On Worst-Case Regret of Linear Thompson Sampling

Nima Hamidi

Stanford University

Collaborator: Mohsen Bayati

Preprint: arXiv 2006.06790

Overview

- 2 Confidence-based Policies
- 3 Failure of LinTS ☺
- Positive Results ©

Stochastic Linear Bandit Problem

- Let $\Theta^{\star} \in \mathbb{R}^d$ be fixed (and unknown).
- At time t, the action set $\mathcal{A}_t \subseteq \mathbb{R}^d$ is revealed to a policy π .
- The policy chooses $\widetilde{A}_t \in \mathcal{A}_t$.
- It observes a reward $r_t = \langle \Theta^{\star}, \widetilde{A}_t \rangle + \varepsilon_t$.
- Conditional on the history, ε_t has zero mean.

Evaluation Metric

• The objective is to improve using past experiences.

• The cumulative regret is defined as

$$\mathsf{Regret}(\mathcal{T},\Theta^{\star},\pi) := \mathbb{E}\left[\sum_{t=1}^{\mathcal{T}} \sup_{\mathcal{A}\in\mathcal{A}_{t}} \langle \Theta^{\star},\mathcal{A} \rangle - \langle \Theta^{\star},\widetilde{\mathcal{A}}_{t} \rangle \ \middle| \ \Theta^{\star}\right].$$

Evaluation Metric

• The objective is to improve using past experiences.

• The cumulative regret is defined as

$$\mathsf{Regret}(\mathcal{T},\Theta^{\star},\pi) := \mathbb{E}\left[\sum_{t=1}^{\mathcal{T}} \sup_{\mathcal{A}\in\mathcal{A}_{t}} \langle \Theta^{\star},\mathcal{A} \rangle - \langle \Theta^{\star},\widetilde{\mathcal{A}}_{t} \rangle \ \middle| \ \Theta^{\star}\right].$$

Evaluation Metric

• The objective is to improve using past experiences.

• The cumulative regret is defined as

$$\operatorname{Regret}(\mathcal{T},\Theta^{\star},\pi) := \mathbb{E}\left[\sum_{t=1}^{T} \sup_{A \in \mathcal{A}_{t}} \langle \Theta^{\star}, A \rangle - \langle \Theta^{\star}, \widetilde{A}_{t} \rangle \ \middle| \ \Theta^{\star}\right].$$

• In the Bayesian setting, the **Bayesian regret** is given by BayesRegret $(T, \pi) := \mathbb{E}_{\Theta^{\star} \sim \mathcal{P}}[\text{Regret}(T, \Theta^{\star}, \pi)].$

Algorithms

At time $t = 1, 2, \cdots, T$:

• Using the set of observations

$$\mathcal{H}_{t-1} := \{ (\widetilde{A}_1, r_1), \cdots, (\widetilde{A}_{t-1}, r_{t-1}) \},\$$

- Construct an **estimate** $\widehat{\Theta}_{t-1}$ for Θ^* ,
- Choose the action $A \in \mathcal{A}_t$ with largest $\langle A, \widehat{\Theta}_{t-1} \rangle$.

The **ridge estimator** is used to obtain $\widehat{\Theta}_t$ (for a fixed λ):

$$\mathbf{V}_t := \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^\top \in \mathbb{R}^{d \times d}, \tag{1}$$

and

$$\widehat{\Theta}_t := \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right) \in \mathbb{R}^d.$$
(2)

Algorithm 1 Greedy algorithm

1: for t = 1 to T do

2: Pull
$$\widetilde{A}_t := \arg \max_{A \in \mathcal{A}_t} \langle A, \widehat{\Theta}_{t-1} \rangle$$

3: Observe the reward r_t

4: Compute
$$\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}$$

5: Compute
$$\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$$

6: end for

$\label{eq:algorithm} Algorithm \ 1 \ {\rm Greedy} \ {\rm algorithm}$

1: for t = 1 to T do

2: Pull
$$\widetilde{A}_t := \arg \max_{A \in \mathcal{A}_t} \langle A, \widehat{\Theta}_{t-1} \rangle$$

3: Observe the reward r_t

4: Compute
$$\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}$$

5: Compute
$$\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$$

6: end for

Greedy makes wrong decisions due to **over**- or **under-estimating** the true rewards.

- The over-estimation is automatically corrected.
- The under-estimation can cause linear regret.

• Key idea: **be optimistic** when estimating the reward of actions.

- Key idea: **be optimistic** when estimating the reward of actions.
- For $\rho > 0$, define the **confidence set** $C_t(\rho)$ to be

$$\mathcal{C}_t(\rho) := \{ \Theta \mid \|\Theta - \widehat{\Theta}_t\|_{\mathbf{V}_t} \le \rho \},\$$

where

$$\|X\|_{\mathbf{V}_t}^2 = X^\top \mathbf{V}_t X \in \mathbb{R}^+.$$

- Key idea: **be optimistic** when estimating the reward of actions.
- For $\rho > 0$, define the **confidence set** $C_t(\rho)$ to be

$$\mathcal{C}_t(\rho) := \{ \Theta \mid \|\Theta - \widehat{\Theta}_t\|_{\mathbf{V}_t} \le \rho \},\$$

where

$$\|X\|_{\mathbf{V}_t}^2 = X^\top \mathbf{V}_t X \in \mathbb{R}^+.$$

Theorem (Informal, Abbasi-Yadkori, Pál, and Szepesvári 2011) Letting $\rho := \widetilde{\mathcal{O}}(\sqrt{d})$, we have $\Theta^* \in \mathcal{C}_t(\rho)$ with high probability.

Algorithm 2 OFUL algorithm

- 1: for t = 1 to T do
- 2: Pull $A_t := \arg \max_{A \in \mathcal{A}_t} \sup_{\Theta \in \mathcal{C}_{t-1}(\rho)} \langle A, \Theta \rangle$
- 3: Observe the reward r_t

4: Compute
$$\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}$$

5: Compute
$$\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$$

6: end for

Algorithm 2 OFUL algorithm

- 1: for t = 1 to T do
- 2: Pull $A_t := \arg \max_{A \in \mathcal{A}_t} \sup_{\Theta \in \mathcal{C}_{t-1}(\rho)} \langle A, \Theta \rangle$
- 3: Observe the reward r_t

4: Compute
$$\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}$$

5: Compute
$$\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$$

6: end for

It can be shown that

$$\sup_{\Theta \in \mathcal{C}_t(\rho)} \langle A, \Theta \rangle = \langle A, \widehat{\Theta}_t \rangle + \rho \|A\|_{\mathbf{V}_{t-1}^{-1}}$$

• Key idea: use randomization to address under-estimation.

- Key idea: use randomization to address under-estimation.
- LinTS samples from the **posterior** distribution of Θ^* .

Algorithm 3 LinTS algorithm	
1:	for $t = 1$ to T do
2:	$Sample\; \widetilde{\Theta}_t \sim \mathbb{P}(\Theta^\star \mathcal{H}_{t-1})$
3:	$Pull\; A_t := argmax_{A\in\mathcal{A}_t}\langleA,\widetilde{\Theta}_t\rangle$
4:	Observe the reward r_t
5:	$Update\ \mathcal{H}_t \leftarrow \mathcal{H}_{t-1} \bigcup \{(A_t, r_t)\}$
6:	end for

• Under normality, LinTS becomes:

Algorithm 4 LinTS algorithm under normality

- 1: for t = 1 to T do
- 2: Sample $\widetilde{\Theta}_t \sim \mathcal{N}(\widehat{\Theta}_{t-1}, \mathbf{V}_{t-1}^{-1})$
- 3: Pull $A_t := \arg \max_{A \in \mathcal{A}_t} \langle A, \widetilde{\Theta}_t \rangle$
- 4: Observe the reward r_t

5: Compute
$$\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}$$

6: Compute
$$\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$$

7: end for

Why Is LinTS Popular?

• Empirical superiority:

- d = 120, $\Theta^{\star} \sim \mathcal{N}(0, \mathbb{I}_d)$,
- $k = 10, X \sim \mathcal{N}(0, \mathbb{I}_{12}),$
- Each A_t contains X as a block¹.

 $^{^1\}mathrm{This}$ is the 10-armed contextual bandit with 12 dimensional covariates.

Why is LinTS Popular?

- Computation efficiency: when A_t is a polytope \cdots
 - LinTS solves an LP problem,

• OFUL becomes an NP-hard problem!

Photo credit: Russo and Van Roy 2014

N. Hamidi, M. Bayati

Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011) Under some conditions, the regret of OFUL is bounded by

$$\mathsf{Regret}(T,\Theta^{\star},\pi^{OFUL}) \leq \widetilde{\mathcal{O}}(d\sqrt{T}).$$

Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011) Under some conditions, the regret of OFUL is bounded by

$$\mathsf{Regret}(T,\Theta^{\star},\pi^{OFUL}) \leq \widetilde{\mathcal{O}}(d\sqrt{T}).$$

Theorem (Russo and Van Roy 2014)

Under minor assumptions, the Bayesian regret of LinTS is bounded by

BayesRegret
$$(T, \pi^{LinTS}) \leq \widetilde{\mathcal{O}}(d\sqrt{T}).$$

Comparison of Regret Bounds

Theorem (Abbasi-Yadkori, Pál, and Szepesvári 2011) Under some conditions, the regret of OFUL is bounded by

$$\mathsf{Regret}(T,\Theta^{\star},\pi^{OFUL}) \leq \widetilde{\mathcal{O}}(d\sqrt{T}).$$

Theorem (Russo and Van Roy 2014)

Under minor assumptions, the Bayesian regret of LinTS is bounded by

BayesRegret
$$(T, \pi^{LinTS}) \leq \widetilde{\mathcal{O}}(d\sqrt{T}).$$

Theorem (Dani, Hayes, and Kakade 2008)

There is a Bayesian linear bandit problem that satisfies

$$\inf_{\pi} \mathsf{BayesRegret}(T,\pi) \geq \Omega(d\sqrt{T}).$$

A Worst-Case Regret Bound for LinTS

- Question: can one prove a similar worst-case regret bound for LinTS?
- The only known results require **inflating** the posterior variance.

Algorithm 5 LinTS algorithm under normality

- 1: for t = 1 to T do
- 2: Sample $\widetilde{\Theta}_t \sim \mathcal{N}(\widehat{\Theta}_{t-1}, \frac{\beta^2 \mathbf{V}_{t-1}^{-1}}{\mathbf{V}_{t-1}^{-1}})$
- 3: Pull $A_t := \operatorname{arg} \max_{A \in \mathcal{A}_t} \langle A, \widetilde{\Theta}_t \rangle$
- 4: Observe the reward r_t
- 5: Compute $\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^{\top}$
- 6: Compute $\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$

7: end for

A Worst-Case Regret Bound for LinTS

Theorem (Abeille and Lazaric 2017; Agrawal and Goyal 2013) If $\beta \propto \sqrt{d}$, then

$$\operatorname{Regret}(T, \Theta^{\star}, \pi^{LinTS}) \leq \widetilde{\mathcal{O}}(d\sqrt{dT}).$$

This result is far from optimal by a \sqrt{d} factor.

Empirical Performance of Inflated LinTS

• Unfortunately, the inflated variant of LinTS performs poorly...

A General Regret Bound

Randomized OFUL

• By a worth function, we mean a function \widetilde{M}_t that maps each $A \in A_t$ to \mathbb{R} such that

$$|\widetilde{\mathsf{M}}_{t}(A) - \langle A, \widehat{\Theta}_{t-1} \rangle| \leq \rho ||A||_{\mathbf{V}_{t-1}^{-1}}$$

with probability at least $1 - \frac{1}{T^2}$.
Randomized OFUL

• By a worth function, we mean a function \widetilde{M}_t that maps each $A \in A_t$ to \mathbb{R} such that

$$|\widetilde{\mathsf{M}}_{t}(A) - \langle A, \widehat{\Theta}_{t-1} \rangle| \leq \rho ||A||_{\mathbf{V}_{t-1}^{-1}}$$

with probability at least $1 - \frac{1}{T^2}$.

• Next, define Randomized OFUL (ROFUL) to be:

Algorithm 6 ROFUL algorithm1: for t = 1 to T do2: Pull $\widetilde{A}_t := \arg \max_{A \in \mathcal{A}_t} \widetilde{M}_t(A)$ 3: Observe the reward r_t 4: Compute $\mathbf{V}_t = \lambda \mathbb{I} + \sum_{i=1}^t \widetilde{A}_i \widetilde{A}_i^\top$ 5: Compute $\widehat{\Theta}_t = \mathbf{V}_t^{-1} \left(\sum_{i=1}^t \widetilde{A}_i r_i \right)$ 6: end for

ROFUL Representations

Examples of worth functions:

• Greedy:
$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widehat{\Theta}_{t-1} \rangle$$

• OFUL:
$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widehat{\Theta}_{t-1} \rangle + \rho \|A\|_{\mathbf{V}_{t-1}^{-1}}$$

• LinTS:
$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_{t-1} \rangle$$

A General Regret Bound

Definition

We say a worth function \widetilde{M}_t is **optimistic** if

$$\sup_{A\in\mathcal{A}_t}\widetilde{\mathsf{M}}_t(A)\geq \sup_{A\in\mathcal{A}_t}\langle A,\Theta^\star\rangle$$

with probability at least p.

(3)

A General Regret Bound

Definition

We say a worth function \widetilde{M}_t is **optimistic** if

$$\sup_{\mathsf{A}\in\mathcal{A}_t} \widetilde{\mathsf{M}}_t(\mathsf{A}) \geq \sup_{\mathsf{A}\in\mathcal{A}_t} \langle \mathsf{A}, \Theta^\star \rangle$$

with probability at least p.

Theorem

Let $(\widetilde{M}_t)_{t=1}^T$ be a sequence of optimistic worth functions. Then, the regret of ROFUL with this worth function is bounded by

$$\mathsf{Regret}(\mathcal{T}, \pi^{\mathsf{ROFUL}}) \leq \widetilde{\mathcal{O}}\left(\rho \sqrt{\frac{d\mathcal{T}}{\mathsf{p}}}\right)$$

(3)

• Recall that the worth function for LinTS is given by

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$$

• Recall that the worth function for LinTS is given by

 $\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$

• We can decompose it as

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle.$$

• Recall that the worth function for LinTS is given by

 $\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$

• We can decompose it as

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} - \Theta^* \rangle + \langle A, \Theta^* \rangle.$$

$$\sup_{A \in \mathcal{A}_t} \widetilde{\mathsf{M}}_t(A) - \sup_{A \in \mathcal{A}_t} \langle A, \Theta^\star \rangle \geq \widetilde{\mathsf{M}}_t(A^\star_t) - \langle A^\star_t, \Theta^\star \rangle$$

• Recall that the worth function for LinTS is given by

 $\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$

• We can decompose it as

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} - \Theta^\star \rangle + \langle A, \Theta^\star \rangle.$$

$$\begin{split} \sup_{A \in \mathcal{A}_t} \widetilde{\mathsf{M}}_t(A) &- \sup_{A \in \mathcal{A}_t} \langle A, \Theta^* \rangle \geq \widetilde{\mathsf{M}}_t(A_t^*) - \langle A_t^*, \Theta^* \rangle \\ &= \langle A_t^*, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A_t^*, \widehat{\Theta}_{t-1} - \Theta^* \rangle \end{split}$$

• Recall that the worth function for LinTS is given by

 $\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$

• We can decompose it as

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} - \Theta^\star \rangle + \langle A, \Theta^\star \rangle.$$

$$\sup_{A \in \mathcal{A}_{t}} \widetilde{\mathsf{M}}_{t}(A) - \sup_{A \in \mathcal{A}_{t}} \langle A, \Theta^{\star} \rangle \geq \widetilde{\mathsf{M}}_{t}(A_{t}^{\star}) - \langle A_{t}^{\star}, \Theta^{\star} \rangle$$
$$= \langle A_{t}^{\star}, \widetilde{\Theta}_{t} - \widehat{\Theta}_{t-1} \rangle + \langle A_{t}^{\star}, \widehat{\Theta}_{t-1} - \Theta^{\star} \rangle$$

• Recall that the worth function for LinTS is given by

 $\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t \rangle.$

• We can decompose it as

$$\widetilde{\mathsf{M}}_t(A) = \langle A, \widetilde{\Theta}_t - \widehat{\Theta}_{t-1} \rangle + \langle A, \widehat{\Theta}_{t-1} - \Theta^\star \rangle + \langle A, \Theta^\star \rangle.$$

$$\sup_{A \in \mathcal{A}_{t}} \widetilde{\mathsf{M}}_{t}(A) - \sup_{A \in \mathcal{A}_{t}} \langle A, \Theta^{\star} \rangle \geq \widetilde{\mathsf{M}}_{t}(A_{t}^{\star}) - \langle A_{t}^{\star}, \Theta^{\star} \rangle$$
$$= \underbrace{\langle A_{t}^{\star}, \widetilde{\Theta}_{t} - \widehat{\Theta}_{t-1} \rangle}_{\text{Compensation term}} + \underbrace{\langle A_{t}^{\star}, \widehat{\Theta}_{t-1} - \Theta^{\star} \rangle}_{\text{Error term}}.$$

Define

- Error vector $\boldsymbol{E} := \Theta^{\star} \widehat{\Theta}_{t-1}$
- Compensator vector $C := \widetilde{\Theta}_t \widehat{\Theta}_{t-1}$

The optimism assumption holds if, with probability p, the following holds

 $\langle A_t^{\star}, \mathbf{C} \rangle \geq \langle A_t^{\star}, \mathbf{E} \rangle.$

In the Gaussian setting, *E* and *C* follow $\mathcal{N}(0, \mathbf{V}_{t-1}^{-1})$.

- An **adversary** chooses A_t at time t.
- The adversary is **omniscient** if he knows $\widehat{\Theta}_{t-1}$ and Θ^* .

- An **adversary** chooses A_t at time t.
- The adversary is **omniscient** if he knows $\widehat{\Theta}_{t-1}$ and Θ^* .
- The adversary sets $A_t := \{0, A\}$ for A with $\langle A, \Theta^* \rangle > 0$.

- An **adversary** chooses A_t at time t.
- The adversary is **omniscient** if he knows $\widehat{\Theta}_{t-1}$ and Θ^* .
- The adversary sets $\mathcal{A}_t := \{0, A\}$ for A with $\langle A, \Theta^{\star} \rangle > 0$.
- For simplicity, assume that $\mathbf{V}_{t-1} = \mathbb{I}$ and $\|A\|_2 = 1$.
- Notice that that $\langle A, \mathbf{C} \rangle \sim \mathcal{N}(0, 1)$.

- An **adversary** chooses A_t at time t.
- The adversary is **omniscient** if he knows $\widehat{\Theta}_{t-1}$ and Θ^* .
- The adversary sets $\mathcal{A}_t := \{0, A\}$ for A with $\langle A, \Theta^{\star} \rangle > 0$.
- For simplicity, assume that $\mathbf{V}_{t-1} = \mathbb{I}$ and $\|A\|_2 = 1$.
- Notice that that $\langle A, \mathbf{C} \rangle \sim \mathcal{N}(0, 1)$.
- Now if $\langle A, E \rangle > \frac{1}{2} ||E||_2 = O(\sqrt{d})$, then we have $\mathbb{P}(\langle A, C \rangle \ge \langle A, E \rangle) \le \exp(-\Omega(d))$

- The adversary sets $A = -c\widehat{\Theta}_{t-1} + E$ and tunes c > 0.
- LinTS chooses the optimal arm A w.p. exponentially small in $\Omega(d)$.

- The adversary sets $A = -c\widehat{\Theta}_{t-1} + E$ and tunes c > 0.
- LinTS chooses the optimal arm A w.p. exponentially small in $\Omega(d)$.
- When $\widetilde{A}_t = 0$, the reward contains **no new information** about Θ^* .

- The adversary sets $A = -c\widehat{\Theta}_{t-1} + E$ and tunes c > 0.
- LinTS chooses the optimal arm A w.p. exponentially small in $\Omega(d)$.
- When $\widetilde{A}_t = 0$, the reward contains **no new information** about Θ^* .
- The adversary reveals the same action set in the next rounds.
- The regret will grow linearly.

- The adversary sets $A = -c\widehat{\Theta}_{t-1} + E$ and tunes c > 0.
- LinTS chooses the optimal arm A w.p. exponentially small in $\Omega(d)$.
- When $A_t = 0$, the reward contains **no new information** about Θ^* .
- The adversary reveals the same action set in the next rounds.
- The regret will grow **linearly**.

Bayesian Analyses are Brittle

Under distributional mismatch, an **oblivious** can cause LinTS to fail:

- The key point was the adversary's knowledge of *E*.
- This can be relaxed by **slightly modifying** the noise distribution.
- In this case, we can set up a problem so that $\mathbb{E}[E] \neq 0$.
- Reducing the noise variance reveals information about *E*.

Bayesian Analyses are Brittle

We prove that the inflation is **necessary** for LinTS to work.

Theorem

There exists a linear bandit problem such that for $T \leq \exp(\Omega(d))$, we have

BayesRegret $(T, \pi^{LinTS}) = \Omega(T).$

Bayesian Analyses are Brittle

We prove that the inflation is **necessary** for LinTS to work.

Theorem

There exists a linear bandit problem such that for $T \leq \exp(\Omega(d))$, we have

BayesRegret
$$(T, \pi^{LinTS}) = \Omega(T)$$
.

The counter-example satisfies the following properties:

•
$$\Theta^{\star} \sim \mathcal{N}(0, \mathbb{I}_d)$$
,

- LinTS uses the right prior,
- LinTS assumes noises are standard normal,

•
$$r_t = \langle \Theta^{\star}, A_t \rangle$$
. (i.e., **noiseless** data!)

• Recall that a sufficient condition for optimism is that

 $\langle A_t^{\star}, \mathbf{C} \rangle \geq \langle A_t^{\star}, \mathbf{E} \rangle$

with probability p > 0.

• Recall that a sufficient condition for optimism is that

 $\langle A_t^{\star}, \mathbf{C} \rangle \geq \langle A_t^{\star}, \mathbf{E} \rangle$

with probability p > 0.

• Also, we have that

$$\langle A_t^{\star}, \mathbf{C} \rangle \sim \mathcal{N}(\mathbf{0}, \beta^2 \| A_t^{\star} \|_{\mathbf{V}_{t-1}}^2).$$

• Recall that a sufficient condition for optimism is that

 $\langle A_t^{\star}, \mathbf{C} \rangle \geq \langle A_t^{\star}, \mathbf{E} \rangle$

with probability p > 0.

Also, we have that

$$\langle A_t^{\star}, \mathbf{C} \rangle \sim \mathcal{N}(\mathbf{0}, \beta^2 \| A_t^{\star} \|_{\mathbf{V}_{t-1}}^2).$$

• And, in the worst-case, we have

$$\langle A_t^{\star}, \boldsymbol{E} \rangle \geq \rho \| A_t^{\star} \|_{\mathbf{V}_{t-1}}.$$

• Recall that a sufficient condition for optimism is that

 $\langle A_t^{\star}, \mathbf{C} \rangle \geq \langle A_t^{\star}, \mathbf{E} \rangle$

with probability p > 0.

Also, we have that

$$\langle A_t^{\star}, \mathbf{C} \rangle \sim \mathcal{N}(\mathbf{0}, \beta^2 \| A_t^{\star} \|_{\mathbf{V}_{t-1}}^2).$$

• And, in the worst-case, we have

$$\langle A_t^{\star}, \boldsymbol{E} \rangle \geq \rho \| A_t^{\star} \|_{\mathbf{V}_{t-1}}.$$

• What if we assume that A_t^{\star} is in a **random** direction?

Diversity Assumption

Assumption (Optimal arm diversity)

Assume that for any $V \in \mathbb{R}^d$ with $\left\| V \right\|_2 = 1$, we have

$$\mathbb{P}igg(\langle \mathsf{A}^{\star}_t, \mathsf{V}
angle > rac{
u}{\sqrt{d}} \| \mathsf{A}^{\star}_t \|_2 igg) \leq rac{1}{t^3},$$

for some fixed $\nu \in [1, \sqrt{d}]$.

Diversity is not Sufficient

Improved Worst-Case Regret Bound for LinTS

Define thinness of a matrix $\pmb{\Sigma}$ to be

$$\psi(\mathbf{\Sigma}) := \sqrt{rac{d \cdot \|\mathbf{\Sigma}\|_{\mathsf{op}}}{\|\mathbf{\Sigma}\|_*}}.$$

Improved Worst-Case Regret Bound for LinTS

Define thinness of a matrix $\pmb{\Sigma}$ to be

$$\psi(\mathbf{\Sigma}) := \sqrt{rac{d \cdot \|\mathbf{\Sigma}\|_{\mathsf{op}}}{\|\mathbf{\Sigma}\|_*}}$$

Assumption

For $\Psi, \omega > 0$, we have

$$\mathbb{P}\left(\|\boldsymbol{A}^{\star}\|_{\boldsymbol{\mathsf{V}}_{t}^{-1}} < \omega \sqrt{\frac{\|\boldsymbol{\mathsf{V}}_{t}^{-1}\|_{*}}{d}} \cdot \|\boldsymbol{A}^{\star}\|_{2}\right) \leq \frac{1}{t^{3}}$$

for any positive definite \mathbf{V}_t^{-1} with $\psi(\mathbf{V}_t^{-1}) \leq \Psi$.

Main Results

For $\beta := \frac{\nu \Psi}{\omega} \cdot \frac{\rho}{\sqrt{d}}$, optimism holds. So, we have the following result:

Theorem

If
$$\sum_{t=1}^{T} \mathbb{P}(\psi(\mathbf{V}_t^{-1}) > \Psi) \leq C$$
, we have
Regret $(T, \Theta^*, \pi^{TS}) \leq \mathcal{O}(\rho\beta\sqrt{dT\log(T)} + C)$.

Empirical Scrutiny on Thinness

Thinness in the simulations in Russo and Van Roy (2014):

Empirical Scrutiny on Thinness

Thinness in the simulations in Russo and Van Roy (2014):

Conclusion

- Proved that LinTS without inflation can incur linear regret.
- Provided a general regret bound for confidence-based policies.
- Introduced sufficient conditions for reducing the inflation parameter.

Thank you!

Any questions?
Failure of LinTS: Example 1

Failure of LinTS: Example 2

Failure of LinTS: Example 2

References I

- Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. "Improved algorithms for linear stochastic bandits". In: *Advances in Neural Information Processing Systems*. 2011, pp. 2312–2320.
- Marc Abeille, Alessandro Lazaric, et al. "Linear Thompson sampling revisited". In: *Electronic Journal of Statistics* 11.2 (2017), pp. 5165–5197.
- Shipra Agrawal and Navin Goyal. "Thompson Sampling for Contextual Bandits with Linear Payoffs.". In: *ICML (3)*. 2013, pp. 127–135.
- Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. "Stochastic Linear Optimization under Bandit Feedback". In: *COLT*. 2008.
 - Daniel Russo and Benjamin Van Roy. "Learning to Optimize via Posterior Sampling". In: Mathematics of Operations Research 39.4 (2014), pp. 1221–1243. DOI: 10.1287/moor.2014.0650.