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Abstract

The standard decision theories of Savage and of Anscombe and Aumann both
postulate that the domain of consequences is state independent. But this hypothesis
makes no sense when, for instance, there is a risk of death or serious injury. The paper
considers one possible way of deriving subjective probabilities and utilities in this case
also. Moreover, the utilities will be state independent in the sense of giving equal
value to any consequence that happens to occur in more than one state dependent
consequence domain. The key is to consider decision trees having “hypothetical”
probabilities attached to states of nature, and even to allow hypothetical choices of
these probabilities.

1 Introduction: State-Dependent Consequence Domains

The standard decision theories of Savage (1954) and of Anscombe and Aumann
(1963) both rely on the assumption that there are “constant acts” yielding the
same consequence in all states of the world. More precisely, they postulate that
the domain of consequences is state independent. But there are many decision
problems where this hypothesis makes no sense — for instance, where there is
a risk of death or serious injury. The point was first made by Dreze (1958,
1961) that such problems do not fit well with Savage’s (1954) assumption that
all consequences are possible in every state of the world.

The inapplicability of standard theory led several authors to investigate
state-dependent utilities — see especially Karni (1985, 1987), Dreze (1987b),
and the works cited therein, together with Jones-Lee (1979). Obviously, state-
dependent utility is a generalization of the standard theory. Yet a more satisfac-
tory generalization would reduce to the standard theory with state-independent
utility in the special case considered by that theory — namely, when there
is a state-independent consequence domain. In particular, the von Neumann—
Morgenstern utility function (NMUF) should be state-independent in the sense
of giving a unique value to any consequence that happens to occur in more than
one state-dependent consequence domain. Such a generalization was provided
by Fishburn (1970, Section 13.2) for a special case when there at least two
non-indifferent common consequences belonging to each state-dependent con-
sequence domain. This paper sets out to provide a similar generalization for
general state-dependent consequence domains.



In the rest of the paper, Section 2 begins by reviewing evaluation functions
(Wilson, 1968) which are defined on pairs consisting of states of the world and
consequences. It shows how they relate to marginal rates of substitution be-
tween appropriate probability shifts, and how this relationship implies that an
evaluation function is determined up to a unique co-cardinal equivalence class.
Next, Section 3 recalls five sufficient conditions for the existence of an evalua-
tion function whose expected value is maximized by the agent’s behaviour.! To
allow subjective probabilities to be disentangled from the evaluation function,
Section 4 analyses decision problems with “hypothetical” probabilities attached
to states of nature, following the suggestion of Karni, Schmeidler and Vind
(1983). It even allows hypothetical choices of these probabilities, as in Dréze
(1961, 1987) and also Karni (1985). Finally, Section 5 invokes a weaker form
of the standard state independence condition which is appropriate for state de-
pendent consequence domains. It also presents the main theorem guaranteeing
the existence of a state-independent NMUF even when the consequence domain
depends on the state.

2 Evaluation Functions

Let S be a fixed finite domain of possible states of the world. This paper
considers the implications of allowing state-dependent consequence domains Y
(s € S). Also, in contrast to Karni (1993a, b), it will not be assumed that
consequences in different state-dependent consequence domains are in any way
related through “constant valuation acts” or “state invariance”.

The Cartesian product space Y° := [I,cs Ys has members y¥ = (Ys)ses in
the form of mappings from states to consequences. Savage calls these “acts”
whereas Anscombe and Aumann refer to “horse lotteries,” but I prefer to call
them contingent consequence functions (or CCFs). Following Anscombe and
Aumann, consider the space A(Y®) of simple (“roulette”) lotteries over Y.
Each ¥ € A(Y?) specifies the (objective) probability A\%(y®) of each CCF
y® € Y9: these probabilities are positive only for a finite set of different CCFs.

Eventually, Lemma 2 in Section 3 will demonstrate what happens when
Anscombe and Aumann’s state independence condition is dropped, but their
other axioms are applied to the domain A(Y®). In order to state the result,
first define the union domain YV := UsesYs of all consequences that can occur
in some state of the world. Then let

Ys = Uses({s} x o) = {(s,y) € S x ¥ [y € Vs } (1)

be the universal domain of state—consequence pairs. This is an obvious gener-

alization of the domain of “prize-state lotteries” considered by Karni (1985).
Next, for each s € S and y € Y, define Y%(y) := {y® € Y7 | y; =y} as the

set of CCF's yielding the particular consequence y in state s. Then the marginal

1See also Myerson (1979) for a somewhat different treatment of this issue.



probability of consequence y in state s is given by

As(y) = Zys e A% (y%) (2)

These probabilities specify the marginal distribution As € A(Y;) on the appro-
priate component Y, of the product space Y.

Throughout this paper it will be assumed that there is a (complete and
transitive) preference ordering < on A(Y®). Given this ordering, define an
evaluation function (Wilson, 1968; Myerson, 1979) as a real-valued mapping
w(s,y) on the domain Yg with the property that the preference ordering < is
represented by the expected total evaluation defined for all ¥ € A(Y®) by

US(A\5) = Zyseys NS () ZSGS w(s,ys) = Zses ZMYS As(ys) w(s, ys)
(3)
Note that evaluation functions differ from state-dependent utility functions be-
cause the latter are separate from subjective probabilities, whereas the former
combine utility functions with subjective probabilities. Note too how (3) implies
that only the marginal probabilities As(y) (s € S, y € V) are relevant to the
expected evaluation.
Say that two evaluation functions w(s, y) and w(s,y) are co-cardinally equiv-
alent if and only if there exist real constants p > 0, independent of s, and J;
(s € S), such that

W(s,y) = 0s + pw(s,y) (4)

In this case the alternative expected evaluation satisfies
7S (VS ~ _ S(\S
USAS) =3 0 o Do oy M) Blsps) =D 0+ pU () (5)

because ZyseYs As(ys) = 1 for each s € S. Hence US and U are cardinally
equivalent, so both represent the same preference ordering on A(Y?).

Conversely, suppose that (3) and (5) both represent the same ordering < on
A(Y®). Let s,s" be any pair of states in S, and a,b € Y, ¢,d € Yy any four
consequences with w(s,a) # w(s,b) and w(s’,¢) # w(s’,d). Consider any shift
Ay in probability from consequence b to a in state s, and also any shift A in
probability from consequence d to c in state s’. If preferences are represented
by (3), such shifts leave the agent indifferent if and only if

[w(s,a) —w(s,b)] As + [w(s',¢) —w(s',d)] Ay =0
Similarly, if preferences are represented by (5). Hence, the common ratio

w(s,a) —w(s,b)  w(s,a)—1w(s,b)
w(s',c) —w(s',d) (s, c) —w(s,d) (6)

of evaluation differences is equal to the constant marginal rate of substitution
(MRS) between shifts A, and A,.2 So for all such configurations of s, s, a, b, ¢, d

2This extends an idea due to Machina (1987, pp. 125-6).



there must exist some constant p > 0 such that

w(s,a) —w(s,b) _ w(s',c) —w(s',d) —
w(s,a) —w(s,b) w(s',c) —w(s,d)

This implies (4), so w(s,y) and w(s,y) must be co-cardinally equivalent func-
tions on the domain Y.

3 Five Sufficient Conditions

Anscombe and Aumann postulated that the expected utility hypothesis was
satisfied for lotteries with objective probabiliities. When applied to lotteries in
A(Y?), this hypothesis implies and implied by the following three conditions:

(O) Ordering. There exists a (compete and transitive) preference ordering <
on A(Y®).

(I*) Strong Independence Aziom. For any \°, u° v% € A(Y¥) and 0 < a < 1,
it must be true that

MW Ep = N+ 1-aw’ T ap®+01-ap

(C*) Strong Continuity as Probabilities Vary. For each \° uS v% € A(Y?)
with A% = ¥ = 15 the two sets

A:={ae0,1]|arX+ (1 -a)

B:={ac0,1]|aX + (1 —-a)

15}

S
S MS}

A 2Y

must both be closed in [0, 1].

As shown by Jensen (1967) and Fishburn (1970), the expected utility hypoth-
esis is still implied when conditions (I*) and (C*) are replaced by the following
two weaker conditions, both of which apply for each A%, u%, % € A(Y9):

(I) Independence. Whenever 0 < o < 1, then

Mo % = XS + (1 —a)® = ap® + (1 — a)v®

(C) Continuity. Whenever A% = u = v there must exist o/,a” € (0,1)
such that

AN+ (1—a )W =p® and p® =o'\ +(1—a" )
As already discussed, one implication of (3) is the following condition:

(RO) Reversal of Order. Whenever A%, ¥ € A(Y®) have marginal distributions
satisfying A, = p, for all s € S, then A% ~ p5.



This condition owes its name to the fact that there is indifference between:
(i) the compound lottery in which a roulette lottery A° determines the random
CCF 3 before the horse lottery that resolves which state s € S and which
ultimate consequence y, occur; and (ii) the reversed compound lottery in which
the horse lottery is resolved first, and its outcome s € S determines which
marginal roulette lottery As generates the ultimate consequence y.

In particular, suppose that u° = [I.cp As is the product lottery defined,
for all ¥y = (ys)ses € Y, by p”(y®) := [[,es As(ys). Thus, the different
random consequences y; (s € S) all have independent distributions. Then
condition (RO) requires A\* to be treated as equivalent to p°, whether or not
the different elementary consequences ys (s € S) are correlated random variables
when the joint distribution is A¥. Only marginal distributions matter. So any
A% € A(Y®) can be regarded as equivalent to the list (\,)seg of corresponding
marginal distributions. This has the effect of reducing the space A(Y®) to the
Cartesian product space [, A(Y5).

An event is any non-empty subset E of S. For each event E C S, let Y
denote the corresponding Cartesian subproduct [T . p Vs, and let A(Y'®) denote
the space of lotteries A¥, ¥, v¥ | etc. with outcomes y¥ € Y#. Then (3) implies
that there is a corresponding contingent expected utility function

UEO‘E) = ZsEE ZyseYs As(Ys) w(s, ys) (7)

which represents the contingent preference ordering < on the set A(Y'F).

Suppose that A\Z, u¥ € A(YF) and v5\F € A(YS\F). Let (AP, v5\F) denote
the combination of the conditional lottery A\¥ if E occurs with v%\F if S\ E
occurs, and similarly for (1, 5\F). Note that when & is represented by U (A%)
defined by (3), then

MR E L — UPOE) > UEP)
S ) — ) ()
= USQOF05F) = US (P, 05\F)
=  (\E 0B & (uf,v\E)
So the following version of the usual sure thing principle must hold:

(STP) Sure Thing Principle. Given any event E C S, there exists a contingent
preference ordering Z on A(Y'F) satisfying

AERE P = (\F ) & (P 05 (8)
for all \”, uP € A(YF) and all v5\F € A(YS\P),

The following preliminary Lemma 1 shows that the four conditions (O),
(I*), (RO) and (STP) are not logically independent. In fact, as Raiffa (1961)
implicitly suggests in his discussion of the Ellsberg paradox, condition (STP)
is an implication of the three conditions (O), (I*) and (RO) — see also Blume,
Brandenburger and Dekel (1991).



Lemma 1. Suppose that the three axioms (O), (I*), and (RO) are satisfied on
A(Y®). Then so is (STP).

PrOOF: Consider any event £ C S and also any lotteries A\?, u¥ € A(Y'F),
7\E ¢ A(YS\E) satisfying (AP, 75\F) & (uP,7%\F). For any other lottery
v\ € A(YS\F), axioms (I*) and (RO) respectively imply that

LOE v\ + JOE p\E) 5 LB S\E) 4 (%)

~ 3PS+ B, )

But then transitivity of < and axiom (I*) imply that (A, v3\F) & (uF, v5\F).
This confirms that one can use (8) to define the contingent preference relation
~E on A(YE). So condition (STP) is satisfied. 1

The next result confirms that the five conditions presented so far are suffi-
cient for the existence of an evaluation function. Beforehand, however, assume
that for every state s € S, there exist A, A, € A(Yj) such that the contingent
ordering <%} on A(Y;) satisfies Ay >{} \_. This assumption really loses no
generality because, by (STP), states without this property can be omitted from
S without affecting preferences over random CCFs for the remaining states. In
fact, it is like removing all null states in Savage’s theory. Obviously, AS = A%
as can be shown by repeated application of condition (STP).

Lemma 2. Under the five conditions (O), (I), (C), (RO) and (STP), there exists
a unique co-cardinal equivalence class of evaluation functions w(s,y) such that
the expected sum U®(\%) defined by (3) represents the corresponding preference
ordering % on A(Y?).

PROOF: Because the ordering < satisfies conditions (O), (I) and (C), a standard
result of (objectively) expected utility theory shows that < can be represented
by a unique normalized expected utility function U : A(Y®) — R which
satisfies the equations

US(A%)=0 and US(A%) =1 (9)

as well as the mixture preservation property (MP) requiring that, whenever
Mo ¥ € A(YS)and 0 < a < 1, then

US(aX + (1 —a)p®) =aU(\) + (1 —a) U (1) (10)
Then for each state s € S and lottery A € A(Yj), define
us(A) = US AT ) (11)

Let m be the number of elements in the finite set S. By an argument similar
to that used by Fishburn (1970), for all A¥ € A(Y™), condition (RO) implies
that the two members

1 -1 1
Yo =) and a4 S (12)
SES M m m



of A(Y®) are indifferent because for each s € S they have the common marginal
distribution (1 — L) A\, + = ;. Because U* satisfies (MP), applying U* to the
two indifferent mixtures in (12) gives the equality

1 s S\{s} m—1_¢ g 1 s/\s
— A Ag) = —— A — A 1
D ZUSONIN) = TS U  —US() (1)

But US(A%) = 0 by (9), so (11) and (13) imply that
USOS) =3 us(h) (14)
Finally, for each y € Y5, let 1, € A(Y;) denote the degenerate lottery attach-

ing probability 1 to the particular consequence y. Then define w(s,y) = us(1y)
for each s € S and y € Y,. By (11), because U? satisfies (10), one has

seS

us(ads + (L —a)ps) = US(AS\{S}vO‘)‘S"‘(l_O‘)NS)
= aUSQAS 0 + (1 - ) US AN )
= aus(As) + (1 — a)us(ps)

whenever A;, us € A(Y;) and 0 < a < 1. Hence, u; also satisfies an appropriate
version of (MP) and so, because Ay = 3° oy As(y) 1y, it follows that us(As) =
> yey, As(y)w(s,y). Because of (14), U%(A\9) is given by (3).

The fact that there is a unique co-cardinal equivalence class of the functions
w(s,y) follows easily from the discussion at the end of Section 2. I

4 Chosen Probabilities and State-Dependent Utilities

An extreme case of state-dependent consequence domains occurs if Y, and Y/
are disjoint whenever s # s’. In this case, there is no hope of inferring subjective
probabilities from behaviour. To see why, suppose that the agent’s behaviour is
observed to maximize the subjective expected utility (SEU) function

US()\S) - ZSES P ZyseYs /\S(ys) U(ys)

where ps > 0 for all s € S. Then the same behaviour will also maximize the
equivalent SEU function

USNT) =D s Dy Asly:) 0(s)

for any positive subjective probabilities p, satisfying > g ps = 1, provided
that 0(y) = ps v(ys)/Ds for all y € Y. Without further information, there is no
way of disentangling subjective probabilities from utilities.

Following a suggestion of Karni, Schmeidler and Vind (1983), such additional
information could be inferred from hypothetical behaviour when probabilities p
(s € S) happen to be specified. The idea is that, though the agent does not know



the true probabilities of the different states of the world, nevertheless it should
be possible for coherent decisions to emerge if the agent happened to discover
what the true probabilities are. In particular, if the true probabilities happen to
coincide with the agent’s subjective probabilities, the agent’s behaviour should
be the same whether or not these true probabilities are known.?

A somewhat extreme version of this assumption will be used here. Following
Karni (1985, Section 1.6), Schervish, Seidenfeld and Kadane (1990), and also
Karni and Schmeidler (1991), it will be assumed that the decision-maker can
handle problems involving not only hypothetical probabilities, but also hypo-
thetical choices of probabilities. As discussed by Karni and Mongin (1997),
these hypothetical choices involve what they call “state—outcome lotteries”.
Consider, for instance, problems where the states of nature are indeed natu-
ral disasters, weather events, etc. It will be assumed that the decision-maker
can rank prospects of the following general kind: A probability of 2% each year
of a major earthquake? Or 1% each year of a devastating hundred-year flood?
Or 4% each year of a serious forest fire set off by lightning? More specifically, the
assumption is that the decision-maker can resolve such issues within a coherent
framework of decision analysis. Certainly, if the SEU hypothesis holds, it can
be applied to decide such issues. Dreze’s (1961, 1987) theory of “moral hazard”
is based on a somewhat related idea. But Dreéze assumes that the agent can
influence the choice of state, as opposed to the choice of probabilities of different
states.

For this reason, it will be assumed that there exists an additional preference
ordering Zg on the whole extended lottery domain A(Ys), where Yy is defined
by (1) — i.e., it is the universal state—consequence domain of pairs (s,y). Thus,
% g satisfies condition (O). Furthermore, assume that <g satisfies the obvious
counterparts of conditions (I) and (C) for the domain A(Ys).? Arguing as in
the orthodox theory of (objectively) expected utility, there must exist a unique
cardinal equivalence class of extended NMUFs vg on the domain Ys whose
expected values all represent the ordering g on A(Ys). Because the function
vg(s,y) has both the state s € S and the consequence y € Y, as arguments, for
each fixed s € S the NMUF vg(s, -) is a state-dependent utility function on the
domain Y.

Note next that when any state s € S is certain, and assuming that everything
relevant to each decision is included within each consequence y € Y, the spaces
Y, and Yg, := {s} x Y; are effectively equivalent consequence domains. Thus,

3Recently Mongin (1997), then Karni and Mongin (1997) have pointed out a serious defect
with the approach due to Karni, Schmeidler and Vind. The problem is that alternative spec-
ifications of the “hypothetical” probabilities ps (s € S) can easily lead to different subjective
probabilities, in general.

4These extended versions of conditions (O) and (I) can be given a consequentialist justifi-
cation along the lines of Hammond (1988). This is done by considering a suitably extended
domain of decision trees in which natural nodes become replaced by chance nodes, and there
are even several copies of natural nodes so that opportunities to affect the probabilities at-
tached to states of nature are incorporated in the tree.



each A(Y5) is effectively the same space as the set
A(Vsy) = (A€ A(Ys) | A({s} x V) = 1} (15)

of lotteries attaching probability one to the state s € S. So it will be assumed
that the contingent preference ordering <%} on A(Y;) is identical to the or-
dering Zg restricted to A(Yss). But these orderings are represented by the
expected values of the two respective NMUFs w(s,y) and vg(s,y) on the com-
mon domain Y. So these NMUFs are cardinally equivalent. Hence, there must
exist constants ps > 0 and s such that on Y, one has

w(s,y) = s + ps vs(s, y) (16)

Let p:= > g ps. Obviously p > 0.

Next, define the ratios g5 := ps/p for all s € S. Clearly each ¢g; > 0
and ) g qs = 1. Therefore the ratios g; can be interpreted as subjective
probabilities. Furthermore, < on A(Y™®) is represented by the expectation of
the NMUF 0% (y%) := >, g ¢s vs(5,Ys).

Given the CCF y° € Y5 and consequence y € Y = U,cgYs, let

E(®y):={se€S|ys=y}

be the set of states in which y occurs. Then the CCF y° € Y?¥ is subjec-
tively equivalent to the lottery A € A(Y) with the objective probability of each
consequence y € Y given by My) = ZsEE(ys7y) qs-
Because of (16), one has w(s,¥s) — w(s,ys) = ps [vs(s,Ts) — vs(s,ys)] for
any state s € S and any pair of consequences ys,ys € Ys. Therefore,
s Ps w(s,@s) _w(87y8) . US(S/,:&SI) _US(S/’yS')

& P 0 ge) —w(hye) vs(s:5e) — v (5 5s) a7

This formula now enables ratios of subjective probabilities to be inferred unique-
ly in an obvious way from marginal rates of substitution (MRSs) between shifts
in objective probability, expressed in the form of ratios of utility differences.
The first term of the product is the MRS between changes in the probabilities
of consequences in two different states of the kind considered in (6). The second
term is a four-way ratio of utility differences that equals the MRS between shifts
in probability from (s, 3s) to (s, ys) and shifts in probability from (s, gs) to
(s,ys). One particular advantage of Anscombe and Aumann’s approach is that
subjective probabilities can be interpreted in this way. No interpretation quite
as simple emerges from Savage’s version of the theory.
To summarize the results of the above discussion:

Lemma 3. Suppose that:

1. conditions (O), (I), and (C) apply to the ordering Zg on the domain
A(Ys);

2. conditions (0), (I), (C), (RO) and (STP) apply to the ordering & on
AYS);



3. for each s € S, the contingent preference ordering =1} on A(Y,) is iden-
tical to the restriction of the ordering Zg to this set, regarded as equal to
A(Yss) defined by (15);

4. for each s € S, there exist \s, \, € A(Y;) such that \, - {s} A,

Then there exist unique positive subjective probabilities ¢s (s € S) and a unique
cardinal equivalence class of state-dependent NMUFs vg : Ys — IR such that
the ordering < on A(Y®) is represented by the expected utility function

US(\%) = ZSES gs ZySEYS As(Ys) vs(S,Ys) (18)

9  State-Independent Utilities

Previous writers have expressed a specific interest in state-dependent preferences
and utilities. There was no attempt to define the space of consequences broadly
enough so that the preference between any pair of (risky) consequences would
be independent of the state in which they both occur. This flies in the face of
the traditional approach to decision theory, in which actions are valued entirely
by their consequences. It also contradicts the closely related “consequentialist”
approach, which recommends that behaviour all decision trees should effectively
reveal a consequence choice function (Hammond, 1988).

The motivation which Karni, Schmeidler and Vind (1983) in particular offer
for state-dependent preferences is to treat “a class of insurance problems involv-
ing irreplaceable objects such as life, health and heirlooms,” and also “criminal
activity where one possible outcome is loss of freedom” (p. 1021). These writers
infer that “[tJhere are circumstances ...in which the evaluation of the conse-
quences is not independent of the prevailing state of nature”. No doubt this
is true if one insists on considering only (narrow) economic consequences such
as commodity bundles or purchasing power. But if life, health, heirlooms, and
freedom are really relevant to good decisions, I would argue that they should
be included in the descriptions of consequences.

In fact, no attention has been paid so far to the evident fact that some
consequences can arise in more than one state of the world. Apart from being
unrealistic, this also means that the usual theory of subjective expected utility
has not really been generalized. Instead of one extreme of identical consequence
domains in all states, as in the classical theory, most of the existing literature
has merely gone to the other extreme of consequence domains in different states
being treated as if they were pairwise disjoint. The main point of this paper is
to find sufficient conditions for giving a unique value to each consequence, even
if it occurs in a different state of the world.

So there is no good case for requiring the value of a consequence to depend
upon the state of the world in which it occurs — as Arrow (1974, pp. 5-6)
certainly recognizes, for one. Dréze (1987a, ch. 2) also discusses this point, but
prefers a theory of preferences regarding “prizes” (such as “money amounts or

10



commodity bundles”) which can be associated with every state, so that con-
ditional preferences on a fixed set of prizes are well defined for every possible
event. Dreze (1987a, p. 28) is fully aware that this “amounts to redefining
consequences as pairs, consisting of a prize and a state”.

Actually, what appear to be “state-dependent” preferences for prizes in
state—prize pairs are trivially equivalent to state-independent preferences for
suitably defined extended consequences. To see this, suppose one regards each
state—outcome pair (s,y) in the universal domain Yg defined by (1) as a unique
extended consequence in a space Y equal to Yg. Then the union domain
Y = UsegY, satisfies Y = Y = Yy, and the state-dependent NMUF vs(s,y)
of Lemma 3 is equivalent to a unique state-independent NMUF ¢ : Y — R.

Reverting now to the general argument, let us note first that there is a
natural embedding ¢ : A(Yg) — A(Y) from lotteries over the universal domain
Ys of state—consequence pairs to lotteries over the union consequence domain
Y = UsesYs. After adopting the convention that As(s,y) = 0 whenever y & Y,
this embedding can be defined by

) (y) =D As(s,y) (19)

ses
for all A\g € A(Yg) and all y € Y. Thus, ¢(As)(y) is the total probability of
all state—consequence pairs (s,y) in which the particular consequence y occurs.
Evidently, for all Ag, us € A(Ys) and all a € (0, 1), definition (19) implies that

Plads + (1 —a)ps) = ad(rs) + (1 —a) d(us) (20)
Lemma 4. The mapping ¢ : A(Ys) — A(Y) is onto.

PrROOF: Given any A € A(Y), let Ky := {y € Y | A(y) > 0} denote the
support of the distribution A. For each consequence y € K, choose any state
s(y) € S with the property that y € Y;(,); at least one such state always exists.
Then define Ag € A(Ys) so that Ag(s(y),y) = A(y) for ally € K, but As(s,y) =
0 unless both y € K and s = s(y). Evidently ¢(As)(y) = As(s(y),y) = A(y)
for all y € K, and ¢(As)(y) = A(y) =0 forally & Kx. 1

The pre-image correspondence @ : A(Y) — A(Ys) of ¢ can be defined, for
all A € A(Y), by

D5(A) :={As € A(Ys) | p(As) = A} (21)

Because of Lemma 4, ®g()\) is never empty. In this framework, it now seems
natural to impose the requirement that, given any pair Ag,us € A(Yg) for
which the induced consequence lotteries ¢(Ag), ¢(ps) € A(Y) are the same, the
state s in which each state—consequence pair (s,y) € Ys occurs is irrelevant. In
particular, this suggests the following:

(GSI) Generalized State Independence. For all pairs Ag,us € A(Ys) one has
As ~s jis whenever (\s) = o(us).

11



Thus, for each A € A(Y), the set ®g(\) must be an indifference class for the
relation Zg. So there must exist a “state-independent consequence” preference
relation Sy on A(Y) defined by

A kJY n = [V/\S € dg(N\);Vus € (I)S(;,c) g =g ,us] (22)
Equivalently, for all pairs Ag, us € A(Ys), it must be true that

s Zs ps <= ¢(As) Ty ¢(us)

In the special case of a state-independent consequence domain, when Y, =Y
for all s € S, condition (GSI) evidently implies that Zg reduces to an ordering
on A(Y'). But condition (GSI) can also hold when the domains Y, depend on
the state; they could even be pairwise disjoint.

Lemma 5. Suppose that conditions (O), (I), (C) and (GSI) apply to the or-
dering Tg on the domain A(Ys). Then the relation Sy on A(Y) defined by
(22) satisfies conditions (O), (I), and (C).

ProoFr:  Throughout the following proof, given any three lotteries A, u, v €
A(Y), let Ag,us,vs € A(Ys) denote arbitrarily chosen members of ®g(A),
Og(p) and Pg(v) respectively. That is, suppose A = ¢(Ag), p = ¢(ps), and

v = ¢(vg). Because of (20), whenever 0 < o < 1 it follows that

Plars+(1—a)vs) = ar+(1—-a)v
and  ¢laps+(l-a)vs) = ap+(l-—a)v (23)

Condition (O). Because (GSI) implies that each set ®5()\) (A € A(Y)) must
be an indifference class for the preference ordering <g, definition (22) obviously
implies that <y is reflexive, complete, and transitive. So Xy is a preference
ordering.

Condition (I). Suppose that 0 < o < 1. Because Zg satisfies condition (I),
it follows from (22) and (23) that

A=y 1 = As =sps = adst+(1l—-a)vs=saps+(l—a)vs
—= alt+(1l-a)v>=vyap+(1l—-—a)v

Therefore Sy also satisfies condition (T).

Condition (C). Suppose that A >y p and g >y v. Then A\g >g pus and
also us =5 vs. Because Zg satisfies condition (C), it follows that there exist
o/,a” € (0,1) such that &/ Ag+(1—a') vg =g ps and pg =g &’ Ag+(1—a’) vg.
Then (20) and (23) together imply that &’ A + (1 — /) v >y p, and also that
p=y o A+ (1 —a”)v. Therefore Ty also satisfies condition (C). 1

Main Theorem. Suppose that:

1. conditions (O), (1), (C) and (GSI) apply to the ordering Zg on the domain
A(Ys) of lotteries over state-consequence pairs (s,y) with s € S and
yeYs;
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2. conditions (0), (I), (C), (RO) and (STP) apply to the ordering = on
the domain A(Y®) of lotteries over CCOFs in the Cartesian product space

Y9 = Hseg Y;

3. for each s € S, the contingent preference ordering =15} on A(Yy) is iden-
tical to the restriction of the ordering Zg to this set, regarded as equal to
A(Yss), with Ygs := {s} x Y; as in (15);

4. for each s € S, there exist lotteries \,, \s € A(Y,) such that Ay =1} \_.

Then there exists a unique cardinal equivalence class of state independent
NMUFs v defined on the union consequence domain Y = Uses Ys, as well
as unique positive subjective probabilities ps (s € S) such that, for every ¥ in
the equivalence class, the ordering % on A(Y®) is represented by the expected

value of
Vi) = ps0(ys) (24)

PROOF: By the first hypothesis and Lemma 5, there is an associated ordering
Zy on A(Y) which satisfies conditions (O), (I), and (C). So the standard results
of (objectively) expected utility theory imply that there exists a unique cardinal
equivalence class of expected utility functions U: A(Y) — R which represent
%y while satisfying the mixture preservation property (MP) requiring that

Ular+ 1 —a)p)=alUN) + (1 —a)U(p)

whenever \, u € A()A/) and 0 < o < 1.

Define 9(y) := U(1,) for all y € Y. Then 4 is state-independent and belongs
to a unique cardinal equivalence class. Because of (MP), condition (GSI) implies
that Zg on A(Ys) must be represented by the expected utility function

Ushs) = U00s) = 3 60s)) o)
Zses ZyEYS )‘S(S7y) @(y)

By the second hypothesis and Lemma 2, the ordering < on A(Y™®) is repre-
sented by the expected total evaluation given by (5) in Section 2.

Let s € S be any state. Because of the third hypothesis of the theorem,
the two expected utility functions of Ay defined by > 3 As(y) 9(y) and by
> yey, As(y)w(s,y) must be cardinally equivalent on the domain A(Y;). This
implies that for each state s € S, there exist constants ps > 0 and J, such that
w(s,y) = ds + ps 0(y) on Y. Now define p, := p,/p, where p:= 3" o ps > 0.
Then each p, > 0and ) g ps = 1, so the constants p, (s € S) are probabilities.
Also, w(s,y) = ds + pps 0(y). Therefore, by (3) and Lemma 2, the preference
ordering < on A(Y®) is represented by the expected value of

US(Lys) =v*(y%) =) w(s,y) =) 0stp ), pailys)

Because p > 0, it follows that & is also represented by the expected value of the
NMUF (24).
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Finally, the subjective conditional probabilities ps (s € S) are unique be-
cause each ratio p,/ps is given by the unique corresponding ratio (17) of utility
differences. 1
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