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Stochastic Linear Bandit Problem

Let ©* € RY be fixed (and unknown).

o At time t, the action set A; C RY is revealed to a policy .

The policy chooses A; € As.

It observes a reward r; = (©*, /Zt) + &t

@ Conditional on the history, &; has zero mean.
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Evaluation Metric

@ The objective is to improve using past experiences.

@ The cumulative regret is defined as

-
Regret(T,0*,7) :=E Z sup (0%, A) — (0%, A,) | ©*].

=1 AcA;
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Evaluation Metric

@ The objective is to improve using past experiences.

@ The cumulative regret is defined as

T

Regret(T,0*,7) :=E Z sup (0%, A) — (@*,Zﬁ
=1 AcA;

or|.

@ In the Bayesian setting, the Bayesian regret is given by

BayesRegret(T,7) := Eg«p[Regret(T, 0", m)].
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Algorithms
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Greedy
At timet=1,2,--- | T:
@ Using the set of observations

Ht—l = {(Zla rl)a Tty (Zt—la rt—l)}7

@ Construct an estimate ét_l for ©7%,

@ Choose the action A € A; with largest (A, ét_1>.

Reward

History
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Greedy

The ridge estimator is used to obtain ©, (for a fixed \):
t ~
Vei= M+ > AAT e R, (1)
i=1

and
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Greedy

Algorithm 1 Greedy algorithm
L. fort=1to T do
2. Pull A :=arg maxae 4, (A, O, 1)
3 Observe the reward r;
4. Compute V, = A+ >°F_, /Z,/Z,T
5. Compute @t = V,_T1 (Zle g,-r,-)
6: end for
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Greedy

Algorithm 1 Greedy algorithm
1. fort=1to T do
2. Pull A :=arg maxae 4, (A, O 1)
3 Observe the reward r;
4. Compute V, = A+ >°F_, Z,Z,T
5
6

Compute ét = Vt_l <Z,?:1 /Zifi>

. end for

Greedy makes wrong decisions due to over- or under-estimating the true
rewards.

@ The over-estimation is automatically corrected.

@ The under-estimation can cause linear regret.
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Greedy

A Ay As
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Greedy

3
~ Greedy _
[ ]
A1 Az A3 As As
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Optimism in Face of Uncertainty (OFU) Algorithm

o Key idea: be optimistic when estimating the reward of actions.
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Optimism in Face of Uncertainty (OFU) Algorithm

o Key idea: be optimistic when estimating the reward of actions.
e For p > 0, define the confidence set C:(p) to be
Ce(p) = {00 — 6lly, < p}.
where

X[y, = X VeX € RT.
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Optimism in Face of Uncertainty (OFU) Algorithm

o Key idea: be optimistic when estimating the reward of actions.

e For p > 0, define the confidence set C:(p) to be

Ce(p) = {© 1110 = &xlly, <},

where
X[y, = X VeX € RT.
Theorem (Informal, Abbasi-Yadkori, Pal, and Szepesvari 2011)
Letting p := (’3(\/3) we have ©* € C:(p) with high probability. J
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Optimism in Face of Uncertainty (OFU) Algorithm

Algorithm 2 OFUL algorithm
L. fort=1to T do
2 Pull Ay := argmaxae 4, SUPocc, () (A ©)
3 Observe the reward r;
. — t  AAT
4:  Compute Ve = AL+ 3 ;_; A/A;
5 Compute @t = Vt_1 <Zf:1 E,-r,-)
6: end for
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Optimism in Face of Uncertainty (OFU) Algorithm

Algorithm 2 OFUL algorithm
L. fort=1to T do
2 Pull Ay := argmaxae 4, SUPocc, () (A ©)
3 Observe the reward r;

4 Compute Vy = A+ YL A/AT

5. Compute @t =V;! (Zle Z,-r,-)

6: end for

It can be shown that

sup (A,0) = (A,0.)+p|Ally-1 -
©€eCi(p) =1
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Optimism in Face of Uncertainty (OFU) Algorithm

k3
- Greedy _
®
Ar Az A3 Ay As
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Optimism in Face of Uncertainty (OFU) Algorithm

k3
- Greedy _
®
Ar Az A3 Ay As
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Linear Thompson Sampling (LinTS) Algorithm

o Key idea: use randomization to address under-estimation.
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Linear Thompson Sampling (LinTS) Algorithm

o Key idea: use randomization to address under-estimation.

@ LinTS samples from the posterior distribution of ©*.

Algorithm 3 LinTS algorithm
1: fort=1to T do
2. Sample ©; ~ P(0* | H;_1)
3:  Pull A; := argmaxuc 4, (A, O:)
4:  Observe the reward r;
5. Update H; « He—1 U{(As, re)}
6: end for
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Linear Thompson Sampling (LinTS) Algorithm

@ Under normality, LinTS becomes:

Algorithm 4 LinTS algorithm under normality
1: fort=1to T do _
2:  Sample ©; ~ N(©;_1, V;_ll)

3:  Pull A; := argmaxuc 4, (A, O:)
4:  Observe the reward r; L
5. Compute V, = A+ >°F_ AAT
6: Compute @t = V,_T1 <Zf:1 g,-r,-)
7: end for
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Linear Thompson Sampling (LinTS) Algorithm

~ Greedy0 T
[ ]
Ar Az A3 Ay As
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Linear Thompson Sampling (LinTS) Algorithm
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Linear Thompson Sampling (LinTS) Algorithm

/ LinTS / orit

[T
1
" e
Greedy' -)I(_
[ ] ‘[
Ap Az Az Ag As

N. Hamidi, M. Bayati On Worst-Case Regret of LinTS Stanford University 15 / 40



Why Is LinTS Popular?

o Empirical superiority:
@ d =120, 6" ~ N(0,1,),
@ k=10, X ~ N(0,I12),
@ Each A; contains X as a block!.
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1000

0
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1This is the 10-armed contextual bandit with 12 dimensional covariates.
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Why is LinTS Popular?

o Computation efficiency: when A; is a polytope - - -

@ LinTS solves an LP problem,

@ OFUL becomes an NP-hard problem!

Photo credit: Russo and Van Roy 2014
Stanford University 17 / 40



Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pél, and Szepesvari 2011)
Under some conditions, the regret of OFUL is bounded by

Regret(T, 0% 7%FUL) < O(dV'T).
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Under some conditions, the regret of OFUL is bounded by

Regret(T, 0% 7%FUL) < O(dV'T).

Theorem (Russo and Van Roy 2014)

Under minor assumptions, the Bayesian regret of LinTS is bounded by
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Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pél, and Szepesvari 2011)
Under some conditions, the regret of OFUL is bounded by

Regret(T, 0% 7%FUL) < O(dV'T).

Theorem (Russo and Van Roy 2014)

Under minor assumptions, the Bayesian regret of LinTS is bounded by

BayesRegret(T, 75" 7%) < O(dV/T).

Theorem (Dani, Hayes, and Kakade 2008)

There is a Bayesian linear bandit problem that satisfies

inf BayesRegret(T,7) > Q(dV'T).
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A Worst-Case Regret Bound for LinTS

@ Question: can one prove a similar worst-case regret bound for LinTS?

@ The only known results require inflating the posterior variance.

Algorithm 5 LinTS algorithm under normality
1: fort=1to T do
2. Sample ©; ~ N(@t 1L, PVY)

3: Pull A; :=argmax,c 4, (A, O,)
4:  QObserve the reward r; L
5. Compute V, = AL+ > F_  AAT
6: Compute (:)t = V;l <Zf:1 /Z,-r,-)
7: end for
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A Worst-Case Regret Bound for LinTS

Theorem (Abeille and Lazaric 2017; Agrawal and Goyal 2013)
If B < \/d, then

Regret(T, 0%, 7t"7%) < O(dVdT).

This result is far from optimal by a v/d factor.
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Empirical Performance of Inflated LinTS

@ Unfortunately, the inflated variant of LinTS performs poorly...

35000
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A General Regret Bound
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Randomized OFUL

@ By a worth function, we mean a function M, that maps each
A € A; to R such that

IM¢(A) — (A,8,_1)] < P||A||vt—_11

with probability at least 1 — %
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Randomized OFUL

@ By a worth function, we mean a function |\~/It that maps each
A € A; to R such that

IMe(A) — (A6 1)] < pllAlly+
with probability at least 1 — %

o Next, define Randomized OFUL (ROFUL) to be:

Algorithm 6 ROFUL algorithm
1: fort=1to T do
2. Pull A :=arg maxae 4, M (A)
3 Observe the reward r;
4. Compute Vp = A+ >°F_, Z,/Z,T
5
6

Compute ét = Vt_l <Z,?:1 /Zifi>
: end for
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ROFUL Representations

Examples of worth functions:
o Greedy: M¢(A) = (A, ©,_1)
o OFUL: M¢(A) = (A, 8:-1) + p|[Ally 1
o LinTS: M¢(A) = (A, 0;_1)
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A General Regret Bound

Definition

We say a worth function M, is optimistic if

sup M¢(A) > sup (A,0%)
AcA; AeA;

with probability at least p.
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A General Regret Bound

Definition

We say a worth function M, is optimistic if

sup M¢(A) > sup (A, ©) (3)
AcA; AcA;

with probability at least p.

Theorem

Let (|\~/It)t7_:1 be a sequence of optimistic worth functions. Then, the regret
of ROFUL with this worth function is bounded by

~ dT
Regret(T,nR°FUL) < O <p1 / ?> .
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A Sufficient Condition for Optimism
@ Recall that the worth function for LinTS is given by

Me(A) = (A, O¢).
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A Sufficient Condition for Optimism
@ Recall that the worth function for LinTS is given by

Me(A) = (A, O¢).

@ We can decompose it as

M(A) = (A, ©; — ©,_1) + (A, BO;_1 — ©F) + (A, O%).
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A Sufficient Condition for Optimism
@ Recall that the worth function for LinTS is given by

Me(A) = (A, O¢).

@ We can decompose it as

M(A) = (A, ©; — ©,_1) + (A, BO;_1 — ©F) + (A, O%).

@ Hence, we have

sup Me(A) — sup (A, ©%) > M(A}) — (A}, 0%)
Ac A, AcA;
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A Sufficient Condition for Optimism
@ Recall that the worth function for LinTS is given by

Me(A) = (A, O¢).

@ We can decompose it as

M(A) = (A, ©; — ©,_1) + (A, BO;_1 — ©F) + (A, O%).

@ Hence, we have

sup Me(A) — sup (A, ©%) > M(A}) — (A}, 0%)
Ac A, AcA;

= (A}, 0; — ©;_1) + (A%, 0,1 — O%).
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A Sufficient Condition for Optimism
@ Recall that the worth function for LinTS is given by

Me(A) = (A, O¢).

@ We can decompose it as

M(A) = (A, ©; — ©,_1) + (A, BO;_1 — ©F) + (A, O%).

@ Hence, we have

sup Me(A) — sup (A, ©%) > M(A}) — (A}, 0%)
Ac A, AcA;
= (A}, ©r — Or_1) + (A}, 011 — ©7).

Error term
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A Sufficient Condition for Optimism
@ Recall that the worth function for LinTS is given by

Me(A) = (A, O¢).

@ We can decompose it as

M(A) = (A, ©; — ©,_1) + (A, BO;_1 — ©F) + (A, O%).

@ Hence, we have

sup Me(A) — sup (A, ©%) > M(A}) — (A}, 0%)
Ac A, AcA;
= (A}, 01 — Or_1) + (A}, 011 — ©7).

P
Compensation term Error term
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A Sufficient Condition for Optimism

Define

@ Error vector E := ©* — (:)t,1

@ Compensator vector C := (:)t — 01

The optimism assumption holds if, with probability p, the following holds
(AL, C) = (AL E).

In the Gaussian setting, £ and C follow A'(0, V).
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Omniscient Adversary and LinTS

@ An adversary chooses A; at time t.

@ The adversary is omniscient if he knows ét,l and ©*.
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@ The adversary sets A; := {0, A} for A with (A,©*) > 0.
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Omniscient Adversary and LinTS

An adversary chooses A; at time t.

The adversary is omniscient if he knows ét,l and ©*.

The adversary sets A; := {0, A} for A with (A,©*) > 0.

For simplicity, assume that V,_; =T and ||Al|, = 1.

Notice that that (A, C) ~ N(0,1).
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Omniscient Adversary and LinTS

An adversary chooses A; at time t.

The adversary is omniscient if he knows ét,l and ©*.

The adversary sets A; := {0, A} for A with (A,©*) > 0.

For simplicity, assume that V,_; =T and ||A|, = 1.

o Notice that that (A, C) ~ N(0,1).

Now if (A, E) > 3||E|l, = O(V/d), then we have

P((A, C) > (A, E)) < exp(=Q(d))
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Omniscient Adversary and LinTS
@ The adversary sets A = —cét_l + E and tunes ¢ > 0.

@ LinTS chooses the optimal arm A w.p. exponentially small in Q(d).
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Omniscient Adversary and LinTS
@ The adversary sets A = —cét_l + E and tunes ¢ > 0.

@ LinTS chooses the optimal arm A w.p. exponentially small in Q(d).

@ When Zt = 0, the reward contains no new information about ©*.
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Omniscient Adversary and LinTS
@ The adversary sets A = —cét_l + E and tunes ¢ > 0.

@ LinTS chooses the optimal arm A w.p. exponentially small in Q(d).
@ When Zt = 0, the reward contains no new information about ©*.
@ The adversary reveals the same action set in the next rounds.

@ The regret will grow linearly.
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Bayesian Analyses are Brittle

Under distributional mismatch, an oblivious can cause LinTS to fail:
@ The key point was the adversary’s knowledge of E.
@ This can be relaxed by slightly modifying the noise distribution.
@ In this case, we can set up a problem so that E[E] # 0.

@ Reducing the noise variance reveals information about E.
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Bayesian Analyses are Brittle

We prove that the inflation is necessary for LinTS to work.
Theorem

There exists a linear bandit problem such that for T < exp(€2(d)), we have

BayesRegret( T, 7t7%) = Q(T).
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Bayesian Analyses are Brittle

We prove that the inflation is necessary for LinTS to work.

Theorem
There exists a linear bandit problem such that for T < exp(€2(d)), we have

BayesRegret( T, 7t7%) = Q(T).

The counter-example satisfies the following properties:

©* ~ N(0,14),
LinTS uses the right prior,

LinTS assumes noises are standard normal,

re = (©*, A¢). (i.e., noiseless data!)
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Reducing the Inflation Parameter
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Reducing the Inflation Parameter

@ Recall that a sufficient condition for optimism is that
(A1, C) = (AL E)

with probability p > 0.
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Reducing the Inflation Parameter

@ Recall that a sufficient condition for optimism is that
(A1, C) = (AL E)
with probability p > 0.

@ Also, we have that

(Af, C) ~ N(0, B2 A% IY,_,)-
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Reducing the Inflation Parameter

@ Recall that a sufficient condition for optimism is that
(At, C) > (AL E)
with probability p > 0.

@ Also, we have that

(Af, C) ~ N(0, B2 A% IY,_,)-

@ And, in the worst-case, we have

(AL, E) = pllAtlly,_, -
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Reducing the Inflation Parameter

@ Recall that a sufficient condition for optimism is that
(AL, C) > (AL E)
with probability p > 0.
@ Also, we have that

(Af, C) ~ N(0, B2 A% IY,_,)-

@ And, in the worst-case, we have

(AL, E) = pllAtlly,_, -

e What if we assume that A} is in a random direction?
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Diversity Assumption

Assumption (Optimal arm diversity)

Assume that for any V € R? with ||V||, = 1, we have

1
P14t v)> 2l < 5,
for some fixed v € [1,V/d].
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Diversity is not Sufficient

N. Hamidi, M. Bayati On Worst-Case Regret of LinTS



Improved Worst-Case Regret Bound for LinTS

Define thinness of a matrix X to be

d- Hz“op

YE =\ L
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Improved Worst-Case Regret Bound for LinTS

Define thinness of a matrix X to be

d-||x
HE) =y ||L||!°p'

Assumption

For W, w > 0, we have

—_

V—l
H t H* . ||A*||2 <

*
P Ay < wff 5 <-

w

for any positive definite V;* with (V1) < .
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Main Results

For 8 := % . \/ig, optimism holds. So, we have the following result:

Theorem

IS P(p(Vet) > W) < C, we have

Regret(T, 0%, 77°) < 0(9/3\/ dT log(T) + C)'
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Empirical Scrutiny on Thinness
Thinness in the simulations in Russo and Van Roy (2014):
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Empirical Scrutiny on Thinness
Thinness in the simulations in Russo and Van Roy (2014):
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Conclusion

@ Proved that LinTS without inflation can incur linear regret.
@ Provided a general regret bound for confidence-based policies.

@ Introduced sufficient conditions for reducing the inflation parameter.
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Thank you!

Any questions?
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Failure of LinTS: Example 1

N. Hamidi, M. Bayati

Expected number of failures for LinTS

Environment LinTS

Prior  N(0,14)
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Noise N(0,0) N(0,1)

10106

1092

1078

1064

1050

1036

1022

108

-—---------—%?§

E
T

7

21 22 23 24 25 26 27 28 29 210 yl1 pI2 I3 Hla 15 16 17 I8

Number of blocks (half of the dimension)

On Worst-Case Regret of LinTS

Stanford University

1/4



Failure of LinTS: Example 2

Environment LinTS

Prior  N(0.1-14,I4) MN(0,1,)
Noise N(0,1) N(0,1)
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Failure of LinTS: Example 2

Environment LinTS

Prior  N(1x - 12000, I2000)  N(0, T2000)
Noise N(0,1) N(0,1)
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