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Abstract— We consider a mixed linear system model,
with both continuous and discrete inputs and outputs,
described by a coefficient matrix and a set of noise vari-
ances. When the discrete inputs and outputs are absent, the
model reduces to the usual noise-corrupted linear system.
With discrete inputs only, the model has been used in
fault estimation, and with discrete outputs only, the system
reduces to a probit model. We consider two fundamental
problems: Estimating the model input, given the model pa-
rameters and the model output; and identifying the model
parameters, given a training set of input-output pairs.
The estimation problem leads to a mixed Boolean-convex
optimization problem, which can be solved exactly when
the number of discrete variables is small enough. In other
cases the estimation problem can be solved approximately,
by solving a convex relaxation, rounding, and possibly,
carrying out a local optimization step. The identification
problem is convex and so can be exactly solved. Adding
`1 regularization to the identification problem allows us
to trade off model fit and model parsimony. We illustrate
the identification and estimation methods with a numerical
example.

I. INTRODUCTION

A. System model

In this paper we introduce a model with multiple
continuous (i.e., real valued) and discrete (i.e., Boolean)
inputs and outputs. The continuous outputs are linearly
related to the continuous and discrete inputs and are cor-
rupted by zero mean Gaussian noise of known variance.
The discrete outputs indicate whether a linear combina-
tion of the continuous and discrete inputs, corrupted by
zero mean Gaussian noise, is above or below a known
threshold. As such, the model that we consider is a
hybrid generalized linear model (GLM) [1], [2], [3].

The model has the form

y = Accx + Adcd + bc + vc, (1)
z = pos(Acdx + Addd + bd + vd), (2)

where
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• x ∈ Rnc is the continuous input,
• d ∈ {0, 1}nd is the discrete input,
• y ∈ Rmc , is the continuous measurement or output,
• z ∈ {0, 1}md is the discrete measurement or output,
• vc ∈ Rmc is the continuous noise term, and
• vd ∈ Rmd is the discrete noise term.

The function pos : Rmd → {0, 1}md is defined by

pos(u)i =
{

1, ui > 0
0, ui ≤ 0.

Note that for any diagonal positive matrix D, we have
pos(Du) = pos(u).

The noises are Gaussian, with all components inde-
pendent, with

(vc)i ∼ N (0, σ2
i ), i = 1, . . . , nc,

(vd)i ∼ N (0, 1), i = 1, . . . , nd.

(We can assume the discrete noise components have
unit variance without loss of generality, using a positive
diagonal scaling.)

The model is defined by the matrices Acc, Adc,
Acd, and Add, the intercept terms bc and bd, and the
continuous noise variances σ2

i , i = 1, . . . , nc.
The model (1)–(2) includes several well known and

widely used special cases. For md = 0 and nd = 0 we
have a simple linear model with additive Gaussian noise.
For nc = 0 and nd = 1, we obtain a probit model [1].
We mention several applications in §I-D.

In this paper we address two basic problems associ-
ated with this model: estimation and identification.

B. Estimation

We first look at the problem of estimating the model
inputs x and d, given one or more output samples. The
prior distribution on the inputs is specified by a density
p(x) for x, which we assume is log-concave, and the
probability pj that dj = 1. (We assume that x and all
dj are independent.) We will see that the maximum
a posteriori (MAP) estimate of (x, d) is the solution
of a mixed Boolean convex problem. If nd is small
enough, this problem can be solved exactly, by exhaus-
tive enumeration of the possible values of d, or by a
branch-and-bound or other global optimization method.
For other cases, we propose to solve the optimization
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problem approximately, by solving a convex relaxation,
and rounding the result, possibly followed by a local
optimization step. We refer to the resulting estimate as
the RMAP (‘relaxed MAP’) estimate. Numerical simu-
lation suggests that the estimation performance of the
RMAP estimator is quite similar to the MAP estimate;
unlike the MAP estimate, however, it is computationally
tractable even for very large problems [4].

C. Identification

We then look at the dual problem of fitting a model of
the form (1)–(2), i.e., determining values for the model
parameters, given a given set of (training) data samples

(x(1), d(1), y(1), z(1)), . . . , (x(K), d(K), y(K), z(K)).

We show that the associated log-likelihood function is a
concave function of the model parameters, so maximum
likelihood (ML) model fitting reduces to solving a
convex optimization problem. To obtain a parsimonious
model, i.e., one in which many of the entries of the
parameter matrices are zero, we propose `1-regularized
ML fitting (which is also a convex problem). By varying
a regularization parameter, we can trade off model fit and
model parsimony [5], [6], [7], [8].

D. Prior and related work

The model that we consider is in essence a hybrid
generalized linear model (GLM). These models have
been extensively used for explanatory modelling. Some
good references on GLMs are [1], [2], [3]. There is a
considerable amount of research that deals with special
cases of our problem. For example, when mc = 0 and
nc = 0, we get a model which is very similar to a
digraph model commonly used in diagnostics, e.g., see
[9], [10]. The formulation in this paper is an extension of
the earlier work of the authors [4], [11], [12]. In [4] we
considered a special case of the current problem, in the
context of fault identification. The paper [11] considers a
dynamic system with continuous and discrete states and
continuous outputs. The upcoming paper [12] considers
a special case of sparse parametric inputs and discrete
outputs, where the goal is to compute the sparsity pattern
of the inputs.

II. ESTIMATION

In this section we consider the problem of estimating
the most probable values of (x, d), given measurements
(y, z). We first derive the log posterior probability of
(x, d) given (y, z) and show that it is jointly concave in
x and d (with d relaxed to take values in [0, 1]). Thus
the problem of estimating the maximum a posteriori
(MAP) estimate of x and d is a mixed integer convex

problem, i.e., a convex optimization problem with the
additional constraint that some of the variables take
values in {0, 1}. We then present an efficient heuristic
for solving this problem approximately, based on a
convex relaxation of the combinatorial MAP problem.
Our analysis follows closely the previous work of the
authors in fault detection [4].

The method that we present is readily extended
to the case when we have multiple measurements
(y(1), z(1)), . . . , (y(M), z(M)) for the same input (x, d):
We just have to stack all these measurements and
augment the system model equations appropriately.

A. Maximum a posteriori estimation
a) Log posterior: From Bayes’ rule the posterior

probability (density) of x and d given y and z is

p(x, d|y, z) ∝
mc∏

i=1

p(yi|x, d)
md∏

i=1

p(zi|x, d)p(d)p(x).

Taking logarithms, we have

log p(x, d|y, z) = l(x, d) + C,

where C is a constant and

l(x, d) = lmc(x, d) + lmd(x, d) + lpd(d) + lpc(x), (3)

with the terms described below. The posterior contribu-
tion due to the continuous measurements is

lmc(x, d) = −
mc∑

i=1

1
2σ2

i

(y −Accx−Adcd− bc)2i .

The posterior contribution due to the discrete measure-
ments is

lmd(x, d) =
md∑

i=1

zi log Φ(Acdx + Addd + bd)i

+
md∑

i=1

(1− zi) log Φ(−Acdx−Addd− bd)i, (4)

where Φ is the cumulative distribution of a standard
Gaussian. The discrete variable prior term is

lpd(d) = λT d,

where λj = log(pj/(1 − pj)). The continuous variable
prior term is

lpc(x) = log p(x).

The log posterior (3) is jointly concave in x and d,
when d is relaxed to take values in [0, 1]nd . Indeed, each
of the terms is concave in x and d: lmc is a concave
quadratic in x and d, lpd is a linear function of d, and
log p(x) is concave by assumption. Concavity of lmd

follows from log-concavity of Φ; see, e.g., [13, §3.5.2].
Figure 1 shows a plot of log Φ(x) versus x for x ranging
between −5 and 5.
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Fig. 1: Plot of log Φ(x) versus x.

b) MAP estimation: The problem of estimating the
most probable input variables x and d, given the outputs
y and z, can be cast as the following optimization
problem:

maximize l(x, d)
subject to d ∈ {0, 1}nd ,

(5)

with variables x ∈ Rnc and d ∈ {0, 1}nd . This is
a mixed integer convex problem. One straightforward
method for solving it is to enumerate all 2nd possible
values for d, and to find the optimum x in each case,
which is tractable, since for fixed d the problem is
convex in x [13]. This approach is not practical for
nd larger than around 15 or so, or smaller, if the other
dimensions are large. A branch and bound method, or
other global optimization technique, can be used to
(possibly) speed up computation of the globally optimal
solution [14], [15]. But the worst case complexity of any
method that computes the global solution is exponential
in nd. For this reason we need to consider heuristics for
solving problem (5) approximately.

B. Relaxed MAP estimation

In this section we describe a heuristic for approxi-
mately solving the MAP problem (5). Our heuristic is
based on replacing the hard constraints dj ∈ {0, 1} with
soft constraints dj ∈ [0, 1]. This results in a convex
optimization problem that we can solve efficiently. We
follow this by rounding and (possibly) a simple local
optimization method to improve our estimate.

c) Linear relaxation: We relax problem (5) to the
following optimization problem

maximize l(x, d)
subject to 0 ≤ d ≤ 1,

(6)

with variables x ∈ Rnc and d ∈ Rnd . This is a convex
optimization problem, since it involves maximizing a
concave function over a convex set. We can efficiently
solve this problem in many ways, e.g., via interior-point
methods [16], [13]. The complexity of such methods
can be shown to be cubic in nc + nd (assuming a
fixed number of iterations of an interior-point method).
Since the feasible set for the relaxed MAP problem (6)
contains the feasible set for the MAP problem (5), the
optimal value of the relaxed MAP problem, which we
denote lub, gives an upper bound on the optimal value
of the MAP problem.

Let (x?, d?) be an optimal point for the relaxed MAP
problem (6), so we have lub = l(x?, d?) ≥ l(x?, d) for
any Boolean d. If d? is also Boolean, i.e., d?

j ∈ {0, 1}
for all j, we conclude that d? is in fact optimal for the
MAP problem. In other words: When a solution to the
relaxed MAP problem turns out to have Boolean entries,
it is optimal for the MAP problem. In general, of course,
this does not happen; at least some values of d?

j will lie
between 0 and 1.

d) Rounding: Let (x?, d?) denote the optimal point
of the problem (6). We refer to d? as a soft decision,
since its components can be strictly between 0 and 1.
The next step is to round the soft decision d? to obtain
a valid Boolean solution (or hard decision) for d. Let
θ ∈ (0, 1) and set

d̂ = pos(d? − θ).

To create d̂, we simply round all entries of d?
j smaller

than the threshold θ to zero. Thus θ is a threshold for
guessing that a discrete input variable is 1, based on the
relaxed MAP solution d?. As θ varies from 0 to 1, this
method generates up to n different estimates d̂, as each
entry in d falls below the threshold. We can efficiently
find them all by sorting the entries of d?, and setting the
values of d̂j to one in the order of increasing d?

j .
We evaluate the log-posterior for each of these (or a

subset) by solving the optimization problem

maximize l(x, d̂), (7)

with variables x ∈ Rnc . This is an unconstrained
convex problem that can also be solved efficiently, again
with cubic complexity in nc. The RMAP continuous
variable estimate x̂ is obtained as the minimizer of (7)
corresponding to the best obtained estimate d̂.

e) Local optimization: Further improvement in our
estimate can sometimes be obtained by a local opti-
mization method. We describe here the simplest possible
such method. We initialize d̂ as the one which results
in the largest value of l(x, d) after rounding. We then
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cycle through j = 1, . . . , n, at step j replacing d̂j with
1− d̂j . If this leads to an increase in the optimal value
of problem (7), we accept the change and continue.
If (as usually is the case) flipping the jth bit results
in a decrease in l, we go on to the next index. We
continue until we have rejected changes in all entries
in d̂. (At this point we can be sure that d̂ is 1-OPT,
which means that no change in one entry will improve
the loss function.) Numerical experiments show that this
local optimization method often has no effect, which
means that the rounded solution is 1-OPT. In some cases,
however, it can lead to a modest increase in l.

f) Performance of RMAP: The performance of our
estimate of (x, d) should be judged by (for example) the
mean-square error in estimating x, and the probability
of making errors in estimating d (which could be further
broken down into false positive and false negative error
rates). Numerical examples show that RMAP has very
similar performance as MAP, but has the advantage of
tractability. This can be partially explained as follows.
When the estimation problem is ‘hard’, for example,
when the noise levels are high, no estimation method
(and in particular, neither MAP nor RMAP) can do a
good job at estimating x and d. When the estimation
problem is ‘easy’, for example, when the noise levels are
low, even simple estimation methods (including RMAP)
can do a good job at estimating x and d. So it is
only problems in between ‘hard’ and ‘easy’ where we
could possibly see a significant difference in estimation
performance between MAP and RMAP. In this region,
however, we observe from numerical experimens that
MAP and RMAP achieve very similar performance.

III. IDENTIFICATION

In §II we addressed the problem of estimating (x, d)
given measurements (y, z) when the system model is
known. In this section we look at the dual problem
of fitting a model of the form (1)–(2) to given data,
assuming that the continuous noise variances are known.
We show that the log likelihood of the model parameters
given the measurements is a concave function, so we can
solve the maximum likelihood (ML) problem efficiently.

We first observe that since all measurements are
independent of each other, we can separately identify the
model parameters that correspond to each measurement.
The complexity of the resulting ML identification tech-
nique is thus linear in the total number of measurements.

Finally, we present a simple technique, variously
known as compressed sensing [5], [6], [7], the Lasso
[17], [18], sparse signal recovery [19], and basis pursuit
[20] that can be used to identify parsimonious models
that fit the data well. This involves using the `1-norm

of the parameter vector of a given linear model as a
surrogate for the model sparsity.

A. Continuous parameter identification
Suppose that we are given samples of the form

(x(j), d(j), y(j)) for j = 1, . . . ,K. Let acc
i , adc

i denote
the ith row of Acc, Adc respectively. Since the contin-
uous noise terms vc are Gaussian, the ML estimate of
(acc

i , adc
i , bc

i ) given the data, is the one that maximizes

lc(acc
i , adc

i , bc
i ) = −

K∑

j=1

(y(j)
i −acc

i
T x(j)−adc

i

T
d(j)−bc

i )
2.

We can evaluate the maximum likelihood estimates of
these model parameters efficiently (via least squares), if
σi is known. In order to estimate a parsimonious model,
as well as σi, we propose solving the following problem

maximize lc(acc
i , adc

i , bc
i )− µc

i (‖acc
i ‖1 + ‖adc

i ‖1),
(8)

which is a convex optimization problem, for a fixed
parameter µc

i > 0. Having solved problem (8), we can
then estimate the noise variance σ2

i as the variance of the
measurement residuals (y(j)

i −acc
i

T x(j)−adc
i

T
d(j)−bc

i ).

B. Discrete parameter identification
Now suppose that we are given samples of the form

(x(j), d(j), z(j)) for j = 1, . . . ,K. Let acd
i , add

i denote
the ith row of Acd, Add respectively. The log likelihood
of (acc

i , adc
i , bc

i ) given the data is

ld(acd
i , add

i , bd
i ) =∑K

j=1

(
z
(j)
i log Φ(acd

i
T
x(j) + add

i
T
d(j) + bd

i )

+(1− z
(j)
i ) log Φ(−acd

i
T
x(j) − add

i
T
d(j) − bd

i )
)

,

which is a concave function of (acd
i , add

i , bd
i ). We can

thus efficiently evaluate the ML estimates of the dis-
crete model parameters efficiently, for example using
Newton’s method. This is equivalent to solving a probit
regression problem. In order to estimate a parsimonious
model we propose solving the following problem

maximize ld(acd
i , add

i , bd
i )− µd

i (‖acd
i ‖1 + ‖add

i ‖1),
(9)

which is a convex optimization problem, for a fixed
parameter µd

i > 0.

C. Computational complexity
Problems (8) and (9) can be solved efficiently in a

variety of methods such as interior-point methods (in a
way similar to [21], [8]) and first order methods, e.g.,
[22]. In any case the complexity of solving this problem
is cubic in nc + nd and linear in K. Thus the overall
complexity of `1-regularized ML system identification
is O(K(mc + md)(nc + nd)3).
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D. Choice of regularization parameter

The regularization parameter µc
i and µd

i control the
tradeoff between data fit (as measured by l(A)) and
model sparsity (as measured by the `1 norm). In order
to keep our modelling procedure as flexible as possible,
we use a different regularization parameter for each
continuous and discrete sensor.

We use cross validation to choose each of the regular-
ization parameters µc

i and µd
i . We divide our available

data into a training set and a test set. For each continuous
sensor i = 1, . . . , mc and for each value of µc

i we solve
problem (8) for the training set and measure the average
square residual of measurement i on the test set. We
then choose as µc

i the value of µ that gives the smallest
residual. We repeat this process for the discrete sensors,
where instead of square residual we use the average error
rate in the discrete sensor measurement.

This is the simplest possible way of fitting the regu-
larization parameters. There are various other methods,
such as minimizing the Akaike information criterion
(AIC), or minimizing the Bayesian information criterion
(BIC). For a detailed description of these methods see
[3, §7].

IV. NUMERICAL EXAMPLE

In this section we present the results of applying
our estimation and identification methods to a small
artificially generated example. Specifically, we consider
a system with nc = nd = 10 and mc = 18 and
md = 16. We draw the elements of all system matrices
randomly such that each of the matrices Acc, Adc, Acd,
or Add are 10% sparse. We draw the nonzero entries of
the Acc and Adc matrices from a N (0, 1) distribution,
and the nonzero entries of the Acd and Add matrices
from a N (0, 1) distribution. The entries of bc and bd

are drawn from a N (0, 1) and a N (0, 100) distribution
respectively.

We set σi = 0.01 for all i. Each element of input
x is generated according to a N (0, 1) prior. The prior
probability of dj being equal to 1 is 0.2 for all j.

We generate three sets of 500 samples: a training set,
which we use to fit our estimated model, a validation
set, which we use to select the best value of the
regularization parameter µ for each sensor, and a test
set, on which we judge the accuracy of our resulting
model.

We look at 30 candidate values of µ, logarithmically
spaced in the range (10−2, 103). For each value of µ,
we use the method described in §III to fit a mixed linear
model to the given training set. For each continuous
sensor, we choose the value of µ which achieves the
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Fig. 2: Plot of ez as a function of µ on the validation set for
discrete sensor 5.

minimum relative root mean square error ry on the
validation set, defined as

ry =
‖y − ŷ‖2
‖y‖2 ,

where ŷ is the output predicted by the estimated model,
given the true input. For each discrete sensor we choose
the value of µ that achieves the minimum average error
rate on ez on the predicted value of z for the validation
set. As an example, figure 2 shows the plot of ez versus
µ for discrete sensor 5.

We then use this model estimate to predict the inputs
(x, d) for the outputs (y, z) for the test set, using the
relaxed MAP method described in §II. We compute the
error rate in our estimate of d (which we call ed), as well
as the average relative root-mean-square (RMS) error
between our estimate and the true value of x, defined as

rx =
‖x− x̂‖2
‖x‖2 .

Our estimated model yields an error rate ed of about
2.2×10−3 on this data and a relative RMS error in x of
about 4.7× 10−2. In contrast, using the true model for
estimation, yields an error rate ed of about 2.0 × 10−3

and a relative RMS error in x of about 4.1× 10−2. We
thus see that our system identification method does a
reasonable job at fitting such a model to the given data.

The modelling and estimation performance of our
estimated model is shown in tables I and II respectively.
We judge the modelling performance of the model,
based on how well this model can predict the outputs
from the inputs. As we can see from table I, the model
does a good job at this task, given that the value of ry

and ez for the test set are of the same order of magnitude
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Train Validation Test
ry 0.0056 0.0058 0.0057
ez 0.0063 0.0080 0.0110

TABLE I: Modelling performance of estimated model.

Train Validation Test
rx 0.0500 0.0470 0.0460
ed 0.0052 0.0048 0.0022

TABLE II: Estimation performance of estimated model.

as the same values for the training and validation sets.
Furthermore, from table II, we see that the model also
generalizes well for estimation. The values of rx and ed

for the test set are of the same order as the ones for the
training and validation sets.

V. CONCLUSIONS

We have introduced a class of mixed linear systems
that includes the standard linear model and the probit
model as special cases. We have presented a simple
heuristic for estimating the input given the output of such
a system based on a convex relaxation of a combinatorial
MAP problem. We have also presented a simple heuristic
that uses `1-regularized ML to identify such a model
given a set of data points. We have shown that this
method performs well in practice through a numerical
example.
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