
k
n)] v−1(νk

n) + τk
n [x′

τ (νj
n) − x′

τ (νk
n)]

Almost surely as n → ∞, the matrices X ′
p(ν

j
n) and X ′

p(ν
k
n) both converge to X ′

p(ν̄), whereas
x′

τ (νj
n) and x′

τ (νk
n) both converge to x′

τ (ν̄); also τk
n → τ̄ :=

∑
g∈G pg(ν̄)/S̄, and finally

v−1(νk
n) → v̄−1 := −[X ′

p(ν̄)]−1 [e−1 + τ̄ x′
τ (ν̄)]. It follows that yj

n,−1 → −e−1 as n → ∞.
Then budget exhaustion implies that, almost surely,

yj
n,1 = −pW

−1(ν
k
n) yj

n,−1 −
τk
n

rj
n

∑
i∈Ij

n

∑
g∈G\{1}

[
xg(pk

n, 0; θi)
]2

→ pW
−1(ν

k
n) e−1 − τ̄ S̄ = −1

This shows that yj
n → −e almost surely. Hence, yj

n
<−− − 1

2e almost surely for large n, and so

1
rj
n

∑
i∈Ij

n

xn(νk
n; θi) <−− cj

n − 1
2 λn e + o(λn)

27



implying that
1
n

x0
n(ν1

n, ν2
n) >−− −r1

n

n
c1
n − r2

n

n
c2
n + 1

2 λn e + o(λn)

But now, by Lemma 4, there is a probability of at least 1 − 2δ2 n−1/2 (lnn)−3/2 that for
j = 1, 2 one has ||cj

n|| ≤ d2 n−1/2 (lnn)1/2 and so cj
n

<−− −d2 n−1/2 (lnn)1/2 e. Also, r1
n/n

and r2
n/n both tend to 1

2 as n → ∞. Because λn > 2d2 n−1/2 (lnn)1/2 for n large enough,
the result follows.

6. Conclusion

6.1. Three Alternative Mechanisms Compared

Instead of each mechanism Fn defined in Section 4, consider the two alternative mechanisms

F 1
n and F 2

n defined by:

F 1
n,i(ν

1
n, ν2

n; θi) := xn(νk
n; θi) and F 1

n,0(ν
1
n, ν2

n; θ0) := x̂0
n(ν1

n, ν2
n; θ0);

F 2
n,i(ν

1
n, ν2

n; θi) := xn(νk
n; θi) and F 2

n,0(ν
1
n, ν2

n) := x0
n(ν1

n, ν2
n).

For n = 2, 3, . . ., the three mechanisms Fn, F 1
n and F 2

n differ only in the role played by the

balancing agent 0. First, as stated in Section 4, mechanism Fn allows agent 0 to choose

autarky for everybody if balancing would violate individual rationality. Second, mechanism

F 1
n also allows agent 0 to choose 0, but then resource balance may be violated. Finally,

mechanism F 2
n requires agent 0 to balance other agents’ net trades whether or not this is

individually rational or even feasible.

Clearly, all three mechanisms will be asymptotically Walrasian. Moreover, the proof

of the main theorem presented in Section 5 implies that:

(a) F 1
n(θIn) is always individually rational and strategy-proof; it is also resource-balanced

with probability at least 1 − δ n−1/2 (lnn)−3/2;

(b) F 2
n(θIn) is always resource-balanced and strategy-proof; it is also individually rational

with probability at least 1 − δ n−1/2 (lnn)−3/2.

Though closely related, these three mechanisms have different advantages and draw-

backs. The first, Fn, has the main advantage of always being resource-balanced: the re-

sulting allocation is thus unambiguous. Indeed, because the mechanism is also individually

rational, even for the balancing agent, its physical feasibility is guaranteed. Its obvious

drawback is that asymptotic strategy-proofness is not quite strategy-proofness.
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The mechanism F 1
n has the advantage of being always strategy-proof. However, because

it may be unbalanced with probability close to zero, its true incentive properties may be less

favourable. If some rational agents anticipate even a very small probability of imbalance,

their behaviour is likely to be influenced by expectations about the future rationing scheme

that will ultimately be required to restore balance. Obviously, this could spoil the incentive

for truthful reporting.

Finally, the mechanism F 2
n is resource-balanced and strategy-proof, but may not satisfy

the individual rationality constraint u
(
x0

n(ν1
n, ν2

n); θ0

)
≥ u(0; θ0). Indeed, F 2

n may not

be feasible because, for some profiles of individual characteristics, it may be false that

x0
n(ν1

n, ν2
n) ∈ X(θ0). This is undoubtedly a rather unsatisfactory feature.

In fact, even when the mechanism F 1
n or F 2

n breaks down because the balancing agent

prefers autarky, mechanism Fn is still quite likely to succeed. This is because Fn is locally

strategy-proof except when there is some agent whose demand is so large that moderating

only one agent’s net trade would allow that agent and the balancing agent to reach a new

allocation making both of them better off than under autarky.

Summing up, asymptotically all three mechanisms have strong efficiency, incentive and

feasibility properties; however, there is always a small probability of failure that vanishes

in the limit as the number of agents becomes infinite. But this probability seems smallest

for the mechanism Fn defined in Section 4.

6.2. Better Probability Estimates

Section 5 placed rather crude upper bounds on the probability that any of the three

mechanisms would fail. Yet from standard central limit theorems, it is rather intuitive

that the allocation received by the balancing agent — which defines the fundamental

properties of the mechanisms — should be asymptotically normal. In fact, if we define

ξn
0 := ξn

0 (ν1
n, ν2

n) = 1
nx0

n(ν1
n, ν2

n), then ξn
0 = λne + cn + 0(λ2

n) where cn := 1
2 (c1

n + c2
n). Now

we know from Bhattacharya and Majumdar [6] that
√

nc1
n and

√
nc2

n are asymptotically

normal. So therefore is
√

ncn, since its limit is a linear combination of two normal random

variables. It is rather complicated to find the mean and the covariance matrix, however,

because c1
n and c2

n are correlated random variables. So it is not very easy to provide better

probability estimates.
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6.3. Optimal Choice of λn

Obviously, if λn converges slowly to zero (i.e., if ρ is close to 1/2), then the probability of

imbalance shrinks rapidly to zero, but convergence to the limiting Walrasian allocation is

slow. The reverse will be true if ρ is close to zero. In the choice of λn this faces us with a

clear trade-off between incentive and efficiency properties.

6.4. A “Folk” Mechanism

Consider the following mechanism. As usual, all n + 1 agents are asked to report their

characteristics. Then everybody except the balancing agent is assigned a price vector equal

to a Walrasian equilibrium price for the economy of n − 1 agents without that agent or

the balancing agent, and is allocated the corresponding net trade vector. As mentioned

by Jackson and Manelli [21, fn. 21, p. 374]: “We have heard this mechanism suggested by

many people, but have not been able to find any reference for it. Thus we think of it as a

‘folk’ mechanism, but are quite happy to stand corrected.” (In fact, it was mentioned in

[17] at least implicitly.) Whenever the individual prices are close to the same Walrasian

price, the resulting allocations would be asymptotically Walrasian. Truthful revelation is

clearly a dominant strategy; however, the mechanism generally lacks balance.

Kovalenkov [23] constructs an example in which any specification of the folk mecha-

nism can create an arbitrarily large aggregate imbalance, relative to a uniform bound on

endowments, even in large economies. He also proves that the per capita imbalance of

the mechanism vanishes generically in large economies. Consequently, for large enough

economies in which all possible agents have endowments that are uniformly bounded away

from zero by some ê ∈ �G
++, there is an “adjusted” folk mechanism which taxes all n agents

the fixed proportion ε ê of the bounding vector ê, and uses these amounts to restore balance

after discarding any unused surpluses. This mechanism is also “individually ε-rational” (in

the sense that no agent with initial endowment e is made worse off than with the reduced

endowment e − ε ê) and asymptotically “ε-Walrasian” (in the sense that the resulting allo-

cation is asymptotically close to a Walrasian allocation for an economy with the reduced

endowments e−ε ê). Like the mechanism F 2
n defined in Section 6.1, this adjusted folk mech-

anism attempts to reconcile resource-balance, strategy-proofness and asymptotic efficiency

at the cost of violating individual rationality. However, the mechanism is asymptotically
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only approximately Walrasian, rather than asymptotically Walrasian. Moreover, this result

does not hold generically due to the restriction imposed on endowments.

Clearly, one could reformulate each of our three mechanisms along the lines of the

folk mechanism. That is, there could be a balancing agent, as defined above, combined

with a different price and transaction fees for each of the other n agents. Apart from the

balancing agent, the resulting mechanisms would then be anonymous. Additionally, the

probability of failure (of balance, or strategy-proofness, or individual rationality) and the

speed of convergence (to a Walrasian allocation) might well be improved. Obviously, the

increased costs in terms of computational requirements could be significant as the economy

grows.

6.5. Non-Walrasian Mechanisms

An allocation mechanism for an exchange economy is strategy-proof if and only if the

allocation to each agent can be decentralized by a budget set that is independent of that

agent’s characteristics — see for instance Hammond [17, Theorem 1]. In a continuum

economy, consider a given non-Walrasian anonymous strategy-proof mechanism that can

be decentralized for each ν ∈ M by the budget set B(ν) ⊂ �G. More specifically, suppose

that the mechanism determines x(ν, θ) as a function of ν ∈ M and θ ∈ ΘS . Suppose too

that

x(ν, θ) ∈ arg max
x

{u(x; θ) | x ∈ X(θ) and x1 ≤ β1(ν, x−1) }

where, for each ν ∈ M, the function β1(ν, x−1) is strictly decreasing in x−1. For example, in

the tax models of Vickrey [35] and Mirrlees [27], θ is a skill level, x−1 is a scalar measure of

labour income, and for each distribution ν of labour skills, the function β1(ν, x−1) specifies

allowable consumption expenditure, which is equal to after-tax income.

In the general model with an arbitrary finite set of commodities, suppose that β1 is

also smooth and concave in x−1 because B(ν) is convex and has a smooth frontier. Then

arguments similar to those in Section 5 can be applied to the modified budget constraint

x1 + λ v x−1 + λ τ ‖x−1‖2 ≤ β1(ν, x−1)

for a suitable constant scalar τ and vector price adjustment v. In this case, essentially

the same technique of proof used above for Walrasian linear budget sets could be used to
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give very similar results. Even if the non-Walrasian mechanism under consideration is not

decentralizable by smooth convex budget sets B(ν), it might still be possible to adapt the

arguments due to Trockel [34] and others in order to show that mean demand converges

to a smooth function as the economy becomes large. Nevertheless, a completely different

proof technique would be needed.

Such an extension could also encompass mechanisms involving taxes that are used

to finance the production of a fixed bundle of public goods. Of course, except in a few

special cases, we do not envisage being able to find any even asymptotically strategy-proof

mechanism for determining an asymptotically efficient allocation of public goods.
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preprint, Universitat Autònoma de Barcelona, 1997.

[24] A. Mas-Colell, The Theory of General Economic Equilibrium: A Differentiable

Approach, Cambridge University Press, Cambridge, 1985.

[25] A. Mas-Colell, On the second welfare theorem for anonymous net trades in exchange

economies with many agents, in: T. Groves, R. Radner, S. Reiter (Eds.), Information,

Incentives and Economic Mechanisms, University of Minnesota Press, Minneapolis,

1987, pp. 267–292.

[26] A. Mas-Colell, X. Vives, Implementation in economies with a continuum of agents,

Review of Economic Studies 60 (1993) 613–630.

[27] J.A. Mirrlees, An exploration in the theory of optimum income taxation, Review of

Economic Studies 38 (1971) 175–208.

[28] T. Mitsui, Asymptotic efficiency of the pivotal mechanism with general project space,

Journal of Economic Theory 31 (1983) 318–31.

[29] K.R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New

York, 1967.

34



[30] R. Rob, Asymptotic efficiency of the demand revealing mechanism, Journal of

Economic Theory 28 (1982) 207–20.

[31] D.J. Roberts, A. Postlewaite, The incentives for price-taking behavior in large exchange

economies, Econometrica 44 (1976) 115–127.

[32] M. Rothschild, J.E. Stiglitz, Equilibrium in competitive insurance markets: An essay

in the economics of imperfect information, Quarterly Journal of Economics 90 (1976)

629–649.

[33] W. Rudin, Functional Analysis, 2nd. ed., McGraw-Hill, New York, 1991.

[34] W. Trockel, Market Demand: An Analysis of Large Economies with Non-Convex

Preferences, Springer-Verlag, Berlin, 1984.

[35] W.S. Vickrey, Measuring marginal utility by the reactions to risk, Econometrica 13

(1945) 319–333.

[36] P.A. Weller, The speed of convergence of prices in random exchange economies,

Journal of Economic Theory 28 (1982) 71–81.

[37] R.B. Wilson, Competitive exchange model, Econometrica 46 (1978) 577–585.

35


