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Abstract. This paper is concerned with the use of simulation in computing predictors in
settings in which real-world observations are collected. A major challenge is that the state
description underlying the simulation will typically include information that is not ob-
served in the real system. This makes it challenging to initialize simulations that are
aligned with the most recent observation collected in the real-world system, especially
when the simulation does not visit the most recently observed value frequently. Our esti-
mation methodology involves the use of “splitting,” so that multiple simulations are
launched from states that are closely aligned with the most recently collected real-world
observation. We provide estimators both in the setting that the observed real-world values
are discrete and are continuous, with kernel smoothing methods being systematically
exploited in the continuous setting.

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2021.2229.
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1. Introduction
In many application settings, one has an interest in
computing a prediction of future performance, based
on the currently observed state of the system. Such
problems arise naturally in various economic and
operational settings, including supply chains, inven-
tory systems, call centers, and manufacturing facili-
ties. In fact, our interest in this problem was motivated
within the setting of a container management system
run by a major automobile manufacturer. The contain-
ers play a critical role in shipping parts from one
manufacturing plant to another, and a shortage of
containers at a plant can lead to a plant shutdown. In
that setting, there is an interest in predicting future
container shortages, based on information about the
current locations of containers. A key complication is
that the exact current location of each container is not
observed, since individual containers often are
tracked only when they move through certain trans-
shipment points. So, the observable data, in this set-
ting, are not aligned with the full “state” necessary in
order to initialize a dynamic simulation of the con-
tainer system. We note that such container shortages
would be of interest days or weeks into the future, so
that significant computing time would be available to
run the simulations associated with our contribution.

In this paper, we develop a framework and algo-
rithms for solving prediction problems of this type. In
particular, we consider the problem of predicting the
real-valued random variable (rv) Z̃(s+ t) for t ≥ 0,

based on having observed the S′-valued process
(Ỹ(u) : 0 ≤ u ≤ s), where S′ ⊂ R

d. In the container man-
agement system that motivated this paper, Ỹ(u) is the
numbers of containers at time u in the transshipment
points where containers are tracked, s is the current
time, s + t is the future point in time at which we are
interested in making a prediction, and Z̃(s+ t) is what
we wish to predict, such as the shortage in the number
of containers at one of the manufacturing plants at
time s + t. We simplify the problem by basing our pre-
diction on Ỹ(s) only, leaving the question of utilizing
the full path history (Ỹ(u) : 0 ≤ u ≤ s) to future work.
Such a “full history” calculation would require solv-
ing the filtering problem for general discrete-event
simulations, a problem beyond the scope of this pa-
per. For our current purposes, our goal is to minimize
the mean square prediction error between Z̃(s+ t) and
a predictor of Z̃(s+ t) given Ỹ(s), so our desired pre-
dictor is the conditional expectation of Z̃(s+ t) given
Ỹ(s), that is, E[Z̃(s+ t) | Ỹ(s)] (see, e.g., section 9.4 on
p. 85 of Williams 1991 or p. 468 of Karlin and Taylor
1975). Of course, we have in mind settings where this
conditional expectation is not available in closed form
andmust be computed numerically (e.g., by simulation).

Recall that the observable Ỹ(s) is typically not the
state variable necessary in order to initialize a sim-
ulation of the system over [s, s+ t]. We presume that
there exists an underlying S-valued Markov process
X̃ � (X̃(u) : u ≥ 0) for which Z̃(u) � f (X̃(u)) and Ỹ(u) �
τ(X̃(u)), for suitably chosen (known) measurable
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functions f : S→ R and τ : S→ R
d. In the container

management system where we wish to predict the
number of containers in shortage, X̃(u) includes the
numbers of containers at each of the manufacturing
plants at time u, along with other state variables, such
as the elapsed interarrival times or elapsed service
times. For x ∈ S, f(x) is the number of orders waiting
for available containers (assuming that each order re-
quires exactly one container for its delivery), and τ(x)
consists of all observable state variables, such as the
number of containers at the observed transshipment
points. See Section 6.2.2 for a more detailed descrip-
tion of the state variables of X, f, and τ in the setting of
an example.

We can then represent the conditional expectation
of interest as k(y) when Ỹ(s) � y is the observed value
at time s, where

k(y)¢ E[Z̃(s+ t) | Ỹ(s) � y] �
∫
S
E[ f (X̃(s+ t))|X̃(s) � x]

× P(X̃(s) ∈ dx|Ỹ(s) � y):
For each x ∈ S, the inner expectation can be estimated

via standard simulation methods as a finite-horizon
(terminating) simulation initialized from x. The chal-
lenge, of course, is performing the outer integration
over S and implementing the entire calculation in an in-
tegrated and efficient manner. In particular, the outer
integration involves sampling X̃(s), conditional on
Ỹ(s) � y. Given that the observed system has likely
been in operation for a long period of time, the process
Ỹ can be assumed to be in a steady state. It follows that
generating X̃(s) given Ỹ(s) � y involves all the compli-
cations that typically arise in the context of steady-state
simulation, including that of assessing the variance in
the context of an autocorrelated process. Another issue
is that y may be infrequently visited by Ỹ, and this
creates an algorithmic challenge.

1.1. Proposed Methodology
To develop an efficient way to sample X̃(s) condi-
tional on Ỹ(s) � y, we recognize that if X̃ has been
simulated for a long period of time, then X̃ can be
viewed as a strictly stationary Markov process. Under
this assumption, one obvious way to sample X̃(s) con-
ditional on Ỹ(s) � y is by simulating (X̃(u) : u ≥ 0) and
sampling X̃(u) only when Ỹ(u) � y. Two main chal-
lenges become apparent from a computational point
of view.

1. It may require a long period of time until (X̃(u) :
u ≥ 0) gets close to its stationary distribution. This
arises because the simulation run is typically initialized
using a nonequilibrium distribution.

2. Even if the simulation gets close to its stationary
distribution, Ỹ(u) may hit y infrequently, especially
when S′ has a large number of states or is a continuous
state space.

To tackle the first challenge, we generate a single long
simulation run of (X̃(u) : u ≥ 0) rather than multiple inde-
pendent replications, and we use the simulated values of
X̃(u) for all the u values where Ỹ(u) � y. Typically, a sin-
gle run has computational advantages over multiple inde-
pendent runs when one wishes to generate samples from
the stationary distribution because each independent run
has an initial transient phase prior to a steady state (see,
e.g., p. 3 of Nelson 2016). It should be noted that, in this
single run, we collect X̃(u) and Z̃(u+ t) whenever Ỹ(u) �
y for u ≥ 0, so our sampled data are dependent.

To tackle the second challenge, we use a couple of
strategies. First, we use “splitting,” in which whenever
Ỹ(u) hits y, we conduct multiple independent simulation
runs initialized from X̃(u), thereby generating multiple
samples of Z̃(u+ t) that are independent conditional on
X̃(u) (see Figure 1 for a graphical representation of this
idea). In the second strategy, we use Z̃(u+ t), even if

Figure 1. Representation of the Splitting Strategy

Notes. The x-axis is u ≥ 0. The dots are Ỹ(u). Whenever Ỹ(u) hits y, we generate multiple runs of X̃ initialized from the corresponding value of
X̃(u).

Lim and Glynn: Simulation-Based Prediction
2 Operations Research, Articles in Advance, pp. 1–14, © 2022 INFORMS



Ỹ(u)≠ y. Specifically, we assign a weight to Z̃(u+ t) so
that more weight is applied when Ỹ(u) is closer to y.
We then compute the weighted average of Z̃(u+ t) for
u ≥ 0 as an estimator of k(y). This strategy is closely re-
lated to the ideas arising in kernel regression estimation.

Our proposed estimator of k(y) in the discrete setting,
kn(y), uses the splitting idea, while an alternative estima-
tor, k∗n(y), uses both the splitting idea and the kernel
regression idea. Theorem 3 in Section 4 and Lemma 6 in
the e-companion to this paper state that when the
discrete-time version of X̃ is a Harris ergodic Markov
chain satisfying certain moment and mixing conditions,
regardless of how the simulation is initialized, both��
n

√ (kn(y) − k(y)) and ��
n

√ (k∗n(y) − k(y)) converge weakly
to a normal distribution as n→∞, and their asymptotic
variance is a decreasing function of the split factor,
which is the number of multiple samples of Z̃(u+ t).

1.2. Literature Review
According to whether t > 0, t � 0, or t < 0, the problem
of estimating E[Z̃(s+ t)|Ỹ(s) � y] has been referred to
as prediction, filtering, and smoothing, respectively, in the
statistics literature. When (Z̃(u) : u ≥ 0) is observable,
the problem of predicting E[Z̃(s+ t)|Ỹ(s) � y] is closely
related to the regression estimation problem, since
k(y) � E[Z̃(s+ t)|Ỹ(s) � y] can be treated as a regression
function in y, and k(y) can be estimated using the obser-
vational data ((Ỹ(u), Z̃(u)) : 0 ≤ u ≤ s). Numerous para-
metric and nonparametric regression approaches have
been proposed and studied extensively in the literature
(see, e.g., Györfi et al. 2002, for a comprehensive sur-
vey). On the other hand, when (Z̃(u) : u ≥ 0) is not
observable, simulation must be conducted to obtain
simulated values of (Z̃(u) : u ≥ 0) from simulated paths
of the underlying Markov process X̃. In order to con-
duct the simulation, the need for simulating from
P(X̃(s) ∈ · |Ỹ(s) � y) arises.

One closely related question is the problem of esti-
mating P(X̃(s) ∈ · |Ỹ(s) � ys, Ỹ(s− 1) � ys−1, : : : , Ỹ(s− r) � ys−r)
for some r > 0, which is answered by numerous se-
quential Monte Carlo methods. However, the sequen-
tial Monte Carlo methods assume that one is able to
draw samples from P(X̃(s− r) ∈ · |Ỹ(s− r) � ys−r) and
update the samples iteratively to get an approximation
to P(X̃(s) ∈ · |Ỹ(s) � ys, Ỹ(s− 1) � ys−1, : : : , Ỹ(s− r) � ys−r), so
the question of how to sample from P(X̃(s− r) ∈ · |
Ỹ(s− r) � ys−r) remains unanswered (see, e.g., Liu and
West 2001). Therefore, this paper is the first to address
the need for simulating from P(X̃(s) ∈ · | Ỹ(s) � y) when
estimating k(y). We view the introduction of this class of
problems to the research community as a major contri-
bution of this paper.

Another issue with the sequential Monte Carlo
algorithms is that their typical computational burden is

prohibitively heavy (see, e.g., Pitt and Shephard 1999
and Doucet and Johansen 2009). This paper solves the
issue of the computational burden by utilizing the idea
of splitting in conjunction with kernel estimation. The
idea of splitting has received a great deal of interest in
rare event simulation (see p. 127 of Asmussen and
Glynn 2007 and the references therein). However, most
splitting-based methods terminate the simulation
whenever Ỹ(u) � y occurs. Our approach applies the
splitting idea every time Ỹ(u) hits y in a long single run
of X̃, so the successive events Ỹ(u) � y are dependent
on one another. Thus, this paper is the first to apply the
splitting idea to successive events Ỹ(s) � y that are de-
pendent. As our theoretical and empirical studies in
Sections 4 and 6 suggest, the splitting idea plays an im-
portant role in reducing the asymptotic variance of the
proposed estimators.

The focus of this paper is placed on the case where
y lives in a large discrete space (such as the case of the
container management system), so one naturally pre-
fers a method that does not assume any functional
form on k(·). If, however, one can make some assump-
tions on k(·), such as the continuity of k(·) in the con-
tinuous variable y, then more sophisticated methods
can be proposed. For example, Hong and Jiang (2019)
introduced a new framework, called offline-simulation
online-application, in which one generates simulated
data for k(z) offline for various values of z, builds a
metamodel for k(·) with the simulated data, and uses
the metamodel to estimate k(y) or to solve real-time
decision problems. This approach is particularly suit-
able when one can assume that y resides in a continu-
ous space and k(·) is continuous over its domain, so
various surface fitting methods can be used to build
such a metamodel. Related numerical results can be
found in Section 6.1.4.

In Section EC.5 of the e-companion to this paper,
we discuss the problem of estimating unknown pa-
rameters of a stochastic model based on observed,
real-world data, which has gained increasing interest
in the simulation community (see Peng et al. 2020 for
a recent development).

1.3. Organization of This Paper
The rest of this paper is organized as follows. Section 2
introduces some notation and definitions. In Section 3,
we briefly review the development of predictors that do
not rely on simulation and that use only the observed
real-world data that are available. Section 4 contains
our main results and describes a set of simulation-based
predictors. All of our simulation-based predictors take
advantage of splitting, so that multiple conditionally inde-
pendent replications of Z̃(u+ t) are generated from a
single X̃(u) (whenever the corresponding Ỹ(u) is suffi-
ciently close to y). Section 5 provides a brief discussion of
a couple of extensions of the methodology presented in
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Section 4. These include simulation-based prediction
when Ỹ(s) is discrete but takes on a very large number of
possible values, and the construction of confidence inter-
vals for our simulation-based predictors. In Section 6, we
present the numerical performance of our proposed
estimators in the container management example. Con-
cluding remarks are included in Section 7.

2. Notation and Definitions
We let ⇒ and→P denote weak convergence and con-
vergence in probability, respectively. By N(0, 1), we
denote the normal random variable with a mean of 0
and a variance of 1.

Suppose that V � (Vi : i � 0, 1, · · ·) is a sequence of
random vectors, each of which takes values in S ⊂ R

p.
For 0 ≤ i ≤ j ≤∞, let F

j
i denote the σ-field generated

by Vi, : : : ,Vj. For each n ≥ 1, we define the following
strong mixing coefficients:

αn � sup
k�0,1, · · ·

sup{| P(A∩ B) −P(A)P(B) | :A ∈F k
0,B ∈F∞

k+n}:

The sequence V is said to be strongly mixing (or α-mixing)
if αn → 0 as n→∞.

For x � (x1, : : : ,xd) ∈ R
d, we let ||x||� (x21 + · · · + x2d)1=2.

For any sequences ( fn : n � 1, 2, · · ·) and (gn : n �
1, 2, · · ·) of real numbers, we write fn ~ gn if fn=gn → 1
as n→∞, fn � o(gn) if fn=gn → 0 as n→∞, and fn �
O(gn) if there exist positive real numberM and a posi-
tive integer N such that | fn | ≤Mgn for all n ≥N. For
x ∈ R, �x� denotes the largest integer that is less than
or equal to x.

For a sequence of random variables (Zn : n ≥ 1) and
a sequence of positive real numbers (an : n ≥ 1), we
say that Zn �Op(an) as n→∞ if, for any ε > 0, there
exist positive constants c0 and n0 such that P( |Zn=an | >
c0) < ε for all n ≥ n0. We also say that Zn � op(an) as
n→∞ if Zn=an converges in probability to 0.

A discrete-time Markov chain V � (Vi : i � 0, 1, : : : )
is called ergodic if it is positive Harris recurrent and
aperiodic.

3. Prediction Based on Observed
Statistical Data Only

To help understand the benefit of using simulation for
such prediction problems, we first consider the case in
which no simulation is used, so that only observed
statistical data are utilized in estimating the quantity
k(y). In particular, we assume here that ((Z̃(u), Ỹ(u)) :
0 ≤ u ≤ s) is (statistical) data observed from the real-
world setting of interest.

Let w � s− �s�. For i � 0, 1, · · ·, put X̃i � X̃(i+w),
Ỹi � Ỹ(i+w), and Z̃i � Z̃(i+w+ t). Throughout this
paper, we will use the following assumption.

A0. We have that (X̃i : i � 0, 1, · · ·) is strictly stationary.

This assumption is less restrictive than assuming
that X̃ is strictly stationary. For example, A0 covers
the case in which X̃ is a Markov process with periodic
nonhomogeneous transition probabilities having pe-
riod 1. Such periodic nonhomogeneity is needed to
cover the many operations management settings in
which time-of-day or day-of-week effects have a sig-
nificant impact on the system dynamics.

For the analysis in this section, set r− 1 � �s−w− t�.
We have set r – 1 this way so that when i � r− 1, i +
w + t does not exceed s.

3.1. Discrete Case
Suppose that S′ is either finite or countably infinite and
that Ỹ0 is a discrete S′-valued rv. Assume that p(y)¢
P(Ỹ0 � y) > 0. In that case, wemay consider the estimator

k̃r(y) �
∑r−1

i�0 Z̃iI(Ỹi � y)∑r−1
i�0 I(Ỹi � y) :

Below are the key assumptions that we will use when
analyzing the asymptotic behavior of k̃r(y).
A1.

(a) There exists a positive real number σ1 such that

r−1=2
∑r−1
i�0

(Z̃i − k(y))I(Ỹi � y) ⇒ σ1N(0, 1) (3.1)

as r→∞.
(b)We have that

1
r

∑r−1
i�0

I(Ỹi � y) → p(y) (3.2)

almost surely (a.s.) as r→∞.

There exist a number of sets of conditions under
which A1 holds, so we present one of them here.

B1. We have that (X̃i : i � 0, 1, : : : ) is strongly mixing with
the strong mixing coefficients (αn : n � 1, 2, : : : ). There
exists a positive real number δ such that

(a) E[|Z̃0|2+δ] <∞, and
(b) ∑∞

n�1α
δ=(2+δ)
n <∞.

Theorem 1 identifies the limiting behavior of k̃r(y)
under A0 and B1. The proof of Theorem 1 is provided
in Section EC.1 of the e-companion to this paper.

Theorem 1. Under A0 and B1,

σ2¢var[(Z̃0 − k(y))I(Ỹ0 � y)]
+ 2

∑∞
i�1

cov[(Z̃0 − k(y))I(Ỹ0 � y),

(Z̃i − k(y))I(Ỹi � y)]
is convergent and A1(b) holds. Furthermore, if σ2 > 0, then
A1(a) holds with σ1 � σ, and

r1=2
(̃
kr(y) − k(y)

)
⇒ σ1

p(y)N(0, 1) (3.3)

as r→∞.
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One way to establish B1(b) is by requiring (X̃i : i �
0, 1, · · ·) to be geometrically ergodic, since any aperi-
odic, Harris recurrent, and geometrically ergodic
Markov chain has exponentially decaying strong mix-
ing coefficients (see, e.g., Nummelin and Tuominen
1982 and p. 199 of Rosenblatt 1971). Hence, we can
establish the following corollary.

Corollary 1. Suppose that (X̃i : i � 0, 1, · · ·) is an aperi-
odic, Harris recurrent, and geometrically ergodic Markov
chain. Assume that X̃0 is initialized with its stationary
distribution. Assume also that E |Z̃0|2+δ <∞ for some
positive real number δ. Then,

σ21¢var[(Z̃0 − k(y))I(Ỹ0 � y)]
+ 2

∑∞
i�1

cov[(Z̃0 − k(y))I(Ỹ0 � y),

(Z̃i − k(y))I(Ỹi � y)]
is convergent, and if σ21 > 0,

r1=2
(̃
kr(y) − k(y)

)
⇒ σ1

p(y)N(0, 1) (3.4)

as r→∞.

Remark 1. Many Markov chains are geometrically er-
godic. For example, if a positive Harris recurrent and
aperiodic Markov chain satisfies the Doeblin condi-
tion, then it is geometrically ergodic (see, e.g., Doob
1953). Also, any irreducible aperiodic finite-state Mar-
kov chain is geometrically ergodic (see p. 18 of As-
mussen 2003).

3.2. Continuous Case
We next turn to the setting in which P(Ỹ0 � y′) � 0 for
y′ ∈ S′, as occurs when Ỹ(s) is a continuous S′-valued
rv. In particular, suppose that Ỹ0 is an R

d-valued rv
with density g(·) for which g(y) > 0. Let (an : n �
1, 2, · · ·) be a “bandwidth” sequence decreasing to 0,
and put λir(y) � λ((y− Ỹi)=ar) for some “kernel” func-
tion λ : Rd → R. In order that the number of samples
in a neighborhood of y having radius an tends to infin-
ity, we assume that nadn →∞ as n→∞. The estimator

k̃
′
r(y) �

∑r−1
i�0 Z̃iλir(y)∑r−1
i�0 λir(y)

is then a natural choice of “kernel-based” estimator
for k(y). This is known in the literature as the Nadar-
aya-Watson estimator for the “regression function” k(·)
(see, e.g., Györfi et al. 2002 and Abdellah et al. 2018).

There exist numerous results establishing central
limit theorems (CLTs) for k̃

′
r(y). We introduce one of

them here under the following set of assumptions.

B2.
(a)We have that an �O(n−γ) as n→∞ for some positive

constant γ, and nadn →∞ as n→∞.

(b) We have that λ : Rd → R is symmetrical with respect
to the origin, that is, λ(z) � λ(w) if ||z|| � ||w|| for
z,w ∈ R

d. Define fλ : [0,∞)→ R by fλ(||z||) � λ(z) for
z ∈ R

d; λ is a bounded nonnegative function with support
{z ∈ R

d : ||z|| ≤ 1}.
(c) There exist positive real numbers β and c1 such that

|k(z1) − k(z2)| ≤ c1 ||z1 − z2 ||β
for all z1,z2 ∈ R

d and 1− 2γβ− γd < 0.
(d) We have that g2 : Rd → R is continuous in some

neighborhood of y, where g2(z) � var[Z̃0 |Ỹ0 � z] for z ∈ R
d.

(e) Assume that E |Z̃0|ν <∞ for some ν > 2. Let gν :
R

d → R be defined by

gν(z) � E[|Z̃0 − k(y)|ν | Ỹ0 � z]
for z ∈ R

d; gν is continuous in some neighborhood of y.
(f) Define gij(z1,z2) � E[(Z̃i − k(y))(Z̃j − k(y)) | Ỹi � z1,

Ỹj � z2] for i≠ j, z1,z2 ∈ R
d. Assume that gij is bounded in

some neighborhood of (y,y) uniformly in i and j; that is,
there exist positive constants h and c2 such that

sup
i≠j

sup
||z1−y||≤h, ||z2−y||≤h

| gij(z1,z2) |≤ c2:

(g) There exist functions ψ : R→ R, satisfying limh→0

ψ(h) � 0, and f1 : Rd → R such that, supi≠jP(|| Ỹi − y ||≤ h,

|| Ỹj − y ||≤ h) ≤ ψ(h)f1(y) as h→ 0. We also assume that
ψ(h)=h2d is bounded.

(h)We have that (X̃i : i � 0, 1, · · ·) is strongly mixing with
the strong mixing coefficients (αn : n � 1, 2, · · ·) satisfying∑∞

n�1
nδα1−2=κ

n <∞

for some κ > 2 and δ > 1− 2=κ.

The following result is due to equation (2.11) and
corollary 2 of Masry (2005).

Theorem 2. Under A0 and B2,

(radr )1=2
(̃
k
′
r(y) − k(y)

)
⇒ σ2N(0, 1)

as r→∞, where

σ22 � var[Z̃0 | Ỹ0 � y]
∫ 1

0
{fλ(x)}2dx

g(y)
(∫ 1

0
fλ(x)dx

)2 :
Remark 2. One way to establish B2(h) is by requiring
one of the following conditions:

1. αn decays exponentially fast; that is, αn �O(e−αn)
as n→∞ for some α > 0.

2. αn �O(n−α) as n→∞ for some positive constant α
satisfying

α >max
2
γd

− 1, (2− 2=ν)=(1− 2=ν)
{ }

:

Thus, as in Corollary 1, B2(h) is satisfied if (X̃i : i �
0, 1, · · ·) is an aperiodic, Harris recurrent, and
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geometrically ergodic Markov chain. (For more detailed
explanations on B2(h), see remark 3 on p. 163 of Masry
2005.)

Remark 3. For a discussion on how to choose λ, see
section 5 of Bierens (1987).

4. Simulation-Based Predictors
We now turn to the development of simulation-based
predictors for k(y). As we will see, use of simulation
can significantly improve the quality of our estimator
for k(y), relative to those introduced in Section 3. In
particular, the sample sizes available in the simulation
setting have the potential to be vastly larger than
those based on observed statistical data, where it is
likely that the parameter s will often be small or of
only moderate size. Furthermore, it may be that the
quantity Z̃(s+ t) to be predicted is not observed in the
real-world system, so that the estimators of Section 3
are not applicable. This would arise, for example, in
the container setting when one wishes to predict con-
tainer shortages in a part of the system in which lim-
ited monitoring is available.

In the simulation setting, we simulate the processes
X̃, Ỹ, and Z̃. To differentiate our simulation-based
data from the real-world observed statistical data, we
denote the simulation counterparts of X̃, Ỹ, and Z̃ by
X, Y, and Z, respectively. The process X will share the
same transition probabilities as X̃ but typically will be
initialized differently. In particular, X will not exhibit
the periodic stationarity of X̃ because the simulation
will generally be initialized from a nonequilibrium
distribution. However, under suitable regularity con-
ditions on X, the marginal probabilities agree asymp-
totically in the sense that (Xi,Yi,Zi) ⇒ (X̃0, Ỹ0, Z̃0) as
i→∞, where Xi � X(i+w), Yi � Y(i+w), and Zi �
Z(i+w+ t) for i � 0, 1, · · ·. (As in Section 3, we let
w � s− �s�.) As noted in the introduction, in the simu-
lation setting, we must typically simulate the process
X in order to generate Y and Z. An important idea
that we will exploit algorithmically is that we have
the ability to “save” the state Xi and to potentially
generate multiple forward (conditionally indepen-
dent) simulations of Z to time i + w + t using Xi as the
“initial condition” for these simulations. This applica-
tion of “splitting” (see p. 127 of Asmussen and Glynn
2007) is especially useful in this prediction context.

To be specific, for i � 0, 1, · · · and j � 1, 2, · · · ,m,
let Zij � f (Xij(i+w+ t)), where (Xij(u) : i+w ≤ u ≤
i+w+ t) is a forward simulation of X̃ from time i +
w to time i + w + t, using Xi as the initial condition at
time i + w. Given Xi, the multiple forward simulations
(Xij(u) : i+w ≤ u ≤ i+w+ t) for j � 1, 2, · · · ,m should
be generated independently of each other, and of Zi.

We can express the independence mathematically as
follows:

P(Zij ∈Aij, i� 0,1, · · · ,n, j� 1,2, · · · ,m |X0, · · · ,Xn)

�∏n
i�0

∏m
j�1

P(Zi ∈Aij |X0, · · · ,Xn) (4:1)

for any measurable subset Aij ⊆ R. When computing
our proposed estimators in Sections 4.1 and 4.2, one
needs to generate the Zij’s only when Yi � y or λ((Yi −
y)=an) is positive.

Throughout this section, we let μ(x) � E[Z0 | X0 � x]
for x ∈ S.

4.1. Discrete Case: Proposed Estimator kn(y)
Suppose that S′ is either finite or countably infinite, so
Ỹ0 is an S′-valued discrete rv. Assume that p(y) �
P(Ỹ0 � y) > 0. After generating a single run ((Xi,Yi,
Zi) : i � 0, 1, · · ·) along with the Zij’s, we estimate k(y)
via

kn(y) �
∑n−1

i�0 1
mZi + 1

m
∑m−1

j�1 Zij

( )
I(Yi � y)∑n−1

i�0 I(Yi � y)
for n � 1, 2, · · ·.

To analyze the estimator kn(y), we use the following
assumptions.

A2.
(a) There exists a positive real number σ3 such that, as

n→∞,

n−1=2
∑n−1
i�0

1
m
(Zi −μ(Xi)) + (μ(Xi) − k(y))

( )
I(Yi � y)

⇒ σ3N(0, 1): (4.2)

(b) There exists a positive real number σ′3 such that, condi-
tional on X, as n→∞,

n−1=2
∑n−1
i�0

1
m− 1

∑m−1

j�1
(Zij −μ(Xi))I(Yi � y)

( )

⇒ σ
′
3��������

m− 1
√ N(0, 1): (4.3)

(c)We have that

1
n

∑n−1
i�0

I(Yi � y) → p(y) (4.4)

a.s. as n→∞.

We now introduce a set of conditions under which
A2 holds.

B3. We have that (X̃i : i � 0, 1, : : : ) is a strongly mixing se-
quence with the strong mixing coefficients (αn : n � 1, 2, : : : ).
There exists a positive real number δ such that
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(a) E[| Z̃0|2+δ] <∞,
(b)∑∞

n�1α
δ=(2+δ)
n <∞,

(c) supx∈SE[|Z̃0|2+δ |X̃0 � x] <∞, and E[|var[Z̃0 |X̃0]|2+δ] <∞.

With B3 in place, we have the following theorem
describing the behavior of kn(y) when the simulation
budget n goes to infinity. The proof of Theorem 3 is
provided in Section EC.1 of the e-companion to this
paper.

Theorem 3. Suppose that (X̃i : i � 0, 1, : : : ) is a Harris er-
godic (i.e., aperiodic and positive recurrent) Markov chain.
Let (Xi : i � 0, 1, : : : ) be a Markov chain with the same tran-
sition kernel as that of (X̃i : i � 0, 1, : : : ) and an arbitrary
initial distribution. Let (Zij : i � 0, 1, : : : , j � 1, 2, : : : ) be a
family of real-valued rv’s satisfying (4.1). Let Ãi¢(1m (Z̃i −
μ(X̃i)) + (μ(X̃i) − k(y)))I(Ỹi � y) for i � 0, 1, : : : . Under
A0 and B3,

σ2(m)¢var[Ã0] + 2
∑∞
i�1

cov[Ã0, Ãi]

is convergent, and items (b) and (c) of A2 hold with
σ′3 � η(y) ������

p(y)√
, where η(y) � E[var[Z̃0 |X̃0]|Ỹ0 � y]. Fur-

thermore, if σ2(m) > 0, then A2(a) holds with σ3 � σ(m)
and, as n→∞,

n1=2(kn(y) − k(y)) ⇒ ν(m)
p(y) N(0, 1),

where

ν2(m) � σ2(m) +m− 1
m2 η2(y)p(y):

Remark 4. As in Corollary 1, we can establish B3(b)
by requiring that (X̃i : i � 0, 1, : : : ) is geometrically
ergodic.

Remark 5. It should be noted that

σ2(m) →var[(μ(X0) − k(y))I(Y0 � y)]
+ 2

∑∞
i�1

cov[(μ(X0) − k(y))

× I(Y0 � y), (μ(Xi) − k(y))I(Yi � y)]
as n→∞.

4.1.1. How Do We Choose the Split Factor m? We ex-
pect that the asymptotic variance of kn(y) will usually
decrease as a function of the “split factor” m. Of
course, the larger the value of m, the more computa-
tion time is spent. Consequently, we seek an optimal
value m∗ ∈ {1, 2, : : : } that “trades off” the variance ver-
sus computational time. To compute m∗, we take the
view that the computation time needed to generate X
per unit time simulated is d1 and the computation time
needed to generate a single Zij is d̃2. However, the Zij’s
are generated only if Yi � y, so that the computation

time c required to compute kn(y) is approximately
(d1 + d2m)n (with d2 � d̃2p(y)), so that n ~ �c=(d1 + d2m)�
as c→∞. If kc(y) is the estimator available after ex-
pending c units of computer time, then we note that
Theorem 3 implies that

c1=2
(
kc(y)−k(y))⇒ ����������������������������

(d1+d2m)ν2(m)=p(y)2
√

N(0, 1) (4.5)

as c→∞. We therefore choose m to minimize the as-
ymptotic variance h(m)¢(d1 + d2m)ν2(m)=p(y)2 ap-
pearing in (4.5). Because h(·) is eventually increasing,
this minimization can be done by evaluating h(·) on
some suitably chosen “interval” {1, 2, : : : ,m′} and
choosing m∗ as the minimizer of h(·) on this interval.

4.2. Continuous Case: Proposed Estimator kn9 (y)
We next turn to the setting in which Ỹ0 is a continu-
ous Rd-valued rv with density g(·) for which g(y) > 0.
For the same choice of bandwidth (an : n ≥ 1) as in
Section 3, let λin(y) � λ

((Yi − y)=an).
After generating a single run ((Xi,Yi,Zi) : i �

0, 1, : : : ) along with the Zij’s, we estimate k(y) via

k′n(y) �
∑n−1

i�0 1
mZi + 1

m
∑m−1

j�1 Zij

( )
λin(y)∑n−1

i�0 λin(y) :

To establish the CLT for k
′
n(y), we use the following

condition.

B4. B2 holds with Z̃i replaced by Zi¢ 1
mZi + 1

m
∑m−1

j�1 Zij, Ỹi

replaced by Yi, and X̃i replaced by (Xi,Zi) for i � 0, 1, : : : .

With B4 in place, we have a CLT for k
′
n(y). The proof

of Theorem 4 is provided in Section EC.1 of the
e-companion to this paper.

Theorem 4. Let (Xi : i � 0, 1, : : : ) be a Markov chain with
the same transition kernel as that of (X̃i : i � 0, 1, : : : ). Sup-
pose that (Xi : i � 0, 1, : : : ) is initialized from its stationary
distribution. Let (Zij : i � 0, 1, : : : , j � 1, 2, : : : ) be a family
of real-valued rv’s satisfying (4.1).

Under A0 and B4, as n→∞,

(nadn)1=2(k′
n(y) − k(y)) ⇒ ν′(m)N(0, 1),

where

ν′2(m) � E[(μ(X̃i) − k(y))2 | Ỹi � y]
(
+ 1
m
E[(Z̃i −μ(X̃i))2 | Ỹi � y])

∫ 1

0
{fλ(x)}2dx

g(y)
(∫ 1

0
fλ(x)dx

)2 :
Remark 6. When an ~ an− 1

d+4 for some positive real
number a, the rate of convergence of k

′
n(y) is of order

n− 2
d+4. Hence, the convergence rate degenerates as the

dimension of S′ increases.
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Remark 7. The numerical behavior of k
′
n(y) depends

on what type of kernel λ is used. In Section EC.7 of
the e-companion to this paper, we observe the numer-
ical behavior of k′n(y) for different types of kernels.

4.2.1. How Do We Choose the Split Factor m When
an ∼ an2g for Some 0 < g < 1=d as nfi‘? To illustrate
how the split factor m is chosen in practice, we con-
sider a specific setting where an ~ an−γ as n→∞ for
some positive real numbers a and γ satisfying γ < 1=d.

If k
′
c(y) is the version of k

′
n(y) available after expend-

ing c units of computer time (with the bandwidth for
computer budget c chosen so that an ~ an−γ with
n � �c=(d1 + d2m)�), then we note that

c(1−γd)=2(k′
c(y) − k(y)) ⇒ (d1 + d2m)(1−γd)=2 ν

′(m)
ad=2

N(0, 1)

as c→∞. We therefore choose m to minimize the as-
ymptotic mean square error h′(m)¢(d1 + d2m)1−γd
ν′2(m)=ad. Because h′(·) is eventually increasing, this
minimization can be done by evaluating h′(·) on some
suitably chosen interval {1, 2, : : : ,m′} and choosing m∗
as the minimizer of h′(·) on this interval.

4.2.2. An Alternative Estimator. We conclude this sec-
tion with a discussion of an alternative estimator to
k
′
n(y). Suppose that we wish to sample the Zij’s in such
a way that more Zij samples are taken whenever Yi is
close to y (say, in proportion to λ((y−Yi)=an). In par-
ticular, let N1,N2, : : : be a sequence of independent
and identically distributed (i.i.d.) unit rate Poisson
processes independent of ((Xi,Yi,Zi) : i � 0, 1, : : : ) and
the Zij’s. Given ((Xi,Yi,Zi) : i � 0, 1, : : : ), for θ >
0, Ni(θλin(y)) follows a Poisson distribution with a
mean of θλin(y). For θ > 0, we suggest the following
estimator

k
′

n(y) �
∑n−1

i�0
∑Ni(θλin(y))

j�1 Zij∑n−1
i�0 Ni(θλin(y))

as an alternative to k
′
n(y).

The CLT for k
′

n(y), which is provided in Section
EC.2 of the e-companion to this paper, states that k

′

n(y)
asymptotically behaves identically to ∑n−1

i�0 (μ(Xi) −
k(y))λin(y)=∑n−1

i�0 λin(y).
The numerical performance of k

′

n(y) is compared
with that of k

′
n(y) in EC.8 of the e-companion to this

paper.

4.2.3. Selecting the Bandwidth Sequence (an : n ≥ 1).
The performance of k

′
n(y) is highly sensitive to the

choice of the bandwidth sequence (an : n ≥ 1). One
way to select the bandwidth is via leave-one-out cross
validation. We introduce two heuristic approaches
that are based on leave-one-out cross validation. In

the first, after generating (Xi,Yi,Zi) along with the Zij’s
for i � 0, 1, : : : ,n− 1 and j � 1, : : : ,m− 1, we treat
((Yi,Zi) : i � 0, 1, : : : ,n− 1) as a data set used for estimat-
ing the unknown function k(·), where Zi � 1

mZi +
1
m
∑m−1

j�1 Zij for i � 0, 1, : : : ,n− 1. Using the idea of leave-
one-out cross validation, we select an as the minimizer of

CV(ζ)¢ 1
n

∑n−1
i�0

(k′−i,ζ(Yi) −Zi)2

over ζ > 0, where k′−i,ζ(Yi) is calculated from

k′−i,ζ(Yi) �
∑n−1

k�0, k≠iZkλ((Yk −Yi)=ζ)∑n−1
k�0, k≠iλ((Yk −Yi)=ζ) :

In other words, k′−i,ζ(Yi) is our proposed estimator of
k(Yi) calculated from ((Yk,Zk) : k � 0, 1, : : : ,n− 1, k≠ i)
using the bandwidth ζ. It should be noted that the
Zij’s should be generated for every i � 0, 1, : : : ,n− 1 in
this approach, so it may require a significant amount
of time to compute CV(ζ). One way to reduce the
computation time is by selecting an via cross valida-
tion using ((Yi,Zi) : i � 0, 1, : : : ,n− 1) only. Thus, in the
second approach, we let an be the minimizer of

CV∗(ζ)¢ 1
n

∑n−1
i�0

(k′−i,ζ,∗(Yi) −Zi)2

over ζ > 0, where k′−i,ζ,∗(Yi) is calculated from

k−i,ζ,∗′(Yi) �
∑n−1

k�0,k≠i Zkλ((Yk −Yi)=ζ)∑n−1
k�0,k≠iλ((Yk −Yi)=ζ) :

In Section EC.9 of the e-companion to this paper, we
report the numerical behavior of k

′
n(y) when (an : n ≥

1) is selected using these two approaches. For a gen-
eral discussion on how the bandwidth is selected via
cross validation in the kernel regression setting, see
section 8 of Györfi et al. (2002).

Remark 8. In choosing the bandwidth sequence
(an : n ≥ 1), one possible goal is to minimize the asymp-
totic mean square error. In this paper, we choose the
bandwidth so as to make the bias term asymptotically
negligible relative to the variance. We do this because our
goal here is to produce confidence intervals for our pre-
diction based on limiting normal rv’s with zero mean. To
produce estimators with minimal mean square error, the
bandwidth must be chosen so that the limiting normal in-
cludes a nonzero bias term (see theorem 5 ofMasry 2005).

5. Extensions
5.1 Markov Processes with Large Discrete State

Space: Proposed Estimator k∗
n(y)

When S′ is discrete, but large, it may be that p(y) is
still positive but very small. In this setting, the estima-
tor kn(y) may be unusable from a practical point of
view, unless n� 1=p(y), since np(y) is the expected
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number of visits to y over n time units. In this setting,
we propose using Zi even if Yi is not exactly equal to
y. In particular, we can assign a weight of λ((y−
Yi)=an) to the instance of Zi, so more weight is applied
to Zi when Yi is closer to y. This leads to the following
new estimator of k(y) for the case when S′ is discrete:

k∗n(y) �
∑n−1

i�0 1
mZi + 1

m
∑m−1

j�1 Zij

( )
λin(y)∑n−1

i�0 λin(y) :

The CLT for k∗n(y), which is provided in Section EC.3
of the e-companion to this paper, states that k∗n(y)
asymptotically behaves identical to kn(y). A more de-
tailed rationale behind the development of k∗n(y) is pro-
vided in Section EC.4 of the e-companion to this
paper.

5.2. Confidence Interval Methodology
We now briefly describe a confidence interval meth-
odology for the estimators described in Sections 3 and
4. We illustrate this in the setting of the estimator
kn(y), but the same approach can be implemented for
any of our estimators.

The approach that we will follow is to use the
method of batch means. In particular, we view kn(y) as
a functional of ((Xi,Zij) : i � 0, 1, : : : ,n− 1, j � 1, 2, : : :
m− 1), namely, kn(y) � ρ(Xi,Zij : i � 0, 1, : : : ,n− 1, j �
1, 2, : : :m− 1) for some appropriately defined mapping
ρ(·). Under the assumptions made earlier in this paper,
we expect X to “mix” rapidly enough that the ki,n(y)’s
are asymptotically independent, where

ki,n(y) � ρ(X(i−1)n+v,Z(i−1)n+v,j : v � 0, 1, : : : ,n− 1,

j � 1, 2, : : : ,m− 1)
for i � 1, 2, : : : is obtained by forming the estimator de-
fined by ρ, based on the observations associated with
the ith batch having length n.

Theorem 3 states that

n1=2(kn(y) − k(y)) ⇒ ν(m)=p(y)N(0, 1)
as n→∞. In the presence of appropriate mixing as-
sumptions, we expect that

n1=2(k1,n(y) − k(y), : : : ,kl,n(y) − k(y))
⇒ ν(m)=p(y)(N1(0, 1), : : : ,Nl(0, 1))

as n→∞, where the Ni(0, 1) rv’s are independent nor-
mal rv’s with mean 0 and unit variance. As a conse-
quence, the continuous mapping principle implies
that, for l ≥ 2,

l1=2 1
l
∑l

i�1 ki,n(y) − k(y)
( )

����������������������������������������
1
l−1

∑l
i�1 ki,n(y) − 1

l
∑l

j�1 kj,n(y)
( )2√ ⇒ tl−1

as n→∞, where tl−1 is a student’s t-distribution rv
with l – 1 degrees of freedom. Hence, the interval

1
l

∑l

i�1
ki,n(y) − zsn�

l
√ ,

1
l

∑l

i�1
ki,n(y) + zsn�

l
√

[ ]
is an asymptotic 100(1− δ)% confidence interval for
k(y) (with asymptotically exact converge as n→∞),
where

sn �
����������������������������������������
1

l− 1

∑l

i�1
ki,n(y) − 1

l

∑l

j�1
kj,n(y)

( )2√√√
and z is chosen so that P(−z ≤ tl−1 ≤ z) � 1− δ. Similar
batch means confidence intervals, based on the stu-
dent’s t-distribution rv with l – 1 degrees of freedom,
can be constructed for all of the other estimators pro-
posed in this paper.

5.3. Estimating E[Z̃ (s1 t) | Ỹ (s)5 y] for Various
Values of y and t

It should be noted that the proposed methods can be
extended to the case where one wishes to estimate
E[Z̃(s+ t)|Ỹ(s) � y] for various values of y and t. Spe-
cifically, once a long simulation run ((Xi,Yi,Zi) : i �
0, 1, : : : ) is generated, this simulation run can be used
to compute E[Z̃(s+ t)|Ỹ(s) � y] for various values of y
and t. When we want to compute E[Z̃(s+ t)|Ỹ(s) � y]
for various values of y, only the Zij’s need to be gener-
ated again for each y. Since the Zij’s need to be gener-
ated only when Yi � y or λ((Yi − y)=an) is positive, the
amount of time required to generate the Zij’s is small
compared with the amount of time required to
generate ((Xi,Yi,Zi) : i � 0, 1, : : : ). Computing E[Z̃(s+ t)
|Ỹ(s) � y] for various values of t also requires generating
the Zij’s only again.

6. Computational Examples
We conducted all simulations in this section using a
64-bit computer with an Intel Core i7-6700K CPU at 4
GHz and a RAM of 32 GB, and programmed all simu-
lations in MATLAB R2018a.

6.1. Continuous Case
We first consider the case where Ỹ(s) is a continuous rv.
Specifically, we consider a stationary two-dimensional
Ornstein–Uhlenbeck process in which X̃ � ((X̃1(u),
X̃2(u)) : u ≥ 0) satisfies the pair of stochastic differential
equations

dX̃1(u) � −X̃1(u)du+ dB1(u)
dX̃2(u) � −X̃1(u)du− X̃2(u)du+ dB2(u),

where B̃1 � (B̃1(u) : u ≥ 0) and B̃2 � (B̃2(u) : u ≥ 0) are
two independent standard Brownian motions.
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Our goal is to estimate k(2) � E[Z̃(s+ 1) | Ỹ(s) � 2],
where Z̃(u) � X̃2(u) and Ỹ(u) � X̃1(u) for u ≥ 0. In this
case, k(2) can be computed analytically and is given by
k(2) � −1:10 (see Section EC.6 of the e-companion to
this paper for the detailed derivation of k(2) � −1:10).

6.1.1. Confidence Intervals Based on the Method of
Batch Means. For fixed n, we used an � 0:5n−1=5 and
λ(z) � 1=2 if −1 ≤ z ≤ 1, and 0 otherwise. We next gen-
erated (X, Y, Z) along with the Zij’s with X initialized
at (0, 0). We computed the 95% confidence intervals
for k(2) using k

′
n(2) and the method of batch means

described in Section 5.2 with l � 20 batches. We repli-
cated the confidence interval procedure 200 indepen-
dent times. Table 1 reports the average of the 200
computer times required to generate each confidence
interval measured in seconds (T), the average of the
200 confidence interval midpoints, the average of the
200 half-widths, and the proportion (P) of time that
the 200 confidence intervals covered the true value of
k(2), when m � 1, 4, and 8. In Table 1, CI is the average
confidence interval midpoint 6 the average confi-
dence interval half-width. Table 1 reveals that the pro-
portion of the 95% confidence intervals covering the
true value of k(2) converges to its target value, which
is 95%, as n increases.

6.1.2. Effect of the Split Factor m. Theorem 4 de-
scribes how the split factor m affects the asymptotic
mean square error ν′(m)2. Specifically, Theorem 4
states that ν′(m)2 decreases as m increases. To illus-
trate this numerically, we generated a copy of k

′
n(2)

using an � 0:5n−1=5 and λ(z) � 1=2 if −1 ≤ z ≤ 1 and 0
otherwise, with X initialized at (0, 0). We then com-
puted (k′

n(2) − k(2))2 as an estimate of the mean square
error (MSE) of k

′
n(2). We replicated this procedure

200 independent times, generating 200 independent
estimates of the MSE. We then computed the 95% con-
fidence interval of the MSE using these 200 independent
values. Table 2 reports these 95% confidence intervals
(CI) for a variety of the m values when n � 1,000 and
n � 2,000, respectively. Table 2 also reports the com-
puter time (T) required to generate a single copy of
k
′
n(2) for each m and n value. Table 2 shows that, as m
increases, the MSE of k

′
n(2) decreases, as Theorem 4

claimed. It should be noted that more computer time
is required to generate k

′
n(2) as m increases. Thus, one

can expect that there is an optimal value of m mini-
mizing the asymptotic mean square error of k

′
n(2)

given a fixed computational budget.

6.1.3. How DoWe Verify the Convergence Rate Empiri-
cally? Theorem 4 establishes that the convergence rate
of (k′

n(2) − k(2))2 is of order n−4=5 when an �O(n−1=5).
To verify this empirically, we note that (k′

n(2) − k(2))2 �
O(n−4=5) is verified if log(k′

n(2) − k(2))2 � −(4=5)log(n) +
O(1) as n→∞ is verified. Thus, the problem boils
down to the question of verifying that the slope of the
graph of log(k′

n(2) − k(2))2 against log(n) is −4=5. To-
ward this goal, for each n, we generated a copy of
k
′
n(2) using m � 1, an � 0:5n−1=5, and the uniform den-
sity λ(·) over [−1, 1]; computed (k′

n(2) − k(2))2; and
repeated this procedure 20 independent times, gener-
ating 20 independent copies of (k′

n(2) − k(2))2. We then
computed the average of these 20 copies, which is
denoted by Mn. Table 3 shows the Mn values
for n ∈ {500, 1, 000, 5, 000, 10,000, 50,000, 100, 000}.

We plotted the logarithm ofMn as the dependent vari-
able, against the logarithm of the n values as the indepen-
dent variable, and computed the slope of this graph using
the least squares method. The slope, computed this way,
is –0.799, which is very close to its theoretical value –0.8.

6.1.4. How Does the Kernel-Based Estimator k
9

n(y)
Compare with Global Surface Fitting? In this example,
S′ is a continuous space. Thus, it is possible to construct
a “response surface” k̃n(·) of k(·) and use k̃n(y) as an esti-
mator of k(y). (This cannot be easily generalized to the
discrete case.) Once one generates (Xi,Yi,Zi) for i �
0, 1, : : : along with the Zij’s, such a response surface can
be constructed by using the Yi’s as the data for the inde-
pendent variable and Zi¢Zi=m+∑m−1

j�1 Zij=m for i �
1, 2, : : : as the data for the dependent variable. A key de-
cision here is which metamodel is used for the response
surface of k(·). In this example, we expect that k(·) is
smooth enough so that k(·) has a square-integrable sec-
ond derivative, namely,

∫ ∞
−∞{k

(2)(z)}2dz <∞. Thus, as a

response surface of k(·), we use the solution to the fol-
lowing minimization problem,

minimize
f∈F

1
n

∑n−1
i�0

(Zi − f (Yi))2 + c
∫ ∞

−∞
{ f (2)(z)}2dz (6.1)

for some smoothing constant c > 0, where F is the set
of functions f : R→ R, whose first derivative is

Table 1. 95% Confidence Intervals of k′n(2) Based on the Batch Means Method

m � 1 m � 4 m � 8

n T CI P T CI P T CI P

1,000 1.5 −1:006 0:25 0.85 1.5 −1:026 0:17 0.88 1.5 −1:006 0:17 0.85
2,000 3.1 −1:086 0:28 0.95 3.1 −1:086 0:11 0.92 3.0 −1:086 0:10 0.91
4,000 6.2 −1:106 0:13 0.95 6.2 −1:096 0:08 0.94 6.0 −1:106 0:06 0.95
True value −1:10 −1:10 −1:10
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absolutely continuous and the second derivative f (2)

satisfies
∫ ∞
−∞{f

(2)(z)}2dz <∞. The solution k̃n(·) to (6.1)
is referred to as the cubic smoothing spline. It is well
known that k̃n(·) can be expressed as a linear combina-
tion of some basis functions and that the coefficients in
the linear combination can be found by solving a sys-
tem of linear equations (see, e.g., p. 31 of Wahba 1990).
We next compare the numerical behavior of k̃n(2) to
that of our proposed estimator k

′
n(2). For each m and n,

we generated (X, Y, Z) along with the Zij’s; X was ini-
tialized at (0, 0). We computed k

′
n(2) using an � 0:5n−1=5

and the uniform density λ(·) over [−1, 1]. We also com-
puted k̃n(2) by solving (6.1) with the smoothing cons-
tant c � 0.01. We then computed (k′

n(2) − k(2))2 and
(̃kn(2) − k(2))2 as estimates of the MSE of k

′
n(2) and

k̃n(2), respectively. We repeated this procedure 1,000 in-
dependent times, generating 1,000 independent copies
of (k′

n(2) − k(2))2 and (̃kn(2) − k(2))2. Table 4 reports the
95% confidence interval of the MSE of k

′
n(2) and k̃n(2),

computed from these 1,000 independent copies.
Table 4 reveals that the MSE of k̃n(2) decreases as n

increases. This justifies the validity of k̃n(2) as an esti-
mator of k(2). Table 4 also displays that the MSE of
k̃n(2) decreases as m increases. Since more computer
time is required as m increases, one can expect that
there is an optimal value of m minimizing the MSE of
k̃n(2) for a fixed computational budget. In other
words, the “splitting” idea works to reduce the MSE,
even if one generates an estimator of k(2) using global
surface fitting. It should be also noted that, for every
value of n and m in Table 4, k̃n(2) produces a lower
MSE than k

′
n(2) does. This phenomenon is intuitively

acceptable since k̃n(2) makes use of the fact that k(·) is
a smooth function over its domain, whereas k′n(2) does
not make any functional assumptions on k(·).

6.2. Discrete Case: Container
Management System

In this section, we consider a simplified version of the
container management system (see Figure 2), which
motivated this paper. In this case, S′ is discrete, but
large, so we can use kn(y) and k∗n(y) to estimate k(y).

6.2.1. Description of the Container Management Sys-
tem. We consider a supply chain of a car manufac-
turer that consists of six external suppliers, three
manufacturing plants, and two assembly plants. Out-
side the supply chain, there are two external custom-
ers, who are dealerships A and B. Manufacturing
plant A manufactures the main engine part. It has two
external suppliers, suppliers A and B. Suppliers A and
B supply brakes and other engine components, re-
spectively. Manufacturing plant B manufactures the
body parts. It has two external suppliers, suppliers C
and D. Suppliers C and D supply doors and windows,
respectively. Manufacturing plant C manufactures the
interiors. It has two external suppliers, suppliers E
and F. Suppliers E and F supply floor mats and car
seats, respectively. Assembly plants A and B receive
all of the parts from manufacturing plants A, B, and C
and assemble them into the final products.

Dealership A places orders with assembly plant A
only. The interarrival times of the orders coming from
dealership A follow a discrete uniform distribution
over one and two days. Each order placed by dealer-
ship A consists of 10 vehicles. Dealership B places or-
ders with assembly plant B only. Interarrival times of
the orders coming from dealership B follow a discrete
uniform distribution over one and two days. Each or-
der placed by dealership B consists of 10 vehicles.

When an assembly plant receives an order of 10 ve-
hicles, it immediately places an order of the 10 vehicle
equivalents with manufacturing plants A, B, and C. In
other words, if a vehicle requires two interiors, then
the assembly plant places an order of 20 interiors
with manufacturing plant C. Whenever this happens,
each manufacturing plant places an order of the 10 ve-
hicle equivalents with each of its external suppliers
immediately.

We assume that each external supplier has 10
trucks, each manufacturing plant has 5 trucks, and
each assembly plant has 4 trucks. Each truck can carry
a container that can hold 10 vehicle equivalents.

We also assume that each external supplier has an
unlimited quantity of parts available. When an exter-
nal supplier receives an order, he or she checks if there
is a truck available. If there is a truck available, then
the external supplier loads the truck with the re-
quested parts and ships them out to the destination
plant. If there are not any trucks available, then the or-
der is backordered. The time between when an exter-
nal supplier receives an order and when he or she

Table 3. Average of 20 Independent Copies of (k′
n(2) − k(2))2

n 500 1,000 5,000 10,000 50,000 100,000

Mn 0.512 0.248 0.071 0.046 0.013 0.007

Table 2. 95% Confidence Intervals of the Mean Square
Error of k′n(2)

n � 1,000 n � 2,000

m T CI T CI

1 0.08 0.31 6 0.06 0.16 0.22 6 0.06
4 0.08 0.18 6 0.05 0.16 0.07 6 0.02
40 0.09 0.16 6 0.05 0.17 0.04 6 0.02

400 0.16 0.14 6 0.05 0.30 0.03 6 0.02
4,000 1.07 0.11 6 0.04 1.68 0.03 6 0.01
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ships out the order is negligible, given that a truck is
available. When a truck arrives at the destination
plant, it unloads the parts immediately, loads the
empty container back, and returns to the original
plant. The time required for a truck to travel from an
external supplier to a manufacturing plant (or from a
manufacturing plant to an external supplier) follows a
discrete uniform distribution between 5 and 25 days.

Each manufacturing plant waits until all of the parts
for an order are received. Once all of the parts are re-
ceived, they join a queue of orders, each of which will
be served by a single server. Once each order is com-
pleted by the server, the manufacturing plant checks
if there is a truck available. If a truck is available, then
the order is loaded and shipped to the destination as-
sembly plant. If there are not any trucks available,
then the order waits until a truck becomes available.
Each manufacturing plant can be modeled as a single-
server queue with a buffer of limited capacity, where
each job is served based on the first-in/first-out
(FIFO) discipline. Each manufacturing plant keeps a
list of where each order came from so that it can de-
liver the completed orders to the destination assembly
plants on the list. If the list has 20 orders, then the
manufacturing plant rejects any additional orders and
the rejected orders are lost. Thus, the list always has at
most 20 orders. The time required to process each or-
der at the server of a manufacturing plant follows a
discrete uniform distribution between two and eight
days in manufacturing plants A, B, and C. The time
required for a truck to travel from a manufacturing
plant to an assembly plant (or from an assembly plant
to a manufacturing plant) follows a discrete uniform
distribution between 6 and 20 days.

Assembly plants work in a similar fashion. Each as-
sembly plant waits until all of the parts for an order
are received. Once all of the parts are received, they
join a queue of orders, each of which will be served by
a single server. Once an order is completed by the
server, the assembly plant checks if there is a truck
available. If a truck is available, then the order is
loaded and shipped to the destination dealership. If
there are not any trucks available, then the order waits
until a truck becomes available. Each assembly plant
can be modeled as a single-server queue with a buffer
of infinite capacity, where each job is served based on
the FIFO discipline. The time required to process each

order at the server of each assembly plant follows a
discrete uniform distribution between 1 and 18 days.
The time required for a truck to travel from an assem-
bly plant to a dealership (or from a dealership to an
assembly plant) follows a discrete uniform distribu-
tion between 1 and 40 days.

6.2.2. Description of the Underlying Markov Process.
The supply chain described in Section 6.2.1 can be
simulated by recursively updating the state variables
of a Markov process X̃ � (X̃i : i � 0, 1, : : : ), where X̃i

consists of the following state variables:
• the elapsed interarrival times of orders coming

from dealerships A and B,
• the number of jobs being served or waiting in line

at each manufacturing or assembly plant,
• the list of orders, at each manufacturing plant, that

tells us where each order came from and the total num-
ber of orders on the list,

• the elapsed service time of the order that is cur-
rently being served at each manufacturing plant and
each assembly plant,

• the numbers of containers moving from each ex-
ternal supplier to each manufacturing plant, from
each manufacturing plant to each external supplier,
from each manufacturing plant to each assembly
plant, from each assembly plant to each manufactur-
ing plant, from each assembly plant to each dealer-
ship, from each dealership to each assembly plant,

• the elapsed traveling time of each container in transit,
• the number of brakes in manufacturing plant A

waiting for the other parts to arrive,
• the number of other engine components in

manufacturing plant A waiting for the other parts to
arrive,

• the number of doors in manufacturing plant B
waiting for the other parts to arrive,

• the number of windows in manufacturing plant B
waiting for the other parts to arrive,

• the number of floor mats in manufacturing plant C
waiting for the other parts to arrive,

• the number of car seats in manufacturing plant C
waiting for the other parts to arrive,

• the number of main engine parts in each assembly
plant waiting for the other parts to arrive,

• the number of body parts in each assembly plant
waiting for the other parts to arrive,

Table 4. 95% Confidence Interval of the MSE of k
′
n(2) and k̃n(2)

m � 1 m � 2 m � 4

n k
′
n(2) k̃n(2) k

′
n(2) k̃n(2) k

′
n(2) k̃n(2)

100 0.960 6 0.035 0.204 6 0.021 0.870 6 0.033 0.190 6 0.018 0.867 6 0.032 0.176 6 0.015
200 0.821 6 0.040 0.097 6 0.009 0.733 6 0.034 0.092 6 0.008 0.661 6 0.035 0.091 6 0.009
500 0.558 6 0.039 0.040 6 0.004 0.429 6 0.032 0.039 6 0.003 0.370 6 0.031 0.034 6 0.003
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• the number of interiors in each assembly plant
waiting for the other parts to arrive,

• the number of backorders at each external supplier,
• and the number of finished orders waiting for avail-

able containers at eachmanufacturing or assembly plant
at the beginning of the ith day. We assume that we can

observe Ỹ � (Ỹi : i � 0, 1, : : : ) � ((ỸA
i , Ỹ

B
i , Ỹ

C
i ) : i � 0, 1, : : : ),

where Ỹ
A
i , Ỹ

B
i , and Ỹ

C
i are the total numbers of orders on

the list of orders at manufacturing plants A, B, and C, re-
spectively, at the beginning of the ith day. We also assume
that Z̃i is the number of completed orders waiting for avail-
able containers at manufacturing plant C at the beginning
of the ith day. In this setting, we wish to estimate
E(Z̃15 | Ỹ0 � y), where

y � (20, 13, 14):
6.2.3. Numerical Behavior of kn(y) and k∗

n(y). For fixed
n, we used an � 2n−1=7, suggested by Remark 6 analo-
gously to the continuous case. It should be noted that
Remark 6 suggests that an ~ an− 1

d+4, where d is the di-
mension of y, not the dimension of the state space of X̃;
λ(z) is the density function of the multivariate standard
normal variable evaluated at z ∈ R

3 if ||z||≤ 5, and 0 oth-
erwise. We next generated (X, Y, Z) along with the Zij’s,
with X initialized empty and idle. (The elapsed interar-
rival times of orders coming from dealerships A and B
are set to be equal to 1.) We then computed kn(y) and
k∗n(y), along with their MSE (kn(y) − k(y))2 and (k∗n(y)) −
k(y))2 and replicated this procedure 200 independent
times. Table 5 reports the average (MSE) of 200 copies
of (kn(y) − k(y))2 and (k∗n(y)) − k(y))2, respectively.
Table 6 reports the average amount of computer time
(T) required to generate each copy of kn(y) (and k∗n(y),
respectively) measured in seconds, the average (Mean)
of the 200 copies of kn(y) (and k∗n(y), respectively), and
the standard deviation (Std) of the 200 copies of kn(y)
(and k∗n(y), respectively). The true value in the last row
of Table 6 is estimated by averaging 20 i.i.d. copies of
kn(y)withm � 40 and n � 500,000.

Tables 5 and 6 reveal that, as m increases, more
computer time is required to generate each estimator,
but a lower mean square error is achieved. They also
suggest that k∗n(y) outperforms kn(y), especially when
n is relatively small.

7. Conclusions
Motivated by a container management system, we
considered the problem of estimating k(y)� E[Z̃(s+ t)
| Ỹ(s) � y], where (X̃(u) : u ≥ 0) is the underlying Mar-
kov process, (Ỹ(u) : u ≥ 0) is the observed process, y
is the observation made at the current time s, and
Z̃(s+ t) is what we want to predict for time s + t. The
challenge was that the state space of Ỹ(s) is discrete and
large, and y is visited rarely. We tackled the issue of
initialization, proposed estimators based on the idea
of splitting and the kernel regression estimation, and es-
tablishedCLT-type results for the proposed estimators.

Offline-simulation online-application (OSOA) has
the advantage that when decisions need to be made
quickly in real time, the OSOA approach has the abil-
ity to quickly return predictions, because computing
the prediction at a newly acquired y value only in-
volves a function evaluation of the response surface.
On the other hand, when sufficient computing time
is available, our methodology provides fully rigor-
ous large-sample confidence intervals for the predic-
tion. Both methods suffer dimensional degradation
when the dimension of y is large. Further research
will be required to better understand the relative ad-
vantages and disadvantages of these newly intro-
duced methodologies, especially in high dimensional
settings.

Figure 2. A Simplified Version of the Supply Chain of a Car
Manufacturer
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Table 6. Computer Time, Average, and Standard Deviation
of kn(y) and k∗n(y) in the Container Management Example
When m � 1 and m � 4

m � 1 m � 4

kn(y) k∗n(y) kn(y) k∗n(y)
n T Mean Std T Mean Std T Mean Std T Mean Std

20,000 30 4.8 3.5 30 6.2 3.1 36 4.4 3.3 206 5.7 2.9
40,000 68 6.3 2.6 68 6.8 2.0 78 5.7 2.4 242 6.2 1.9
80,000 174 6.9 1.4 174 6.9 1.1 192 6.3 1.3 455 6.3 1.0
True value 6.0 6.0 6.0 6.0

Table 5. MSE of kn(y) and k∗n(y) in the Container
Management Example When m � 1 and m � 4

n kn(y) k∗n(y)
m � 1 20,000 13.8 9.5

40,000 6.6 4.4
80,000 2.7 2.1

m � 4 20,000 13.3 8.4
40,000 5.8 3.5
80,000 1.7 1.2
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