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a b s t r a c t

Buildings represent over half of global electricity demand. Cooling buildings already accounts for over 9%
of global electricity demand and is expected to grow rapidly due to climate-change induced hot-spells
and increasing prosperity in developing economies. In the US, commercial buildings represent 35% of
nationwide electricity consumption. Increased electricity demand for cooling services will challenge
already stressed power grids, particularly during times of peak demand. This work explores the flexibility
and demand response potential of large Heating, Ventilation and Air Conditioning (HVAC) systems based
on an extensive set of measurements from six commercial buildings in a Warm-summer Mediterranean
climate. Over a three-month summer period, zone-level temperature set points were adjusted daily in six
commercial buildings to determine the effect on chilled water and electricity loads, as well as on zone-
level temperatures. External weather conditions were measured continuously during the testing period.
The experimental data that were collected are published with this article. These experiments confirmed
the potential to provide flexibility by reducing energy demands based on modest zone-level temperature
set point adjustments. A two-degree Fahrenheit increase of the cooling set point resulted in a 13–28%
reduction in daily building-level cooling loads on average for four office buildings and 3–4% for two lab-
oratory buildings. The impact on electric loads was less than 2% (excluding for cooling water but includ-
ing for ventilation). Zone-level temperature increases were measurable but temperatures remained
within the target ranges. By collecting 385 experiment-days of experiment data, we were able to param-
eterize statistical models for the response of the buildings. These models provide statistical guarantees on
the reliability of thermal demand response. This work provides a blueprint for constructing building and
zone-level energy-response functions and highlights the value of testing buildings repeatedly and across
a range of weather conditions. Providing statistical performance guarantees will be critical for wide-
spread adoption of demand response technology to provide the flexibility needed to meet peak electricity
demands. Combined with thermal storage, the daily flexibility studied here would also unlock daily and
sub-daily electrical flexibility, and can also be integrated with sub-daily flexibility from building-level
electrical loads.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Energy for buildings represented 30% of global energy end-use
in 2018 and 28% of the corresponding emissions (excluding con-
struction) [1]. Despite efficiency gains in the past decade, global
building energy use continues to grow, driven by population, heat
waves, a growing middle-class, and floor area expansion. This is
especially true for space cooling, that already represented 9% of
world electricity use in 2018 [2,3]. This work focuses on the flexi-
bility potential of the US commercial sector, that represented 35%
of 2020 US electricity sales [4]. Active management of energy con-
sumption in buildings can reduce the costs and the carbon impact
of our energy systems and improve their resiliency and their effi-
ciency. In commercial buildings, e.g. offices, retail sites, supermar-
kets, schools, laboratories, or data centers, Heating, Ventilation and
Air Conditioning (HVAC) systems have been a prime target for
energy flexibility for over a decade [5]. Accurate measurement
tools are now needed to unlock mass deployment of Demand
Response (DR) technologies. Beyond engineering calculations and
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simulations, energy system operators require measurement-based
models for the response of building energy systems to integrate
them into their decision-making.

This paper presents and demonstrates practical and scalable
experimental methods to construct quantitative, data-driven flex-
ibility models for the energy behavior of commercial buildings in
response to daily temperature set point adjustments, while con-
trolling for weather conditions and occupancy. The flexibility
model we propose is simple to interpret, calibrate, and update
through repeated testing. It provides statistical information that
is directly relevant to electric grid or district energy system opera-
tors calling on DR. More regular testing of buildings will also lead
to energy performance benefits by stress testing the response of a
building’s overall energy system to controlled perturbations.

The paper reports on three important empirical findings from
analyzing data generated during 385 experiment-days during the
cooling season in six large office and laboratory buildings located
on a university campus in Northern California (Warm-summer
Mediterranean climate). First, buildings don’t all respond identi-
cally to temperature set point changes nor to outside weather con-
ditions, which further motivates the need for scalable modeling
and testing methods. Second, a building’s response to a set of given
temperature set points, weather conditions and occupancy levels is
uncertain. However, building HVAC systems can still be expected
to provide a reliable DR resource in future energy systems, because
that uncertainty can be quantified through repeated testing. Third,
in contrast with several previous field studies where HVAC system
flexibility was mainly provided by reduced electricity consumption
from the ventilation fans [6] (note that those studies consider
shorter time scales), in our experiments the HVAC system response
due to reduced building cooling loads was much larger than from
changes in fan loads. A possible explanation for this difference is
the more recent building control system logic that is operational
on the buildings in our testbed. A key implication from this third
finding is that building flexibility models will need to capture the
full cyber-physical response of buildings.
2. Context and related work

2.1. Motivation

As electricity grids progressively decarbonize, electrifying heat-
ing and cooling will increasingly become an option to decarbonize
building energy systems. In 2018, electricity already represented
34% of world building energy use [1]. Buildings represented 53%
of world electricity consumption.

In fast-changing electricity grids, existing flexibility needs are
exacerbated by the integration of non-dispatchable wind and solar
generation. Options include short and long duration electricity
storage, transmission expansion, and demand-side management.
Flexibility on durations of 10 h and longer is sorely needed [7].
The daily timescale could be a natural fit for energy systems serv-
ing building Heating, Ventilation and Air Conditioning (HVAC),
where relevant timescales are typically slower than for other
electricity-consuming energy assets.

Active management of building energy consumption offers a
lower-cost alternative to sizing systems based on peak loads. It
can reduce consumption, achieve environmental benefits, and
increase resilience in both new and old buildings. A first set of
opportunities exists through continuous optimization of a build-
ing’s operation, without impacting occupant comfort. Second, dee-
per energy flexibility needs to be made available, whether it is to
respond to DR events in a market or to enhance resiliency and
adaptability during supply shortages or demand surges.
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The U.S. Department of Energy estimates the value of the
untapped opportunity for Grid-interactive Efficient Buildings
(GEBs) to be between $8 billion and $18 billion annually by
2030, or 2–6% of total U.S. electricity generation and transmission
costs ($100–200 billion cumulative benefits from 2021 to 2040, in
2019 dollars) [8]. Through demand flexibility and energy effi-
ciency, GEBs could decrease US CO2 emissions by 80 Mtons per
year by 2030, 6% of total US power sector CO2 emissions. US build-
ings currently account for over 70% of electricity use [4] and 33% of
CO2 emissions [9].

In electrified commercial buildings, flexibility from HVAC sys-
tems provides value for the electric grid in two coupled ways. First,
DR improves resilience and lowers infrastructure requirements
both for the building energy system and for the wider electric grid.
DR is available both from the heating and cooling equipment (chil-
lers, heat pumps, boilers) and from the ventilation fans, which typ-
ically represent a significant but smaller fraction of total electric
load. Second, when heating and cooling infrastructure is shared,
e.g. in a district energy system, building-level thermal DR also pro-
vides value to manage the portfolio of buildings and more effi-
ciently schedule district-level thermal energy operations. In an
electrified district energy system with thermal storage like this
study’s testbed [10], building-level thermal DR unlocks district-
level electrical DR.

2.2. Temperature set point adjustment strategies

This work focuses on flexibility strategies based on temperature
set point adjustments. The design and implementation of commer-
cial building HVAC systems varies significantly. Their primary con-
trol objective does not and is to maintain occupant thermal
comfort. This is typically treated as equivalent to maintaining the
different zones within temperature ‘‘deadbands”, defined by heat-
ing and cooling temperature set points [11].

In 22% of US commercial floorspace, the thermostats that con-
trol these deadbands are programmable [12] and are therefore a
frequent target for flexibility strategies [5]. Temperature set point
strategies do not require significant reprogramming of internal
building energy management control systems, which is why they
are sometimes referred to as ‘‘supervisory control”. They are likely
to be a scalable, easily implementable, and lower cost alternative
to methods that issue commands to HVAC equipment directly.
Numerical and field studies have also shown that they would be
acceptable from the perspective of occupant comfort, especially if
occupant comfort is explicitly considered in the control strategy
[13].

The simplest strategy uses Global Thermostat Adjustments
(GTA), in which one master thermostat controls the entire building
[5]. A review of commercial buildings enrolled in mostly GTA-
based DR programs in California from 2003 to 2010 concluded that
they were able to provide 13% reductions in peak afternoon
demand on average (from 5 to 15%) [14].

Physics-based digital twins for buildings (EnergyPlus, TRNSYS,
or eQuest) can be used to simulate many different scenarios and
to characterize the potential for demand flexibility. On the annual
timescale, it was found that increasing the cooling set point from
72�F to 76�F reduces energy consumption by 10% in a reference
medium-sized office building with strong ventilation constraints
[15]. When changes in the zone-level minimum air flow rates were
allowed, savings grew to 20% at 76�F, 30% at 78�F, and 40% at 80�F.
Reported savings were averaged over seven US climate zones, and
were highest for San Francisco, the simulated city that is closest to
our testbed. In another study with reference office buildings of dif-
ferent sizes and construction types, re-optimizing the center of the
deadband daily in the range of 22.5�3�C resulted in average annual
savings of 10–37% versus maintaining the setpoint fixed at 22.5�C
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(these simulations used a 3�C-wide deadband) [16]. In both cases,
the ranges reflect simulations for several climate zones and build-
ing sizes. While both studies targeted energy efficiency from more
flexible temperature setpoint settings, their findings also suggest
strong flexibility on a daily or hourly timescale with a similar strat-
egy. On the hourly timescale, simulations suggest that the response
of HVAC systems to faster changes is dynamic and varies with time
of day, day of week, and outside weather conditions [17,18].

While physics-based numerical simulations are most often cho-
sen to evaluate the impact of different control strategies, they can-
not replace the value of data from field tests, especially as
technologies near deployment. Comparisons of simulations to
experiments show that it is often difficult to fully capture the phys-
ical and operating characteristics of real-world commercial build-
ings with simulations only [17,6].

Also, simulation models typically rely on inputs such as geo-
metric and physical parameters from buildings. Generating and
maintaining models for real buildings is time-consuming, both in
cases where a small team manages a large portfolio of buildings
and in cases where the building doesn’t have a dedicated operator.

While simulations point to credible potential from temperature
set point adjustments, they need to be validated on site. Of course,
testing real buildings is challenging. Earlier field tests suffered
from small sample sizes that made statistically significant results
challenging to obtain [5]. Still today, experiments yield discrepan-
cies and sometimes contradictory results between tested buildings,
even when procedures are automated. Often cited drivers for dis-
crepancies include 1) the selection of the baseline method and its
accuracy, 2) limited site specific information, and 3) control accu-
racy [19,6].

The widespread adoption of programmable actuators and sen-
sors makes testing cheaper, easier to automate, and to replicate.
Driven by experimentation capabilities, experiments reported on
in the literature increasingly involve more samples, supporting
more quantitative statements, such as the ones that are possible
in this paper. This is needed to build confidence in DR technologies.
The variability and discrepancies that are often observed between
field studies reinforce the need for standardized testing methods to
enable mass DR deployment.

2.3. Relation to model predictive control approaches

Direct control of building equipment and actuators based on
Model Predictive Control (MPC) technologies has been proposed
by several researchers as a more energy efficient and robust alter-
native to the HVAC industry’s current standard of using Ruled-
Based Control (RBC) [11,20]. Beyond energy efficiency improve-
ments, MPC-equipped buildings would also be easier to enroll in
DR programs, because controllers could now be reprogrammed
to account for the benefits of responding to DR events. But, despite
over two decades of significant research activity, including several
full-scale demonstrations [21–23], these approaches have not been
widely adopted by industry [20].

In many of these prior studies, authors note that while MPC
approaches have been shown to dramatically outperform naive
control strategies (e.g. fixed controls), the performance gains are
typically mild when compared to well-implemented RBC. Imple-
menting MPC strategies also requires significant upfront engineer-
ing time and cost. Since building HVAC systems are not
standardized, deploying the technology typically requires cus-
tomized and non-scalable integration work to instrument a new
unique set of actuators in each new building and tailoring models
and control designs. Poor information and communications infras-
tructure is a strong limiting factor in commercial buildings and will
remain so for the foreseeable future [12]. Beyond upfront costs,
MPC strategies also require significant maintenance. Since the
3

usage of buildings changes over time, e.g. due to tenant improve-
ments or HVAC system retrofits, the models that MPC relies on will
also need to be updated to remain accurate.

Our conclusion from the lack of adoption by industry is that a
new research approach is now needed. There is strong value in
researching less invasive control strategies that do not seek to
replace the industry standard RBC strategies but instead to aug-
ment them, e.g., through distributed temperature set point strate-
gies like those that are experimented with in this work. These less
invasive strategies remain compatible with the general MPC
framework. MPC would now be used for controlling higher level
and more generic set points, possibly across a large number of
buildings at once, in an approach sometimes referred to as super-
visory control. These less invasive strategies will often be cruder,
so they can and should use prior, equipment-level MPC results as
an optimal benchmark. A key challenge to enabling MPC for super-
visory control is of course the development of suitable models,
which is a main goal of this work.
3. Materials and methods

3.1. Experiment design

Cooling set points were adjusted every two days in the morning
and cycled repeatedly between a low (74�F, 23.3�C) and a high
(76�F, 24.4�C) value. A DR scenario consistent with this simple
experimental setup is one where occupants need to be notified
one day in advance that tomorrow will be a DR day, so that they
have the option not to come to work. Zone-level heating set points
were fixed to 68�F (20�C) for the entire duration of the experi-
ments, to minimize heating loads. Prior to the experiments, a num-
ber of sensitive zones were identified in each building and
excluded from the experiments. All other zones received the same
set point commands throughout the experiments. This set point
strategy is similar to what is sometimes referred to as Global Tem-
perature Adjustments (GTA) [5], but with the option to enforce the
adjustment for only a fraction of the zones.
3.2. Experiment testbed

3.2.1. Buildings
The experiments were conducted on six commercial buildings

on a university campus in Northern California (Warm-summer
Mediterranean climate) during the summer of 2021. Summary
characteristics for the buildings are presented in Table 1. Overall,
the testbed covers 56,000 m2. Three buildings are mainly com-
prised of office and classroom space, two have a significant fraction
of laboratory space and the last building houses a conference cen-
ter along with offices. 45 to 76 days of experiment data were col-
lected for each building. Note that while the age of the buildings
varies by over a century, all buildings underwent significant retro-
fits since their construction date. The oldest building was con-
structed in 1893 but its HVAC system underwent major upgrades
in 2015. These buildings were compliant with regulations specified
by California’s Title 24 at the date of their construction or last
major retrofit, so building envelopes and mechanical systems can
be considered comparable to modern commercial buildings in Cal-
ifornia. The two laboratory buildings are much more energy inten-
sive. Process chilled water loops are expected to represent a
significant fraction of the cooling consumed by these buildings
(not sub-metered). Temperature and ventilation requirements are
also stricter in these buildings.



Fig. 1. Experiment testbed and illustration of experimentation protocols. (A) Building schematic. (B) Software overlay. (C-D) Histograms for hourly temperature and daily
averages measured at the campus weather station. (E-H) Daily profiles for key variables in OFF-2 where mean daily outside air temperatures are between 65�F and 67�F
(11 days of high set points and 14 days of low set points). A dew point below 60�F is typically associated with dry conditions.

Table 1
Summary characteristics of the buildings in the experimentation testbed. OFF: office, CONF: Conference, LIB: Library, CLS: Classroom, LAB: Research laboratory. Building cooling
and electricity loads are measured separately. Building electricity loads do not include energy required to produce cooling. TableS1 provides an indicative breakdown of floor
space by usage.

CONF-1 OFF-2 LIB-3 OFF-4 LAB-5 LAB-6 Total

Type OFF/CONF OFF/CLS OFF/CLS OFF/CLS LAB/CLS LAB/CLS –
Year of construction 2000 1893 1996 1998 1965 1963 –
Year of last retrofit 2021 2015 2021 – 2020 2018 –
Average cooling (MJ/m2/day) 0.68 0.69 0.37 1.24 4.84 2.30 1.35
Average cooling (kWh/m2/day) 0.19 0.19 0.10 0.35 1.34 0.64 0.38
Average electricity (kWh/m2/day) 0.10 0.09 0.15 0.28 0.81 0.59 0.28
Floors 4 3 7 4 5 5 –
Air Handling Units 5 2 13 4 2 4 17
Variable Air Volume systems 136 33 143 217 0 0 529
Fan Coil Units 0 50 0 12 117 166 345
Controlled zones 136 73 139 223 117 133 821
Excluded zones 0 10 4 6 0 33 53
Measured zones 136 83 143 229 117 166 874
Daily samples 45 63 54 75 72 76 385
Area (1,000 m2) 13.5 2.6 15.8 9.8 7.0 7.2 55.7
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3.2.2. HVAC equipment and controls
In the experiment testbed, cooling is supplied to the buildings

by a Central Energy Facility through a chilled water loop system.
Two types of HVAC systems extract cooling from the chilled water
loop in the buildings: (1) centralized systems comprised of Air
Handling Units (AHU) and Variable Air Volume systems (VAVs),
and (2) distributed systems comprised of Fan Coil Units (FCUs). A
recent survey estimated that 30% of commercial US floorspace is
served by AHU-VAV systems [12]. A schematic for the AHU-VAV
system is provided in Fig. 1A. In the AHUs, fans powered by electri-
cal motors blow air over a chilled water coil to extract cooling from
the chilled water loop and maintain the air leaving the AHU at the
AHU’s target pressure and temperature. The cooled air is blown
through a central duct to the zones, where the VAVs control the
flow rate of air that is sent to each zone and can also reheat the
air. Equipment-level controllers were not modified for this study.
The AHUs and the VAV systems each have their own controllers,
typically programmed according to the same general logic, but
often implemented differently from one building to the next or
even within a building. The VAV system controller attempts to
maintain the temperature measured inside the zone between the
cooling and the heating set points (the temperature ‘‘deadband”)
and the flow rate of air entering the zone within design boundaries,
using a mechanical damper to adjust the flow rate of air to the
zone. When the VAV is unable to maintain the associated zone’s
temperature within the specified deadband, it issues a request
for a higher discharge pressure or a lower discharge temperature
to the AHU. The AHU controller sets the AHU’s fan speeds and
the position of a chilled water valve that determines the flow rate
of the chilled water that is exposed to the air inside the AHU. Com-
bined, these two parameters determine the pressure and tempera-
ture of the supply air. We note that in most AHUs in this study’s
testbed, supply air pressure and temperature reset strategies were
implemented, which is in contrast with many prior field studies
where the supply air temperature is maintained fixed, typically
at 55�F [5,6]. These reset strategies, that use a logic referred to in
the industry as Trim-and-Respond, are now part of the sequence
of operations recommended by the American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE) [24].
Finally, the FCUs extract cooling directly from the chilled water
loop at the zone-level. They are more common in laboratory build-
ings in the testbed. The physical and controls configuration of the
different HVAC systems varies from zone to zone and building to
building. However, all zones attempt to control their temperature
to a specified deadband, defined by heating and cooling set points,
which is why temperature set point strategies are a naturally scal-
able supervisory control strategy. In the experiments reported on
in this paper, the controls logic for the different HVAC systems
were not modified for the experiments, and correspond to the
industry standard of rule-based controls. The behavior of these
control systems is considered to be an integral part of the building
response function that is estimated through the collection of data
during the experiments. The building response functions that were
estimated capture the entire cyber-physical response of the build-
ings. They are directly usable by an energy system operator, with-
out needing to communicate any specifics about the building’s
cyber-physical parameters. In this framework, an update to the
building control system is treated similarly to an energy retrofit
and triggers new stress tests to assess whether the building model
needs to be updated.

3.2.3. Experimentation software systems
Several different software layers interact to control and mea-

sure the behavior of the HVAC systems in the test buildings, as
shown in Fig. 1B. Rather than communicate with the zone-level
actuators and sensors directly, our approach is to use a custom-
5

built software overlay to automatically schedule and send com-
mands, as well as collect and visualize data from the building
energy management systems. This custom software overlay was
written in Python and communicates with pre-existing building
energy management systems that relay information to the zone-
level. To connect to zone-level actuators and sensors, the software
overlay leverages functionality from the open-source pyhaystack
module [25], that allows users to connect to a server implementing
the Haystack semantic model. Project Haystack is an open-source
initiative to standardize semantic models for working with IoT
data [26]. The Haystack server connects to network controllers
(typically, one per floor) that then relay information to and from
the zone-level controllers. The software overlay is also capable of
connecting to a separate data historian used by the university to
manage utility meter data. This system is used to retrieve records
of chilled water and electricity usage per building. The custom soft-
ware overlay system was installed on a central server on the uni-
versity’s internal IT system from which it could securely
communicate with the different buildings in the testbed. A major
advantage to this approach is that it is naturally scalable. The
underlying building management systems in the tested buildings
were procured from different vendors and installed by different
contractors, so that each building has its own unique system of
software layers and often customized controls. After an integration
process however, each new building could be controlled in a sim-
ilar fashion by our central software overlay.

3.2.4. Experiment monitoring and data collection
Data collection began on June 16th in all buildings except LAB-5

(began June 18th) and ended on August 30th in all buildings except
CONF-1 and OFF-2 (ended August 17th). During the experiments,
weather conditions were measured continuously at the campus
weather station. Temperatures and humidity levels recorded at
the campus weather station are shown by the histograms for tem-
peratures and dew point temperatures in Figs. 1C-D. Summary
data for additional measured weather data, on solar irradiation,
wind speeds and relative humidity can be found in Fig.S12. In
Figs. 1E-H, daily profiles for key variables in OFF-2 on days with
mean daily outside air temperatures between 65�F and 67�F pro-
vide a visual summary of experiment protocols. On each experi-
ment day, either a high or low cooling set point was broadcast to
all of the zones that were included in the experiment. Fig. 1F shows
the median of these set points, computed across zones. Chilled
water meters measured the building-level chilled water usage, or
load. Reductions in chilled water load from the low (blue) to high
(red) set point days shown in Fig. 1G correspond to the benefit
from DR. Building-level cooling loads were measured from the flow
rate of chilled water going through the building and the difference
in temperature between the building supply and return water.
Fig. 1H shows the median of the temperatures that were measured
by sensors in the different zones. They were higher on the high
(red) than on the low (blue) set point days. Higher temperatures
correspond to the cost from DR (occupant discomfort). For zone-
level data, the median is preferred over the average as a summary
statistic that is more robust to the data outliers that can be very
large in some buildings. Other physical variables are measured
throughout the buildings during the experiments and used to
interpret results, including the operating state of different compo-
nents of the HVAC systems and aggregate building electrical load.
During the experiments, writing of zone-level set point adjust-
ments was not perfect. Communication delays and errors were
routinely observed in some buildings and are thought to be due
to overloading of network and zone-level controllers. To address
this, our custom software system also includes monitoring capabil-
ities and can automatically verify which zones responded to a com-
mand followed by rescheduling that command for those zones that
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failed their attempt, due e.g. to network overloading. This is further
detailed in the Supplementary Information (SI) to this paper,
where Figs. S10 and S11 show the target and effective set points
that were written during the experiments. Treatment effects pre-
sented in the results section are computed with respect to the tar-
get set points, rather than the effective ones.
4. Results

This section presents results on the impact of increasing the
temperature set point by 2�F in the tested buildings on 1) building
cooling load, 2) building electricity load (excluding for cooling), 3)
overall building electricity load (including an estimate of electricity
for cooling) and 4) room temperatures. To estimate the ‘‘treatment
effect” associated with the set point change, functional forms are
specified for the relationship between the different dependent vari-
ables (building energy loads, zone temperature percentiles) and a
set of explanatory variables (temperature set point, weather vari-
ables, building operational schedule). For each of the modeled
dependent variables, ordinary least squares (OLS) estimates are
computed for the model parameters using experimental data col-
lected during the summer of 2021. Summary modeling results
are presented for each variable in this section. Modeling choices
are discussed in more detail in the SI.

4.1. Cooling load

To study the impact of increasing temperature set points on
building-level energy for cooling, we compute the ordinary least
squares (OLS) estimate for the parameters of a linear model
expressing the logarithm of energy for cooling as a function of
mean daily Outside Air Temperature (OAT), an indicator variable
for whether the scheduled set point was 74�F or 76�F, and an indi-
cator variable for weekdays,

log y ¼ aT þ bISP þ cIW þ dþ �: ð1Þ

In this equation, y is energy for cooling, T is the mean daily tem-
perature measured at the campus weather station, ISP is the indica-
tor function taking a value of 1 if the scheduled zone cooling set
point is 76�F and 0 if it is 74�F. IW is the indicator function taking
a value of 1 for weekends and 0 otherwise. a; b; c; d are the param-
eters to be estimated, and � is an error term. The main assumption
underlying Eq. 1 is that the impact of changing the set point on
energy for cooling is a fixed percentage, independent of outside
air temperatures. It also assumes that one degree of outside air
temperature increases the energy for cooling by a fixed percentage,
independent of set point change. Similarly, whether the day is a
weekday or a weekend is assumed to impact served cooling by a
fixed percentage. In Section 5 we discuss the assumptions underly-
ing this specification and alternative functional forms. As a remin-
der, served cooling loads are measured at the building level from
the flow rate of chilled water going through the building and the
difference between the chilled water temperature in the supply
and return loops. Data are also presented in the SI for cooling loads
measured in different units, including estimates for the electricity
required to produce the chilled water to meet these loads from
chillers (see Figs.S1 and S2).

Figs. 2 A-F show how daily energy for cooling increases with the
daily average of OAT, using scatter plots generated from experi-
mental data along with superimposed lines corresponding to the
estimated models for energy for cooling in each building. The full
blue, respectively red, line shows the estimated model for cooling
load on weekdays with a set point of 74�F, respectively 76�F. The
dashed lines similarly show the estimated models on weekends.
6

y ¼eâTþd̂ full blue line; ð2Þ
y ¼eâTþb̂þd̂ full red line; ð3Þ
y ¼eâTþĉþd̂ dashed blue line; ð4Þ
y ¼eâTþb̂þĉþd̂ dashed red line; ð5Þ

where �̂ denotes the OLS estimate of a parameter. Numerical values
for the estimated parameters and the corresponding p-values are
reported in TableS2. The R2 statistics in that table indicate that
the predictors collectively explain from 80 to 96% of the variance
in cooling load for OFF-2, LIB-3, OFF-4 and LAB-6, 66% for CONF-1,
and 74% for LAB-5.

The effect on energy for cooling of average OAT and of increas-
ing the zone temperature set point by two degrees Fahrenheit is
summarized in Figs. 2 G-H. Fig. 2 G shows the percent increase
of served cooling per degree Fahrenheit increase in average OAT,
eâ � 1. For each building, the expected value estimate is shown
as a dot, and the vertical line denotes the 95% confidence interval
estimated during the OLS procedure. The right panel in Fig. 2 H
similarly shows the percent decrease of served cooling from

increasing the temperature set point, eb̂ � 1. While the impact of
the temperature set point change is more differentiated across
buildings than the impact of average OAT, office-type buildings
are overall more responsive to both predictors than the
laboratory-type buildings (13–28% versus 3–4% in Fig. 2 G). Fig. 2
H indicates that a 10�F increase in mean daily OAT results in a
2.0 to 2.3 factor increase in served cooling in offices and class-
rooms, and a 1.5 to 1.7 factor increase in labs.

The sensitivity of served cooling to average OAT, measured by â
in TableS2, is consistent with building type. In the office and class-
room buildings (CONF-1, OFF-2, LIB-3, OFF-4) a 1�F increase of the
average OAT is associated with a 7.5 to 8.9% increase in served
cooling. In the laboratory buildings (LAB-5 and LAB-6) a 1�F
increase of the average OAT is associated with a 4.1 to 5.8%
increase in served cooling. Schedules vary from building to build-
ing, as confirmed by the numerical values found for ĉ. Served cool-
ing drops very significantly on the weekends in OFF-2, significantly
in OFF-4, noticeably in LAB-6, and very little in LAB-5. For CONF-1
and LIB-3, the building HVAC systems are turned off during the
weekends and weekend data are not considered.

Several reasons could explain why the laboratory buildings are
less responsive to the set point increase. These two buildings have
a larger number of sensitive zones that are excluded from the
experiments. Laboratories have stricter air ventilation require-
ments than office buildings, which tends to reduce the impact of
set point changes on chilled water usage. Although sub-metering
is not available, it is expected that a significant fraction of the total
chilled water usage in the laboratory buildings is associated with
the process chilled water loop (e.g. to cool equipment), while the
HVAC system air handlers are the main consumers of chilled water
in the office-type buildings. The two laboratory buildings have dif-
ferent HVAC equipment and control logic than the office-type
buildings, as they rely on fixed set point AHUs and variable set
point FCUs while the office-type buildings rely on variable set
point AHUs and VAVs. Finally, writing set points was not as reliable
as in the other buildings (see Figs. S10 and S11).

4.2. Electricity loads

4.2.1. Electricity loads excluding for cooling water
A similar approach is taken to estimate the impact of increasing

room temperature set points on building-level electrical energy
consumption. We compute OLS estimates for a model correspond-
ing to Eq. 1 where y is now the building’s electrical consumption.
These measurements exclude electricity for cooling water, but



Fig. 2. Experiment results: energy for cooling. A-F) Daily energy for cooling increases with mean daily temperatures and decreases when the cooling set points are increased.
Empirical data collected during the summer of 2021 and log model from Eq. 1. G-H) Measured effect of OAT and set point change on energy for cooling. Additional numerical
results are reported in TableS2 and data in different units are shown in Figs. 1 and 2. Model structure and predictors are discussed in Section 5.
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include electricity for moving air throughout the building with the
AHU fans. The AHU fans are not sub-metered. Fig.S3 reports results
for electricity consumption in a similar format to Fig. 2 and shows
a small (less than 2%) reduction in building electricity consumption
when the temperature set points are increased. For most buildings
in the testbed, the 95% confidence intervals on the estimated
effects are also quite large. The p-values in TableS3 indicate the
effect is significant only for OFF-2 and OFF-4 at the 5% level. OAT
is also observed to have an overall limited impact on building elec-
tricity consumption. Together, these results suggest either that the
setpoint changes and OAT have a limited impact on fan energy con-
sumption and/or that changes in fan energy consumption are small
compared to other electricity uses inside the buildings.
4.2.2. Electricity loads including for cooling water
Since most DR applications focus on electricity demands, we

also generate impact estimates for overall building electricity
loads. Electricity for cooling cannot be measured directly in the
testbed, since the buildings are supplied by a district cooling sys-
tem. 4.4% of US commercial floorspace is currently served by dis-
trict cooling systems and 19% by central chillers [12]. To
generalize our results to both categories, we estimate electricity
for cooling assuming a constant chiller Coefficient Of Performance
(COP). In reality, the COP will not be constant and will depend on
OAT, relative humidity, and in a district cooling system, on the pos-
sibly time-dependent combination of chillers that are producing.
For example, the effective COP of the central chiller plant that sup-
7

plies this testbed typically varies from 3.5 to 4.5. To assess the sen-
sitivity of results to chiller COP, we use a representative range for
the industry: a COP of 3 to represent in-building cooling systems,
5.5 to represent electrified district cooling systems, and 8 to repre-
sent more efficient technologies than what is currently deployed
[27]. Fig. 3 presents results for the overall daily building electricity
loads, including these calculations of electricity for cooling. Esti-
mates are computed for specifications corresponding to Eq. 1 and
numerical results are reported in TableS4.

Assuming a coefficient of performance of 5.5 for the electric
chillers, the impact of the 2�F set point increase is measured to
be 4.6 to 9.4% for CONF-1, OFF-2, and OFF-4, 2.5% for LIB-3, and less
than.8% for LAB-5 and LAB-6. Consistent with our cooling results,
the buildings that are most responsive to the set point changes
are also the ones that are most responsive to OAT.

These results are sensitive to the efficiency assumption for the
electric chillers supplying the cooling. Increasing the efficiency of
the chillers reduces the responsiveness (and vulnerability) of over-
all electric load to higher temperatures but also decreases the over-
all electric flexibility potential, since a large fraction of the
flexibility is attributable to space cooling.
4.3. Room temperatures

To study the impact of increasing room temperature set points
on room-level temperatures inside the building, we compute OLS
estimates for the parameters of a linear model expressing different



Fig. 3. Experiment results: electricity loads (including for cooling water). (a) Daily electricity as a function of mean daily temperatures of the cooling set points. Empirical data
collected during the summer of 2021 and log model from Eq. 1. (b) Measured effect of OAT and set point change on electricity. To estimate the electricity required for cooling
water, different assumptions are made for chiller Coefficient Of Performance (COP). Numerical results for a COP of 5.5 are report.ed in TableS4.
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zone temperature percentiles as a function of mean daily OAT, an
indicator variable for the scheduled zone set point, and an indica-
tor variable for weekdays,
Tp ¼ aT þ bISP þ cIW þ dþ �: ð6Þ
Here Tp is a summary statistic for room temperatures through-

out the building: the 8am to 8 pm average of the pth percentile for
room temperatures, where the percentile is taken over zones. The
main assumption underlying Eq. 6 is that Tp changes by a fixed off-
set (in degrees F) for every degree of mean daily OAT, due to the
treatment (set point change) and as a function of whether the
day is a weekday. Importantly, for OAT we use the average over
the full 24 h of data, because OAT is a dependent variable and
nighttime temperatures could have an effect because of thermal
inertia. For room temperatures on the other hand, we only use data
from 8 am to 8 pm, because temperatures during the unoccupied
periods at night are not important for the thermal comfort of the
occupants.

Scatter plots for experimental data are shown in Figs. 4A-F
along with superimposed lines corresponding to the estimated
models for the 8am-8 pm average for T50 (similar conventions as
Fig. 2). Additional numerical data are reported in TableS5. Figs. 4-
G-H show the effects of the treatment and OAT on T10; T25; T50; T75

and T90, respectively.
8

A 2�F set point increase resulted in an increase of less than 1.5�F
in our summary statistics for room temperatures (Tp’s). We also
measure a small but statistically significant effect of average daily
OAT. A 10�F increase in mean daily OAT resulted in a 0.1 to 2.1�F
increase in the Tp’s. The effect is larger for the two laboratory
buildings and the library than for the office buildings. In some
buildings, the effect of the treatment and of the OAT grows with
the percentile, but not in others. In OFF-2 the 8am-8 pm average
for the median zone temperature (T50) is on average 0.88�F hotter
on the weekend which is more than the impact of increasing the
set point by 2�F (0.04�F).

The indoor temperature data in Figs. 4A-F are all below the cor-
responding cooling set points, sometimes substantially. Additional
scatter plots for the 50th, 75th, and 90th percentiles for room tem-
peratures at 3 pm in Figs. S4-S6 show that room temperatures vary
significantly within the buildings. They also vary depending on the
time of day. The observation that the temperatures in many rooms
are often below the cooling set point helps explain why the Tp’s are
found to increase with OAT in Fig. 4 H: this is likely the symptom of
over-cooling from ventilation constraints in multi-zone HVAC sys-
tems, as discussed by several previous authors [28–30]. Ventilation
constraints were also shown to have a strong limiting effect on the
impact of temperature set point changes using simulated data by
Hoyt et al. [15]. As OAT increases, overcooling decreases, and the
Tp’s increase. Another complicating factor is that occupants have



Fig. 4. Experiment results: room temperatures. (a) The 8am-8 pm average for the 50th percentile of room temperatures increases with mean daily OAT and as the cooling set
points are increased. Numerical results are reported in TableS5.
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the option to adjust their thermostat by up to 2�F in most rooms,
which could contribute to temperature heterogeneity.

Fig.S7 shows the measured effects of OAT and the temperature
set point increase on zone temperatures at different hours of the
day. Unsurprisingly, the effect of both predictors is very limited
at 6 am. At the other hours, the impact of raising the set point is
less than 1�F for all buildings expect CONF-1. CONF-1’s tempera-
tures are the most responsive and all Tp’s increase the most at
3 pm, on average by between 1.1 and 1.3�F.

Finally, some buildings are warmer than others, despite receiv-
ing the same set points. Differences across buildings are often lar-
ger than the impact of the set point change or of OAT.

Overall, we find limited impacts on measured room tempera-
tures from increasing the cooling set point by 2�F. In the building
where temperatures responded the most, CONF-1, room tempera-
tures increased by at most 1.5�F at 3 pm (Fig.S7). In other buildings
and at other times of the day, a response of 1�F or less was typical.
These results suggest potential for additional flexibility and effi-
ciency gains in the tested buildings.
5. Discussion

5.1. Model specification

The models in Section 4 use a specification for the logarithm of
energy loads. As previously noted, the major underlying assump-
tion is that the predictors have a fixed percentage effect on the pre-
9

dicted variable. Results for an alternative specification, that is
linear in energy loads, are presented in Fig.S8 and TableS6. While
a linear dependence of energy loads on OAT is more consistent
with a heat balance at the building level, the model in Eq. 1 has
several advantages. First, the coefficients a; b and c lead to a natu-
ral, unit-less interpretation for the response of energy loads to their
respective predictors that can easily be compared across buildings
and extrapolated: they measure the relative change in consump-

tion associated with the predictors, e.g. 100ðeb̂ � 1Þ is the estimate
for the percent change in energy from the set point change. Also,
while in Section 4.1 we measure the impact of the set point change
on chilled water consumption, in many applications electricity will
be the main focus. Assuming a constant conversion efficiency, the
estimates remain directly applicable. Second, Eq. 1 predicts that
increasing the set point will have a larger impact on energy loads
at higher OAT, consistent with previous work [19]. Our results on
room temperatures in Section 4.3 also offer a possible physical
explanation for why the response to the set point change might
grow with OAT. Those results show that the indoor air temperature
is below the cooling set point in a significant fraction of rooms. As
OAT increases, over-cooling decreases, a greater number of rooms
is closer to their cooling set point, and will therefore be directly
affected by a change in that set point. In contrast, the model used
for Fig.S8 assumes the impact of the set point adjustment is con-
stant with respect to OAT. Third, Eq. 1 has a statistical advantage
over a model that is linear in energy loads in that it reduces
heteroskedasticity. In the data, we observe that the magnitude of
the residuals from the linear equation grows with OAT. By reducing
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heteroskedasticity, Eq. 1 leads to better estimates for the standard
errors on the model coefficients. Eq. 1’s main drawback is in its
predictions at high temperatures, which is also where it signifi-
cantly deviates from the linear model (Fig.S8). But for most of
the OAT range for which data are recorded (specifically, from
62.5 to 72.5�F), Fig.S8 shows that the linear and logarithmic spec-
ifications produce very similar results, consistent with a first-order
Taylor series expansion of the exponential function. The R2 statis-
tics reported in the SI also differ by at most 3%. Finally, we note
that while our results show that simple linear models are adequate
for modeling daily loads, more complex models will likely be
required to capture hourly dynamics (e.g., to capture thermal iner-
tia effects).

Additional predictors. The sensitivity of the results in Section 4
was also tested by including the maximum daily OAT, minimum
daily OAT, wind, solar irradiation, and relative humidity as predic-
tors in Eq. 1. A summary for the cooling models is shown in Fig.S9.
Including these additional predictors did not significantly change
our estimate for the impact of the 2�F set point increase on energy
for cooling nor goodness-of-fit. The same is true for the impact of
mean daily OAT on energy for cooling, with the exception of the
models with maximum and minimum daily temperatures. In that
case, including those predictors produced larger estimates, but also
larger confidence intervals, which can be explained by the strong
correlation between the average, maximum and minimum daily
temperatures. An advantage of using the average rather than the
maximum or minimum temperature is that this predictor is less
sensitive to faulty data measurements.

The number of occupants was not measured, but is expected to
have been fairly constant in most buildings apart from CONF-1,
where variability in occupancy could be the explanation for the
comparatively lower performance of the models.

Choice of treatment variable. Special care is taken in choosing the
treatment variable. In the models presented in Section 4, the treat-
ment variable corresponds to the set point command that was
scheduled to be sent to the building, not the actual set point com-
mand that was adopted by the different rooms inside the building.
Consequently, the variability in the outcome data are attributable
not only to the physical response of the buildings, but also to the
response of their software systems. Figs. S10 and S11 show how
the software systems did not respond perfectly. Two possible
explaining factors are 1) occupants have the option to re-adjust
temperature set points locally; and 2) network and controller over-
loading can cause communication delays and data loss between
the centralized software system and the rooms. Our choice of treat-
ment variable yields models that encompass the entire cyber-
physical response of a building energy system, which is more rel-
evant to electric grid or district energy system operators.

5.2. Informing operator flexibility decisions

Data-driven models for flexibility. Historically, most field tests
were used to complement and validate simulations by providing
case studies and demonstrations. Ubiquitous sensors and actuators
promise a new paradigm under which field tests can play a much
more ambitious role in developing data-driven flexibility models
for buildings. The work presented here provides a blueprint for
developing these models. The findings in this paper suggest that
if more ambitious experimentation programs are conducted, a
more ambitious role can be played by field data. The data-driven
models for building response functions developed in this paper
are directly relevant to electric grid and district energy system
operators. The response of buildings under the change remains
uncertain and variable, but the uncertainty is quantified in the
models, by providing statistical information and guarantees that
can be used by consumers of the DR service when making their
10
decisions, e.g. confidence intervals. Past field tests were invaluable
to demonstrate potential from providing DR services through
building energy systems when the technology was in its infancy.
As the technology nears deployment, new, standardized field tests
supported by rigorous statistical analyses are now needed to build
confidence.

Providing flexibility on other timescales through integrated energy
systems. In contrast with most prior works reporting field test data
(see Section 2), the experiments here evaluate daily rather than
hourly flexibility. Indeed in many present applications, DR is pro-
vided on shorter timescales, e.g. to reduce peak afternoon loads.
However, daily flexibility strategies will often be simpler to imple-
ment. What’s more, we argue that providing daily flexibility from
building-level loads may turn out to be just as valuable as hourly
flexibility for two reasons.

First, there are expectations that longer term flexibility needs
will arise in future electricity grids [7]. Second, it is very likely that
in most real-life applications DR services from flexible loads will be
aggregated. When aggregated with other energy systems, daily
flexibility from building HVAC systems can unlock additional
hourly flexibility from the integrated energy system, e.g. at the
electric distribution system level. In an electrified district energy
system with city-scale thermal storage like the one that provides
heating, cooling and electricity to the buildings that are tested here
[10], daily building-level flexibility unlocks more opportunities to
provide hourly DR services measured at the integrated system
level [31]. Other integration options include an electrochemical
storage system at the distribution level, or an electric vehicle fleet.

5.3. Value of stress tests for building energy systems

The experiments in this work highlight the value of developing
and standardizing stress tests for building energy systems. One of
the most important benefits is to enable the development of data-
driven flexibility models that account for the full cyber-physical
response of buildings. Training and updating such models will be
cheaper and more scalable than for computational models that
heavily rely on building design parameters rather than on mea-
sured parameters. HVAC control logic is a good example of an oper-
ational parameter that is non-trivial to capture with computational
models such as EnergyPlus, but naturally captured when generat-
ing training data for data-driven models through stress tests.

Baselines for DR. One specific area where the collection of data
through stress tests offers an opportunity to rethink prior research
is in the development of the baselines that are typically used to
estimate a building’s actual contribution during an event. Most
prior works, reviewed in Weng et al. (2018) [32], use deterministic
estimates, either computed using a (weighted) average of the pre-
vious ten days or a linear regression based on prior data, possibly
adjusted based on information from the morning of the event.
The data collected through stress tests can be used to calibrate
more robust probabilistic baseline models. The experiments
reported here also suggest including information from after the
DR event may be just as relevant as information prior the event.
The only constraint to implement such a centered baseline scheme
is to wait until the end of the DR program to distribute rewards and
penalties to participants.

Updating DR models. Energy infrastructure and large buildings
are designed to last half a century, but the energy consumption
patterns of a building change over time. In a research facility, for
instance, new laboratory equipment has the potential to dramati-
cally change the building’s energy profile. The same is true in a
large administrative building after a retrofit of the HVAC system
or a tenant improvement. These changes typically render previ-
ously developed digital twins based on simulation models (such
as EnergyPlus, eQUEST, TRNSYS) obsolete. In contrast, the methods



Fig. 5. Collecting a growing number of observations gradually improves parameter estimates. Measured effect of set point change and OAT on energy for cooling using the
model in Section 4.1. The dots represent the average estimates and the vertical bars show the 95% confidence intervals. The number of observations (n) is reported for each
building, e.g. 10 to 44 observations are .used for CONF-1.

Fig. 6. Aggregating buildings improves out-of-sample predictive power. Perfor-
mance is reported as Mean Absolute Percentage Error (MAPE) for a growing number
of observations, using ten days as an out-of-sample test set.

J.A. de Chalendar, C. McMahon, L. Fuentes Valenzuela et al. Energy & Buildings 278 (2023) 112599
developed in this work can be used to regularly and rapidly evalu-
ate and update a building’s thermal flexibility model. Fig. 5 shows
the sensitivity of the impact of the 2�F set point increase and of
mean daily OAT, as estimated from models trained on a growing
number of observations. Observations were ordered chronologi-
cally in this analysis. As expected, the confidence intervals grow
smaller as more data is collected. For most buildings, the value of
collecting additional data points decreases after a few weeks.

Out-of-sample predictive power. To assess the predictive power
of the models, the last ten observations common to each data set
were excluded to form a ‘‘test set”. Models trained on a growing
number of observations were then evaluated against the test set.
Performance is reported in Fig. 6. For all buildings except CONF-
1, the test set error gradually decreases as the number of observa-
tions that are included grows. We also compute the out-of-sample
performance of the sum of the buildings (labeled ‘‘Portfolio”) and
observe that aggregating buildings improves predictive power.

Energy efficiency and commissioning. Beyond flexibility, stress
tests provide an empirical measurement tool for building man-
agers to evaluate the benefits and costs of operational changes
and a continuous assessment of opportunities for improved energy
efficiency. The experiments here show that cooling loads are signif-
icantly reduced from increasing cooling set points by 2�F, with
overall limited impacts to room temperatures. Where acceptable
to occupants, cooling set points could be raised at all times and
similar stress tests conducted to assess the flexibility benefit from
increasing set points from this new baseline. Stress tests are a nat-
ural complement and extension to the existing commissioning
tools that can be used to dramatically improve the energy effi-
ciency of existing commercial building stocks [33,34]. In contrast
with most existing commissioning methods that test the behavior
of individual actuators and sensors, the experiments in this work
test the overall cyber-physical response of a building’s energy sys-
tem. Control systems play a large role in building energy consump-
tion: one simulation-based study found that upgrading control
systems could save 23–30% energy in half of the US commercial
building stock [35]. Additionally, as flexibility services become
more used, flexibility-oriented commissioning tools will be
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needed. Stress testing buildings will help maintain a state of oper-
ational readiness that improve the reliability of the DR service.

5.4. Building response: cooling versus electricity

Our results provide an interesting perspective on previous field
tests where the main target for flexibility was the electricity con-
sumption associated with the AHUs [36,6]. The flexibility source
relied on in many of those experiments is a reduction in the fan
speed of the AHUs, resulting in a reduction of the overall building
electricity consumption [37–39]. In contrast, in these experiments
the daily response of the electrical loads is minimal, while that of
the cooling loads is significant.

A first important difference is in the experiment time scale. In
many prior experiments, flexibility is provided on an hourly time
scale, typically in the middle of the day. In contrast, in the experi-
ments reported on in this paper, set points are adjusted on a daily
time scale. Transient temperature effects can be expected to play a
larger role in hourly rather than daily experiments. A second
important difference is the AHU control logic. While this is not
reported in all of the prior studies referenced above, for the major
part it appears that they considered HVAC systems where the tem-
perature of the air leaving the AHUs to supply the zones was fixed,
whereas most AHUs in this testbed used the more recent industry
best practice of supply air temperature resets [24]. AHU controllers
in this testbed leverage two main degrees of freedom to control the
cooling power of the air that is sent to the zones: the flow rate of
air blowing over the chilled water coils, controlled by the speed
of the fans; and the flow rate of water through the chilled water
coils, controlled by the position of the chilled water valves. A third
setting is the fraction of building air that is re-circulated, but that
was maintained fixed during the experiments so it is not consid-
ered here. Together, these settings control the temperature and
pressure of the supply air. Finally, a third source of possible
response heterogeneity also noted in previous work [6] is the pres-
ence of ventilation requirements that can enter in competition
with cooling requirements.

In summary, our results on cooling and electricity loads show
that new building control sequences could alter conclusions from
previous DR field experiments. In the experiments reported on in
this paper, flexibility was mainly provided from the chilled water
valves rather than from the fan speeds, in contrast to previous field
studies. However, the three possible causes for the difference that
were discussed also indicate that this will not always be the case.
This further motivates the need for scalable modeling and testing
methods like the ones discussed in this work.
6. Conclusion

A scalable empirical method based on the idea of stress tests
was developed to assess the cyber-physical response of commer-
cial buildings to temperature set point adjustments. The method
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is generally implementable, and doing so will be of value to build-
ing researchers and industry practitioners in at least two ways.
Previous literature reports large variability in building response
during DR events. This work shows how empirical methods can
be used to systematically measure, quantify and explain that vari-
ability by also measuring explanatory variables such as the outside
air temperature. These methods can also be used during commis-
sioning of a building as a system-level diagnostic tool, or stress
test, that represents a significant departure from existing commis-
sioning processes that overwhelmingly rely on component-level
diagnostic tools. Diagnostic tools that rely on systems-level stress
tests or tests to assess the overall responsiveness of buildings to
perturbations in operating set points will be valuable to demon-
strate continued DR readiness to consumers of DR services such
as electric grid operators. The flexibility model that was proposed
is simple to calibrate and to interpret. It provides statistical guar-
antees that can directly be used by electric grid or district energy
system operators calling on DR. The application of the empirical
method provides invaluable information to construct, maintain
and update a building’s weather-dependent flexibility model,
including quantitative statistical information about the building’s
responsiveness. The response of six buildings to daily cooling set
point adjustments was tested on a university campus in California
(Warm-summer Mediterranean climate). The buildings do not all
respond identically, and their response is uncertain. But, repeated
testing can be used to build data-driven models to quantify the
uncertainty, e.g. through confidence intervals. Data generated
through stress tests enables the development of models that also
capture the full cyber-physical response of buildings, which will
be required for energy operators to integrate DR resources. The
potential for and constraints on providing thermal and electrical
demand response from temperature set point strategies was dis-
cussed. Also, the daily timescale considered here is in contrast with
the majority of prior works on building DR that consider hourly or
sub-hourly timescales. In integrated, electrified energy systems
such as the one we consider, chilled water storage tanks can be
used as a buffer between the electric chillers used to produce cool-
ing and the buildings that consume it. Enabling daily flexibility in
the served cooling loads at the building level in turn unlocks both
daily and/or hourly flexibility at the integrated energy system
level. This work provides a blueprint for developing reliable, scal-
able, experimental and testing methods with building energy sys-
tems. These methods will lead to a better scientific understanding
of energy loads in large, modern buildings, and their flexibility in
response to controlled perturbations. As distributed sensors and
actuators continue to be more widespread, these methods will
become increasingly cheaper, scalable, and attractive.
7. Data and code

Daily data from the experiments reported on in this paper are
released as part of the supplemental material, along with code to
reproduce Figs. 2 through 6. A detailed description of the data set
that is released is provided in the SI.
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