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Stochastic Linear Bandit Problem

Let Θ? ∈ Rd be fixed (and unknown).

At time t, the action set At ⊆ Rd is revealed to a policy π.

The policy chooses Ãt ∈ At .

It observes a reward rt = 〈Θ?, Ãt〉+ εt .

Conditional on the history, εt has zero mean.
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Evaluation Metric

The objective is to improve using past experiences.

The cumulative regret is defined as

Regret(T ,Θ?, π) := E

[
T∑

t=1

sup
A∈At

〈Θ?,A〉 − 〈Θ?, Ãt〉

∣∣∣∣∣Θ?

]
.

In the Bayesian setting, the Bayesian regret is given by

BayesRegret(T , π) := EΘ?∼P [Regret(T ,Θ?, π)].
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Algorithms
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Greedy

At time t = 1, 2, · · · ,T :

Using the set of observations

Ht−1 := {(Ã1, r1), · · · , (Ãt−1, rt−1)},

Construct an estimate Θ̂t−1 for Θ?,

Choose the action A ∈ At with largest 〈A, Θ̂t−1〉.

Estimate Θ? Greedy Decision Update H
Reward

History
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Greedy

The ridge estimator is used to obtain Θ̂t (for a fixed λ):

Vt := λI +
t∑

i=1

Ãi Ã
>
i ∈ Rd×d , (1)

and

Θ̂t := V−1
t

(
t∑

i=1

Ãi ri

)
∈ Rd . (2)
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Greedy

Algorithm 1 Greedy algorithm

1: for t = 1 to T do
2: Pull Ãt := arg maxA∈At

〈A, Θ̂t−1〉
3: Observe the reward rt
4: Compute Vt = λI +

∑t
i=1 Ãi Ã

>
i

5: Compute Θ̂t = V−1
t

(∑t
i=1 Ãi ri

)

6: end for

Greedy makes wrong decisions due to over- or under-estimating the true
rewards.

The over-estimation is automatically corrected.

The under-estimation can cause linear regret.
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Greedy

A1 A2 A3 A4 A5

Greedy
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Optimism in Face of Uncertainty (OFU) Algorithm

Key idea: be optimistic when estimating the reward of actions.

For ρ > 0, define the confidence set Ct(ρ) to be

Ct(ρ) := {Θ | ‖Θ− Θ̂t‖Vt
≤ ρ},

where

‖X‖2
Vt

= X>VtX ∈ R+.

Theorem (Informal, Abbasi-Yadkori, Pál, and Szepesvári 2011)

Letting ρ := Õ(
√
d), we have Θ? ∈ Ct(ρ) with high probability.
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Optimism in Face of Uncertainty (OFU) Algorithm

Algorithm 2 OFUL algorithm

1: for t = 1 to T do
2: Pull Ãt := arg maxA∈At

supΘ∈Ct−1(ρ)〈A,Θ〉
3: Observe the reward rt
4: Compute Vt = λI +

∑t
i=1 Ãi Ã

>
i

5: Compute Θ̂t = V−1
t

(∑t
i=1 Ãi ri

)

6: end for

It can be shown that

sup
Θ∈Ct(ρ)

〈A,Θ〉 = 〈A, Θ̂t〉+ρ‖A‖V−1
t−1
.
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Optimism in Face of Uncertainty (OFU) Algorithm

A1 A2 A3 A4 A5

OFUL

Greedy
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Linear Thompson Sampling (LinTS) Algorithm

Key idea: use randomization to address under-estimation.

LinTS samples from the posterior distribution of Θ?.

Algorithm 2 LinTS algorithm

1: for t = 1 to T do
2: Sample Θ̃t ∼ P(Θ? | Ht−1)
3: Pull At := arg maxA∈At

〈A, Θ̃t〉
4: Observe the reward rt
5: Update Ht ← Ht−1

⋃
{(At , rt)}

6: end for
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Linear Thompson Sampling (LinTS) Algorithm

Under normality, LinTS becomes:

Algorithm 4 LinTS algorithm under normality

1: for t = 1 to T do
2: Sample Θ̃t ∼ N (Θ̂t−1,V

−1
t−1)

3: Pull At := arg maxA∈At
〈A, Θ̃t〉

4: Observe the reward rt
5: Compute Vt = λI +

∑t
i=1 Ãi Ã

>
i

6: Compute Θ̂t = V−1
t

(∑t
i=1 Ãi ri

)

7: end for
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Linear Thompson Sampling (LinTS) Algorithm

A1 A2 A3 A4 A5

LinTS

OFUL

Greedy

N. Hamidi, M. Bayati On Worst-Case Regret of LinTS Stanford University 15 / 40



Linear Thompson Sampling (LinTS) Algorithm

A1 A2 A3 A4 A5

LinTS

OFUL

Greedy

N. Hamidi, M. Bayati On Worst-Case Regret of LinTS Stanford University 15 / 40



Linear Thompson Sampling (LinTS) Algorithm

A1 A2 A3 A4 A5

LinTS
OFUL

Greedy

N. Hamidi, M. Bayati On Worst-Case Regret of LinTS Stanford University 15 / 40



Why Is LinTS Popular?

Empirical superiority:
d = 120, Θ? ∼ N (0, Id),
k = 10, X ∼ N (0, I12),
Each At contains X as a block1.

0 2000 4000 6000 8000 10000

0

1000

2000

3000

4000

5000 Greedy
OFUL
TS

1
This is the 10-armed contextual bandit with 12 dimensional covariates.
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Why is LinTS Popular?

Computation efficiency: when At is a polytope · · ·

LinTS solves an LP problem,

OFUL becomes an NP-hard problem!

Photo credit: Russo and Van Roy 2014
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Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011)

Under some conditions, the regret of OFUL is bounded by

Regret(T ,Θ?, πOFUL) ≤ Õ(d
√
T ).

Theorem (Russo and Van Roy 2014)

Under minor assumptions, the Bayesian regret of LinTS is bounded by

BayesRegret(T , πLinTS) ≤ Õ(d
√
T ).

Theorem (Dani, Hayes, and Kakade 2008)

There is a Bayesian linear bandit problem that satisfies

inf
π

BayesRegret(T , π) ≥ Ω(d
√
T ).
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√
T ).

Theorem (Russo and Van Roy 2014)

Under minor assumptions, the Bayesian regret of LinTS is bounded by

BayesRegret(T , πLinTS) ≤ Õ(d
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A Worst-Case Regret Bound for LinTS

Question: can one prove a similar worst-case regret bound for LinTS?

The only known results require inflating the posterior variance.

Algorithm 5 LinTS algorithm under normality

1: for t = 1 to T do
2: Sample Θ̃t ∼ N (Θ̂t−1, β

2V−1
t−1)

3: Pull At := arg maxA∈At
〈A, Θ̃t〉

4: Observe the reward rt
5: Compute Vt = λI +

∑t
i=1 Ãi Ã

>
i

6: Compute Θ̂t = V−1
t

(∑t
i=1 Ãi ri

)

7: end for
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A Worst-Case Regret Bound for LinTS

Theorem (Abeille and Lazaric 2017; Agrawal and Goyal 2013)

If β ∝
√
d , then

Regret(T ,Θ?, πLinTS) ≤ Õ(d
√
dT ).

This result is far from optimal by a
√
d factor.
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Empirical Performance of Inflated LinTS

Unfortunately, the inflated variant of LinTS performs poorly...
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A General Regret Bound
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Randomized OFUL

By a worth function, we mean a function M̃t that maps each
A ∈ At to R such that

|M̃t(A)− 〈A, Θ̂t−1〉| ≤ ρ‖A‖V−1
t−1

with probability at least 1− 1
T 2 .

Next, define Randomized OFUL (ROFUL) to be:

Algorithm 6 ROFUL algorithm

1: for t = 1 to T do
2: Pull Ãt := arg maxA∈At

M̃t(A)
3: Observe the reward rt
4: Compute Vt = λI +

∑t
i=1 Ãi Ã

>
i

5: Compute Θ̂t = V−1
t

(∑t
i=1 Ãi ri

)

6: end for
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ROFUL Representations

Examples of worth functions:

Greedy: M̃t(A) = 〈A, Θ̂t−1〉

OFUL: M̃t(A) = 〈A, Θ̂t−1〉+ ρ‖A‖V−1
t−1

LinTS: M̃t(A) = 〈A, Θ̃t−1〉
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A General Regret Bound

Definition

We say a worth function M̃t is optimistic if

sup
A∈At

M̃t(A) ≥ sup
A∈At

〈A,Θ?〉 (3)

with probability at least p.

Theorem

Let (M̃t)
T
t=1 be a sequence of optimistic worth functions. Then, the regret

of ROFUL with this worth function is bounded by

Regret(T , πROFUL) ≤ Õ

(
ρ

√
dT

p

)
.
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(
ρ

√
dT

p

)
.

N. Hamidi, M. Bayati On Worst-Case Regret of LinTS Stanford University 25 / 40



A Sufficient Condition for Optimism

Recall that the worth function for LinTS is given by

M̃t(A) = 〈A, Θ̃t〉.

We can decompose it as

M̃t(A) = 〈A, Θ̃t − Θ̂t−1〉+ 〈A, Θ̂t−1 −Θ?〉+ 〈A,Θ?〉.

Hence, we have

sup
A∈At

M̃t(A)− sup
A∈At

〈A,Θ?〉 ≥ M̃t(A
?
t )− 〈A?t ,Θ?〉

= 〈A?t , Θ̃t − Θ̂t−1〉︸ ︷︷ ︸
Compensation term

+ 〈A?t , Θ̂t−1 −Θ?〉︸ ︷︷ ︸
Error term

.
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A Sufficient Condition for Optimism

Define

Error vector E := Θ? − Θ̂t−1

Compensator vector C := Θ̃t − Θ̂t−1

The optimism assumption holds if, with probability p, the following holds

〈A?t ,C 〉 ≥ 〈A?t ,E 〉.

In the Gaussian setting, E and C follow N (0,V−1
t−1).
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Omniscient Adversary and LinTS

An adversary chooses At at time t.

The adversary is omniscient if he knows Θ̂t−1 and Θ?.

The adversary sets At := {0,A} for A with 〈A,Θ?〉 > 0.

For simplicity, assume that Vt−1 = I and ‖A‖2 = 1.

Notice that that 〈A,C 〉 ∼ N (0, 1).

Now if 〈A,E 〉 > 1
2‖E‖2 = O(

√
d), then we have

P(〈A,C 〉 ≥ 〈A,E 〉) ≤ exp(−Ω(d))
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P(〈A,C 〉 ≥ 〈A,E 〉) ≤ exp(−Ω(d))
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Omniscient Adversary and LinTS
The adversary sets A = −cΘ̂t−1 + E and tunes c > 0.

LinTS chooses the optimal arm A w.p. exponentially small in Ω(d).

When Ãt = 0, the reward contains no new information about Θ?.

The adversary reveals the same action set in the next rounds.

The regret will grow linearly.

O

Θ?

Θ̂

A?

Θ̃

N. Hamidi, M. Bayati On Worst-Case Regret of LinTS Stanford University 29 / 40



Omniscient Adversary and LinTS
The adversary sets A = −cΘ̂t−1 + E and tunes c > 0.

LinTS chooses the optimal arm A w.p. exponentially small in Ω(d).
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Bayesian Analyses are Brittle

Under distributional mismatch, an oblivious can cause LinTS to fail:

The key point was the adversary’s knowledge of E .

This can be relaxed by slightly modifying the noise distribution.

In this case, we can set up a problem so that E[E ] 6= 0.

Reducing the noise variance reveals information about E .
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Bayesian Analyses are Brittle

We prove that the inflation is necessary for LinTS to work.

Theorem

There exists a linear bandit problem such that for T ≤ exp(Ω(d)), we have

BayesRegret(T , πLinTS) = Ω(T ).

The counter-example satisfies the following properties:

Θ? ∼ N (0, Id),

LinTS uses the right prior,

LinTS assumes noises are standard normal,

rt = 〈Θ?,At〉. (i.e., noiseless data!)

N. Hamidi, M. Bayati On Worst-Case Regret of LinTS Stanford University 31 / 40



Bayesian Analyses are Brittle

We prove that the inflation is necessary for LinTS to work.

Theorem

There exists a linear bandit problem such that for T ≤ exp(Ω(d)), we have

BayesRegret(T , πLinTS) = Ω(T ).

The counter-example satisfies the following properties:

Θ? ∼ N (0, Id),

LinTS uses the right prior,

LinTS assumes noises are standard normal,

rt = 〈Θ?,At〉. (i.e., noiseless data!)

N. Hamidi, M. Bayati On Worst-Case Regret of LinTS Stanford University 31 / 40



Reducing the Inflation Parameter
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Reducing the Inflation Parameter

Recall that a sufficient condition for optimism is that

〈A?t ,C 〉 ≥ 〈A?t ,E 〉

with probability p > 0.

Also, we have that

〈A?t ,C 〉 ∼ N (0, β2‖A?t ‖
2
Vt−1

).

And, in the worst-case, we have

〈A?t ,E 〉 ≥ ρ‖A?t ‖Vt−1
.

What if we assume that A?t is in a random direction?
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Diversity Assumption

Assumption (Optimal arm diversity)

Assume that for any V ∈ Rd with ‖V ‖2 = 1, we have

P
(
〈A?t ,V 〉 >

ν√
d
‖A?t ‖2

)
≤ 1

t3
,

for some fixed ν ∈ [1,
√
d ].

O

Θ?

Θ̂

A?

Θ̃
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Diversity is not Sufficient

O

A?

C

E
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Improved Worst-Case Regret Bound for LinTS

Define thinness of a matrix Σ to be

ψ(Σ) :=

√
d · ‖Σ‖op

‖Σ‖∗
.

Assumption

For Ψ, ω > 0, we have

P


‖A?‖V−1

t
< ω

√
‖V−1

t ‖∗
d

· ‖A?‖2


 ≤ 1

t3

for any positive definite V−1
t with ψ(V−1

t ) ≤ Ψ.
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Main Results

For β := νΨ
ω ·

ρ√
d

, optimism holds. So, we have the following result:

Theorem

If
∑T

t=1 P
(
ψ(V−1

t ) > Ψ
)
≤ C , we have

Regret(T ,Θ?, πTS) ≤ O
(
ρβ
√

dT log(T ) + C
)
.
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Empirical Scrutiny on Thinness
Thinness in the simulations in Russo and Van Roy (2014):
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Conclusion

Proved that LinTS without inflation can incur linear regret.

Provided a general regret bound for confidence-based policies.

Introduced sufficient conditions for reducing the inflation parameter.
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Thank you!

Any questions?
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Failure of LinTS: Example 1

Environment LinTS

Prior N (0, Id) N (0, Id)
Noise N (0, 0) N (0, 1)

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217 218
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Failure of LinTS: Example 2

Environment LinTS

Prior N (0.1 · 1d , Id) N (0, Id)
Noise N (0, 1) N (0, 1)

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216 217
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Failure of LinTS: Example 2

Environment LinTS

Prior N (µ · 12000, I2000) N (0, I2000)
Noise N (0, 1) N (0, 1)
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