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Abstract. By definition, multilaterally strategy-proof mechanisms are im-
mune to manipulation not only by individuals misrepresenting their prefer-
ences, but also by finite coalitions exchanging tradeable goods on the side.
Continuum economies are defined in which both agents’ identifiers and their
privately known characteristics are joint i.i.d. random variables. For such
economies, conditions are given for multilateral strategy-proofness to imply
decentralization by a budget constraint with linear prices for tradeable goods
and lump-sum transfers independent of individual characteristics. Also, adapt-
ing Aumann’s [1964a] key proof avoids using Lyapunov’s theorem or its corol-
lary, Richter’s theorem on integrating a correspondence w.r.t. a non-atomic
measure.

1. Introduction and Outline

A macroeconomy is one that is adequately described by statistical aggregates.
Usually macroeconomists look at the means of important variables like income,
hours worked, etc. But other moments of the relevant distribution are also impor-
tant. For example, when different income groups have different marginal propensi-
ties to spend on various goods, aggregate demand is influenced by the distribution
of income between those groups. Accordingly, the obvious step for an economic
theorist to take is to consider the whole distribution. This suggests examining
economies with a continuum of agents — i.e., one in which the usual finite set of
agents is replaced by a non-atomic measure space.

The earliest paper I recall seeing that uses a continuum of economic agents
explicitly is by Vickrey [1945], in his discussion of the limits to redistribution. Much
later, Mirrlees [1971] used a model like Vickrey’s with a one-dimensional continuum
of skill levels in order to formulate and solve a problem involving optimal non-linear
income taxation. There have been many successors, of course. But the first general
equilibrium model of a continuum economy is due to Aumann [1964a, 1966]. Such
models can be motivated using the words of Aumann [1964a, p. 41] himself:

The idea of a continuum of traders . . . is no stranger than . . . a con-
tinuum of “particles” in fluid mechanics. . . . [T]he continuum can
be considered as an approximation to the “true” situation in which
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there is a large but finite number of particles . . . . The purpose
of adopting the continuous approximation is to make available the
powerful and elegant methods of the branch of mathematics called
“analysis,” in a situation where treatment by finite methods would
be much more difficult or even hopeless (think of trying to do fluid
mechanics by solving n-body problems for large n).

There is perhaps a certain psychological difference between a
fluid with a continuum of particles and a market with a contin-
uum of traders. Though we are intellectually convinced that a
fluid contains only finitely many particles, to the naked eye it still
looks quite continuous. The economic structure of a shopping cen-
ter, on the other hand, does not look continuous at all. But, for
the economic policy maker in Washington, or for any professional
macroeconomist, there is no such difference. He works with figures
that are summarized for geographic regions, different industries,
and so on; the individual consumer (or merchant) is as anonymous
to him as the individual molecule is to the physicist.

(emphasis added)
Indeed, continuum economies have come to play a central role in much recent

work in macroeconomics, as well as in general equilibrium theory. Continuum
economies capture very well the intuitive idea that individuals have negligible power
to affect prices. They also represent how individuals acting alone cannot control
the levels of “widespread externalities” like carbon dioxide in the atmosphere, or
those associated with learning by doing in models of “endogenous” growth.1

Aumann used his general equilibrium model in order to prove first core equiva-
lence and then later the existence of Walrasian equilibrium. These results were soon
extended in several articles by Hildenbrand and others — see especially Hildenbrand
[1974]. In addition, following an idea he ascribes to Mertens [1970], Hildenbrand
also introduced a metric on the space of preferences. However, Hildenbrand’s [1971]
earlier work on finite random economies suggests what may be the most satisfac-
tory interpretation of a continuum economy — as the statistical limit of a sequence
of large finite economies in which individuals’ identifiers, characteristics, and also
their corresponding allocations are all sampled independently from an appropri-
ate common joint probability distribution. By an application of the law of large
numbers — or, more precisely, of Glivenko–Cantelli’s theorem in the form set out
by Parthasarathy [1967, Theorem 7.1, p. 53] — the sample distributions converge
almost surely to their values in the continuum economy.2

In general equilibrium theory, two well known and several less well known results
are true under much weaker convexity assumptions about individuals in economies
with many agents. These include results on the existence of Walrasian equilibrium

1For work on general widespread externalities, see for example Kaneko and Wooders [1986,
1989, 1994], Hammond, Kaneko and Wooders [1989], and Hammond [1993b, 1995]. For some of
the many recently published surveys and general discussions of endogenous growth theory, see
for example Romer [1991], Stern [1991], Helpman [1992], Lucas [1993], Aghion and Howitt [1995],
Barro and Sala-i-Martin [1995], and Hahn [1995], as well as Hammond and Rodŕıguez-Clare [1993].

2Actually, as Walter Trockel has kindly reminded me, the continuum economy model is just
one particular way of representing an economy with many participants. One prominent alternative
is the non-standard model with a hyperfinite set of agents. This was pioneered by Brown and
Robinson [1975a, b] — see also Anderson [1991]. A less well known alternative with finitely
additive measures is due to Weiss [1981].
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and the characterization of Pareto efficient allocations as Walrasian equilibria with
lump-sum redistribution of wealth. Neither of these results requires preferences to
be convex. Typically, both use proofs relying on Richter’s [1963] theorem which
states that integrating w.r.t. a non-atomic measure any measurable correspondence
with values in �n produces a convex set.3 Convexity of individual feasible sets,
however, still helps avoid difficulties like Arrow’s [1951] “exceptional case” — see
Hammond [1993].

Aumann’s core equivalence theorem, however, falls into a different class of re-
sults that, except for economies with many agents, are simply not true in general.
Moreover, unlike the existence and second efficiency theorems mentioned above, Au-
mann’s [1964a] proof of core equivalence might seem at first to avoid Lyapunov’s
theorem. However, it does rely on the range of a non-atomic measure being an in-
terval of the real line; at this step of essentially the same proof, Hildenbrand [1974,
p. 144; 1982, p. 844] explicitly invokes Lyapunov’s theorem “in one dimension, the
proof of which is much easier”.4 For Hildenbrand [1974], on the other hand, Au-
mann’s proof is left as an exercise; in the main text (p. 133), he uses Richter’s
theorem. Other results similar to core equivalence include Mas-Colell’s [1989] dis-
cussion of the bargaining set for a continuum economy, and Aumann and Shapley’s
[1974] treatment of values in non-atomic cooperative games without transferable
utility.

For Aumann, as well as in later work on the core of a continuum economy that
immediately succeeded his pioneering contribution, coalitions were always sets of
positive measure, even if this measure might be arbitrarity small as in Grodal
[1972], Schmeidler [1972] and Vind [1972]. In the 1980s, however, Mamoru Kaneko,
Myrna Wooders and I all became interested in what finite coalitions could achieve
in continuum economies. Of course, because a continuum economy involves a non-
atomic measure, any finite coalition has zero measure — i.e., it is a null set.

In fact, Kaneko and Wooders [1986] is the first paper on what came to be called
the “f -core.” Using a related idea, Hammond [1987] improved some very pre-
liminary ideas found in Hammond [1979], which had been taken further by Gale
[1980, 1982] and Guesnerie [1981, 1995]. These concerned strategy-proof allocation
mechanisms in a continuum economy which are also immune to manipulation by
finite coalitions exchanging on an unofficial or hidden market the goods allocated
to them by the official mechanism. Similar results were applied in different contexts
by Jacklin [1987], Blackorby and Donaldson [1988], Haubrich [1988], and Haubrich
and King [1990].

In the work on multilateral strategy-proofness reported in Hammond [1987] and
also in our joint paper (Hammond, Kaneko and Wooders [1989]) on an equivalence

3In symbols, Richter’s theorem says that
∫

T F (t) dτ is a convex set whenever F : T � �n is a
correspondence with a measurable graph and τ is a non-atomic measure. As Hildenbrand’s [1974,
Theorem 3, p. 62] elegant and concise proof makes clear, Richter’s theorem is really a corollary of
the well known theorem of Lyapunov [1940] stating that the range of a finite-dimensional vector-
valued non-atomic measure is a convex set. Note too that Richter’s theorem is different from
what Clarke [1983] calls “Aumann’s theorem” stating that the integral of the convex hull of an
integrably bounded, measurable and non-empty valued correspondence F : T � �n is identical
to the integral of the correspondence — or in symbols, that

∫
T F (t) dτ =

∫
T co F (t) dτ . Aumann

[1965] proved this using Lyapunov’s theorem. See also Artstein [1980]. Clarke [1983] provides a
proof of Aumann’s result without using Lyapunov’s theorem.

4Actually, sometimes a measure on a space of one dimension is defined to be non-atomic iff
Lyapunov’s theorem is true.
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theorem for the f -core with widespread externalities, the main results were proved
using Richter’s theorem. It has since become clear to me that both proofs can
be made considerably simpler by following Aumann’s [1964a] original approach.
Moreover, because only finite coalitions are being considered, one can avoid using
Richter’s theorem or even Lyapunov’s theorem in one dimension. There is a small
price to pay, however: the conventional assumption of local non-satiation must be
strengthened so that it becomes local non-satiation among suitable vectors with
rational coordinates — an assumption that is automatically satisfied if preferences
are monotone, for instance.

For the case of the f -core equivalence theorem in an economy with rather general
widespread externalities, such a proof is included in Hammond [1998]. The present
paper concentrates instead on the multilateral incentive compatibility or strategy-
proofness result of Hammond [1987], and extends the key lemma in that paper. In
particular, mechanisms that are not anonymous or symmetric can now be consid-
ered. Also, a subtle difficulty raised by Guesnerie [1995] is overcome by considering
a random continuum economy. Moreover, some of the earlier assumptions are re-
placed by a dispersion assumption along the lines suggested by Yamazaki [1978,
1981]. Finally, exceptional null sets of agents are dealt with more satisfactorily
than in Hammond [1979, 1987].

In what follows, Section 2 sets out the model of a random economy with a con-
tinuum of agents whose identifiers and privately known characteristics are pairs of
independently and identically distributed random variables with an unknown joint
distribution. For such random continuum economies, Section 3 defines a multilat-
erally strategy-proof mechanism which is immune to manipulation even when finite
coalitions can exchange tradeable goods unofficially on the side. Then Sections 4
and 5 discuss the conditions under which such mechanisms are decentralizable by
a budget constraint with linear prices for tradeable goods, but non-linear pricing
of non-tradeable goods.

2. Random Continuum Economies

Let T be a finite set of tradeable goods, and �T the corresponding Euclidean
space of net trade vectors with typical member denoted by x or t. In addition,
suppose that allocations of goods which individuals cannot freely exchange are
described by the points z of an abstract locally compact and separable metric
space Z. The relevant commodity or goods space is therefore the locally compact
and separable product metric space G = �T × Z, of which the typical member is
(x, z) where x ∈ �T and z ∈ Z.

The set of agents is assumed to be the measure space (I,B, µ). Here I is the
interval [0, 1] of the real line, whose members i ∈ I are individual identifiers. Then
B is the real Borel σ-field, and µ is Lebesgue measure.

Let Θ be the domain of possible individual characteristics. Each typical member
θ ∈ Θ determines a non-empty closed feasible set F (θ) ⊂ G of net trade vectors,
together with a (reflexive, complete and transitive binary weak) preference ordering
�θ on F (θ) which is continuous in the sense of having a closed graph in G×G = G2

given by

Graph(�θ) := {
(
(x, z), (x′, z′)

)
∈ F (θ) × F (θ) | (x, z) �θ (x′, z′) }
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Let 	θ be the strict preference relation corresponding to �θ. Note that, because
�θ is reflexive, once the graph of �θ is known, so is the feasible set, which must be

F (θ) = { (x, z) ∈ G |
(
(x, z), (x, z)

)
∈ Graph(�θ) }

Following Hildenbrand [1974], who credits Mertens [1970] with the idea, the
space Θ of (non-empty) closed subsets of G2 representing possible consumer char-
acteristics will be given the closed convergence topology. This corresponds to the
metric ρ on the space Θ defined by ρ(E, F ) = dH(E ∪ {∞}, F ∪ {∞}) for all non-
empty closed subsets E, F ⊂ G2, where dH denotes the Hausdorff metric, and ∞
denotes an added point at infinity which makes G2 compact.footnoteMore formally,
G2 ∪{∞} is the Alexandroff one-point compactification of G2. For interesting crit-
icism of the closed convergence topology, see Anderson [1994, p. 448] and Manelli’s
work cited there. Because the space G is locally compact and separable, it follows
from Hildenbrand [1974, Theorem 2, p. 19] that Θ is compact. Also, give the prod-
uct space I ×Θ any reasonable metric such as d

(
(h, θ), (i, η)

)
:= |h− i|+ dH(θ, η).

Because the spaces I and G are respectively compact and locally compact, I ×Θ is
a compact and so separable metric space whose Borel σ-field is equal to the product
of the Borel σ-fields for the two component metric spaces.

Each individual i ∈ I is assumed to have a range Θi ⊂ Θ of possible character-
istics. Furthermore, the correspondence i 
→→Θi is assumed to have a graph

A := { (i, θ) ∈ I × Θ | θ ∈ Θi }
which is Borel measurable in the product space I ×Θ. Let A denote the restriction
to the measurable set A of the Borel σ-field on I ×Θ. Let M(A) denote the set of
probability measures on the measurable space (A,A). Give M(A) the topology of
weak convergence.

The above formulation has been chosen because it allows a number of interesting
different cases of private information, such as when agent i’s feasible set Fi is known
but i’s preference ordering �i is not. It even allows for the complete absence of any
relevant private information when both Fi and �i are completely known and so Θi

is a singleton.
Following Aumann [1964] or more especially Hildenbrand [1974], it has be-

come standard practice to define a continuum economy as a measurable mapping
E : I → Θ or i 
→ θi from agents’ identifiers to their characteristics. The mea-
surability property appears to be unnecessary, however, as well as rather artificial.
Worse, Lusin’s theorem states that, except on a set of arbitrarily small measure,
any measurable function on a compact domain is equal to some continuous function
— see, for instance, Halmos [1950, pp. 242–3] or Royden [1968, p. 72, Problem 31].
More precisely, if i 
→ θi is measurable, then for every ε > 0 there exists a measur-
able set Iε ⊂ I with µ(Iε) < ε and a continuous function i 
→ θε

i such that θε
i = θi

for all i ∈ I \ Iε. Thus, any measurable i 
→ θi can be approximated rather well
by a sequence of continuous mappings. Moreover, if i 
→ θi is continuous, then
any particular individual h’s characteristic θh can be inferred from knowledge of
θi for all i ∈ Nh \ {h}, where Nh is any neighbourhood of h. As Guesnerie [1995,
Section 1.6] points out, this implies that some otherwise unintuitive or rather unap-
pealing first-best mechanisms may be incentive compatible. For example, suppose
that the announcements of θi for i ∈ Nh \ {h} are such that θ∗h := limh→i θi ex-
ists. Then the mechanism might ignore entirely whatever θh is announced by h
and simply generate whatever allocation would be appropriate if h’s characteristic
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really were θ∗h. After all, if the mapping i 
→ θi really is continuous at i = h, and
if all individuals i ∈ Nh \ {h} are announcing their true characteristics, then θ∗h
must be h’s true characteristic. Also, if necessary a severe punishment can be used
to deter individuals from announcing a characteristic θh �= θ∗h. For such a mecha-
nism, then, truthful revelation by almost all agents is at least a Nash equilibrium
whenever i 
→ θi is continuous. To avoid such awkward possibilities, I shall instead
consider random economies in which all individuals’ characteristics are i.i.d. ran-
dom variables. Then, of course, knowing θi for all i ∈ Nh \{h} gives no information
about θh.

Accordingly, a random continuum economy E is defined as a probability measure
α ∈ M(A) on the measurable set A ⊂ I × Θ whose marginal distribution margI α
on I = [0, 1] is assumed to be uniform — i.e., equal to the Lebesgue measure
µ. Let E be the domain of all such random continuum economies. The intended
interpretation is that any α ∈ E is the limit as n → ∞ of a finite sample of n
individuals whose identifiers and characteristics are drawn independently from the
set A according to the joint probability measure α. For n = 1, 2, . . . , let αn denote
the random empirical distribution from a sample of n agents. Because I × Θ is a
separable metric space, one can apply the Glivenko–Cantelli theorem in the form
due to Parthasarathy [1967, Theorem 7.1, p. 53], as cited also by Hildenbrand [1974,
pp. 52–3]. This result is a suitable law of large numbers ensuring that, almost surely
as n → ∞, the sequence of measures αn converges weakly to α.

Note that this formulation of a random economy differs from that due to Hilden-
brand [1971] and to Bhattacharya and Majumdar [1973] because they assume a
fixed set of agents, independent of the state of the world. Here, by contrast, in any
approximation to the continuum economy, the set of agent identifiers appearing in
the finite random sample is itself random.

As discussed by Aumann [1964b], Feldman and Gilles [1985], Judd [1985] and
Al-Najjar [1995], a continuum of independent random variables θi (i ∈ I) almost
never produces a measurable mapping from I to Θ. As an illustration, suppose
that each i ∈ I consists of a (nine-digit) U.S. Social Security number multiplied by
10−9, and that θi ∈ �+ indicates the height of the person with number i. Then the
mapping i 
→ θi surely has a very messy graph, thus suggesting that it would not
be measurable in the limit as n → ∞.

For this reason, any realization of a random continuum economy almost surely
does not meet the measurability requirements imposed by Aumann or Hildenbrand.
This creates no difficulties, however, because there will never be a need to integrate
any mapping whose domain is I instead of A; for the latter domain, all the functions
that need to be considered will be measurable. In particular, for the example
considered above, the mean height of people with U.S. Social Security numbers
can be calculated by integrating w.r.t. the joint distribution α the (measurable)
projection mapping from A ⊂ I×Θ onto Θ. Equivalently, one could integrate w.r.t.
the marginal measure margΘ α on Θ. Of course, this marginal measure describes
the distribution of heights precisely.

3. Multilaterally Strategy-Proof Allocation Mechanisms

An allocation mechanism (x, z) is a pair of mappings x : E × A → �T and
z : E × A → Z with values denoted by xi(α, θ) and zi(α, θ) respectively which, for
all fixed α ∈ E , are measurable w.r.t. (i, θ). Note that the distribution α is treated
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as a variable of the allocation mechanism. This reflects the obvious requirement
that an economic system should function and produce a feasible allocation even
when α can only be discovered by inducing individuals to reveal their privately
known true characteristics either directly or indirectly.

Overall feasibility typically requires that the mechanism should satisfy an addi-
tional resource balance constraint. In the case when z represents a vector of private
goods that individuals cannot exchange on the side, Z should be a normed lin-
ear space. In this case, the mean net trade vector per head is given by y(α) :=∫

A
(xi(α, θ), zi(α, θ))dα. Then the resource balance constraint would be y(α) = 0,

or alternatively y(α) � 0 if free disposal of every good were possible. On the
other hand, if each point z represents a collection of public goods, then overall
feasibility would require that zi(α, θ) = z(α) for α-almost all (i, θ) ∈ A, and that∫

A
xi(α, θ) dα = x(α) where (x(α), z(α)) ∈ Y for some known production possi-

bility set Y ⊂ G. In this case, the space Z does not need a linear structure. No
such resource balance constraint plays any role in the subsequent analysis of this
paper, however, because only individual feasibility and incentive constraints will be
considered. For this reason, say that the mechanism (x, z) is feasible provided that,
for all α ∈ E , one has (xi(α, θ), zi(α, θ)) ∈ F (θ) for α-almost all (i, θ) ∈ A.

Individual incentive constraints arise because individuals are privately informed
about their characteristics. The constraints require that no individual i with true
characteristic θ acting alone can benefit from manipulating the mechanism by simu-
lating how i would be expected to behave with characteristic η instead of θ. Hence,
for each distribution α ∈ E and combination (i, θ, η) with i ∈ I and θ, η ∈ Θi, the
individual incentive constraint

(xi(α, θ), zi(α, θ)) �θ (xi(α, η), zi(α, η))(3.1)

must be satisfied. Note how (3.1) reflects the fact that one individual acting alone
in a continuum economy is powerless to change the apparent distribution α. In
fact, these incentive constraints are natural adaptations of those that apply to the
anonymous or symmetric mechanisms considered by Hammond [1979, 1987], Gale
[1980, 1982] and Guesnerie [1981, 1995].

For manipulation to be feasible, it should be true that (xi(α, η), zi(α, η)) ∈ F (θ).
Otherwise individual i would be unable to carry out the expected net trade, in
which case the presumption is that i will be caught in time and required to behave
in some other way that does allow the mechanism to allocate a feasible net trade
vector. If i does not get caught in time, however, there may still be scope for
manipulation unless additional incentive constraints are satisfied, such as those
discussed in Hammond [1992]. Of course, the difficulties surrounding this extra
restriction disappear if F (θ) = Fi for all θ ∈ Θi because i’s feasible set of net trades
is known to be Fi.

The ensuing analysis will make use of the notation

A(θ) := { (i, η) ∈ A | (xi(α, η), zi(α, η)) ∈ F (θ) }

for the set of pairs (i, η) which any agent i with true characteristic θ can credibly
claim without violating individual feasibility.

After these preliminaries, the allocation mechanism (x, z) is said to be almost
strategy-proof provided that, for all fixed α ∈ E , for α-almost all pairs (i, θ) ∈ A,
and for α-almost all (i, η) ∈ A(θ), the incentive constraint (3.1) is satisfied. Hence,
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there must exist a full measurable set A1
α ⊂ A with α(A1

α) = 1 such that (3.1) is
true for all (i, θ, η) satisfying (i, θ) ∈ A1

α and (i, η) ∈ A(θ).
The above definition is really too weak, however, because a non-null set of po-

tential agents (i, θ) ∈ A1
α might still be able to manipulate by behaving as though

they have a characteristic η satisfying (i, η) ∈ A \ A1
α. For this reason, say that

(x, z) is strategy-proof provided that it is almost strategy-proof, but in addition
(3.1) is true for all (i, η) ∈ A(θ) without exception, not just for α-almost all such
(i, η). More precisely, (3.1) must be true for all (α, i, θ, η) ∈ E×I×Θ×Θ which, for
some full set A1

α ⊂ A, satisfy (i, θ) ∈ A1
α and (i, η) ∈ A(θ). Note that a mechanism

is almost strategy-proof if it is equal to a strategy-proof mechanism for α-almost
all (i, θ) ∈ A.

Also, for the game of direct revelation corresponding to the mechanism in which
each individual i ∈ I has a strategy set Θi, strategy-proofness implies that, for all
fixed α ∈ E , almost every individual has truthfulness as at least a weakly dominant
strategy; almost strategy-proofness only implies that almost every individual has
truthfulness as an “almost” weakly dominant strategy, in some obvious sense.

Next, a potential finite coalition is defined as a finite set C of pairs (i, θ) ∈ A with
the property that each individual i ∈ I features at most once in C. Thus, a potential
finite coalition C is equivalent to a particular finite subset IC ⊂ I of individuals
i whose respective characteristics θi ∈ Θi are such that C = { (i, θi) | i ∈ IC }.
The idea is that the potential finite coalition could actually form whenever the
individuals i ∈ IC all happen to have exactly the right characteristics.

Given the joint distribution α ∈ E , say that the potential finite coalition C ⊂ A
can manipulate the allocation mechanism (x, z) provided that, when all individuals
i ∈ IC have respective characteristics θi ∈ Θi satisfying (i, θi) ∈ C, they can
jointly find “manipulative” characteristics ηi ∈ Θi and net trade vectors ti ∈ �T of
tradeable goods satisfying

∑
i∈IC

ti = 0 with the property that both (xi(α, ηi) +
ti, zi(α, ηi)) ∈ F (θi) and

xi(α, ηi) + ti, zi(α, ηi)) 	θi
(xi(α, θi), zi(α, θi))(3.2)

Note that in the special case when #C = 1, or when there are no tradeable goods
(T = ∅) — or even only one (#T = 1) provided that individuals prefer more of it to
less — then (3.2) holds iff the individual incentive constraint (3.1) is violated. As
Guesnerie (1981, 1995) and I have both shown, outside these special cases, multi-
lateral strategy-proofness is considerably more demanding than ordinary individual
strategy-proofness. Gale [1980, 1982] also has similar but less general results.

Of course one is only interested in manipulation by potential finite coalitions
who have a positive probability of being able to form. In particular, potential ma-
nipulation by finite coalitions does not matter if one could eliminate any possibility
of it by removing a null set of agents. Accordingly, the allocation mechanism (x, z)
is said to be multilaterally strategy-proof provided that, for any fixed α ∈ E , there
exists a full measurable set A1

α ⊂ A with α(A1
α) = 1 such that no potential finite

coalition C ⊂ A1
α can manipulate the mechanism. Hence, if a mechanism is not

multilaterally strategy-proof, it is because any full set A1
α ⊂ A contains at least one

potential finite coalition with the power to manipulate; excluding any null set from
A cannot remove all such manipulative potential coalitions. Evidently, a mechanism
is multilaterally strategy-proof only if it is (individually) strategy-proof.

If Θi = {θi} for all i ∈ I and so the economy has no private information, then the
above definition reduces to a condition called “f -Pareto efficiency” in Hammond
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[1995a]. When in addition G = �T , in effect, because there are only traded goods,
the definition in Hammond, Kaneko and Wooders [1989] and in Hammond [1995a]
of an f -core allocation x for the special case of an economy without widespread
externalities can be obtained by replacing (3.2) with ti 	θi xi(α, θi) for all i ∈ C.

A rather weaker notion of multilateral strategy-proofness arises if one insists
that the set of agents who belong to manipulative potential coalitions is more
evidently of positive measure. Specifically, say that a finite family Ak (k ∈ K) of
measurable non-null subsets of A, not necessarily pairwise disjoint, can discernibly
manipulate the allocation mechanism (x, z) provided that there exist corresponding
natural numbers nk (k ∈ K) such that manipulation is possible by every potential
finite coalition C which, for each k ∈ K, contains exactly nk different individuals
i ∈ I with appropriate characteristics θi such that (i, θi) ∈ Ak. And say that the
allocation mechanism (x, z) is weakly multilaterally strategy-proof if there is no such
finite family that can discernibly manipulate.

4. Budget Decentralizations with Linear Prices for Tradeable
Goods

A budget correspondence B : I × E � G specifies the budget set Bi(α) of each
agent i ∈ I as a function of the distribution α. But Bi(α) must be independent of
agent i’s own characteristic θi ∈ Θi. Such a correspondence almost decentralizes the
allocation mechanism (x, z) provided that for all α ∈ E and α-almost all (i, θ) ∈ A,
one has (xi(α, θ), zi(α, θ)) ∈ Bi(α) and

(x, z) ∈ Bi(α) ∩ F (θ) =⇒ (xi(α, θ), zi(α, θ)) �θ (x, z)(4.1)

In other words, for all (i, θ) in some full set A1
α with α(A1

α) = 1, the pair of
vectors (xi(α, θ), zi(α, θ)) must together maximize the preference ordering �θ w.r.t.
(x, z) subject to the budget constraint (x, z) ∈ Bi(α) combined with the individual
feasibility constraint (x, z) ∈ F (θ).

Second, the budget correspondence B decentralizes the mechanism (x, z) pro-
vided that it almost decentralizes (x, z), but in addition (xi(α, θ), zi(α, θ)) ∈ Bi(α)
for all α ∈ E and for all (i, θ) ∈ A without exception; it is still possible to have a
null subset of pairs (i, θ) ∈ A for which (xi(α, θ), zi(α, θ)) is not the best point of
Bi(α) ∩ F (θ).

Following Hammond [1979], it is obvious that if a mechanism is almost decen-
tralizable then it must be almost strategy-proof, and if it is decentralizable then it
must be strategy-proof. Conversely, by choosing the decentralization

Bi(α) := { (x, z) ∈ G | ∃θ ∈ Θ : (x, z) = (xi(α, θ), zi(α, θ)) }
it is easy to see that a mechanism is almost decentralizable if it is almost strategy-
proof, and decentralizable if it is strategy-proof.

Next, the budget correspondence B : I × E � G is said to have linear prices for
tradeable goods provided that there exists a price mapping p : E → �T \ {0} and a
(generally non-linear) allowable expenditure function m : I × E × Z → � such that

Bi(α) = { (x, z) ∈ G | p(α) x ≤ mi(α, z) }(4.2)

Notice that mi(α, z) specifies how much agent i is allowed to spend on tradeable
goods as a function of the distribution α and the non-tradeable good vector z chosen
by the agent. Thus, mi(α, z) reflects any non-linear pricing schedule that applies
to collections of non-tradeable goods in the space Z.
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If the allocation mechanism (x, z) is decentralizable by a budget correspondence
Bi(α) satisfying (4.2) everywhere, then for almost all (i, θ) ∈ A and for all (x, z) ∈
F (θ), one has

(x, z) 	θ (xi(α, θ), zi(α, θ)) =⇒ p(α) x > mi(α, z)(4.3)

On the other hand, if the allocation mechanism (x, z) is decentralizable or almost
decentralizable by such a budget correspondence, then (4.3) is true for all (i, θ)
belonging to some set A1

α of full measure.
For the second lemma below, say that the budget set Bi(α) given by (4.2) is

almost a compensated linear decentralization provided that for all α ∈ E and α-
almost all (i, θ) ∈ A, one has (xi(α, θ), zi(α, θ)) ∈ Bi(α) and

(x, z) �θ (xi(α, θ), zi(α, θ)) =⇒ p(α) x ≥ mi(α, z)

whenever (x, z) ∈ F (θ). Also, say that Bi(α) is a compensated linear decen-
tralization provided that it is almost a compensated linear decentralization with
(xi(α, θ), zi(α, θ)) ∈ Bi(α) for all α ∈ E and all (i, θ) ∈ A.

Theorem 4.1. First Decentralization Theorem. An allocation mechanism
(x, z) that is decentralizable by a linear budget constraint p(α) x ≤ mi(α, z) is mul-
tilaterally strategy-proof.

Proof. Fix any α ∈ E . Suppose there is such a decentralization, with (4.1) hold-
ing for all (i, θ) ∈ A1

α where α(A1
α) = 1. Suppose also that (3.2) is true for

some pair (i, θi) ∈ A1
α and characteristic ηi ∈ Θi. Then, faced with the budget

set Bi(α) given by (4.2), individual i with characteristic ηi must be able to af-
ford (xi(α, ηi), zi(α, ηi)), whereas i with characteristic θi must be unable to afford
(xi(α, ηi) + ti, zi(α, ηi)). Therefore

p(α) [xi(α, ηi) + ti] > mi(α, zi(α, ηi)) ≥ p(α) xi(α, ηi)

implying that p(α) ti > 0. Hence, if there exists a potential finite coalition C of
pairs (i, θi) ∈ A1

α for individuals i ∈ IC , together with characteristics ηi ∈ Θi and
net trade vectors ti ∈ �T satisfying (3.2) for each i ∈ IC , then

∑
i∈IC

p(α) ti > 0.
This excludes the possibility that

∑
i∈IC

ti = 0, so no finite coalition C ⊂ A1
α can

manipulate. Hence, (x, z) must be multilaterally strategy-proof.

This first result is similar to Arrow’s [1951] first efficiency theorem of welfare
economics, saying that any Walrasian equilibrium allocation is (weakly) Pareto ef-
ficient. The theorem even has a similar proof. Its converse would be a second
decentralization theorem, saying that any (weakly) multilaterally strategy-proof
mechanism is decentralizable by a linear budget constraint. Similarly, Arrow’s
[1951] second efficiency theorem of welfare economics says that any (weakly) Pareto
efficient allocation can be decentralized as a Walrasian equilibrium with suitable
lump-sum redistribution. In fact this result is not true without several extra as-
sumptions. Moreover, at least for an economy with a continuum of agents, the
extra assumptions are somewhat similar, as is the proof.

Let Q ⊂ � denote the set of rational numbers. Let QT denote the subset of
vectors in �T whose coordinates are all rational.

Assumption 1. For each θ ∈ Θ, the feasible set F (θ) and strict preference relation
	θ satisfy rational local non-satiation in tradeable goods in the following sense:
given any (x, t, z) ∈ �T ×�T ×Z with (x+t, z) ∈ F (θ) and any neighbourhood V of t
in �T , there exists t′ ∈ V ∩QT such that (x+t′, z) ∈ F (θ) with (x+t′, z) 	θ (x+t, z).
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Lemma 4.2. Budget Exhaustion. Suppose that Assumption 1 is satisfied, and
that Bi(α) given by (4.2) is almost a compensated linear decentralization. Then
p(α)xi(α, θ) = mi(α, zi(α, θ)) for all α ∈ E and α-almost all (i, θ) ∈ A.

Proof. Suppose that α ∈ E and p(α) xi(α, θ) < mi(α, zi(α, θ)) for some (i, θ) ∈ A.
By Assumption 1, there must then exist t ∈ �T such that (xi(α, θ) + t, zi(α, θ)) ∈
F (θ) with (xi(α, θ) + t, zi(α, θ)) 	θ (xi(α, θ), zi(α, θ)) and p(α) [xi(α, θ) + t] <
mi(α, zi(α, θ)). But because Bi(α) is almost a compensated linear decentralization,
this can be true for at most an α-null set of potential agents (i, θ) ∈ A.

Consider a given mechanism (x, z) and any fixed α ∈ E . Then, given any a =
(i, θ) ∈ A, define the two sets

Ta := { t ∈ �T | ∃η ∈ Θi : (xi(α, η) + t, zi(α, η)) 	θ (xi(α, θ), zi(α, θ)) }(4.4)

Ua := { t ∈ �T | ∃η ∈ Θi : (xi(α, η) + t, zi(α, η)) �θ (xi(α, θ), zi(α, θ)) }(4.5)

of trade vectors t which can be used by i with characteristic θ to manipulate (or
manipulate weakly) the mechanism by behaving like an agent with some suitable
characteristic η ∈ Θi.

Lemma 4.3. Compensated Linear Decentralization. Under the hypothesis
that preferences are rationally local non-satiated in tradeable goods, a feasible al-
location mechanism (x, z) is weakly multilaterally strategy-proof only if, for each
α ∈ E, there exist p(α) ∈ �T \ {0} and a mapping mi(α, z) such that the budget
constraint p(α) x ≤ mi(α, z) is almost a compensated linear decentralization.

Proof. Because (x, z) is feasible, it loses no generality to replace A with the mea-
surable subset { (i, θ) ∈ A | (xi(α, θ), zi(α, θ)) ∈ F (θ) } whose measure is 1. Let
α ∈ E be any fixed continuum economy. Following the beginning of Aumann’s
[1964a, p. 45] and Hildenbrand’s [1982, pp. 843–4] proof of core equivalence, define
for every t ∈ QT the set

A(t) := { a ∈ A | t ∈ Ta }(4.6)

Claim. The set A(t) is measurable, for all t ∈ QT .

Proof of claim. First, because preferences are continuous and the space Θ has been
given the topology of closed convergence, the two sets

S1 := { (θ, x, z, x′, z′) ∈ Θ × G × G | (x, z), (x′, z′) ∈ F (θ) }
S2 := { (θ, x, z, x′, z′) ∈ Θ × G × G | (x, z) �θ (x′, z′) }

are both closed in the relevant product topology. So the set

S3 := S1 \ S2 = { (θ, x, z, x′, z′) ∈ Θ × G × G | (x′, z′) 	θ (x, z) }

is measurable in the corresponding Borel σ-field. Next, define the two sets

H1(t) := { (h, η1, x1, z1) ∈ A × G | x1 = xh(α, η1) + t, z1 = zh(α, η1) }
H2 := { (i, η2, x2, z2) ∈ A × G | x2 = xi(α, η2), z2 = zi(α, η2) }

Both are clearly measurable in the relevant product σ-field because the alloca-
tion mechanism (x, z) involves measurable mappings (i, θ) 
→ xi(α, θ) and (i, θ) 
→



12 PETER J. HAMMOND

zi(α, θ) whose graphs must therefore be measurable. On the other hand, the set

(4.7)
E := { (θ, x, z, x′, z′, h, η1, x1, z1, i, η2, x2, z2) ∈ Θ × G × G × A × G × A × G

| θ = η2, x′ = x1, z′ = z1, x = x2, z = z2, h = i }
is evidently closed. Now let S(t) := S3 × H1(t) × H2, which is also measurable in
the relevant product σ-field, as is S(t) ∩ E. But then

(4.8)
A(t) = { (i, θ) ∈ A | ∃(x, z, x′, z′, h, η1, x1, z1, η2, x2, z2) ∈ G×G×A×G×Θ×G :

(θ, x, z, x′, z′, h, η1, x1, z1, i, η2, x2, z2) ∈ S(t) ∩ E }
which is the projection of S(t)∩E onto A. Therefore, A(t) must be measurable.

Having proved the claim, we now prove the lemma. To do so, first define

A∗ := A \
[⋃

{A(t) | t ∈ QT , α(A(t)) = 0 }
]

(4.9)

Because QT is countable and each set A(t) is measurable, the set A∗ is also mea-
surable and satisfies α(A∗) = α(A) = 1. Finally, define the convex hull

K := co
[⋃

{Ta ∩ QT | a ∈ A∗ }
]

(4.10)

Suppose that 0 ∈ K. Then there exists a finite collection of m individual–
characteristic pairs ak = (ik, θik

) ∈ A∗, together with associated rational net trade
vectors t̃k ∈ Tak

∩ QT (k = 1, . . . , m) such that, for some positive convex weights
rk ∈ �+, one has

m∑
k=1

rk = 1 and
m∑

k=1

rk t̃k = 0(4.11)

Equations (4.11) can be combined into the single matrix equation Tr = e1,
where T is a (#T + 1)×m matrix, r is an m-vector, and e1 is the first unit vector
in �×�T . This equation has a solution r � 0. Because each t̃k ∈ QT has rational
co-ordinates, the matrix T has rational elements. Now, if a positive solution exists,
it can be found by Gaussian elimination or some other sequence of elementary
row operations involving addition, subtraction, multiplication and division. Hence,
there is at least one strictly positive solution r with only rational co-ordinates,
which therefore involves rational positive convex weights rk ∈ Q+ (k = 1, . . . , m).
After multiplying by a large enough common multiple of the denominators in the
rational numbers rk, it follows that there exist natural numbers nk (k = 1, . . . , m)
for which

∑m
k=1 nk t̃k = 0.

Because ak ∈ A∗, there is no t ∈ QT such that ak ∈ A(t) and α(A(t)) = 0. Now,
t̃k ∈ Tak

and so ak ∈ A(t̃k) (k = 1, . . . , m). But t̃k ∈ QT , from which it follows
that α(A(t̃k)) > 0 (k = 1, . . . , m). In particular, each set A(t̃k) has infinitely many
members.

Now let C ⊂ ∪m
k=1A(t̃k) be any potential finite coalition consisting of

∑m
k=1 nk

different individuals i ∈ IC ⊂ I with characteristics θi ∈ Θi such that, for each
k = 1, . . . , m, the set A(t̃k)∩C has exactly nk members. Also, for all i ∈ IC , define
ti := t̃k for the unique k such that (i, θi) ∈ A(t̃k) ∩ C. Then t̃k ∈ Ta whenever
a ∈ A(t̃k)∩C. Also,

∑
i∈IC

ti =
∑m

k=1 nk t̃k = 0. It follows that any such coalition
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can manipulate the mechanism (x, z). This shows that the finite family A(t̃k) (k = 1
to m) can discernibly manipulate the mechanism (x, z). So 0 ∈ K implies that the
mechanism (x, z) cannot be weakly multilaterally strategy-proof.

On the other hand, if (x, z) is weakly multilaterally strategy-proof, then 0 �∈
K. By construction, K is convex, so the point 0 can be separated from K by a
hyperplane. Moreover, this hyperplane can be chosen so it passes through 0. Hence,
there must exist p(α) ∈ �T \ {0} for which p(α) t ≥ 0 whenever t ∈ K.

Now, given any a ∈ A∗ and any t ∈ Ua, rational local non-satiation in tradeable
goods and transitivity of �θ together imply that t is the limit of a sequence tq

(q = 1, 2, . . . ) of net trade vectors in Ta ∩ QT . Then tq ∈ K and so p(α) tq ≥ 0
(q = 1, 2, . . . ), implying that p(α) t ≥ 0 in the limit as q → ∞.

To complete the proof, first introduce the additional notation

Θ∗
i := { θ ∈ Θi | (i, θ) ∈ A∗ }; Z∗

i := { z ∈ Z | ∃θ ∈ Θ∗
i : z = zi(α, θ) };

Zi := { z ∈ Z | ∃θ ∈ Θi : z = zi(α, θ) }.
Suppose now that the combination of z ∈ Z∗

i with a = (i, θ) ∈ A∗ and η ∈ Θi

together satisfy zi(α, θ) = zi(α, η) = z. Then (4.5) implies that xi(α, θ)−xi(α, η) ∈
Ua and so p(α)xi(α, θ) ≥ p(α) xi(α, η). If η ∈ Θ∗

i also, then reversing θ and η in
the above argument shows that p(α)xi(α, θ) ≤ p(α)xi(α, η), and so p(α) xi(α, θ) =
p(α)xi(α, η). Hence, one can define mi(α, z) for all z ∈ Z∗

i in order to satisfy
mi(α, z) = p(α) xi(α, θ) for all θ ∈ Θ∗

i such that z = zi(α, θ). This already implies
that p(α) xi(α, θ) ≤ mi(α, zi(α, θ)) for all (i, θ) ∈ A∗.

To complete the definition of the function mi(α, ·), for z ∈ Zi \ Z∗
i it is enough

to define

mi(α, z) := inf
x,θ

{ p(α) x | z = zi(α, θ); (x, z) ∈ F (θ); (x, z) �θ (xi(α, θ), z) }

For z ∈ Z \ Zi, one can define

mi(α, z) := inf
x

{
p(α)x | (x, z) ∈

⋃
θ∈Θi

F (θ)

}
− 1

Suppose that (i, θ) ∈ A∗ and (x, z) ∈ F (θ) satisfy (x, z) �θ (xi(α, θ), zi(α, θ)).
Clearly, in the case when z ∈ Z \ Zi, it must be true that p(α) x ≥ mi(α, z) by
construction; the same is also true when z ∈ Zi \ Z∗

i because z = zi(α, η) for
some η ∈ Θi \ Θ∗

i . The other case is when z ∈ Z∗
i because z = zi(α, η) for some

η ∈ Θ∗
i . But then p(α) xi(α, η) = mi(α, z). Also, (4.5) implies that x − xi(α, η) ∈

Ua, so p(α) x ≥ p(α)xi(α, η) = mi(α, z) in this case as well. This completes the
proof that the budget constraint p(α)x ≤ mi(α, z) is almost a compensated linear
decentralization.

5. Second Decentralization Theorem

To go from a compensated linear decentralization to an ordinary linear decen-
tralization requires at least two additional assumptions. The two presented below
are alternatives to the three that were used in Hammond [1987]. The extra condi-
tions will be stated for each separate economy α ∈ E . Before doing so, first define,
for each θ ∈ Θ and z ∈ Z, the conditional feasible set given z as

X(z; θ) := {x ∈ �T | (x, z) ∈ F (θ) }
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Assumption 2. For all θ ∈ Θ and z ∈ Z, the set X(z; θ) is equal to the union
∪k∈K(z;θ) Xk(z; θ) of a finite or countably infinite family of closed convex subsets
of �T .

Note that the different sets Xk(z; θ) need not be disjoint. Assumption 2 is
trivially satisfied when each set X(z; θ) is convex. It certainly excludes some forms
of non-convexity in X(z; θ), but it does allow indivisible goods or other particular
kinds of non-convexity. Assumption 2 leads to the following generalization of a well
known result:

Lemma 5.1. Cheaper Point. Suppose (i, θ) ∈ A is such that p(α)x ≥ mi(α, z)
whenever (x, z) ∈ F (θ) satisfies (x, z) �θ (xi(α, θ), zi(α, θ)). Then for any z ∈ Z
and k ∈ K(z; θ) such that there exists some “cheaper point” x ∈ Xk(z; θ) with
p(α)x < mi(α, z), one has p(α) x > mi(α, z) whenever x ∈ Xk(z; θ) satisfies
(x, z) 	θ (xi(α, θ), zi(α, θ)).

Proof. Fix any (i, θ) ∈ A, z ∈ Z and k ∈ K(z; θ). Suppose that x ∈ Xk(z; θ)
satisfies (x, z) 	θ (xi(α, θ), zi(α, θ)), and that there is a cheaper point x ∈ Xk(z; θ).
By continuity of preferences and Assumption 2, there must exist a scalar λ ∈ (0, 1)
and a convex combination λ x + (1 − λ) x ∈ Xk(z; θ) such that λ x + (1 − λ) x �θ

(xi(α, θ), zi(α, θ)). By the hypotheses of the lemma, it follows that p(α) [λ x +
(1 − λ)x] ≥ mi(α, z). Therefore λ [p(α)x − mi(α, z)] ≥ (1 − λ) [mi(α, z) − p(α) x].
Because p(α)x < mi(α, z) and 0 < λ < 1, it follows that p(α)x > mi(α, z).

For each α ∈ E , (i, θ) ∈ A, z ∈ Z and k ∈ K(z; θ), define the minimum wealth
level

mk
i (α, z; θ) := min

x
{ p(α)x | x ∈ Xk(z; θ) }

Also, for each α ∈ E and z ∈ Z, define

Aα(z) := { (i, θ) ∈ A | ∃k ∈ K(z; θ) : mi(α, z) = mk
i (α, z; θ) }

Assumption. 3* The distribution α ∈ E satisfies α (∪z∈Z Aα(z)) = 0.

At least when Z is a finite or countably infinite set, assumption 3* seems a fairly
obvious generalization of the “dispersion” condition due to Yamazaki [1978, 1981].
When Z is a continuum, it is not nearly so weak. Nevertheless, it is sufficient to
use the following obviously weaker version of assumption 3*:

Assumption 3. There is at most a null set A0 of potential agents (i, θ) ∈ A having
points z ∈ Zi with the property that, for some k ∈ K(z; θ), the set Xk(z; θ) has
a cheapest net trade vector x satisfying (x, z) 	θ (xi(α, θ), zi(α, θ)), as well as
p(α)x ≥ p(α)x = mi(α, z) for all x ∈ Xk(z; θ).

Theorem 5.2. Second Decentralization Theorem. In any economy α ∈ E
for which Assumptions 1–3 all hold, a feasible allocation mechanism (x, z) is weakly
multilaterally strategy-proof only if it is almost decentralizable by the linear budget
constraint p(α) x ≤ mi(α, z) that was constructed in proving the Compensated De-
centralization Lemma.

Proof. By the Compensated Linear Decentralization Lemma 4.3, there must exist
p(α) ∈ �T \ {0} and a mapping mi(α, z) such that, for all (i, θ) ∈ A∗, whenever
(x, z) ∈ F (θ) satisfies (x, z) �θ (xi(α, θ), zi(α, θ)), then p(α)x ≥ mi(α, z).
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Suppose that (i, θ) ∈ A∗ and (x, z) ∈ F (θ) satisfy (x, z) 	θ (xi(α, θ), zi(α, θ))
with p(α)x = mi(α, z). By construction of the function mi(α, z), it must be true
that z ∈ Zi. Also, by the Cheaper Point Lemma 5.1, there must exist k ∈ K(z; θ)
such that x is the cheapest net trade vector of Xk(z; θ) at prices p(α). So (i, θ) ∈ A0.
By Assumption 3, it follows that (x, z) is almost decentralizable, as claimed.
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