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Abstract. We consider the unconstrained minimization of the function F, where F � f +
g, f is an expectation-valued nonsmooth convex or strongly convex function, and g is a
closed, convex, and proper function. (I) Strongly convex f. When f is μ-strongly convex
in x, traditional stochastic subgradient schemes (SSG) often display poor behavior, aris-
ing in part from noisy subgradients and diminishing steplengths. Instead, we apply a
variable sample-size accelerated proximal scheme (VS-APM) on F, the Moreau enve-
lope of F; we term such a scheme as (mVS-APM) and in contrast with (SSG) schemes,
(mVS-APM) utilizes constant steplengths and increasingly exact gradients. We consider
two settings. (a) Bounded domains. In this setting, (mVS-APM) displays linear conver-
gence in inexact gradient steps, each of which requires utilizing an inner (prox-SSG)
scheme. Specically, (mVS-APM) achieves an optimal oracle complexity in prox-SSG
steps of O(1=ε) with an iteration complexity of O(log(1=ε)) in inexact (outer) gradients
of F to achieve an ε-accurate solution in mean-squared error, computed via an increas-
ing number of inner (stochastic) subgradient steps; (b) Unbounded domains. In this
regime, under an assumption of state-dependent bounds on subgradients, an unaccel-
erated variant (mVS-APM) is linearly convergent where increasingly exact gradients
∇xF(x) are approximated with increasing accuracy via (SSG) schemes. Notably, (mVS-
APM) also displays an optimal oracle complexity of O(1=ε); (II) Convex f. When f is
merely convex but smoothable, by suitable choices of the smoothing, steplength, and
batch-size sequences, smoothed (VS-APM) (or sVS-APM) achieves an optimal oracle
complexity of O(1=ε2) to obtain an ε-optimal solution. Our results can be specialized to
two important cases: (a) Smooth f. Since smoothing is no longer required, we observe that
(VS-APM) admits the optimal rate and oracle complexity, matching prior ndings; (b) Deter-
ministic nonsmooth f. In the nonsmooth deterministic regime, (sVS-APM) reduces to a
smoothed accelerated proximal method (s-APM) that is both asymptotically convergent
and optimal in that it displays a complexity of O(1=ε), matching the bound provided by
Nesterov in 2005 for producing ε-optimal solutions. Finally, (sVS-APM) and (VS-APM) pro-
duce sequences that converge almost surely to a solution of the original problem.
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License. You are free to copy, distribute, transmit and adapt this work, but you must attribute this
work as “Stochastic Systems. Copyright © 2022 The Author(s). https://doi.org/10.1287/stsy.2022.
0095, used under a Creative Commons Attribution License: https://creativecommons.org/licenses/
by/4.0/.”
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1. Introduction
We consider the following stochastic nonsmooth convex optimization problem:

min
x∈Rn

F(x), where F(x)¢f (x) + g(x), (1)

where f (x)¢E[ f̃ (x,ξ(ω))], ξ : Ω→ R
o, f̃ : Rn × R

o → R; g is a closed, convex, and proper deterministic function
with an efficient proximal evaluation; (Ω,H,P) denotes the associated probability space; and E[•] denotes the
expectation with respect to the probability measure P. Throughout, we refer to f̃ (x,ξ(ω)) by f̃ (x,ω), whereas
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F̃(x,ω)¢f̃ (x,ω) + g(x). We consider settings in which f̃ (·,ω) is nonsmooth strongly convex/convex in x for every
ω, generalizing the focus beyond the structured nonsmooth setting in which the “stochastic part” is smooth. Specif-
ically, structured nonsmooth problems require minimizing f (x) + g(x), where f is smooth, whereas g is non-
smooth with an efficient prox evaluation (allows for capturing constrained problems over closed and convex
sets).

Among the earliest avenues for resolving (1) is stochastic approximation (Robbins and Monro 1951, Kushner
and Yin 2003), and it is proven to be effective on a breadth of stochastic computational problems, including con-
vex optimization problems. Polyak and Juditsky (1992) develop an averaging scheme in convex differentiable
settings, deriving the optimal convergence rate of O(1= ���

K
√ ) under classic assumptions, where k is the number of

iterations. Among the cleanest of early complexity requirements for the minimization of expectation-valued

μ-strongly convex and convex functions over a closed and convex set X are given as max M2

μ2 , ‖x0 − x∗‖2
{ }

1
ε

( )
(to

ensure that E[‖xk − x∗‖2] ≤ ε) and O MDX
ε2

( )
(to ensure that the expected optimality gap is less than ε), respectively,

where S(x,ω) denotes a measurable selection from ∂x f̃ (x,ω), supx∈XE[‖S(x,ω)‖2] ≤M2, and DX¢maxx∈X‖x0 − x‖.
Of these, the former is presented by Shapiro et al. (2009), whereas the latter is the result of an optimal robust con-
stant step length stochastic approximation scheme suggested by Nemirovski et al. (2009). When f is both L-
smooth and μ-strongly convex, an improved complexity requirement (from a constant factor standpoint) of

O

����������
L‖x0−x∗‖2

ε

√
+ ν2

με

( )
is provided by Ghadimi and Lan (2013). This contrasts sharply with the deterministic regime in

which O(log(1=ε)) and O(1= ��
ε

√ ) steps are required in smooth strongly convex and smooth convex regimes to
compute an ε-accurate solution (ε-solution in terms of mean squared error) and ε-optimal solution (ε-solution in
terms of expected suboptimality), respectively. In structured nonsmooth regimes, there is an effort to employ the
stochastic generalization of an accelerated proximal gradient method to minimize f + g when f is smooth. Reliant
on a first order oracle that produces a sampled gradient ∇xf̃ (x,ω) and given an x0, our proposed variable sample-
size accelerated proximal gradient scheme (VS-APM) (also see Ghadimi and Lan 2016, Jofré and Thompson
2017) is stated as follows in which the true gradient is replaced by a sample average (∇x f (xk) + w̄k,Nk) with batch
size Nk.

yk+1 :� Pγkg(xk − γk(∇x f (xk) + w̄k,Nk))
xk+1 :� yk+1 + βk(yk+1 − yk), (2)

where w̄k,Nk¢
∑Nk

j�1(∇x f̃ (xk,ωj,k) −∇x f (xk))
Nk

, Pηg(y)¢argminx
1
2 ‖x− y‖2 + 1

2ηg(x)
{ }

, γk, and βk are suitably defined step lengths.

Our approach produces linearly convergent iterates in strongly convex regimes and achieves an iteration com-
plexity of O(1=K2) in merely convex and smooth regimes, where K is the total number of iterations, matching the
deterministic results seen in the work by Beck and Teboulle (2009) and Nesterov (1983). The avenue represented
by (2) has two key distinctions: (i) increasingly exact gradients through increasing batch sizes Nk of sampled gra-
dients, allowing for progressive variance reduction, and (ii) larger (nondiminishing) step sizes in accordance
with deterministic accelerated schemes. Collectively, (i) and (ii) allow for recovering fast (i.e., deterministic) con-
vergence rates (in an expected value sense) when Nk grows sufficiently fast. Additionally, such schemes have a
more muted reliance on the condition number κ � L=μ (in μ-strongly convex and L-smooth regimes); specifically,
in accelerated schemes, such dependence reduces to

��
κ

√
in comparison with κ in unaccelerated counterparts (cf.

Nesterov 2014).

1.1. Prior Research
1.1.1. Stochastic Gradient Schemes. In nonsmooth convex stochastic optimization problems, Nemirovski et al.
(2009) derive an optimal rate of O(1= ���

K
√ ) in terms of expected suboptimality via an optimal constant step length

(also see Shamir and Zhang 2013), whereas in strongly convex regimes, they derive a rate of O(1=K) in a mean
squared sense. Structured nonsmooth problems (or composite problems) as defined by (1) are examined exten-
sively (cf. Ghadimi and Lan 2012, Lan 2012), and rates of O(L=K2 + 1=

���
K

√ ) and O(L=K+ 1=
���
K

√ ) are developed by
Dang and Lan (2015) via a mirror-descent framework for strongly convex and convex problems with L-smooth
objectives, respectively. In related work, Devolder et al. (2014) derive oracle complexities with a deterministic
oracle of fixed inexactness, which is extended to a stochastic oracle by Dvurechensky and Gasnikov (2016).
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Randomized smoothing techniques are also employed by Yousefian et al. (2012) together with recursive step
lengths (see Newton et al. 2018 for a review).

1.1.2. Variance Reduction. In strongly convex regimes (without acceleration), a linear rate of convergence in
expected error is first shown for variance-reduced gradient methods by Shanbhag and Blanchet (2015) and revis-
ited by Jofré and Thompson (2017), whereas similar rates are provided for extragradient methods by Jalilzadeh
and Shanbhag (2016); the accelerated counterpart (VS-APM) mutes the dependence on κ, improving the bound
to O( ������

L=μ
√

log(1=ε)). In smooth regimes, an accelerated scheme is first presented by Ghadimi and Lan (2016),
in which every iteration requires two prox evaluations, admitting the optimal iteration complexity and oracle
complexity of O(1= ��

ε
√ ) and O(1=ε2), respectively. Jofré and Thompson (2017) extend this scheme to allow for

state-dependent noise. An extragradient-based variable sample-size framework is suggested by Jalilzadeh and
Shanbhag (2016) with a rate of O(1=K).

1.1.3. Smoothing Techniques for Nonsmooth Problems. For a subclass of deterministic nonsmooth problems,
Nesterov (2005b) proves that an ε-optimal solution is computable in O(1=ε) gradient steps by applying an accel-
erated method to a smoothed problem (primal smoothing with fixed smoothing parameter). Subsequently, Nes-
terov (2005a) considers primal–dual smoothing in deterministic regimes (extended to composite problems by
Tran-Dinh et al. 2018) with a diminishing smoothing parameter, leading to rates of O(1=K2) and O(1=K) for
strongly convex and convex deterministic problems, respectively (also see Devolder et al. 2012, Boţ and Hendrich
2013). Adaptive smoothing, considered by Tran-Dinh (2017), is shown to have an iteration complexity of O(1=ε),
whereas Ouyang and Gray (2012) show that smoothing-based minimization of E[ f̃ (x,ω)] +E[g̃(x,ω)] leads to
rates O(1=K) and O(1= ���

K
√ ) when g̃(·,ω) is nonsmooth for almost every (a.e.) ω, whereas f̃ (·,ω) is either strongly

convex or merely convex for a.e. ω (extended by Zhong and Kwok 2014).1

1.2. Gaps and Contributions
Unfortunately when f̃ (·,ω) is a nonsmooth strongly convex/convex function, stochastic subgradient schemes
(subsequently defined in (SSG)), while a de facto standard, generally display poor empirical behavior because
they utilize diminishing step lengths and noisy gradients. We develop two distinct avenues for combining
smoothing with acceleration and variance reduction in strongly convex and convex regimes that ameliorate these
concerns while achieving optimal rates.

1.2.1. mVS-APM for Strongly Convex Nonsmooth f. In Section 2, our smoothing framework is reliant on a varia-
ble sample-size accelerated proximal method (VS-APM), which requires smoothness of f while displaying linear
convergence and optimal oracle complexity. In two distinct settings, we propose applying VS-APM (or an unac-
celerated variant) on the Moreau envelope of F, denoted by Fη, where Fη is 1

η-smooth and retains the minimizers
of F.

1.2.1.1. Compact Domains. Under the assumption that the domain of g is bounded and E[‖S(x,ω)‖2] ≤M2 for
all x ∈ R

n, where S(x,ω) is a measurable selection from ∂f̃ (x,ω); i.e. S(x,ω) ∈ ∂f̃ (x,ω), we show that (mVS-APM)
produces a linearly convergent sequence with an iteration complexity of O(log(1=ε)) in inexact gradient steps
∇xFη(xk), where increasingly exact gradients ∇xFη(x) are obtained by employing a (prox-SSG) scheme. In particu-
lar, our variance-reduced scheme endeavors to get increasingly exact gradients by progressively reducing the
bias in the gradients (because we utilize an increasing number of SSG steps); such a benefit does not appear in a
naive implementation of SSG. Moreover, the overall complexity in subgradient evaluations (and consequently
sample or oracle complexity) is O(1=ε), matching the optimal complexity in subgradient steps achieved by
(SSG) schemes.

1.2.1.2. Unbounded Domains. When domains are possibly unbounded, assuming that E[‖S(x,ω)‖2] ≤ M̄2‖x‖2
+M2, where S(x,ω) ∈ ∂F̃(x,ω), the proposed (unaccelerated) variable sample-size proximal method (mVS-PM)
achieves an iteration complexity of O(log(1=ε)) (in gradient steps with ∇xFη) and overall complexity in subgra-
dient steps ofO(1=ε).

1.2.2. sVS-APM for Convex Nonsmooth f. In this setting, in Section 3, we develop an iterative smoothing-based
extension of VS-APM, denoted by sVS-APM. By reducing the smoothing and step length parameters at a suitable
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rate, E[F(yK) − F(x∗)] ≤O(1=K). Notably sVS-APM produces asymptotically accurate solutions (unlike the scheme
by Nesterov (2005b), which produces approximate solutions via a fixed smoothing parameter) and is character-
ized by the optimal oracle complexity of O(1=ε2). When f is convex and smooth, we may specialize these results
to obtain an optimal rate of O(1=K2) and display an optimal sample complexity of O(1=ε2). When f is determinis-
tic but nonsmooth, s-APM matches the rate by Nesterov (2005b) but produces asymptotically exact solutions.
Additionally, we prove that, for suitable (but distinct) choices of step length and smoothing sequences, sVS-APM
and VS-APM produce sequences that converge almost surely (a.s.) to a solution of (1), a convergence statement
that was unavailable thus far, matching deterministic results by Orabona et al. (2012) and Boţ and Hendrich
(2015) that leverage Moreau smoothing; we provide a result for (α,β)-smoothable functions (see Beck 2017).

1.2.3. Notation. A vector x is assumed to be a column vector, whereas ‖x‖ denotes the Euclidean vector norm,
that is, ‖x‖ � �����

xTx
√

. Pηg(x) denotes the prox with respect to gwith prox parameter 1
2η at x. E[z] denotes the expecta-

tion of a random variable z. We let X∗ denote the set of optimal solutions of (1).

2. Nonsmooth Strongly Convex Problems
In this section, we develop rate and complexity analysis for nonsmooth strongly convex optimization problems
via techniques that combine smoothing, acceleration, and variance reduction. In Section 2.1, we review a linearly
convergent variance-reduced accelerated proximal scheme (VS-APM) for smooth stochastic convex optimization;
this scheme serves as our subproblem solver. In Section 2.2, we present a Moreau-smoothed variant of VS-APM,
referred to as (mVS-APM), which relies on minimizing the Moreau envelope Fη of the strongly convex non-
smooth function F by VS-APM. In Section 2.3, we then derive rate and complexity guarantees for (mVS-APM),
where ∇xFη is approximated with increasing accuracy by a stochastic subgradient (SSG) scheme. Finally, in Sec-
tion 2.4, we derive analogous statements when applying an unaccelerated variable sample-size proximal method
(mVS-PM) under possibly non-compact domains and under a (weaker) state-dependent bound on the subgra-
dient (see Table 1 for a summary of findings).

2.1. Background on VS-APM
Consider (1), in which f, g, and the initial point x0 satisfy the following assumption.

Assumption 1. (i) f is a μ-strongly convex function, and g is a closed, convex, and proper deterministic function. (ii) There
exist C,D > 0 such that E[‖x0 − x∗‖2] ≤ C and E[‖F(x0) − F(x∗)‖] ≤D, where F(x)¢f (x) + g(x) and x∗ solves (1).

In a subset of regimes, we impose an L-smoothness assumption on f.

Assumption 2. The function f is continuously differentiable with a Lipschitz continuous gradient with constant L; i.e.,
‖∇x f (x) −∇x f (y)‖ ≤ L‖x− y‖ for all x,y ∈ R

n:

We utilize a variable sample-size accelerated proximal scheme (VS-APM) as defined in Algorithm 1, which
can process such problems and differs from a standard accelerated proximal method in that we employ an

Table 1. Comparison of Schemes in Nonsmooth (NS) and Strongly Convex Regimes in Terms of Convergence Rate and
Complexity of Iterations, Proximal Evals., and Oracle Evaluations (κ � L=μ), Where ρ ∈ (0, 1)

Smooth
Conv. rate
iter. comp.

Prox. eval.
oracle comp. Comments

VS-APM (2.1)
f is L-smooth

O(ρk)
O( ��

κ
√

log(1=ε))
O( ��

κ
√

log(1=ε))
O(κ=ε)

Optimal rate and complexity

Nonsmooth
Conv. rate
iter. comp. Oracle comp. Comments

(mVS-APM) (2.3)
dom(g) is bounded;
E[‖R(x,ω)‖2] ≤M2

∀R(x,ω) ∈ ∂f̃ (x,ω)

O(ρk)
O(log(1=ε))

O(1=ε) Minimize Moreau env. Fη(x) via VS-APM
Nondiminishing outer steps;
Approx. ∇xFη by (prox-SSG) with increasing exactness

mVS-PM (2.4)
E[‖S(x,ω)‖2] ≤ M̄2‖x‖2 +M2

∀S(x,ω) ∈ ∂f̃ (x,ω)

O(ρk)
O(log(1=ε))

O(1=ε) Minimize Moreau env. Fη(x) via (VS-PM)
Nondminishing outer steps;
Approx. ∇xFη(x) by (SSG) with increasing exactness;
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inexact gradient ∇x f (xk) + w̄k,Nk , where the bound on the second moment of w̄k,Nk¢∇x f (xk) −
∑Nk

k�0∇x f (xk,ωk)
Nk

is dimin-
ishing with k, a consequence of using variance reduction.

Algorithm 1 (Variable Sample-Size Accelerated Proximal Method)
(0) Given x0, y0 � x0, κ, and positive sequences {γk,Nk}, set λ1 ∈ (1, ��

κ
√ ], k :� 1.

(1) yk+1 :� Pγkg(xk − γk(∇x f (xk) + w̄k,Nk)).
(2) λk+1 :� 1

2 1− λ2
k
κ +

�������������������
1− λ2

k
κ

( )2 + 4λ2
k

√( )
.

(3) xk+1 :� yk+1 + (λk−1) 1− 1
4κλk+1( )

1− 1
4κ( )λk+1

( )
(yk+1 − yk).

(4) If k > K, then stop; else k :� k+ 1; return to step 1.

We outline the assumptions on the first and second moments of w̄k.

Assumption 3. (i) Conditional boundedness of second moments: there exists ν > 0 such that E[‖w̄k‖2 |Hk] ≤ ν2

Nk
holds a.s.

for all k and Hk¢σ{x0,x1, : : : ,xk−1}. (ii) Conditional unbiasedness of first moments: E[wk |Hk] � 0 holds a.s., where
wk¢∇x f (xk,ωk) − ∇x f (xk).

VS-APM can be shown to achieve linear convergence akin to that by Nesterov (2014) by combining inexact gra-
dients in which the inexactness is driven to zero by increasing the sample-size in estimating the gradients. This
avenue also allows for achieving the optimal oracle complexity to obtain an ε-accurate solution. These differences
lead to a slightly modified set of update rules in contrast with that developed by Nesterov (2014) and require
that γk � 1=2L rather than 1=L. This scheme serves as a subproblem solver in subsequent sections, and we now
state a lemma and the associated complexity statement of VS-APM. The proof is similar to that by Nesterov
(2014) and is in the appendix. Importantly, this scheme allows for a possibly biased estimate of the gradient.

Lemma 1. Suppose Assumptions 1–3(i) hold. Consider the iterates generated by VS-APM, where γk � 1
2L for all

k ≥ 0, κ � L
μ, and ᾱ � 1

2
��
κ

√ . Then, the following holds for all K.

E[F(yK) − F∗] ≤ D+μ

2
C2

( )
(1− ᾱ)K−1 +∑K−1

i�0

(1− ᾱ)i 2L+
1
μ

( )
ν2

Nk−i
+∑K−2

i�0

(1− ᾱ)i+1 2
L+

1
μ

( )
ν2

Nk−i−1
:

(3)

The following theorem characterizes the iteration and oracle complexity of VS-APM.

Theorem 1 (Rate and Oracle Complexity of VS-APM Under Biased Oracles). Suppose Assumptions 1–3(i) hold. Con-

sider the iterates generated by VS-APM, where γk¢
1
2L , Nk¢�ρ−k�, θ¢ 1− 1

2
��
κ

√
( )

, ρ¢ 1− 1
2a

��
κ

√
( )

for all k ≥ 0 and a > 2.

i. For all K, we have that E[F(yK) − F∗] ≤ C̃ρK−1 where C̃¢ D+ μ
2C

2
( )

+ 4ν2
μ + 2ν2

��
κ

√
μ : (4)

In addition, VS-APM needsO
��
κ

√
log 1

ε

( )( )
steps to obtain an ε-accurate solution, that is, E[F(yK+1) − F∗] ≤ ε.

ii. To compute an ε-accurate solution, ∑K
k�1Nk ≤ D+ μC2

2

( )
+ 4ν2

μ + 2ν2
��
κ

√
μ

( )
O

��
κ

√
ε

( )
:

We know of no other result for variance-reduced accelerated proximal schemes in strongly convex (or even
convex) smooth regimes that allows for biased oracles. For instance, Schmidt et al. (2011) impose unbiasedness in
strongly convex regimes. Next, we show that adding the unbiasedness requirement, that is, E[wk |Hk] � 0 a.s. for
all k improves the constants in these bounds.

Corollary 1 (Rate and Oracle Complexity of VS-APM Under Unbiased Oracles). Suppose Assumptions 1–3(i,ii) hold.

Consider the iterates generated by VS-APM, where γk¢
1
2L , Nk¢�ρ−k�, θ¢ 1− 1

2
��
κ

√
( )

, ρ¢ 1− 1
2a

��
κ

√
( )

for all k ≥ 0 and a > 2.

i. For all K, we have that E[F(yK) − F∗] ≤ C̃ρK-1 where C̃¢ D+ μ
2C

2
( )

+ 4ν2
μ : (5)

In addition, VS-APM needsO( ��
κ

√
log(1=ε)) steps to obtain an ε-accurate solution.
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ii. To compute an ε-accurate solution,
∑K

k�1Nk ≤ D+ μC2

2

( )
+ 4ν2

μ

( )
O

��
κ

√
ε

( )
:

The application of VS-APM is afflicted by the need for the L-smoothness of f as well as the availability of L, the
Lipschitz constant. Naturally, in many settings, the problem may not be smooth, and even if L-smoothness holds,
an estimate of L may be unavailable. Consequently, to broaden the reach of the scheme, an approach that obvi-
ates the need for L or the imposition of the smoothness assumption is necessitated. This prompts the subsequent
smoothed scheme, (mVS-APM). This scheme can always be implemented if the strong convexity modulus
(denoted by μ) is known but the function is either nonsmooth or smooth with an unknown Lipschitz constant L.
It is worth noting that estimating μ is challenging, and if μ is indeed unknown, then in Section 3, we introduce
an iteratively smoothed VS-APM (sVS-APM) method that necessitates neither the knowledge of the Lipschitz
constant L nor the smoothness of f nor the strong convexity modulus μ.

2.2. A Moreau-Smoothed Inexact Accelerated Framework (mVS-APM)
When f̃ (·,ω) is a nonsmooth strongly convex function for almost every ω, then the standard approach lies in uti-
lizing stochastic subgradient schemes (SSG) in which convergence relies on choosing square-summable but non-
summable step length sequences. The choice of the parameters in such sequences can have a debilitating impact
on performance in some settings (cf. Shapiro et al. 2009). Specifically, choosing γk as 1=(μλ) minimizes the mean
squared error but overestimating μ can have catastrophic impact as seen in Shapiro et al. (2009, section 5.9, exam-
ple 5.36). More generally, such choices are often characterized by poor asymptotic behavior, a consequence that
arises in part from the diminishing nature of step length sequences and the noisy subgradients. We consider a
distinct avenue reliant on minimizing the Moreau envelope of a closed, convex, and proper function F (cf. Mor-
eau 1965), denoted by Fη and defined next.

Fη(x)¢min
u

F(u) + 1
2η

‖u− x‖2
{ }

: (6)

Notably, this smoothing retains the minimizer of Fwhen F is strongly convex.

Lemma 2 (Planiden and Wang 2016, Lemma 2.19). Consider a convex, closed, and proper function F and its Moreau
envelope Fη(x). Then, the following hold: (i) x∗ is a minimizer of F over Rn if and only if x∗ is a minimizer of Fη; (ii) F is
μ-strongly convex on R

n if and only if Fη is μ̄-strongly convex on R
n, where μ̄¢ μ

ημ+1.

Consequently, we minimize the μ̄-strongly convex and 1
η-smooth function Fη, which is not necessarily an

easy task because computing ∇xFη(x) necessitates solving nonsmooth stochastic optimization problems. We
adopt an inexact accelerated proximal scheme for minimizing Fη. But, in contrast with (SSG) schemes applied to
minimizing F, we control the smoothness of the outer problem by choosing η and utilize (i) larger nondiminish-
ing step lengths, (ii) acceleration, and (iii) increasingly exact gradients, all of which are distinct from (SSG), as
shown next.

xk+1 :� xk − γkuk
uk ∈ ∂F̃(xk,ωk):

(SSG)
[ ]︷���������������︸︸���������������︷γk→0, uk is noisy subgradient:

yk+1 :� xk − γk(∇xFη(xk) + w̄k,Nk),
xk+1 :� yk+1 + βk(yk+1 − yk): (mVS−APM)

[ ]︷��������������������������������︸︸��������������������������������︷Non-diminishing γk + increasingly exact gradients + Acceleration

Importantly, ∇xFη(xk) + w̄k,Nk represents an approximation of the gradient of the Moreau envelope. The true gra-
dient of the Moreau envelope Fη is defined as ∇xFη(x) � 1

η (x−proxηF(x)), where

proxηF(x)¢argmin
u

F(u) + 1
2η

‖x− u‖2
{ }

: (7)

But proxηF(x) cannot be computed in finite time because F is a nonsmooth, expectation-valued convex function.
Instead, via stochastic approximation, we compute an approximate solution of proxηF(x) denoted by p̂roxηF(x),
implying that the inexact gradient of Fη(x) is given by 1

η (x− p̂roxηF(x)). In Algorithm 1, the inexact gradient
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∇xFη(xk) + w̄k,Nk is defined as

∇xFη(xk) + w̄k,Nk �
1
η
(xk − proxηF(xk)) +

1
η
(proxηF(xk) − p̂roxηF(xk))

︷��������������︸︸��������������︷¢w̄k,Nk

: (8)

We now proceed to develop (mVS-APM) for compact domains in Section 2.3 and then weaken compactness
requirements in Section 2.4 for an unaccelerated variant.

2.3. Linear Convergence of (mVS-APM): Compact Domains
When F(x) � E[ f̃ (x,ω)] + g(x), proxηF(x), defined as (7), is generally unavailable in closed form and requires solv-
ing a strongly convex nonsmooth stochastic optimization problem exactly. Instead, one may solve (6) inexactly
using (prox-SSG), a slightly extended variant of (SSG) (Shapiro et al. 2009). In particular, we propose (mVS-
APM) with the following update rules for k ≥ 1:

yk+1 :� xk − γk

η
(xk − p̂roxηF(xk)), (9a)

xk+1 :� yk+1 + βk(yk+1 − yk), (9b)

where p̂roxηF(xk) is obtained by taking finite number of steps of (prox-SSG) with a sample size of one at each
step and having the following update rule for j � 0, : : : ,Nk − 1:

zk,j+1 :� Pη=j,g

(
zk,j − η

j
uj

)
, uj ∈ ∂f̃ (zk,j,ωj): (prox-SSG)

Next, we state our assumptions and present the main result of this section. The constant in the rate and complex-
ity bounds is dependent on κ̃; unlike the condition number κ in smooth regimes, κ̃ is user-specified and can be
relatively small. For instance, κ̃ � 2 when η � 1=μ. We employ a measurable selection from ∂f̃ (x,ω) as a stochastic
subgradient in (SSG) and impose the following assumption.

Assumption 4. For any x ∈ R
n, consider a measurable selection R(x,ω) ∈ ∂f̃ (x,ω). Unbiasedness: we have that

E[R(x,ω)] � R(x) ∈ ∂f (x): Subgradient boundedness: there exists M > 0 such that for any x, E[‖R(x,ω)‖2] ≤M2. Compact
domain: the function g has a compact domain, that is, there exists Δ > 0 such that ‖x‖ ≤ Δ for any x ∈ dom(g).
Theorem 2 (Rate and Oracle Complexity of (mVS-APM)). Suppose Assumptions 1 and 4 hold. Consider the iterates

generated by VS-APM applied on Fη(x) defined as (6), where θ¢ 1− 1
2

��̃
κ

√
( )

, ρ¢ 1− 1
2a

��̃
κ

√
( )

, κ̃ � μη+1
μη , a > 2, and γk �

η=2, Nk � �ρ−k� for all k ≥ 0. Then, the following hold for Q¢max{η2M2, 4Δ2}.
i. Rate: for all K ≥ 1, we have that

E[‖yK − x∗‖2] ≤ ĈρK−1 where Ĉ¢2Dηκ̃ +C2 + 8κ̃5=2Qa: (10)

ii. Outer iteration complexity: the iteration complexity of (mVS-APM) in gradient steps (of ∇x fη(xk)) to obtain an
ε-accurate solution isO( ��̃

κ
√

log(Ĉ=ε)).
iii. Oracle complexity: to compute yK such that E[‖yK − x∗‖2] ≤ ε, the complexity of SSG steps is bounded as follows:∑K
k�1Nk ≤ 2a2

��̃
κ

√
Ĉ

(a−1)ε �O(1=ε):
Proof.

i. Recall that Fη is μ
μη+1-strongly convex with 1

η-Lipschitz continuous gradients. At iteration k of Algorithm 1,

(prox-SSG) with single sampling can be used to inexactly solve minu E[ f̃ (u,ω)] + g(u) + 1
2η ‖u− xk‖2

{ }
. In particular,

let {zk,j}Nk
j�1 be the sequence generated by (prox-SSG) starting from zk,0 � xk and let z∗k denote the unique optimal sol-

ution of the subproblem. Therefore, at step 1 of Algorithm 1, w̄k,Nk � 1
η (z∗k − zk,Nk), and by the convergence rate of

(prox-SSG) (Shapiro et al. 2009), E[‖w̄k,Nk‖2] ≤ Q̄k
η2Nk

, where Q̄k¢max{η2M2, ‖zk,0 − z∗k‖2} ≤Q because ‖zk,0 − z∗k‖2
≤ 4Δ2. The results in Lemma 1 hold when F(x) is replaced by Fη(x), by letting L � 1

η, replacing μ by μ
μη+1 , ν

2 by Q
η2
,
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and setting ᾱ � 1=(2 ��̃
κ

√ ), where κ̃ � μη+1
ημ :

E[Fη(yK) − F∗η] ≤ D+ μ

2(μη+ 1)C
2

( )
(1− ᾱ)K−1 +∑K−1

i�0

(1− ᾱ)i 2η+ 1
μ

( )
Q

η2NK−i
+∑K−2

i�0

(1− ᾱ)i+1 2η+ 1
μ

( )
Q

η2NK−i−1
: (11)

From Lemma 2, x∗ is a minimizer of function F if and only if x∗ is a minimizer of function Fη. Because Fη is
μ

μη+1-strongly convex, μ
2(μη+1) ‖yK − x∗‖2 ≤ Fη(yK) − Fη(x∗), implying (11) can be written as

μE[‖yK − x∗‖2]
2(μη+ 1) ≤ D+ μ

2(μη+ 1)C
2

( )
(1− ᾱ)K−1 +∑K−1

i�0

(1− ᾱ)i 2η+ 1
μ

( )
Q

η2NK−i
+∑K−2

i�0

(1− ᾱ)i+1 2η+ 1
μ

( )
Q

η2NK−i−1
: (12)

From (11), by definition of θ and recalling the increasing nature of {Nk}, we may claim the following:

μE[‖yK − x∗‖2]
2(μη+ 1) ≤

(
D+ μ

2(μη+ 1)C
2
)
θK−1 +∑K−1

j�0
θj

2η+ 1
μ

( )
Q

η2NK−j−1
+∑K−1

j�0
θj+1

2η+ 1
μ

( )
Q

η2NK−j−1

�
(
D+ μ

2(μη+ 1)C
2
)
θK−1 +∑K−1

j�0

θj(1+θ) 2η+ 1
μ

( )
Q

η2NK−j−1

≤(1+θ)≤2 (
D+ μ

2(μη+ 1)C
2
)
θK−1 +∑K−1

j�0

2θj 2η+ 1
μ

( )
Q

η2NK−j−1
: (13)

If NK−j−1 � �ρ−(K−j−1)�, by using Lemma A.1, we have the following:

∑K−1
i�0

2θj(2η+ 1=μ)Q
η2�ρ−(K−j−1)� ≤ ∑K−1

i�0

θj 2η+ 1
μ

( )
Q

η2ρ−(K−j−1) ≤
2η+ 1

μ

( )
QρK−1

η2

∑K−1
i�0

θ

ρ

( )i
≤

2η+ 1
μ

( )
Qρ

η2(ρ−θ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ρK−1: (14)

By substituting (14) in (13) and using ρ
ρ−θ �

1− 1
2a

��̃
κ

√
1

2
��̃
κ

√ − 1
2a

��̃
κ

√ � (2a ��̃
κ

√ −1)
a−1 ≤ 2a

��̃
κ

√
, (13) becomes

E[‖yK − x∗‖2] ≤ 2(μη+ 1)
μ

D+ μ

2(μη+ 1)C
2

( )
θK−1 + 2(μη+ 1)

μ

( )
2
η2

2η+ 1
μ

( )
Qa

��̃
κ

√
ρK−1

≤ D
2(ημ+ 1)

μ

( )
+C2 + 8

1+ ημ

ημ

( )2
Qa

( ) ��̃
κ

√( )
ρK−1

� ĈρK−1, where Ĉ¢2Dηκ̃ +C2 + 8κ̃5=2Qa: (15)

ii. Wemay derive the number of gradient steps K (of ∇x fμ) to obtain an ε-accurate solution:

1
ρ
� 1(

1− 1
2a

��̃
κ

√
) � 2a

��̃
κ

√

(2a ��̃
κ

√ − 1) ⇒
log(Ĉ) − log(ε)

log(1=ρ) ≤ log(Ĉ) − log(ε)
(1− ρ) � (2a ��̃

κ
√ )log(Ĉ=ε) ≤ K:

iii. To compute a vector yK satisfying E[‖yK − x∗‖2] ≤ ε, we have ĈρK ≤ ε, implying that K � �log(1=ρ)(Ĉ=ε)� ≤
1+ log(1=ρ)(Ĉ=ε). To obtain the oracle complexity, we require

∑K
k�1Nk gradients. If Nk � �ρ−k� ≤ ρ−k, we obtain the
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380 Stochastic Systems, 2022, vol. 12, no. 4, pp. 373–410, © 2022 The Author(s)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

45
.1

5.
14

0.
13

0]
 o

n 
04

 A
pr

il 
20

23
, a

t 0
0:

08
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



following because (1− ρ) � (1 =(2a ��̃
κ

√ )).

∑K
k�1

ρ−k ≤
1
ρ

( )2+K
1
ρ− 1
( ) ≤ 1

ρ

( )3+log1=ρ(Ĉ=ε)
1
ρ− 1
( ) ≤ Ĉ

ρ2(1− ρ)ε �
2a

��̃
κ

√
Ĉ

ρ2ε
: (16)

Note that ρ � 1− 1
2a

��̃
κ

√ , implying that

ρ2 � 1− 2=(2a ��̃
κ

√ )+ 1=(4a2κ̃) � 4a2κ̃ − 4a
��̃
κ

√ + 1
4a2κ̃

≥ 4a2κ̃ − 4aκ̃
4a2κ̃

� (a2 − a)
a2

⇒
��̃
κ

√
ρ2 ≤ a2

��̃
κ

√
(a2 − a) �

a
a− 1

��̃
κ

√ ⇒ by (16), ∑log(1=ρ)(Ĉ=ε)+1

k�1
ρ−k ≤ 2a2

��̃
κ

√
Ĉ

(a− 1)ε : w

Remark 1. In Theorem 2, choosing η � 1=μ leads to E[‖yK − x∗‖2] ≤ 4D
μ +C2 + 12

��
2

√
aQ

( )
ρK−1, and an oracle com-

plexity of O max{M2=μ2, ‖x̃0−x̃∗‖2}
ε

( )
, matching the result by Shapiro et al. (2009).

Minimizing the convergence bound in (15) in η is possible via a less obvious coercivity and strict convexity
claim for the nonsmooth function Ĉ(η) (see appendix for proof).

Lemma 3. Consider Ĉ(η) defined as Ĉ(η)¢2Dηκ̃(η) +C2 + 8κ̃(η)5=2Q(η)a, where Q¢max{η2M2, 4Δ2}. Then, the fol-
lowing hold.

i. Ĉ(η) is a coercive function on {η |η ≥ 0}.
ii. Ĉ(η) is a strictly convex function on {η |η ≥ 0}.
iii. The minimizer of Ĉ(η) on {η |η ≥ 0} is unique.

Remark 2. Lemma 3 allows for claiming that Ĉ(η) has a unique minimizer η∗; in fact, such a minimizer can be
computed by a standard semismooth Newton method (Facchinei and Pang 2003). Figure 1 provides a schematic
of Ĉ(η) for different values of μ, whereas η∗ is computed by semismooth Newton method. We note that, when μ
is larger, η∗(μ) tends to be smaller. In such cases, obtaining an optimal η∗ is particularly useful. However, when
μ� 1, we observe that η∗(μ) � 1; consequently, this leads to rescaling of the step γk to

γk
η , resulting in poorer

behavior. Therefore, if μ� 1, we employ η � 1, and this has far better empirical behavior as seen in the
numerics.

Figure 1. Schematic of Ĉ(η)WhenD � 10,M � 10,C � 100, a � 2:1,Δ � 1 for μ ∈ {0:001, ⋯ , 0:005}
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2.4. Linear Convergence of mVS-PM: Non-compact Domains
In this section, we derive rate and complexity guarantees when (VS-PM), an unaccelerated variant of VS-APM, is
applied on a Moreau-smoothed problem under possibly noncompact domains and under a (weaker) state-
dependent bound on the subgradient (Assumption 5). When the subgradient of g is characterized by a state-
dependent bound, the bound on the cumulative error in the accelerated method builds up because of a recursive
relation, see (A.16). Hence, in this section, we consider a more general case in which Assumption 5 imposes a
state-dependent bound, weakening Assumption 4. By employing an unaccelerated method, we derive a similar
oracle complexity as in Section 2.3. To obtain rate results, we apply (VS-PM) with the following update rule:

xk+1 :� xk − γ(∇xFη(xk) + w̄k,Nk), (VS-PM)

where ∇xFη(xk) + w̄k,Nk can be obtained by solving minu∈Rn[E[F̃(u,ω)] + 1
2η ‖u− xk‖2] inexactly taking Nk (stochas-

tic) subgradient steps. Consider the sequence of iterates {xk} generated by applying an inexact gradient scheme
on the following strongly convex smooth optimization problem.

min
x∈Rn

Fη(x), where Fη(x)¢min
u∈Rn

E[ f̃ (u,ω)] + g(u) + 1
2η

‖x− u‖2
[ ]

:

In effect, given an x0 ∈ R
n, the inexact gradient scheme generates a sequence {xk} such that

xk+1 :� xk − γ(∇xFη(xk) + w̄k): (IG)

Given an xk, we denote the update with the exact gradient by x̄k+1, which is defined as follows.

x̄k+1 :� xk − γ∇xFη(xk):
Recall that ∇xFη(xk) is defined as ∇xFη(xk) � 1

η (xk − z∗k), where z∗k is the unique minimizer of the following problem,
that is,

z∗k¢argmin
u∈Rn

E[F̃(u,ω)] + 1
2η

‖xk − u‖2
[ ]

: (17)

In other words, z∗k is defined as

z∗k¢proxηF(xk) while x∗ � proxηF(x∗):
Because proxηF(xk) is unavailable in closed form, we may compute increasingly exact analogs; given zk,0 � xk, we
construct the sequence {zk,j}Nk

j�1 based on (SSG).

zk,j+1 � zk,j − σjG(zk,j,ωk,j), j ≥ 0, where G(zk,j,ωk,j) ∈ ∂F̃(zk,j,ωk,j) + 1
η
(zk,j − xk): (SSG)

Consequently, at major iteration k, the inexact gradient of Fη(x) is given by 1
η (xk − zk,Nk), implying that w̄k is

defined as 1
η (z∗k − zk,Nk): Consequently, we have that

xk+1 � xk − γ
1
η
(xk − zk,Nk)

( )
� 1− γ

η

( )
xk + γ

η
zk,Nk :

We proceed to derive a bound on the conditional second moment of G(zk,j,ωk,j) � S(zk,j,ωk,j) + 1
η (zk,j − xk), where

S(zk,j,ωk,j) ∈ ∂F̃(zk,j,ωk,j), M2
1¢2M̄2 + 4

η2
, M2

2¢
4
η2
, and M2

3¢2M2. This requires defining the history up to iteration j

at outer iteration k by F k,j as follows.

F 0 � {x0},F 0,j � F 0 ∪ {S(z0,0,ω0,0), ⋯ ,S(z0,j−1,ωk,j−1)}, j � 1, ⋯ ,N0, (18)

F k � F k−1,Nk−1 ∪ {xk},F k,j � F k ∪ {S(zk,0,ωk,0), ⋯ ,S(zk,j−1,ωk,j−1)}, j � 1, ⋯ ,Nk, k ≥ 1: (19)

We now outline an assumption on the bound on the stochastic subgradient that scales with the size of x allowing
for noncompact domains.

Assumption 5. Let {xk} be a sequence generated by (VS-PM), where ∇xFη(xk) + w̄k,Nk is computed by taking Nk steps of
(SSG), leading to a set of iterates {zk,1, ⋯ ,zk,Nk}. Let F k,j be defined as (19) for k ≥ 1 and j � 1, ⋯ ,Nk. For any zk,j, let
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S(zk,j,ωk,j) denote a measurable selection S(zk,j,ωk,j) ∈ ∂F̃(zk,j,ωk,j). With these constructs, the following are assumed to
hold.

a.Unbiasedness: we have that E[S(zk,j,ωk,j) |F k,j] � S(zk,j) ∈ ∂F(zk,j) almost surely.

b. Subgradient boundedness: there exists M,M̄ > 0 such that, for any x, E[‖S(zk,j,ωk,j)‖2 |F k,j] ≤ M̄2‖zk,j‖2 +M2 almost
surely.

Consequently, we have that

‖G(zk,j,ωk,j)‖2 ≤ 2‖S(zk,j,ωk,j)‖2 + 2
η2

‖zk,j − xk‖2 ≤ 2‖S(zk,j,ωk,j)‖2 + 4
η2

‖zk,j‖2 + 4
η2

‖xk‖2

⇒ E[‖G(zk,j,ωk,j)‖2 |F k,j] ≤Assump: 5
2M̄2 + 4

η2

( )
‖zk,j‖2 + 2M2 + 4

η2
‖xk‖2

≕ M2
1‖zk,j‖2 +M2

2‖xk‖2 +M2
3: (20)

Based on Assumption 5 and inspired by a proof technique from Chambolle and Pock (2011) among others, we
derive a rate statement for (SSG) (see appendix for proof).

Proposition 1. Consider (17) in which F(·,ω) is a μ-strongly convex function and S(z,ω) ∈ ∂F̃(z,ω) for any z. Suppose

Assumption 5 holds and â2¢4+ 4M2
1 + 2M2

2 and b̂
2
¢(4M2

1 + 2M2
2)[‖x∗‖2] +M2

3: Given xk, consider a sequence generated

by (SSG) in which μ̃ � μ+ 1
η, J̄¢�2M2

1
μ̃2 − 1�, and

σj¢
min

1
( j+ 1)log( j+ 1) ,

μ̃

M2
1

{ }
, j < J̄

1
( j+ 1)log( j+ 1) : j ≥ J̄

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Then, the following holds for j ≥ J̄.

E[‖zk,j − z∗k‖2 |F k] ≤ â2‖xk − x∗‖2 + b̂
2

j
: (21)

We now show the convergence of mVS-PM when ∇xFη(x) is approximated via (SSG) (see appendix for proof).

Theorem 3 (mVS-PM Under State-Dependent Bound on Subgradients). Suppose Assumptions 1 and 5 hold. Consider
the iterates generated by (VS-PM) applied on Fη(x), where κ̃¢1+ 1

ημ , γ � η and Nk¢�N0ρ
−k� for all k ≥ 0,

N0 >max 2â2
(1−q=2) , J̄

{ }
, q¢1− 1

κ̃, p0¢
q
2+ 2â2

N0
, and J̄¢�2M2

1
μ̄2 − 1�. Then, the following hold.

i. Rate: for all k ≥ 1, we have that the following holds.

E[‖xk − x∗‖2] ≤ Cp̂k where C¢ E[‖x0 − x∗‖2] + b̂D̂
N0

( )
,

ρ≠ p0, p̂ �max ρ,p0
{ }

, D̂¢
1

1− min{ρ,p0}
max{ρ,p0}

ρ � p0: p̂ ∈ (p0, 1), D̂ >
1

ln(p0=p̂)e

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
ii. Iteration complexity: the iteration complexity of mVS-PM in gradient steps of (∇xFη(xk)) to obtain an ε-accurate solution

isO(κ̃log(C=ε)).
iii. Oracle complexity in (SSG) steps: to compute xK such that E[‖xK − x∗‖2] ≤ ε, the complexity in subgradient steps is

bounded as
∑K

k�1Nk ≤O κ̃ C
ε

( )log1=p̂ (1=ρ)( )
for p̂ ∈ [p0, 1), ρ ≤ p0 and

∑K
k�1Nk ≤O κ̃ C

ε

( )( )
for ρ > p0.

Remark 3. We observe that, when ρ > p0, we achieve the optimal oracle complexity in subgradient steps akin to
the statement in the regime of bounded subgradients. Notably, κ̃ can be controlled because η is any nonnegative
scalar. For instance, if η � 1

μ, κ̃ � 2.
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3. Iteratively Smoothed VS-APM for Nonsmooth Convex Problems
Thus far, we consider settings in which f is a strongly convex function. However, there are many instances when
the function f is neither smooth nor strongly convex. In fact, in strongly convex regimes, estimating the strong
convexity parameter may often be challenging. In such settings, if the function f is subdifferentiable, then subgra-
dient methods provide an avenue for resolving such problems in stochastic regimes but display a significantly
poorer rate of convergence. Nesterov (2005b) shows that, for a subclass of problems, an accelerated gradient
scheme may be applied to a suitably smoothed problem in which the smoothing leads to a differentiable problem
with Lipschitz continuous gradients (with known Lipschitz constants). If the smoothing parameter is chosen suit-
ably, the convergence rate to an approximate solution can be improved to O(1=K) from O(1= ���

K
√ ) in terms of

expected suboptimality. However, because the smoothing parameter is maintained as fixed, Nesterov’s approach
can provide approximate solutions at best but not asymptotically exact solutions. Subsequently, Nesterov
(2005a) considers a primal–dual smoothing technique in which the smoothing parameter is reduced at every
step, whereas extensions and generalizations are considered more recently by Tran-Dinh et al. (2018) and Van
Nguyen et al. (2017). In this section, we develop an iteratively smoothed, variable sample-size, accelerated proxi-
mal gradient scheme that can contend with expectation-valued objectives and is asymptotically convergent. This
can be viewed as a variant of the primal smoothing scheme introduced by Nesterov (2005b), in which the
smoothing parameter is reduced after every step; this scheme is shown to admit a rate of O(1=K), matching the
finding by Nesterov (2005b); however, our scheme is blessed with asymptotic guarantees rather than providing
approximate solutions. In Section 3.1, we derive rate and complexity statements, in Section 3.2 for the iteratively
smoothed VS-APM (or sVS-APM), recovering the optimal rate of O(1=K2) with the optimal oracle complexity of
O(1=ε2) under smoothness. Finally, in Section 3.3, under suitable choices of smoothing sequences, sVS-APM pro-
duces sequences that converge a.s. to an optimal solution.

3.1. Smoothing Techniques
In this section, we consider minimizing F where F is defined as F(x)¢E[F̃(x,ω)], where f̃ (x,ω) � f̃ (x,ω) + g(x)
such that f and g are convex and may be nonsmooth, whereas g has an efficient prox evaluation (or
“proximable”) but f is not proximable. Note that this setting is more general than structured nonsmooth prob-
lems, in which the function f is considered to be convex and smooth. In contrast to the previous section, we
assume that ∇x f̃ηk(xk,ωk) is generated from the stochastic oracle, in which ηk is a smoothing parameter at iteration
k such that its sequence is diminishing. Beck and Teboulle (2012) define an (α,β)-smoothable function as follows.

Definition 1 ((α,β)-Smoothable; Beck 2017). A convex function h : Rn → R is referred to as (α,β)-smoothable if, for
any η > 0, there exists a convex differentiable function hη : Rn → R that satisfies the following: (i) hη(x) ≤ h(x) ≤
hη(x) + ηβ for all x, and (ii) hη is α=η smooth.

There are a host of smoothing functions based on the nature of h. For instance, when h(x) � ‖x ||2, then
hη(x) �

������������
‖x‖22 + η2

√
− η, implying that h is a (1, 1)-smoothable function. If h(x) �max{x1,x2, : : : ,xn}, then h is

(1, log(n))-smoothable and hη(x) � ηlog(∑n
i�1 exi=η) − η log(n): (see Beck and Teboulle 2012 for more examples).

Recall that, when h is a proper, closed, and convex function, the Moreau envelope is defined as hη(x)¢
minu h(u) + 1

2η ‖u− x‖2
{ }

: In fact, h is (1,B2)-smoothable when hη is given by the Moreau envelope (see Beck and
Teboulle 2012) and B denotes a uniform bound on ‖s‖ in x, where s ∈ ∂h(x). There are a range of other smoothing
techniques, including Nesterov smoothing (see Nesterov 2005b) and inf-conv smoothing (see Beck 2017); our
approach is agnostic to the choice of smoothing. In particular, if f̃ (·,ω) is a proper, closed, and convex function in
x for every ω, then f̃ (·,ω) is (1,B2)-smoothable for every ω for which f̃η(·,ω) is a suitable smoothing. In fact, if
f̃ (·,ω) satisfies the following smoothability assumption, then smoothability of f follows as shown by Lemma 4. It
is worth emphasizing that the smoothing of f, denoted by fη, is defined as

fη(x)¢E[ f̃η(x,ω)], (22)

where f̃η(·,ω) is a smoothing of f̃ (·,ω).
Assumption 6. The function f̃ (·,ω) is an (α(ω),β(ω))-smoothable function for every ω ∈Ω, where E[α(ω)] ≤ α̃ and
E[β(ω)] ≤ β̃ with α̃, β̃ > 0; that is, for any η > 0, there exists a convex differentiable function f̃η(·,ω) for every ω ∈Ω
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such that

f̃η(x,ω) ≤ f̃ (x,ω) ≤ f̃η(x,ω) + ηβ(ω), for all x

and ‖∇x f̃η(x,ω)-∇x f̃η(y,ω)‖ ≤
α(ω)
η

‖x− y‖, for all x,y,

where E[α(ω)] ≤ α̃ and E[β(ω)] ≤ β̃.

Based on the following lemma, we observe that f is (α̃, β̃)-smoothable if f̃ (·,ω) satisfies suitable smoothability
requirements for almost every ω ∈Ω.

Lemma 4. Suppose Assumption 6 holds. Then, there exist α̃, β̃ > 0 such that f is (α̃, β̃)-smoothable, where f (x)¢E[ f̃ (x,ω)].
We proceed to develop a smoothed variant of VS-APM, referred to as sVS-APM, in which ∇xf̃ ηk(xk,ωk) is gen-

erated from the stochastic oracle and ηk is driven to zero at a sufficient rate (See Algorithm 2).

Algorithm 2 (Iteratively Smoothed VS-APM (sVS-APM))

(0) Given budgetM, x0 ∈ X, y0 � x0 and positive sequences {γk,Nk}. Set λ0 � 0, λ1 � 1; k :� 1.
(1) yk+1 � Pγk,g(xk − γk(∇x fηk(xk) + w̄k,Nk));
(2) λk+1 � 1+

������
1+4λ2

k

√
2 ;

(3) xk+1 � yk+1 + (λk−1)
λk+1 (yk+1 − yk);

(4) If
∑k

j�1Nj >M, then stop; else k :� k+ 1; return to (1).

3.2. Rate and Complexity Analysis
In this section, we develop rate and oracle complexity statements for Algorithm 2 when f is (1,B2) smoothable
and then specialize these results to both the deterministic nonsmooth and stochastic smooth regimes. We begin
with a modified assumption.

Assumption 7. (i) The function g is lower semicontinuous and convex with effective domain denoted by dom(g); (ii) f is
proper, closed, convex, and (1,B2)-smoothable on an open set containing dom(g); (iii) there exists C > 0 such that E[‖x0 −
x∗‖] ≤ C for all x∗ ∈ X∗.

Note that Assumption 6 represents a set of sufficiency conditions for f to be smoothable; here, we directly
assume that f is smoothable to ease exposition.

Lemma 5. Suppose Assumption 7 holds. Consider the iterates generated by sVS-APM on F(x). Suppose Assumption 3
holds for fηk(x). If {γk} is a decreasing sequence and γk ≤ ηk=2, then the following holds for all K ≥ 2:

E[Fηk(yK) − Fηk(x∗)] ≤
2

γK−1(K− 1)2
∑K−1
k�1

γ2
kk

2 ν
2

Nk
+ 2C2

γK−1(K− 1)2 :

Proof. By the update rule in Algorithm 2, we have

yk+1 � argmin
x

g(x) + 1
2γk

‖x − xk‖2 + (∇x fηk(xk) + w̄k)Tx: (23)

From the optimality condition for (23), 0 ∈ ∂g(yk+1) + 1
γk
(yk+1 − xk) +∇x fηk(x) + w̄k. By convexity of g(x), we have

that g(x) ≥ g(yk) + sT(x− yk+1) for all s ∈ ∂g(yk). Hence, we obtain the following.

g(x) + (∇x fηk(xk) + w̄k)Tx ≥ g(yk+1) + (∇x fηk(xk) + w̄k)Tyk+1 − 1
γk

(x− yk+1)T(yk+1 − xk):

Now, by using Lemma A.2, we obtain that

g(x) + (∇x fηk(xk) + w̄k)Tx + 1
2γk

‖x − xk‖2

≥ g(yk+1) + (∇x fηk(xk) + w̄k)Tyk+1 + 1
2γk

‖xk − yk+1‖2 + 1
2γk

‖x − yk+1‖2: (24)
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By invoking the convexity of fηk and by using the Lipschitz continuity of ∇x fηk , we obtain

fηk(x) ≥ fηk(xk) +∇x fηk(xk)T(x− xk)

≥ fηk(yk+1) + ∇x fηk(xk)T(x− yk+1) − 1
2ηk

‖xk − yk+1‖2

� fηk(yk+1) + (∇x fηk(xk) + w̄k)T(x− yk+1) − 1
2ηk

‖xk − yk+1‖2 − w̄T
k (x− yk+1), (25)

where the last equality follows from adding and subtracting w̄k. By adding (24) and (25), we obtain

Fηk(yk+1) − Fηk(x) ≤
1
2γk

‖x− xk‖2 − 1
2γk

‖x− yk+1‖2 + 1
2

1
ηk

− 1
γk

( )
‖xk − yk+1‖2 − w̄T

k (yk+1 − x)

� 1
2ηk

− 1
γk

( )
‖xk − yk+1‖2 + 1

γk
(xk − yk+1)T(xk − x) − w̄T

k (yk+1 − x), (26)

where the last inequality follows from Lemma A.2 by choosing Q � I, v1 � xk, v2 � x, and v3 � yk. By setting x � yk
in (26), we have

Fηk(yk+1) − Fηk(yk) ≤
1
2ηk

− 1
γk

( )
‖xk − yk+1‖2 + 1

γk
(xk − yk+1)T(xk − yk)

− w̄T
k,Nk

(yk+1 − yk): (27)

Similarly, by letting x � x∗, we can obtain

Fηk(yk+1) − Fηk(x∗) ≤ 1
2ηk

− 1
γk

( )
‖xk − yk+1‖2 + 1

γk
(xk − yk+1)T(xk − x∗)

− w̄T
k,Nk

(yk+1 − x∗):
(28)

By invoking Lemma A.2 in which v1 � xk, v2 � yk+1 and v3 � yk, we obtain

1
γk

(yk+1 − xk)T(yk − xk) � 1
2γk

(‖yk − xk‖2 + ‖yk+1 − xk‖2 − ‖yk+1 − yk‖2):

Consequently, (27) can further bounded as follows:

Fηk(yk+1) − Fηk(yk) ≤
1
2ηk

− 1
γk

( )
‖xk − yk+1‖2 + 1

γk
(xk − yk+1)T(xk − yk) − w̄T

k,Nk
(yk+1 − yk)

� 1
2ηk

− 1
γk

( )
‖xk − yk+1‖2 + 1

2γk
(‖xk − yk‖2 + ‖yk+1 − xk‖2 − ‖yk+1 − yk‖2) − w̄T

k,Nk
(yk+1 − yk)

� 1
2ηk

− 1
2γk

( )
‖xk − yk+1‖2 + 1

2γk
(‖xk − yk‖2 − ‖yk+1 − yk‖2) − w̄T

k,Nk
(yk+1 − yk): (29)

Similarly, we have that

Fηk(yk+1) − Fηk(x∗) ≤
1
2ηk

− 1
2γk

( )
‖xk − yk+1‖2 + 1

2γk
(‖xk − x∗‖2 − ‖yk+1 − x∗‖2)

− w̄T
k,Nk

(yk+1 − x∗): (30)

By multiplying (29) by (λk − 1) and adding to (30), where δk¢Fηk(yk) − Fηk(x∗), we have

λkδk+1 − (λk − 1)δk ≤ 1
2ηk

− 1
2γk

( )
λk‖yk+1 − xk‖2 (31)

+ 1
2γk

(λk − 1)(‖xk − yk‖2 − ‖yk+1 − yk‖2) + 1
2γk

(‖xk − x∗‖2 − ‖yk+1 − x∗‖2) (32)

+ w̄T
k,Nk

((λk − 1)yk + x∗ −λkyk+1): (33)
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Again, by using Lemma A.2, we may express the terms in (32) as follows:

1
2γk

(λk − 1)(‖xk − yk‖2 − ‖yk+1 − yk‖2) + 1
2γk

(‖xk − x∗‖2 − ‖yk+1 − x∗‖2)

� 1
2γk

(λk‖xk − yk‖2 − λk‖yk+1 − yk‖2 − ‖xk − yk‖2 + ‖yk+1 − yk‖2 + ‖xk − x∗‖2 − ‖yk+1 − x∗‖2)

� 1
2γk

(
−λk‖yk+1 − xk‖2 + 2λk(yk+1 − xk)T(yk − xk) + ‖yk+1 − xk‖2 − 2(yk+1 − xk)T(yk − xk)

− ‖yk+1 − xk‖2 + 2(yk+1 − xk)T(x∗ − xk)
)

� 1
2γk

(
−λk‖yk+1 − xk‖2 + 2(yk+1 − xk)T((λk − 1)yk − λkxk + x∗)

)
:

In addition,

w̄T
k,Nk

((λk − 1)yk + x∗ − λkyk+1) � w̄T
k,Nk

((λk − 1)yk + x∗ − λkxk) + w̄T
k,Nk

(λkxk − λkyk+1):
From the update rule, λ2

k−1 � λk(λk − 1) � λ2
k −λk. Now, by multiplying (31) by λk, we obtain the following, in

which uk � (λk − 1)yk −λkxk + x∗:

λ2
kδk+1 −λ2

k−1δk ≤ λ2
k

1
2ηk

− 1
2γk

( )
‖yk+1 − xk‖2

+ 1
2γk

(
− ‖λkyk+1 −λkxk‖2 + 2(λkyk+1 −λkxk)T((λk − 1)yk + x∗ −λkxk)

)
−λ2

kw̄
T
k,Nk

(xk − yk+1) −λkwT
k uk � λ2

k
1
2ηk

− 1
2γk

( )
‖yk+1 − xk‖2 −λ2

kw̄
T
k,Nk

(xk − yk+1)

+ 1
2γk

(‖λkxk − (λk − 1)yk − x∗‖2 − ‖λkyk+1 − (λk − 1)yk − x∗‖2) −λkwT
k uk

≤ λ2
k

2
γk

− 2
ηk

‖w̄k,Nk‖2 +
1
2γk

(‖uk‖2 − ‖uk+1‖2) −λkwT
k uk, (34)

where, in the last inequality, we use the update rule of algorithm, xk+1 � yk+1 + λk−1
λk+1 (yk+1 − yk), to obtain the fol-

lowing:

uk+1 � (λk+1 − 1)yk+1 −λk+1xk+1 + x∗ � (λk − 1)yk −λkyk+1 + x∗:

By multiplying both sides by γk and assuming γk ≤ γk−1, we obtain

γkλ
2
kδk+1 − γk−1λ

2
k−1δk ≤

γkλ
2
k

2
γk
− 2

ηk

‖w̄k,Nk‖2 +
1
2
(‖uk‖2 − ‖uk+1‖2) − γkλkwT

k uk: (35)

By assuming γk ≤ ηk
2 , we obtain 1

γk
− 1

ηk
≥ 1

2γk
, implying that

γkλ
2
kδk+1 − γk−1λ

2
k−1δk ≤ γ2

kλ
2
k‖w̄k,Nk‖2 +

1
2
(‖uk‖2 − ‖uk+1‖2) − γkλkwT

k uk: (36)

Summing (36) from k � 1 to K – 1, we have the following:

γK−1λ
2
K−1δK ≤ ∑K−1

k�1
γ2
kλ

2
k‖w̄k,Nk‖2 +

1
2
‖u1‖2 −

∑K−1
k�1

γkλkwT
k uk

⇒ δK ≤ 1
γK−1λ

2
K−1

∑K−1
k�1

γ2
kλ

2
k‖w̄k,Nk‖2 +

1
2γK−1λ

2
K−1

‖u1‖2 − 1
γK−1λ

2
K−1

∑K−1
k�1

γkλkwT
k uk:
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Taking expectations, we note that the last term on the right is zero (under a zero-bias assumption), leading to the
following:

E[δK] ≤ 1
γK−1λ

2
K−1

∑K−1
k�1

γ2
kλ

2
k
ν2

Nk
+ 1
2γK−1λ

2
K−1

E[‖u1‖2‖] ≤ 2

γK−1(K − 1)2
∑K−1
k�1

γ2
kk

2 ν
2

Nk

+ 2C2

γK−1(K − 1)2 ,

where, in the last inequality, we use the fact that ‖y− x∗‖ ≤ C for all y ∈ dom(g) and k
2 ≤ λk ≤ k, which may be

shown inductively. w

We are now ready to prove our main rate result and oracle complexity bound for sVS-APM.

Theorem 4 (Rate Statement and Oracle Complexity Bound for sVS-APM). Suppose Assumption 7 holds. Consider the
iterates generated by sVS-APM on F(x). Suppose Assumption 3 holds for fηk . Suppose {λk} is specified in sVS-APM,
ηk � 1=k, γk � 1=2k, and Nk � �ka�.

i. The following holds for any K ≥ 1:

E[F(yK+1) − F(x∗)] ≤

2ν2a
a− 1

+ 4C2 +B2
( )

K
, a � 1+ δ,δ ∈ [δL,δU]

2ν2(1+ log(K)) + 4C2 +B2

K
, a � 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
ii. Let ε ≤ C̃=2, and K is such that E[F(yK+1) − F(x∗)] ≤ ε. Then, the following holds.

∑K
k�1

Nk ≤
O

1
ε2+δL

( )
, a � 1+ δ,δ ∈ [δL,δU]

O
1
ε2

log2(1=ε)
( )

: a � 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Proof.

(i) IfNk � �ka� ≥ 1
2 k

a and γk � 1=(2k) is utilized in Lemma 5, we obtain the following:

E[δK+1] ≤ 2ν2

K

∑K
k�1

1
ka
+ 4C2

K
: (37)

a. a � 1+ δ, where δ ∈ [δL,δU]. Consequently, wemay derive the next bound.∑K
k�1

k−a � 1+∑K
k�2

k−a ≤ 1+
∫ K

1
k−adk � 1+ 1−K1−a

a− 1
≤ 1+ δU

δL
:

By invoking (1,B2)-smoothability of f and ηK � 1=K, we have that FηK (yK+1) ≤ F(yK+1) and −FηK (x∗) ≤ −F(x∗)
+ηB2. Hence, the required bound follows from (37)

E[F(yK+1) − F(x∗)] ≤ 2ν2a
(a− 1)K+ 4C2 +B2

K
≤ C̄
K
, where C̄¢

2ν2a
(a− 1) + 4C2 +B2:

b. a � 1. Recall that the convergence rate is given by the following:

E[F(yK+1) − F(x∗)] ≤
2ν2(a−K1−a)

(a−1) + 4C2 + B2

K
:

Taking limits, we obtain that

lim
a→1

a − K1−a

a − 1
� lim

a→1

1 + K1−alog(K)
1

� 1 + log(K):
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Therefore, we have that

E[F(yK+1) − F(x∗)] ≤ 2ν2 log(K) + 4C2 + B2

K
¢

a + b log(K)
K

:

(ii) Consider yK+1 satisfying E[F(yK+1) − F(x∗)] ≤ ε. We again consider two cases. a. a � 1+ δ, where δ ∈ [δL,δU].
We have C̄

K ≤ ε, which implies that K � �C̄=ε�. To obtain the optimal oracle complexity, we require
∑K

k�1Nk gra-
dients. Hence, the following holds for sufficiently small ε such that 2 ≤ C̄=ε:

∑K
k�1

Nk ≤
∑K
k�1

ka � ∑1+C̄=ε
k�1

ka ≤
∫ 2+C̄=ε

0
kada � (2+ C̄=ε)1+a

1+ a
≤ C̄

ε

( )1+a
≤O

1
ε1+a

( )
≤O

1
ε2+δL

( )
:

b. a � 1. To compute K such that a+b log(K)
K ≤ ε is not immediately obvious but may be obtained via the Lam-

bert function2 (Chatzigeorgiou 2013). For purposes of simplicity, suppose a � 0 and b � 1. Then, we have the
following.

log(K)
K

≤ εw
−log(K)

K
≥ −ε

wW−1
−log(K)

K

( )
≤W−1(−ε), since W−1(·) is decreasing:

ButW−1(− log(x)
x ) � −log(x) for x > e. Consequently, we have that

−log(K) ≤W−1(−ε)wK ≥ e−W−1(−ε):

By definition of the Lambert function, we have that eW(x) � x
W(x), implying that

K ≥ e−W−1(−ε) �W−1(−ε)
ε

≥O
log(ε)
−ε

( )
�O

1
ε
log(1=ε)

( )
:

Here, the first inequality follows from (3) in (Chatzigeorgiou 2013). Hence, the oracle complexity for a � 1 is

O
log2(1=ε)

ε2

( )
, which is near optimal (optimal is O(1=ε2)). w

We now consider two cases of Theorem 4 for which similar rate statements are available.

Case 1 (Structured Stochastic Nonsmooth Optimization with f Smooth). Now, consider Problem (1), in which f(x) is a
smooth function. Recall that we consider such a problem in Section 2 for strongly convex f, and in this case, we
consider the merely convex case. When f is deterministic, accelerated gradient methods first proposed by Nes-
terov (1983) and their proximal generalizations suggested by Beck and Teboulle (2009) are characterized by the
optimal rate of convergence of O(1=K2). When f is expectation-valued, Ghadimi and Lan (2016) present the first
known accelerated scheme for stochastic convex optimization for which the optimal rate of 1=k2 is shown for the
expected suboptimality error. This rate required choosing the simulation length K and choosing Nk � �k2K�,
which led to the optimal oracle complexity of O(1=ε2). However, this method is somewhat different from
VS-APM. In particular, every step requires two prox evaluations (rather than one for VS-APM).3 Jofré and
Thompson (2017) develop an accelerated proximal scheme for convex problems with a similar algorithm but
allow for state-dependent noise. The weakening of the noise requirement still allows for deriving the optimal
rate of O(1=K2) but necessitates choosing Nk � �k3(ln k)�. As a consequence, the oracle complexity is slightly
poorer than the optimal level and is given by O(ε−2ln2(ε−0:5)). We note that VS-APM displays the optimal oracle
complexity O(ε−2) by choosing Nk � �k2K�, whereas by choosing Nk � �ka� for a � 3+ δ, then the oracle complexity
can be made arbitrarily close to optimal and is given by O(ε−2−δ=2). However, VS-APM imposes a stronger
assumption on noise as formalized next.
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Corollary 2 (Rate and Oracle Complexity Bounds with Smooth f for VS-APM). Suppose Assumptions 2, 3, and 7 hold.
Suppose γk � γ ≤ 1=2L for all k.

i. Let Nk � �ka�, where a � 3+ δ and Ĉ¢ 2ν2γ(a−2)
a−3 + 4C2

γ . Then, the following holds.

E[F(yK+1 − F(x∗))] ≤ Ĉ
K2 for all K and

∑K(ε)
k�1

Nk ≤O
1

ε2+δ=2

( )
,

where E[F(yK(ε)+1) − F(x∗)] ≤ ε:

ii. Given a K > 0, let Nk � �k2K�, where a > 3 and C̃¢2ν2γ+ 4C2

γ . Then, the following holds.

E[F(yK+1 − F(x∗))] ≤ C̃
K2 and

∑K
k�1

Nk ≤O
1
ε2

( )
, where E[F(yK+1) − F(x∗)] ≤ ε:

Proof.
(i) Similar to the proof of Lemma 5, by defining δk � F(yk) − F(x∗)we can prove

E[F(yK+1) − F(x∗)] ≤ 2ν2γ
K2

∑K
k�1

k2

ka
+ 4C2

γK2 :

Let Nk � �ka� ≥ 1
2 k

a and γk � γ. Then, we have that the following holds in which Ĉ¢ 2ν2γ(a−2)
a−3 + 4C2

γ :

E[F(yK+1) − F(x∗)] ≤ 2ν2γ
K2

∑K
k�1

k2

ka
+ 4C2

γK2 ≤
2ν2γ(a− 2)
(a− 3)K2 + 4C2

γK2 �
Ĉ
K2 , (38)

where the first inequality follows from bounding the summation as follows:

∑K
k�1

k2−a � 1+∑K
k�2

k2−a ≤ 1+
∫ K

1
x2−adx � 1

a− 3
− K3−a

a− 3
+ 1 ≤ 1

a− 3
+ 1 � a− 2

a− 3
:

Suppose yK+1 satisfies E[F(yK+1) − F(x∗)] ≤ ε, implying that Ĉ
K2 ≤ ε or K � �Ĉ1=2

=ε1=2�. If ε ≤ Ĉ=2, then the oracle
complexity can be bounded as follows:

∑K
k�1

Nk ≤
∑K
k�1

ka � ∑1+
����
Ĉ=ε

√

k�1
ka ≤

∫ 2+
����
Ĉ=ε

√

0
kada �

(
2+

������
Ĉ=ε

√ )1+a
1+ a

≤
���̂
C

√
2

��
ε

√
( )1+a

�O
1

ε2+δ=2

( )
:

(ii) LetNk � �k2K� ≥ 1
2 k

2K. Then, similar to part (i), we may bound the expected suboptimality as follows in which
C̃¢2ν2γ+ 4C2

γ .

E[F(yK+1) − F(x∗)] ≤ 2ν2γ
K2

∑K
k�1

k2

k2K
+ 4C2

γK2 �
2ν2γ
K2 + 4C2

γK2 ≤
C̃
K2 :

Because K � �C̃1=2
= ε1=2�, the oracle complexity may be bounded as follows:

∑K
k�1

Nk ≤
∑K
k�1

k2K � 1
6
K2(K+ 1)(2K+ 1) � 1

6
K2(2K2 + 3K+ 1) ≤ K4 ≤O

1
ε2

( )
: w

Case 2 (Deterministic Nonsmooth Convex Optimization). When the function f in (1) is deterministic but possibly
nonsmooth, Nesterov (2005b) shows that, applying an accelerated scheme to a suitably smoothed problem (with
a fixed smoothing parameter) leads to a convergence rate of O(1=K). In contrast with Theorem 4, utilizing a fixed
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smoothing parameter leads to an approximate solution at best, and such a scheme is not characterized by asymp-
totic convergence guarantees. In addition, we observe that the rate statement for the deterministic counterpart of
sVS-APM, denoted by s-APM, is global (valid for all k), whereas any statement with constant smoothing holds
for the prescribed K. We observe that the rate statements by using an appropriately chosen smoothing and step
length parameter matches that by using a selecting a suitable smoothing and step length sequence.

Corollary 3 (Iterative vs. Constant Smoothing for Deterministic Nonsmooth Convex Optimization). Consider (1) and
assume f(x) is a deterministic function. Suppose Assumption 7 holds. (i) Iterative smoothing: suppose γk � 1=2k and
ηk � 1=k. Then, F(yk+1) − F(x∗) ≤ 4C2+B2

k , for all k > 0: (ii) Fixed smoothing: for a given K > 0, suppose ηk � 1=K and
γk � 1=2K. Then, F(yK+1) − F(x∗) ≤ 4C2+B2

K :

Remark 4. By recalling that fη(x)¢E[ f̃ η(x,ω)], by using theorem 7.47 in Shapiro et al. (2009) (interchangeability
of the derivative and the expectation), and noting that f̃ η(·,ω) is differentiable in x for every ω, we have ∇fη(x) �
∇E[ f̃ η(x,ω)] � E[∇f̃ η(x,ω)] ⇒ E[∇fη(x) −∇f̃ η(x,ω)] � 0: Therefore, such a gradient estimator is unbiased, and our
assumption holds. We now derive bounds on the second moments for some common smoothings in Table 2.

3.3. Almost-Sure Convergence
Whereas the previous section focuses on providing rate statements for expected suboptimality, we now consider
the open question of whether the sequence of iterates produced by sVS-APM converges almost sure to a solution.
Schemes employing a constant smoothing parameter preclude such guarantees. Proving almost sure conver-
gence requires using the following lemma.

Lemma 6 (Supermartingale Convergence Lemma; Polyak 1987). Let {vk} be a sequence of nonnegative random varia-
bles, in which E[v0] <∞, and let {αk} and {ηk} be deterministic scalar sequences such that 0 ≤ αk ≤ 1 and ηk ≥ 0 for all
k ≥ 0,

∑∞
k�0 αk �∞,

∑∞
k�0 ηk <∞, and limk→∞

ηk
αk
� 0, and E[vk+1 |Hk] ≤ (1−αk)vk + ηk a.s. for all k ≥ 0. Then, vk → 0 a.s.

as k→∞.

Proposition 2 (almost sure Convergence of sVS-APM). Suppose Assumptions 3 and 7 hold and {yk} is a sequence gen-
erated by sVS-APM. Suppose γk � k−b < ηk, where b ∈ (0, 1=2], {ηk} is a decreasing sequence, and Nk � �ka� such that
(a+ b) > 1. Then, {yk} converges to a solution of (1) a.s.

Proof. From Inequality (34), we have that the following holds:

γkδk+1 ≤
λ2
k−1
λ2
k

γkδk +
1

2λ2
k

(‖uk‖2 − ‖uk+1‖2) + γk
2
γk

− 2
ηk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠‖w̄k,Nk‖2 −

1
λk

w̄T
k,Nk

uk

≤ λ2
k−1
λ2
k

γk−1δk +
1

2λ2
k

(‖uk‖2 − ‖uk+1‖2) + γk
2
γk

− 2
ηk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠‖w̄k,Nk‖2 −

1
λk

w̄T
k,Nk

uk:

Table 2. Bounding the Second Moments for Certain Smoothings

f̃ (x,ω) f̃η(x,ω) ∇f̃η(x,ω) E[‖∇x f̃η(x,ω) − ∇x fη(x)‖2]
f̃ 1(x,ω) � λ(ω)‖x ||1 ∑n

i�1 hη(xi,ω), where [∇xi hη(xi ,ω)]ni�1, where

hη(xi,ω) �
λ2(ω) x2i2η , λ(ω) |xi | < η

λ(ω) |xi | − η=2, o:w:

{ } ∇xi hη(xi,ω) �
λ2(ω) xiη , λ(ω) |xi | < η

λ(ω)xi= |xi | , o:w:

{ } 4nE[λ2(ω)]

f̃ 2(x,ω) � λ(ω)‖x | | 2
��������������������
λ2(ω)‖x‖2 + η2

√
− η

λ2(ω)x�������������
λ2(ω)‖x‖2+η2

√ 4E[λ2(ω)]
f̃ 3(x,ω) �max1≤i≤n{hi(x,ω)}

where hi(x,ω) � vi + sic(ω)Tx
ηlog

(∑n
i�1 exp(hi(x,ω)=η)

) ∑n
i�1∇xhi(x,ω)exp(hi(x,ω)=η)∑n

i�1 exp(hi(x,ω)=η)
4E[(max1≤i≤n‖sic(ω)‖)2],
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Dividing both sides of the previous inequality by γk, we obtain the following relationship:

δk+1 + 1
2γkλ

2
k

‖uk+1‖2 ≤ λ2
k−1

λ2
kγk

γk−1δk +
1

2γkλ
2
k

‖uk‖2 + 1
2
γk

− 2
ηk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠‖w̄k,Nk‖2 −

1
γkλk

w̄T
k,Nk

uk

� λ2
k−1γk−1
λ2
kγk

δk + ‖uk‖2
2γk−1λ

2
k−1

( )
+ 1

2
γk

− 2
ηk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠‖w̄k,Nk‖2 −

1
γkλk

w̄T
k,Nk

uk:

By defining vk+1¢δk+1 + 1
2γkδ

2
k
‖uk+1‖2 and αk¢1− λ2

k−1γk−1
λ2
kγk

, we have the following recursion.

vk+1 ≤ (1−αk)vk + 1
2
γk

− 2
ηk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠‖w̄k,Nk‖2 −

1
γkλk

w̄T
k,Nk

uk w

vk+1 + ηkB
2 ≤ (1− αk)(vk + ηk−1B

2) + ηkB
2 − (1− αk)ηk−1B2 + 1

2
γk

− 2
ηk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠‖w̄k,Nk‖2 −

1
γkλk

w̄T
k,Nk

uk: (39)

Let v̄k+1¢vk+1 + ηkB
2. From (1,B2) smoothability and the decreasing nature of {ηk},

0 ≤ F(yk+1) − F(x∗) ≤ Fηk+1(yk+1) − Fηk+1(x∗) + ηk+1B
2 ≤ Fηk+1(yk+1) − Fηk+1(x∗) + ηkB

2:

Then, (39) can be rewritten as follows:

v̄k+1 ≤ (1 − αk)v̄k + ηkB
2 − (1 − αk)ηk−1B2 + 1

2
γk

− 2
ηk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠‖w̄k,Nk‖2 −

1
γkλk

w̄T
k,Nk

uk:

Recall, by the definition of λk, we have λ2
k−1 � (2λk−1)2−1

4 and k
2 ≤ λk ≤ k if γk � k−b, b ∈ (0, 1=2], we obtain the follow-

ing relationship:

αk � 1−λ2
k−1γk−1
λ2
kγk

� 1− γk−1(4λ2
k − 4λk)

4λ2
kγk

� λ2
kγk − γk−1λ

2
k + γk−1λk

λ2
kγk

� γk − γk−1
γk

+ γk−1
λkγk

≥ k−b − (k− 1)−b
k−b

+ (k− 1)−b
k1−b

� k1−b − (k− 1)1−b
k1−b

≥ (1− b)
k

, b ∈ (0, 1=2], (40)

where in the last inequality we use b ∈ (0, 1=2]:

k
k1−b − (k− 1)1−b

k1−b

( )
� k− k

k− 1
k

( )1−b
� k− kb(k− 1)1−b � k− (k− 1) k

k− 1

( )b

� k− (k− 1) 1+ 1
k− 1

( )b
� k− (k− 1) − b− b(b− 1)

2!(k− 1)2 −
b(b− 1)(b− 2)
3!(k− 1)3 − : : :

� (1− b) + b(1− b)
2!(k− 1)2 1− (2− b)

3(k− 1)
( )

++b(1− b)(2− b)(3− b)
4!(k− 1)4 1− (4− b)

5(k− 1)
( )

+ : : :

≥ (1− b), since k ≥ 2 ≥ 1+max
2
3
,
4
5
,
6
7
, : : :

{ }
:
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By taking conditional expectations and recalling that ηk � cγk, where c > 1, we obtain the following:

E[v̄k+1 |Hk] ≤ (1−αk)v̄k + ηkB
2 − (1− αk)ηk−1B2 + 1

2
γk

− 2
ηk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ν

2

Nk

≤ (1−αk)vk + ηkB
2 − (1− αk)ηk−1B2 + c

2(c− 1)
( )

γkν
2

Nk
:

If γk � k−b, where b ∈ (0, 1=2] and Nk � �ka�, where a+ b > 1, by Lemma A.1, we have that
∑∞

k�1
γkν

2

Nk
<∞, and the fol-

lowing holds for ηk � ck−b, c > 1, and b ∈ (0, 1=2]:

ηk − (1− αk)ηk−1 � ηk −
λ2
k−1γk−1
λ2
kγk

ηk−1 � ck−b − 1− 1
λk

( )
c(k− 1)−2b

k−b

≤ ck−b − 1− 1
λk

( )
ck−b ≤ 2c

k1+b
⇒ ∑∞

k�1
(ηkB2 − (1− αk)ηk−1B2) <∞:

Furthermore, from (40), it follows that
∑∞

k�1 αk �∞ and

lim
k→∞

1
αk

( )
c

2(c− 1)
( )

ν2

ka+b

( )
≤ lim

k→∞
c

2(c− 1)
( )

ν2

(1− b)ka+b−1
( )

� 0

Table 3. Example 1: mVS-APM vs. SSG (L), mVS-PM vs. SSG (R)

SSG
‖yk − x∗‖ for mVS-APM

SSG mVS-PM
μ ‖yk − x∗‖ η � η∗ η � 0:1 η � 1 η � 10 μ ‖yk − x∗‖ ‖yk − x∗‖
1 7.8609e-4 2.8078e-1 2.2150e-2 4.7893e-3 1.9443e-2 1 2.0847e-1 3.0971e-2
1e-1 9.9114e-1 3.3207e-3 3.7247e-2 5.8973e-3 1.8865e-2 1e-1 2.4283 9.5149e-2
1e-2 3.0611 3.7218e-2 8.3083e-2 7.3432e-3 3.6886e-2 1e-2 4.2409 1.5115e-1
1e-3 4.0682 1.3893 1.7692e-1 4.7901e-3 5.2147e-2 1e-3 4.4784 1.8033e-1
1e-4 6.3783 2.7269 4.7065e-1 5.5248e-3 6.3872e-2 1e-4 4.5028 1.7261e-1

Figure 2. Example 1: (mVS-APM) vs. (SSG) for μ � 0:1
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for b ∈ (0, 1=2] and a+ b > 1. Additionally, we have the following:

lim
k→∞

ηkB
2 − (1−αk)ηk−1B2

αk
� lim

k→∞
ck−bB2 − c(1− αk)(k− 1)−bB2

αk

≤ lim
k→∞

ck−bB2 − c(1−αk)k−bB2

αk
� lim

k→∞
cB2

kb
� 0,

where ηkB
2 − (1− αk)ηk−1B2 ≥ 0 can be concluded as follows. For any b ∈ (0, 1=2], we have

λ2
k−1
λ2
k

� 1− 1
λk

( )
≤ k− 1

k
≤ (k− 1)2b

k2b
⇒ λ2

k−1
λ2
k

kb

(k− 1)b ≤
(k− 1)b

kb
⇒ λ2

k−1γk−1
λ2
kγk

≤ ηk
ηk−1

⇒ (1− αk) ≤ ηk
ηk−1

⇒ ηk − (1−αk)ηk−1 ≥ 0:

Therefore, Lemma 5 can be applied, and v̄k � Fηk(xk) − Fηk(x∗) + ηkB
2 → 0 a.s. By (1,B2) smoothness of f, 0 ≤ F(xk) −

F(x∗) ≤ Fηk(xk) − Fηk(x∗) + ηkB
2, implying that F(xk) → F(x∗) a.s. w

The next proposition provides a similar a.s. convergence for VS-APM that can accommodate structured non-
smooth optimization in which f(x) is a smooth merely convex function. The proof of this result is similar to Prop-
osition 2, but δk in this case is defined as δk � F(yk) − F(x∗).
Proposition 3 (Almost Sure Convergence Theory for VS-APM). Suppose Assumptions 2, 3, and 7 hold. Suppose {yk}
defines a sequence generated by VS-APM. Suppose γk � γ ≤ 1=(2L) and Nk � �ka� for a > 1. Then, {yk} converges to a solu-
tion of (1) almost surely.

4. Numerical Results
We now compare the performance of (mVS-APM) and sVS-APM with existing solvers on Matlab running on a
64-bit MacOS 10.13.3 with Intel i7-7Y75 @1.4 GHz with 16 GB RAM.

4.1. (mVS-APM): Strongly Convex and Nonsmooth f

Example 1. Consider the following constrained problem:

min
x∈[−1, 1]

f (x), where f (x)¢E
1
2
xTA(ω)x + β(ω)Tx + λ(ω)‖x ||1

[ ]
, (41)

A(ω) � Ā +W ∈ R
n×n and the elements ofW have an independent and identically distributed (i.i.d.) normal distri-

bution with mean zero and standard deviation (std) 0.1. Similarly, β(ω) � β̄ +w ∈ R
n, where w is a random vector.

Table 4. Example 1: Comparing mVS-APM vs. SSG: Different Std (L), Different n (R)

SSG mVS-APM SSG mVS-APM

Std. ‖yk − x∗‖ Time η ‖yk − x∗‖ Time n ‖yk − x∗‖ Time η ‖yk − x∗‖ Time

1e+1 1.6691 5.8269 1 5.6007e-1 2.9858 20 9.1148e-1 5.9096 1 5.8973e-3 3.8961
1 9.4759e-1 5.9375 1 5.1574e-2 2.9925 30 1.5326 6.117 1 5.9034e-3 3.2213
1e-1 9.1148e-1 5.9096 1 5.8973e-3 3.8961 40 8.5934e-1 6.2494 1 6.0096e-3 3.6658
1e-2 9.1285e-1 5.9444 1 5.7294e-4 3.0362 50 3.6236 6.4209 1 6.3496e-3 3.3903

Table 5. Example 2: Comparing (mVS-APM) vs. (SSG)

SSG mVS-APM

μ ‖yk − x∗‖ time η ‖yk − x∗‖ Time

1 4.4908e-3 4.3883 1=μ � 1 5.8314e-3 1.5191
1e-1 2.7134e-1 3.8794 1 1.0102e-2 1.1964
1e-2 8.7266e-1 3.9742 1 1.8236e-2 1.2065
1e-3 9.8723e-1 4.0129 1 3.8619e-2 1.1510
1e-4 9.9872e-1 4.0684 1 7.1652e-2 1.1490
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Because tractable prox evaluations are not available for (41), we compute approximate gradients ∇x fη using

(SSG). We set Nk � �ρ−k�, where ρ¢ 1− 1
2a

��̃
κ

√
( )

and a � 2:01: Using a budget of 1e5 and 10 replications, we provide

results in Table 3 (L), whereas Figure 2 shows the behavior of (mVS-APM) with different smoothing parameters
η versus (SSG). When the strong convexity modulus μ is small, (mVS-APM) performs significantly better than
(SSG) and is far more stable. For instance, when η � 1, (mVS-APM) terminates with an empirical error of approx-
imately 4:8e-3 and 5:5e-3 for μ � 1 and μ � 1e-4, whereas corresponding errors for (SSG) are 7:8e-3 to 6.3. As one
can see, η � 1 for (mVS-APM) seems to be a reasonable practical choice for different problem settings. Note that,
in this table, η∗ is chosen according to Lemma 3, and we note that, as μ� 1, the benefit of utilizing η∗ is muted.
Next, we consider the unconstrained variant (41), in which x ∈ R

n. Because the subgradient is unbounded, we
use the unaccelerated method mVS-PM. In Table 3 (R), the behavior of mVS-PM is compared with (SSG) for dif-
ferent choices of μ. As suggested after Theorem 3, we set η � 1

μ+ 1e-3 > 1
μ.

In Table 4, we compare (mVS-APM) with (SSG) for different choices of standard deviation of noise and dimen-
sion (n). In Table 4 (L), we set μ � 0:1 and n � 20, whereas in Table 4 (R), we set μ � 0:1 and standard deviation is
0.1. We run both schemes with a total budget in subgradient evaluations of 1e5 and 10 replications and observe
that (mVS-APM) outperforms (SSG).

Example 2. We revisit this comparison using a stochastic utility problem.

min
‖x‖≤1

E φ
∑n
i�1

i
n
+ ωi

( )
xi

( )[ ]
+ μ

2
‖x‖2,

where φ(t)¢max1≤j≤m(vi + sit), ωi are i.i.d. normal random variables with mean zero and variance one and
vi, si ∈ (0, 1). Table 5 shows similar behavior as in Example 1. In Table 6, we compare (mVS-APM) with (SSG) for
different choices of standard deviation and dimension (n). In Table 6 (L), we set μ � 0:1, whereas n � 20, and in
Table 6 (R), we set μ � 0:1 and standard deviation is one. Similar to Example 1, (mVS-APM) outperforms (SSG)
in all cases.

4.2. sVS-APM: Convex and Smoothable f

Example 3. In this setting, we compare the performance of sVS-APM for merely convex problems on Example 2
with μ � 0. The δ-smoothed approximation of φ(t) provided by Beck and Teboulle (2012) is given by φδ(t) �
δ log

(∑m
i�1 e(vi+sit)=δ

)
. In Table 7, we generate 20 replications for sVS-APM with fixed and diminishing smoothing

Table 6. Example 2: Comparing mVS-APM vs. SSG: Different Std (L), Different n (R)

SSG mVS-APM SSG mVS-APM

Std. ‖yk − x∗‖ Time η ‖yk − x∗‖ Time n ‖yk − x∗‖ Time η ‖yk − x∗‖ Time

1e+1 9.8253e-1 3.8733 1 9.6709e-1 1.1661 20 2.7134e-1 3.8794 1 1.0102e-2 1.1964
1 2.7134e-1 3.8794 1 1.0102e-2 1.1964 30 3.5948e-1 4.0277 1 1.2010e-2 1.2594
1e-1 2.1394e-1 3.9304 1 8.6589e-3 1.1083 40 5.3537e-1 4.0418 1 7.4431e-3 1.3467
1e-2 2.1813e-1 3.9134 1 1.1027e-1 1.1270 50 2.6880e-1 4.1198 1 8.2670e-3 1.3452

Table 7. Example 3: Comparing (sVS-APM) with Fixed Smoothing

sVS-APM Fixed smooth.
n m δk E[ f (yk) − f ∗] δ E[ f (yk) − f ∗]
20 10 1=k 1.832e-4 1=K 3.455e-3

1=(2k) 3.014e-3 1=(2K) 2.157e-2
1=(3k) 1.269e-2 1=(3K) 6.079e-2

100 25 1=k 1.944e-3 1=K 3.126e-2
1=2k 1.181e-2 1=2K 5.130e-2
1=3k 2.411e-2 1=3K 5.817e-2

200 10 1=k 1.067e-4 1=K 4.695e-3
1=2k 5.173e-3 1=2K 3.957e-2
1=3k 1.594e-2 1=3K 6.929e-2
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sequences with ηk � δk=2, Nk � �k3:001�, and sampling budget is 1e6. In Figure 3, we compare trajectories for sVS-
APMwith those for constant smoothing for n � 200.

4.3. Key Observations
The empirical behavior of sVS-APM appears to be better on this test problem. One rationale for this may be
drawn from noting that sVS-APM allows for larger step lengths early (because ηk ≤ δk), whereas in the fixed
smoothing technique, ηk ≤ δk (δk may be quite small). This can be seen in the trajectories in which early progress
by the iterative smoothing scheme can be observed. A larger δk allows for larger step lengths but leads to a
coarser approximation of the original problem, whereas smaller δk leads to poorer progress but better approxi-
mations (see Table 7 and Figure 3).

4.4. Almost Sure Convergence
Next, we implement sVS-APM on the stochastic utility problem with n � 20 and m � 10 for different choices of
the smoothing sequences. Specifically, we allow δk to be δk ∈ {1=k, 1= ��

k
√

, 1=k0:25} (δk � 1=k is required for conver-
gence in mean and δk � 1=kb with b ∈ (0, 1=2] for a.s. convergence). We employ Nk � �k3:001�. For each experiment,
the mean of 20 replications and their 95% confidence intervals are plotted in Figures 4 and 5. It can be seen that,
when δk → 0 at a slower rate as mandated by the requirement of the a.s. convergence result, the confidence bands
are tighter, becoming more apparent in Figure 4 in which the variance is five. Furthermore, our numerical studies
reveal that, even for less aggressive choices of Nk such as when Nk � ka and a > 1, the trajectories show the
desired behavior in accordance with Proposition 2.

5. Concluding Remarks
Drawing motivation from the often poor behavior of (SSG) schemes on general (rather than structured) non-
smooth stochastic convex optimization problems, we develop two sets of accelerated proximal variance-reduced
schemes, both of which rely on a variable sample-size accelerated proximal method (VS-APM) for smooth con-
vex problems. In nonsmooth strongly convex regimes, we present three sets of schemes, each of which produces
linearly convergent sequences and is characterized by an overall complexity in subgradients (or proximal

Figure 3. Example 3: sVS-APM vs. Fixed Smoothing; n � 200

Figure 4. Almost Sure Convergence for sVS-APM,Nk � �k3:001�, ν2 � 5
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evaluations in the third case) that is optimal (or near optimal). First, in compact domains, we propose (mVS-
APM), an avenue that requires applying VS-APM on the Moreau envelope of F, where increasingly exact
gradients are computed via an inner (SSG) scheme. Second, in unbounded domains, we apply an unaccelerated
variable sample-size proximal method (VS-PM), which also relies on (SSG) for approximating gradients to
increasing accuracy. When f̃ (·,ω) is smoothable and convex, our smoothed VS-APM scheme (or sVS-APM)
admits optimal rate and oracle complexity. Our findings, when specialized to the smooth and convex f, provide
an optimal accelerated rate of O(1=K2) with optimal oracle complexity matching findings by Ghadimi and Lan
(2016) and Jofré and Thompson (2017). When f is deterministic, our rate matches that obtained by Nesterov
(2005b) but does so while providing asymptotically convergent schemes. Preliminary numerics suggest that the
schemes compare well with existing techniques in terms of both complexity as well as sensitivity to problem
parameters.

Appendix

Lemma A.1. For any real number y ≥ 1, we have that �y� ≥ �12y�:
Proof. Let T � �y�. If T is an even number, then we have �12y� � �12 (T+ ε)� � T

2 + 1, where ε ∈ (0, 1). Because T ≥ T
2 + 1, �y� ≥

�12y�: If T is an odd number, we have �12y� � �T−12 + ε+1
2 � � T−1

2 + 1 � T+1
2 . Again, because T ≥ T+1

2 , we have that �y� ≥ �12y�: w

Lemma A.2. Given a symmetric positive definite matrix Q, we have the following for any ν1,ν2,ν3: (ν2 − ν1)TQ(ν3 − ν1) �
1
2 (‖ν2 − ν1‖2Q + ‖ν3 − ν1‖2Q − ‖ν2 − ν3‖2Q), where ‖ν | |Q¢

��������
νTQν

√
:

Lemma A.3. Suppose Assumptions 1 and 3(i) hold. Furthermore, γk � 1=(2L) for all k. If h(xk)¢2L(xk − yk+1), F(x) − μ
4 ‖x− xk‖2

≥ F(yk+1) + 1
4L ‖h(xk)‖2 + h(xk)T(x− xk) − 2

L+ 1
μ

( )
‖w̄k,Nk‖2:

Proof. Because yk+1¢argminx
1
2L g(x) + 1

2 ‖x− xk − 1
2L (∇x f (xk) + w̄k,Nk )

[ ]‖2, we have that

yk+1 � argmin
x

1
2L

g(x) + 1
2

[
‖x− xk‖2 + 1

L
(x− xk)T(∇x f (xk) + w̄k,Nk ) +

1
4L2

‖∇x f (xk) + w̄k,Nk‖2
]

� argmin
x

g(x) +
[
L‖x− xk‖2 + f (xk) + (x− xk)T(∇x f (xk) + w̄k,Nk )

]
:

Let ψk(x)¢f (xk) + ∇x f (xk)T(x− xk) + L‖x− xk‖2 + w̄T
k,Nk

(x− xk), implying that

yk+1 � argmin
x

ψk(x) + g(x): (A.1)

Then, ∇xψk(x) may be expressed as ∇xψk(x) � ∇x f (xk) + 2L(x− xk) + w̄k,Nk . By the optimality condition of (A.1), we have
0 ∈ ∂g(yk+1) + ∇ψk(yk+1). Hence, by convexity of function g(x), we obtain

g(x) ≥ g(yk+1) −∇ψk(yk+1)T(x− yk+1) ⇒ ∇ψk(yk+1)T(x− yk+1) ≥ g(yk+1) − g(x): (A.2)

Consequently, by using the definition of ψk(x) and h(x), we have that

∇x f (xk)T(x− yk+1) ≥ g(yk+1) − g(x) + (h(xk) − w̄k,Nk )T(x− yk+1), ∀x: (A.3)

Figure 5. Almost Sure Convergence for sVS-APM,Nk � �k3:001�, ν2 � 2
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Because f is a μ-strongly convex function,

f (x) − μ

2
‖x − xk‖2 ≥ f (xk) + ∇x f (xk)T(x − xk) � f (xk) + ∇x f (xk)T(x − xk + yk+1 − yk+1)

≥(From (44))
f (xk) + ∇x f (xk)T(yk+1 − xk) + (h(xk) − w̄k,Nk )T(x − yk+1) + g(yk+1) − g(x)

� ψk(yk+1) − L‖yk+1 − xk‖2 − w̄T
k,Nk

(yk+1 − xk) + (h(xk) − w̄k,Nk )T(x − yk+1) + g(yk+1) − g(x)
� ψk(yk+1) − L‖yk+1 − xk‖2 + w̄T

k,Nk
(xk − x) + h(xk)T(x − yk+1) + g(yk+1) − g(x):

From the definition of h(xk), L‖yk+1 − xk‖2 � 1
4L ‖h(xk)‖2 and Inequality (A.2), we have the following:

F(x) −μ

2
‖x− xk‖2 ≥ ψk(yk+1) −

1
4L

‖h(xk)‖2 + h(xk)T(x− yk+1) + w̄T
k,Nk

(xk − x) + g(yk+1)

� ψk(yk+1) −
1
4L

‖h(xk)‖2 + h(xk)T(x− yk+1 + xk − xk) + w̄T
k,Nk

(xk − x) + g(yk+1)

� ψk(yk+1) +
1
4L

‖h(xk)‖2 + h(xk)T(x− xk) + w̄T
k,Nk

(xk − x) + g(yk+1), (A.4)

≥ ψk(yk+1) +
1
4L

‖h(xk)‖2 + h(xk)T(x− xk) − 1
μ
‖w̄k,Nk‖ −

μ

4
‖xk − x‖2 + g(yk+1), (A.5)

where (A.4) follows from the definition of h(xk) and (A.5) follows by using the fact that aTb ≥ − 1
2α ‖a‖2 − α

2 ‖b‖2 with α � 2.
From the L-smoothness of f,

ψk(yk+1) � f (xk) + ∇x f (xk)T(yk+1 − xk) + L‖xk − yk+1‖2 + w̄T
k,Nk

(yk+1 − xk)

≥ f (yk+1) + w̄T
k,Nk

(yk+1 − xk) + L
2
‖xk − yk+1‖2 ≥ f (yk+1) − 2

L
‖w̄k,Nk‖2, (A.6)

where (A.6) follows from 2aTb+ ‖a‖2 ≥ −‖b‖2: By substituting (A.6) in (A.5), the result follows. w

It is worth emphasizing that in the proof of Lemma A.3, we employ a simple bound to ensure that the term
w̄T

k,Nk
(yk+1 − xk) does not appear in the final bound. Instead, the term ‖w̄k,Nk‖2 emerges, and this allows for deriving the

optimal (rather than suboptimal) oracle complexity. Next, we define a set of parameter sequences that form the basis for
updating the iterates.

Definition A.1 (vk,αk,τk). Given v0, τ0, sequences {vk,τk,αk} are defined as follows:

vk+1 :� 1
τk+1

(1−αk)τkvk + 1
2
αkμxk − αk(h(xk)

[ ]
, (A.7)

αk solves (1− αk)τk + 1
2
αkμ � 2α2

kL, (A.8)

τk+1 :� (1−αk)τk + 1
2
αkμ: (A.9)

We employ this set of parameters in showing that the update rule (3) in Algorithm 1 can be recast using the parameters
τk,αk, and vk. This observation is crucial as we analyze the update.

Lemma A.4 (Equivalence of Update Rules). Suppose Assumptions 1 and 3(i) hold. Suppose the sequences {vk}, {αk}, and {τk} are
prescribed by Definition A.1. Consider the sequence {xk} generated by the algorithm. Then, the following hold:

i. xk+1 :� yk+1 + αK+1τk+1(1−αk)
τk+2+αk+1τk+1 (yk+1 − yk)

[ ]
≡ xk+1 :� 1

τk+1+1
2αk+1μ

(αk+1τk+1vk+1 + τk+2yk+1)
[ ]

:

ii. Suppose αk � 1
λk
for all k. Then, the update rule (1b) inAlgorithm 1 with σk¢

(λk−1) 1−λk+1
4κ

( )
1− 1

4κ( )λk+1
for all k is equivalent to the following:

[xk+1 :� yk+1 + σk(yk+1 − yk)] ≡ xk+1 :� 1

τk+1 + 1
2αk+1μ

(αk+1τk+1vk+1 + τk+2yk)
[ ]

:

Proof.
i. The update rule on the right in (i) can be recast as follows:

xk � 1
τk + αkμ

(αkτkvk + τk+1yk)w vk �
(
τk + 1

2αkμ
)
xk − τk+1yk

αkτk
: (A.10)
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Now, by substituting the expression for vk from (A.10) in (A.7) and recalling that τk+1 � (1−αk)τk + 1
2αkμ � 2Lα2

k and
h(xk) � 2L(xk − yk+1), we obtain the following sequence of equalities:

vk+1 � 1
τk+1

[
(1− αk)τkvk + 1

2
αkμxk − αk(h(xk)

]

� 1
τk+1

[(1− αk)τk

(
τk + 1

2
αkμ

)
xk − τk+1yk

αkτk
+ 1
2
αkμxk − αk(h(xk)]

�
(1−αk)τk + 1

2
αkμ− 1

2
α2
kμ

τk+1αk
xk − 1− αk

αk
yk + αkμ

2τk+1
xk − αk

τk+1
(h(xk))

�
τk+1 − 1

2
α2
kμ

τk+1αk
xk − 1−αk

αk
yk + αkμ

2τk+1
xk − αk

τk+1
h(xk)

� yk + 1
αk

(xk − yk) − αk

2Lα2
k
(2L(xk − yk+1)) � yk + 1

αk
(yk+1 − yk): (A.11)

We now show that the update rule for xk+1 on the left is equivalent to that on the right in (i).

xk+1 � 1

τk+1 + 1
2
αk+1μ

(αk+1τk+1vk+1 + τk+2yk+1)

�(52) 1

τk+1 + 1
2
αk+1μ

(
αk+1τk+1yk +αk+1τk+1

αk
(yk+1 − yk) + τk+2yk+1

)

� τk+2 + αk+1τk+1

τk+1 + 1
2
αk+1μ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠yk+1 + 1

αk
− 1

( )
αk+1τk+1

τk+1 + 1
2
αk+1μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(yk+1 − yk)

� yk+1 + 1
αk

− 1
( )

αk+1τk+1

τk+1 + 1
2
αk+1μ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(yk+1 − yk)

� yk+1 + αk+1τk+1(1− αk)
αk(τk+1 + 1

2
αk+1μ)

(yk+1 − yk) � yk+1 + αk+1τk+1(1−αk)
αk(τk+2 + αk+1τk+1) (yk+1 − yk),

because τk+1 � (1−αk)τk + 1
2αkμ.

ii. By choosing τk+1 � 2α2
kL for k ≥ 0, satisfying (A.8) and (A.9),

xk+1 � yk+1 + αk+1τk+1(1−αk)
αk(τk+2 + αk+1τk+1) (yk+1 − yk) � yk+1 + αk+1αk(1− αk)

α2
k+1 + αk+1α2

k
(yk+1 − yk)

� yk+1 +αk(1− αk)
αk+1 +α2

k
(yk+1 − yk): (A.12)

Now, by choosing αk � 1
λk
, we have the following:

αk(1− αk)
α2
k + αk+1

�
1
λk

1− 1
λk

( )
1
λk

( )2 + 1
λk+1

� λk+1(λk − 1)
λk+1 +λ2

k

: (A.13)

From the update rule for λk, we can obtain

λk+1 �
1 − λ2

k
4κ +

��������������������
1 − λ2

k
4κ

( )2
+ 4λ2

k

√
2

⇒ λ2
k �

λk+1(λk+1 − 1)
1 − λk+1

4κ

:
(A.14)
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By substituting (A.14) in (A.13), we obtain αk(1−αk)
α2
k+αk+1

� (λk−1)(1−λk+1
4κ )

1− 1
4κ( )λk+1

: Hence, (A.12) can be written as

xk+1 � yk+1 + σk(yk+1 − yk), σk �
(λk − 1) 1− λk+1

4κ

( )
1− 1

4κ

( )
λk+1

: w

We now utilize the previous lemma in defining an auxiliary function sequence {φk+1(x)} and a sequence {pk}. These
sequences form the basis for carrying out the final rate analysis.

Lemma A.5. Suppose Assumptions 1 and 3(i) hold. Consider the iterates generated by Algorithm 1, where γk � 1=(2L), whereas {vk}, {τk},
and {αk} are defined in (A.7)–(A.9). Supposeφ1(x)¢F(x0) + τ1

2 ‖x− x0‖2 and p1 � 0. Ifφk(x) and pk are defined as follows for k ≥ 1,

φk+1(x) :� (1−αk)φk(x) +αk

[
F(yk+1) + 1

4L
‖h(xk)‖2 +μ

4
‖x− xk‖2 + h(xk)T(x− xk)

]
(A.15)

pk+1 :� (1− αk) 2L+
1
μ

( )
‖w̄k,Nk‖2 + (1− αk)pk, (A.16)

where h(xk) � 2L(xk − yk+1). If φ∗
k¢minxφk(x), then φ∗

k ≥ F(yk) − pk, for all k ≥ 1:

Proof. We begin by showing that ∇2φk(x) � τkI, where I denotes the identity matrix. For k � 1, ∇2φ1(x) � τ1I. Suppose
this holds for k, and we proceed to show that this holds for k :� k+ 1 :

∇2φk+1(x) � (1−αk)∇2φk(x) +
1
2
αkμI � (1− αk)τkI+ 1

2
αkμI: (A.17)

By choosing τk+1 � (1− αk)τk + 1
2αkμ, the required claim follows. Next, we show that the sequence φk(x) can be written as

follows:

φk(x) � φ∗
k +

τk
2
‖x− vk‖2, (A.18)

where φ∗
k �minxφk(x) and vk � argminxφk(x). Because φk+1(x) is a convex quadratic function by definition, we may re-

present it as φk+1(x) � a+ bTx+ 1
2x

TQx: First, we note that ∇2φk+1(x) �Q � τk+1I: By noting that ∇xφk+1(vk+1) � 0, implying
that b+ τk+1vk+1 � 0⇒ b � −τk+1vk+1: Consequently, we have that φk+1(vk+1) � φ∗

k+1 � a− τk+1vTk+1vk+1 + 1
2τk+1‖vk+1‖2 ⇒ a �

φ∗
k+1 + τk+1

2 ‖vk+1‖2: This implies that φk+1(x) � φ∗
k+1 + τk+1

2 ‖x− vk+1‖2 and (A.18) is shown to be true for all k. Next, we proceed
to obtain the recursive rule for vk+1 and φ∗

k+1: By using the optimality conditions for the unconstrained strongly convex
problem minxφk(x), we obtain the following:

0 � ∇xφk+1(x) � (1− αk)∇xφk(x) + αk
1
2
μ(x− xk) + h(xk)

[ ]
�(59)(1−αk)τk(x− vk) +αk

1
2
μ(x− xk) + h(xk)

[ ]
⇒∇xφk+1(x) � τk+1(x− vk+1) implying vk+1 � 1

τk+1
(1− αk)τkvk + 1

2
αkμxk − αkh(xk)

[ ]
: (A.19)

By using Equations (A.15) and (A.18), we obtain the following:

φ∗
k+1 � φk+1(xk) −

τk+1
2

‖xk − vk+1‖2

� (1 − αk) φ∗
k +

τk
2
‖xk − vk‖2

[ ]
+ αk F(yk+1) + 1

4L
‖h(xk)‖2

[ ]
− τk+1

2
‖xk − vk+1‖2

� (1 − αk) φ∗
k +

τk
2
‖xk − vk‖2

[ ]
+ αk F(yk+1) + 1

4L
‖h(xk)‖2

[ ]

− τk+1
2

∣∣∣∣∣
∣∣∣∣∣xk − 1

τk+1
(1 − αk)τkvk + 1

2
αkμxk − αkh(xk)

[ ]∣∣∣∣∣
∣∣∣∣∣
2

� (1 − αk)φ∗
k + αkF(yk+1) + (1 − αk) τk2 ‖xk − vk‖2 + αk

[
1
4L

‖h(xk)‖2
]

− τk+1
2

∣∣∣∣∣
∣∣∣∣∣xk − 1

τk+1
(1 − αk)τk(vk − xk + xk) + 1

2
αkμxk − αkh(xk)

[ ]∣∣∣∣∣
∣∣∣∣∣
2

:
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The expression on the right can be further simplified as follows:

φ∗
k+1 � (1 − αk)φ∗

k + αkF(yk+1) + (1 − αk) τk2 ‖xk − vk‖2 + αk
1
4L

‖h(xk)‖2
[ ]

− τk+1
2

∣∣∣∣∣
∣∣∣∣∣ 1
τk+1

−(1 − αk)τk(vk − xk) + αkh(xk)[ ]
∣∣∣∣∣
∣∣∣∣∣
2

� (1 − αk)φ∗
k + αkF(yk+1) + (1 − αk) τk2 ‖xk − vk‖2 + αk

1
4L

‖h(xk)‖2
[ ]

− (1 − αk)2τ2k
2τk+1

‖vk − xk‖2

− α2
k

2τk+1
‖h(xk)‖2 + (1 − αk)αkτk

τk+1
h(xk)T(vk − xk)

� (1 − αk)φ∗
k + αkF(yk+1) + (1 − αk) τk2 ‖xk − vk‖2 + αk

4L
− α2

k

2τk+1

( )
‖h(xk)‖2

− (1 − αk)2τ2k
2τk+1

‖vk − xk‖2 + (1 − αk)αkτk
τk+1

h(xk)T(vk − xk)

⇒ φ∗
k+1 � (1 − αk)φ∗

k + αkF(yk+1) + (1 − αk) τk2 1 − (1 − αk)τk)
τk+1

( )
‖xk − vk‖2

+ αk

4L
− α2

k

2τk+1

( )
‖h(xk)‖2 + (1 − αk)αkτk

τk+1
h(xk)T(vk − xk)

� (1 − αk)φ∗
k + αkF(yk+1) + (1 − αk)αkτk(μ=2)

2τk+1
‖xk − vk‖2 + αk

4L
− α2

k

2τk+1

( )
‖h(xk)‖2

+ (1 − αk)αkτk
τk+1

h(xk)T(vk − xk)

� (1 − αk)φ∗
k + αkF(yk+1) + (1 − αk)αk

τk+1
τk

μ

4
‖xk − vk‖2 + h(xk)T(vk − xk)

( )
+ αk

4L
− α2

k

2τk+1

( )
‖h(xk)‖2:

Next, we inductively prove that φ∗
k ≥ F(yk) − pk, where pk is defined in (A.16). This holds for k � 1, where p1 � 0. Assum-

ing, it is true for k, we prove it holds for k + 1 by invoking Lemma A.3 for x � yk:

φ∗
k+1 ≥ (1−αk)(F(yk) − pk) +αkF(yk+1) + αk

4L
− α2

k

2τk+1

( )
‖h(xk)‖2

+ αk(1− αk)τk
τk+1

μ

4
‖xk − vk‖2 + h(xk)T(vk − xk)

( )
(Since φ∗

k ≥ F(yk) − pk)

≥ (1− αk)
(
F(yk+1) + h(xk)T(yk − xk) + 1

4L
‖h(xk)‖2 +μ

4
‖yk − xk‖2

− 2
L
+ 1
μ

( )
‖w̄k,Nk‖2

)
− (1− αk)pk + αkF(yk+1) + αk

4L
− α2

k

2τk+1

( )
‖h(xk)‖2 + αk(1−αk)τk

τk+1

× μ

4
‖xk − vk‖2 + h(xk)T(vk − xk)

( )
� F(yk+1) + 1

4L
− α2

k

2τk+1

( )
‖h(xk)‖2 + (1−αk)h(xk)T αkτk

τk+1
(vk − xk) + (yk − xk)

( )
− (1− αk)pk − (1− αk) 2L+

1
μ

( )
‖w̄k,Nk‖2) + (1−αk)μ4 ‖yk − xk‖2 + αk(1−αk)τk

τk+1
μ

4
‖xk − vk‖2

≥ F(yk+1) + (1−αk)h(xk)T αkτk
τk+1

(vk − xk) + (yk − xk)
( )︷�������������︸︸�������������︷Term (a)

+ 1
4L

− α2
k

2τk+1

( )︷����︸︸����︷Term (b)

‖h(xk)‖2

− (1− αk) 2L+
1
μ

( )
‖w̄k,Nk‖2 − (1− αk)pk � F(yk+1) − (1−αk) 2L+

1
μ

( )
‖w̄k,Nk‖2 − (1− αk)pk,
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where the last inequality follows noting that terms (a) and (b) are zero from recalling that 2Lα2
k � τk+1 and xk � 1

τk+1
2αkμ

(αkτkvk + τk+1yk) (by Lemma A.4). By choosing pk+1 � (1− αk) 2
L+ 1

μ

( )
‖w̄k,Nk‖2 + (1− αk)pk, we have that4 φ∗

k+1 ≥

F(yk+1) − pk+1
︷︸︸︷Term (c)

: w

Before analyzing the rate of convergence, we proceed to examine the limiting behavior of the sequence {λk} and show
that λk → ��

κ
√

, where κ denotes the condition number of the problem.

Lemma A.6 (Properties of {λk}). Suppose sequence {λk}k≥1 is defined by the recursion

λk+1 :�
1− λ2

k
4κ+

�������������������
1− λ2

k
4κ

( )2
+ 4λ2

k

√
2

,
(A.20)

where λ1 ∈ (1,2 ��
κ

√ ]: Then, {λk} is an increasing and bounded sequence such that limk→∞λk � 2
��
κ

√
:

Proof. First, by induction, we show that sequence {λk} is bounded above by 2
��
κ

√
. By assumption, λ1 ≤ 2

��
κ

√
, we assume

λk ≤ 2
��
κ

√
and proceed to show that λk+1 ≤ 2

��
κ

√
:

λk+1 �
1− λ2

k

4κ
+

��������������������
1− λ2

k

4κ

( )2
+ 4λ2

k

√
2

wλ2
k �

λk+1(λk+1 − 1)
1−λk+1

4κ

⇒ λk ≤ 2
��
κ

√
w

λk+1(λk+1 − 1)
1−λk+1

4κ

≤ 4κwλ2
k+1 ≤ 4κwλk+1 ≤ 2

��
κ

√
:

Because the sequence is increasing and bounded above, its limit exists. Suppose limk→∞λk+1 � λ, implying λ �
1−λ2

4κ+
�������������
1−λ2

4κ

( )2
+4λ2

√
2 ⇒ λ � 2

��
κ

√
: Second, we show that sequence {λk} is increasing, that is, λk+1 ≥ λk, which can be written

equivalently by replacing the recursive rule λk+1 as follows

1−λ2
k

4κ+
��������������������
1−λ2

k
4κ

( )2
+ 4λ2

k

√√√
2

≥ λkw 1− λ2
k

4κ

( )2
+ 4λ2

k ≥
λ2
k

4κ
− 1+ 2λk

( )2
w4λk 1− λ2

k

4κ

( )
≤ 0wλk ≤ 2

��
κ

√
: w

We are now in a position to provide our main proposition that provides a bridge toward deriving rate statements and
oracle complexity bounds.

Proof of Lemma 1. We have that

E φk+1(x)
[ ] �(56)(1 − αk)E φk(x)

[ ] + αkE F(yk+1) + 1
4L

‖h(xk)‖2 + μ

4
‖x − xk‖2 + h(xk)T(x − xk)

[ ]
≤ (1 − αk)E φk(x)

[ ] + αkE F(x)[ ] + αk
2
L
+ 1
μ

( )
E[‖w̄k,Nk‖2]:

By rearranging terms and setting x � x∗ in the preceding inequality, we obtain

E φk+1(x∗) − F(x∗)[ ] ≤ (1−αk)E φk(x∗) − F(x∗)[ ]+ 2
L
+ 1
μ

( )
E ‖w̄k,Nk‖2
[ ]

≤ (1−αk)(1− αk−1)E φk−1(x∗) − F(x∗)[ ]+αk
2
L
+ 1
μ

( )
E ‖w̄k,Nk‖2
[ ]

+ αk(1− αk−1) 2L+
1
μ

( )
E ‖w̄k−1,Nk−1‖2
[ ]]

≤
(∏k
i�1

(1− αi)
)
E φ1(x∗) − F(x∗)[ ]+ αk

∑k−1
i�0

(∏i−1
j�0

(1−αk−j)
)
2
L
+ 1
μ

( )
E ‖w̄k−i,Nk−i‖2
[ ]

:
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From Lemma A.6, αk � 1
λk
∈ [ᾱ, 1), where ᾱ � 1

2
��
κ

√ , and by recalling that E[‖w̄k−i,Nk−i‖2 |Hk−i] ≤ ν2=Nk−i, we obtain the follow-

ing sequence of inequalities:

E[φk+1(x∗) − F(x∗)] ≤
(∏k
i�1

(1− αi)
)
E[φ1(x∗) − F(x∗)] +∑k−1

i�0
((1− ᾱ)i) 2

L
+ 1
μ

( )
E[E[‖w̄k−i,Nk−i‖2 |Hk−i]]

≤
(∏k
i�1

(1− αi)
)
E[φ1(x∗) − F(x∗)] +∑k−1

i�0

2
L
+ 1
μ

( )
ν2(1− ᾱ)i

Nk−i
: (A.21)

By using Lemma A.5 and (A.21), we may obtain

F(yk) − F(x∗) ≤ E[φ∗
k + pk] − F(x∗) ≤ E[φk(x∗) − F(x∗)] + E[pk]

≤
(∏k−1
i�1

(1 − αi)
)
E[φ1(x∗) − F(x∗)] +∑k−2

i�0

2
L
+ 1
μ

( )
ν2(1 − ᾱ)i
Nk−1−i

+ E[pk]

�
(∏k−1
i�1

(1 − αi)
)
E[F(x0) − F(x∗) + τ1

2
‖x∗ − x0‖2] +

∑k−2
i�0

2
L
+ 1
μ

( )
ν2(1 − ᾱ)i
Nk−1−i

+ E[pk]

≤ (1 − ᾱ)k−1
(
D + μ

2
C2

)
+∑k−2

i�0

2
L
+ 1
μ

( )
ν2(1 − ᾱ)i
Nk−1−i

+ E[pk], (A.22)

where we use the fact that τ1 � μ and αk ∈ [ᾱ, 1). Next, we derive a bound on E[pk]. By definition, we have

pk � (1− ᾱ) 2
L+ 1

μ

( )
‖w̄k−1,Nk−1‖2 + (1− ᾱ)pk−1, implying that

pk � (1− ᾱ) 2
L
+ 1
μ

( )
‖w̄k−1,Nk−1‖2 + (1− ᾱ)2 2

L
+ 1
μ

( )
‖w̄k−2,Nk−2‖2 + (1− ᾱ)2pk−2

� : : : � ∑k−2
i�0

(1− ᾱ)i+1 2
L
+ 1
μ

( )
‖w̄k−i−1,Nk−i−1‖2:

By taking expectations and invoking Assumptions 1 and 3(i),

E[pk] ≤
∑k−2
i�0

(1 − ᾱ)i+1 2
L
+ 1
μ

( )
E[E[‖w̄k−i−1,Nk−i−1‖2 |Hk−i−1]] ≤

∑k−2
i�0

2
L
+ 1
μ

( )
ν2(1 − ᾱ)i+1

Nk−i−1
: (A.23)

By substituting (A.23) in (A.22), we obtain the desired result. w

Proof of Theorem 1.
i. From (3) and by the definition of θ, wemay claim the following:

E[F(yK) − F∗] ≤ D + μ

2
C2

( )
θK−1 +∑K−2

j�0
θj 2

L
+ 1
μ

( )
ν2

NK−j−1
+ ∑K−2

j�0
θj+1 2

L
+ 1
μ

( )
ν2

NK−j−1

� D + μ

2
C2

( )
θK−1 + 2

L
+ 1
μ

( )
θ
∑K−2
j�0

θj 4ν2

NK−j−1
≤ D + μ

2
C2

( )
θK−1 + ∑K−2

j�0
θj 2

L
+ 1
μ

( )
2ν2

NK−j−1
, (A.24)

Where, in the last inequality, we use the fact that ᾱ + 2θ � 2− ᾱ ≤ 2. If NK−j−1 � �ρ−(K−j−1)�, by using Lemma A.1, we have
the following:

∑K−2
i�0

2
L
+ 1
μ

( )
2θjν2

�ρ−(K−j−1)� ≤
∑K−2
i�0

2
L
+ 1
μ

( )
θiν2

ρ−(K−i−1) ≤
2
L
+ 1
μ

( )
ν2ρK−1∑K−2

i�0

θ

ρ

( )i

≤ 2
L
+ 1
μ

( )
ν2ρ

(ρ−θ)
( )

ρK−1: (A.25)
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By substituting (A.25) in (A.24), the bound in terms of K is provided next, where C̃ is defined in (4):

E[F(yK) − F∗] ≤ D+μ

2
C2

( )
θK−1 + 2

L
+ 1
μ

( )
2ν2

��
κ

√
ρK−1 ≤ C̃ρK−1

where C̃ � D+μC2

2

( )
+ 2

L
+ 1
μ

( )
2ν2

��
κ

√ ≤ D+μC2

2

( )
+ 4ν2

μ
+ 2ν2

��
κ

√
μ

: (A.26)

Furthermore, we may derive the number of steps K to obtain an ε-optimal solution:

1
ρ
� 1

1− 1
2a

��
κ

√
( ) � 2a

��
κ

√
(2a ��

κ
√ − 1) ⇒ K ≥ log(C̃) − log(ε)

log(1=ρ) ≈O( ��
κ

√ )log( ��
κ

√
=ε): (A.27)

ii. To compute a vector yK+1 satisfying E[F(yK+1) − F∗] ≤ ε, we have C̃ρK ≤ ε, implying that K � �log(1=ρ)(C̃=ε)�: To obtain the

optimal oracle complexity, we require
∑K

k�1Nk gradients. If Nk � �ρ−k� ≤ ρ−k, we obtain the following because (1− ρ) �
(1=(a ��

κ
√ )).

∑K
k�1

ρ−k ≤ 1
1
ρ
− 1

( ) 1
ρ

( )2+K
≤ 1

1
ρ
− 1

( ) 1
ρ

( )3+log(1=ρ)(C̃=ε)
≤ C̃

ε

( )
1

ρ2(1− ρ) �
a

��
κ

√
C̃

ρ2ε
:

ρ � 1− 1
2a

��
κ

√ ⇒ ρ2 � 1− 2=(2a ��
κ

√ ) + 1=(4a2κ) � 4a2κ− 4a
��
κ

√ + 1
4a2κ

≥ 4a2κ− 8aκ
4a2κ

� (a2 − 2a)κ
a2κ

⇒
��
κ

√
ρ2 ≤ a2κ

��
κ

√
(a2 − 2a)κ � a

a− 2

( ) ��
κ

√ ⇒ ∑log(1=ρ)(C̃=ε)+1

k�1
ρ−k ≤ 2a2

��
κ

√
C̃

(a− 2)ε

� D+μC2

2

( )
+ 4ν2

μ
+ 2ν2

��
κ

√
μ

( )
O

��
κ

√
ε

( )
: w

Proof of Lemma 3.
i. limη→0Ĉ(η) � +∞ and limη→+∞Ĉ(η) � +∞ because limη→0κ̃(η) � +∞ and limη→+∞κ̃(η) � 1: In other words, C̄(η) is a coer-

cive function on the set {η : η ≥ 0}.
ii. We observe that, for η > 0,

κ̃(η) � 1+ 1
ημ

> 0, κ̃(η)′ � − 1
η2μ

< 0, κ̃′′(η) � 2
η3μ

> 0:

Furthermore, Q(η) �max{η2M2, 4Δ2} and η̄¢ 2Δ
M . Therefore, we have that Q(η) is a.e. twice differentiable, and its Clarke gen-

eralized gradient and Hessian are defined as follows.

∂ηQ(η) �
{2ηM2}, η > η̄

[0, 2η̄M2], η � η̄

{0}, η < η̄

and ∂2η Q(η) �
2M2, η > η̄

{2αM2 |α ∈ [0, 1]} η � η̄,

0: η < η̄

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (A.28)

From Facchinei and Pang (2003, proposition 7.1.9) and by recalling that κ̃(η) is continuously differentiable in η, we may
define ∂Ĉ(η) as follows.

∂ηĈ(η) � ∂[2Dηκ̃] + ∂[8κ̃(η)5=2Q(η)a] � 2Dηκ̃′ + 2Dκ̃ + 20κ̃3=2κ̃′Q(η)a+ 8κ̃5=2a∂Q(η)

�
{2Dηκ̃′ + 2Dκ̃ + 20κ̃3=2κ̃′Q(η)a+ 8κ̃5=2aQ′(η)}, η > η̄

{2Dη̄κ̃′ + 2Dκ̃ + 20κ̃3=2κ̃′Q(η̄)a+ 8κ̃5=2a(2αη̄M2) |α ∈ [0,1]}, η � η̄

{2Dηκ̃′ + 2Dκ̃ + 20κ̃3=2κ̃′Q(η)a}, η < η̄

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (A.29)
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We may then define the Clarke generalized Hessian of Ĉ as follows.

∂2ηĈ(η) �

{4Dκ̃′ + 2Dηκ̃′′ + 30κ̃1=2(κ̃′)2Q(η)a+ 20κ̃3=2κ̃′′Q(η)a+ 20κ̃3=2κ̃′(2ηM2)a
+ 20κ̃3=2κ̃′(2ηM2)a+ 8κ̃5=2(2M2)a}

{ }
, η > η̄

{4Dκ̃′ + 2Dηκ̃′′ + 30κ̃1=2(κ̃′)2Q(η)a+ 20κ̃3=2κ̃′′Q(η)a+ 20κ̃3=2κ̃′(2αηM2)a
+ 20κ̃3=2κ̃′(2αη̄M2)a+ 8κ̃5=2(2αM2)a |α ∈ [0, 1]}

{ }
, η � η̄

4Dκ̃′ + 2Dηκ̃′′ + 30κ̃1=2(κ̃′)2Q(η)a+ 20κ̃3=2κ̃′′Q(η)a
{ }

: η < η̄

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
We now proceed to show that H � 0 for all H ∈ ∂2Ĉ(η) and for all η > 0.

Case 1: 0 < η < η̄. In this setting,Q′(η) �Q′′(η) � 0. It follows that ∂2Ĉ(η) is a singleton given by the scalarH, and it suffices to
show thatH > 0. This follows as shown next.

H � 4Dκ̃′ + 2Dηκ̃′′ + 30κ̃1=2(κ̃′)2Q(η)a+ 20κ̃3=2κ̃′′Q(η)a

� 2D
(

2
η2μ

− 2
η2μ

)
+ 30κ̃1=2(κ̃′)2Q(η)a+ 20κ̃3=2κ̃′′Q(η)a︸�������������������︷︷�������������������︸

>0

> 0:

Case 2: η > η̄. BecauseQ′(η) � 2ηM2 andQ′′(η) � 2M2 for η > η̄, we have that ∂2Ĉ(η) � {H}, where it suffices to show thatH >
0. This follows as shown next.

H � 4Dκ̃′ + 2Dηκ̃′′ + 30κ̃1=2(κ̃′)2Q(η)a+ 20κ̃3=2κ̃′′Q(η)a+ 40κ̃3=2κ̃′Q′(η)a+ 8κ̃5=2Q′′(η)a

� 2D
(

2
η2μ

− 2
η2μ

)
+ 30κ̃1=2(κ̃′)2Q(η)a+ 8κ̃5=2Q′′(η)a+ κ̃3=2(20κ̃′′Q(η) + 40κ̃′Q′(η))a

≥ 30κ̃1=2(κ̃′)2Q(η)a+ 8κ̃5=2Q′′(η)a+ κ̃3=2 40η2M2

η3μ

( )
a− κ̃3=2 80ηM2

η2μ

( )
a

≥ 30κ̃1=2 M2

η2μ2 a+ 16κ̃5=2M2a+ κ̃1=2
(
1+ 1

ημ

)
40M2

ημ

( )
a− κ̃1=2 80M2

η2μ2

( )
a:

Here, the first term follows from Q(η) � 2η2M2 and κ̃′ � − 1
η2μ, and the last term follows from −κ̃3=2 80ηM2

η2μ

( )
a ≤ −κ̃1=2 80M2

η2μ2

( )
a

because −κ̃3=2 � −κ̃1=2 1+ 1
ημ

( )
≤ − κ̃1=2

ημ :

κ̃1=2 30M2

η2μ2

( )
a+ 16κ̃5=2M2a+ κ̃1=2

(
1+

(
1+ 1

ημ

))
40M2

ημ

( )
a− κ̃1=2 80M2

η2μ2

( )
a

≥ κ̃1=2 30M2

η2μ2

( )
a+ 16κ̃1=2

(
1+ 2

ημ
+ 1
η2μ2

)
M2a+ κ̃1=2 40M2

η2μ2

( )
a− κ̃1=2 80M2

η2μ2

( )
a

≥ κ̃1=2 30M2

η2μ2

( )
a+ κ̃1=2 16M2

η2μ2

( )
a+ κ̃1=2 40M2

η2μ2

( )
a− κ̃1=2 80M2

η2μ2

( )
a

� κ̃1=2 6M2

η2μ2

( )
a > 0:
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Case 3: η � η̄. Suppose Q′(η̄) ∈ ∂Ĉ(η̄) and H ∈ ∂2Ĉ(η̄), where Q′(η̄) � 2αη̄M2 and H � 2αM2 and α ∈ [0, 1]. It suffices to show
thatH > 0 for α ∈ [0, 1], as we proceed to do next.

H � 4Dκ̃′ + 2Dηκ̃′′ + 30κ̃1=2(κ̃′)2Q(η̄)a+ 20κ̃3=2κ̃′′Q(η)a+ 40κ̃3=2κ̃′Q′(η)a+ 8κ̃5=2Q′′(η̄)a

� 2D
(

2
η̄2μ

− 2
η̄2μ

)
+ 30κ̃1=2(κ̃′)2Q(η)a+ 8κ̃5=2Q′′(η̄)a+ κ̃3=2(20κ̃′′Q(η̄) + 40κ̃′Q′(η̄))a

≥ 30κ̃1=2(κ̃′)2Q(η̄)a+ 8κ̃5=2Q′′(η̄)a+ κ̃3=2 40η̄2M2

η3μ

( )
a− κ̃3=2 80αηM2

η2μ

( )
a

≥ κ̃1=2 30M2

η̄2μ2

( )
a+ 16κ̃5=2αM2a+ κ̃1=2

(
1+ 1

η̄μ

)
40M2

η̄μ

( )
a− κ̃1=2 80αM2

η̄2μ2

( )
a

≥ κ̃1=2 30M2

η̄2μ2

( )
a+ 16κ̃5=2αM2a+ κ̃1=2 40M2

η̄2μ2

( )
a− κ̃1=2 80M2

η̄2μ2

( )
a

≥ κ̃1=2 30M2

η2μ2

( )
a+ 16κ̃1=2

(
1+ 2

ημ
+ 1
η2μ2

)
αM2a+ κ̃1=2 40M2

η̄2μ2

( )
a− κ̃1=2 80αM2

η̄2μ2

( )
a

≥ κ̃1=2 30M2

η̄2μ2

( )
a+ κ̃1=2 16αM2

η̄2μ2

( )
a+ κ̃1=2 40M2

η̄2μ2

( )
a− κ̃1=2 80αM2

η̄2μ2

( )
a

� κ̃1=2 30M2

η̄2μ2

( )
a+ κ̃1=2 40M2

η̄2μ2

( )
a− κ̃1=2 64αM2

η̄2μ2

( )
a

≥α≤1 κ̃1=2 30M2

η̄2μ2

( )
a+ κ̃1=2 40M2

η̄2μ2

( )
a− κ̃1=2 64M2

η̄2μ2

( )
a

� κ̃1=2 6M2

η̄2μ2

( )
a > 0:

Consequently, we have that H > 0 for H ∈ ∂2Ĉ(η) and η > 0. It follows that Ĉ(η) is strictly convex for η > 0 (cf. Hiriart-
Urruty et al. 1984, example 2.2). Because Ĉ(0) � +∞, we may then conclude from the definition of convexity that Ĉ is a
strictly convex function on {η |η ≥ 0}.

iii. By part (i), a minimizer of Ĉ exists in {η : η ≥ 0}. By part (ii), this minimizer is necessarily unique because Ĉ is strictly con-
vex. Therefore. Ĉ has a unique minimizer on {η |η ≥ 0}. w

Proof of Proposition 1. a. Because E[F̃(•,ω) + 1
2η ‖xk −•‖2] is μ̃-strongly convex, where μ̃ � μ+ 1

η and xk is F k-measurable,
we may utilize the proof technique in Shapiro et al. (2009, section 5.9.1) to obtain the following for j ≥ 0.

E[‖zk,j+1 − z∗k‖2 | F k] ≤ (1− 2σjμ̃)E[‖zk,j − z∗k‖2 | F k] + γ2
j (M2

1E[‖zk,j‖2 |F k] +M2
2‖xk‖2 +M2

3)

≤(20)(1− 2σjμ̃ + 2σ2j M
2
1)E[‖zk,j − z∗k‖2 |F k]

+ σ2j (2M2
1E[‖z∗k‖2 |F k] +M2

2‖xk‖2 +M2
3): (A.30)

If ej¢E[‖zk,j − z∗k‖2 |F k] and dk¢2M2
1E[‖z∗k‖2 |F k] +M2

2‖xk‖2 +M2
3, for any tj > 0, we have that

ej+1 ≤ (1− 2σjμ̃ + 2σ2j M
2
1)ej + σ2j dk ⇒ tj+1ej+1 ≤ tj+1(1− 2σjμ̃ + 2σ2j M

2
1)ej + tj+1σ2j dk: (A.31)

We intend to show that tj+1(1− 2σjμ̃ + 2σ2j M
2
1)ej ≤ tjej. Let J̄ , tj, and σj be defined as

J̄¢
⌈
2M2

1

μ̃2 − 1
⌉
, tj¢

1− μ̃2

2M2
1

( )−j
, j < J̄

j, j ≥ J̄

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭, and σj¢

min
1

( j+ 1)log( j+ 1) ,
μ̃

M2
1

{ }
, j < J̄

1
( j+ 1)log( j+ 1) , j ≥ J̄

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭: (A.32)
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For j ≥ J̄, we have the following.

tj+1(1− 2σjμ̃ + 2σ2j M
2
1) ≤ tjw (1− 2σjμ̃ + 2σ2j M

2
1) ≤

tj
tj+1

w
(
1− tj

tj+1
− 2σjμ̃ + 2σ2j M

2
1

)
≤ 0wσj ≤

μ̃ +
������������������������
μ̃2 − 2M2

1 1− tj
tj+1

( )√
2M2

1
: (A.33)

From (A.32), we have that tj
tj+1 � 1− 1

j+1
( )

for j ≥ J̄. Consequently,

2M2
1

(
1− tj

tj+1

)
� 2M2

1

j+ 1
≤ 2M2

1⌈
2M2

1
μ̃2 − 1

⌉
+ 1

≤ μ̃2 ⇒ μ̃2 − 2M2
1 1− tj

tj+1

( )
≥ 0:

Using (A.33), we may show that (A.31) is bounded as follows for j ≥ J̄:

tj+1ej+1 ≤ tj+1(1− 2σjμ̃ + 2σ2j M
2
1)ej + tj+1σ2j dk ≤ tjej + tj+1σ2j dk ≤ t0e0 +

∑J̄−1
ℓ�0

σ2ℓ tℓ+1dk

︷����︸︸����︷≤cJ̄

dk +
∑j

ℓ�J̄
σ2ℓtℓ+1dk

≤ t0e0 + cJ̄ dk +
∑j

ℓ�J̄

ℓ

(ℓ+ 1)2log2(ℓ+ 1)dk ≤ t0e0 + cJ̄ dk +
∑j

ℓ�J̄

1
(ℓ+ 1)log(ℓ+ 1)dk

≤ t0e0 + (cJ̄ + 3)dk¢t0e0 + d̄k, (A.34)

where (A.34) follows from
∑∞

j�1 1
( j+1)log( j+1) ≤ 3. Next, we derive a bound on e0 � E[‖zk,0 − z∗k‖2 |F k].

E[‖zk,0 − z∗k‖2 |F k] � E[‖xk − z∗k‖2 |F k] ≤ 2‖xk − x∗‖2 + 2E[‖x∗ − z∗k‖2 |F k]
� 2‖xk − x∗‖2 + 2E[‖proxηF(x∗) −proxηF(xk)‖2 |F k] ≤ 4‖xk − x∗‖2,

where the last inequality is a result of xk being F k-measurable and nonexpansivity of the prox. operator. Similarly, dk can
be bounded as follows.

dk � (2M2
1E[‖z∗k‖2 |F k] +M2

2‖xk‖2 +M2
3)

≤ 4M2
1E[‖z∗k − x∗‖2 |F k] + 4M2

1[‖x∗‖2] + 2M2
2‖xk − x∗‖2 + 2M2

2‖x∗‖2 +M2
3

≤ (4M2
1 + 2M2

2)‖xk − x∗‖2 + (4M2
1 + 2M2

2)‖x∗‖2 +M2
3,

where the last inequality follows from ‖z∗k − x∗‖ � ‖proxηF(xk) −proxηF(x∗)‖ ≤ ‖xk − x∗‖: Therefore, using (A.34), we may

claim that E[‖zk,j − z∗k‖2 |F k] ≤ â2‖xk−x∗‖2+b̂2
j , where â2 � 4+ 4M2

1 + 2M2
2 and b̂

2 � (4M2
1 + 2M2

2)‖x∗‖2 +M2
3: w

Proof of Theorem 3.
i. By using theorem 3.10 in Bubeck (2015) to bound ‖x̄k+1 − x∗‖2 ≤ q‖xk − x∗‖2, where κ̃ � ημ+1

ημ , q � 1− 1
κ̃ � 1

ημ+1 ∈ (0, 1) if η > 0,

and γk � η, wemay obtain the following in which (1+ δ) < 1
2q+ 1

2.

E[‖xk+1 − x∗‖2 |F k] ≤ 1+ 1
δ

( )
E[‖xk+1 − x̄k+1‖2 |F k] + (1+ δ)E[‖x̄k+1 − x∗‖2 |F k]

≤ 1+ 1
δ

( )
E[‖xk+1 − x̄k+1‖2] + (1+ δ)qE[‖xk − x∗‖2]

� 1+ 1
δ

( )
E

[∣∣∣∣∣∣∣∣γk

η
(xk − zk,Nk ) −

γk

η
(xk − z∗k)

∣∣∣∣∣∣∣∣2 |F k

]
+ (1+ δ)q‖xk − x∗‖2

� 1+ 1
δ

( )
γ2
k

η2
E[‖(zk,Nk − z∗k)‖2 |F k] + (1+ δ)q‖xk − x∗‖2

� 1+ 1
δ

( )
E[‖(zk,Nk − z∗k)‖2 |F k] + (1+ δ)q‖xk − x∗‖2, (A.35)
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where (A.35) follows from γk � η. By Proposition 1, the first term on the right can be bounded as

E[‖(zk,Nk − z∗k)‖2 |F k] ≤ â2‖xk − x∗‖2 + b̂
2

Nk
,

where Nk denotes the number of stochastic subgradient steps taken at major iteration k. Then, by taking unconditional
expectations, we have

E[‖xk+1 − x∗‖2] ≤ (1+ δ)q+ (1+ 1=δ)â2
Nk

( )
E[‖xk − x∗‖2] + (1+ 1=δ)b̂2

Nk
:

Let pk¢(1+ δ)q+ (1+1=δ)â2
Nk

and Nk � �N0ρ
−k� for k ≥ 0, where N0 >

(1+1=δ)â2
1−(1+δ)q . Note that p0 < 1 and {pk} is a decreasing sequence

based on the choice of N0 and {Nk}. We consider two cases.
a. Let ρ≠ p0 and ρ ∈ (0, 1). In this instance, we obtain the following result.

E[‖xk+1 − x∗‖2] ≤ E[‖x0 − x∗‖2]∏k
i�0

pi +
∑k
i�0

(1+ 1=δ)b̂2∏i−1
j�0pk−j

Nk−i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ pk+10 E[‖x0 − x∗‖2] + ρk(1+ 1=δ)b̂2
N0

∑k
i�0

p0
ρ

( )i
≤ C(max{ρ, p0})k+1, where C¢ E[‖x0 − x∗‖2] + (1+ 1=δ)b̂2=N0

1−min{ρ,p0}
max{ρ,p0}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠:

b. Let ρ � p0. Consequently, we obtain the following result.

E[‖xk+1 − x∗‖2] ≤ pk+10 E[‖x0 − x∗‖2] + pk+10 (1+ 1=δ)b̂2
N0

(k+ 1) � apk+10 + b(k+ 1)pk+10 :

It can be shown that there exists p̂ such that p0 < p̂ < 1. By analyzing maxz≥0z p0
p̂

( )z
, we may claim that kpk0 <Dp̂k for k ≥ 0

and D̂ > 1
ln(p0=p̂)e : Consequently, for p̂ ∈ (p0, 1) and D̂ > 1

ln(p0=p̂)e,

E[‖xk+1 − x∗‖2] ≤ Cp̂k+1, where C¢ E[‖x0−x∗‖2] + (1+ 1=δ)b̂2D̂
N0

( )
:

ii. Suppose ρ � p0 and p̂ ∈ (p0, 1) and to compute a vector xK satisfying E[‖xK − x∗‖2] ≤ ε, we have Cp̂K ≤ ε, where C depends

on p̂. This implies that K � �log(1=p̂)(C=ε)�: From the definition of p̂,p0, q and by choosingN0 � 2(1+1=δ) â2
1−(1+δ)q , we obtain that

1
log(1=p̂) �

log(1=p0)
log(1=p̂)

1
log(1=p0) ≤

log(1=p0)
log(1=p̂)

1
(1− p0) �

log(1=p0)
log(1=p̂)

1

1− (1+ δ)q+ (1+ 1=δ)â2
N0

( )

≤ log(1=p0)
log(1=p̂)

1

1− (1+ δ)q+ 1− (1+ δ)q
2

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � log(1=p0)
log(1=p̂)

1
1
2
− (1+ δ)q

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≤ log(1=p0)

log(1=p̂)
1

1
4
− q
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 4log(1=p0)

log(1=p̂) κ̃,

where the last inequality follows from (1+δ)q
2 ≤ 1

4+ q
4 : Therefore, the iteration complexity is bounded as log(C=ε)=log(1=p0) ≤

4log(1=p0)
log(1=p̂)

( )
κ̃log(C=ε). Similarly, if ρ≠ p0, because Cmax{ρ, p0}k ≤ ε, the iteration complexity isO(κ̃log(C=ε)).
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iii. Suppose ρ � p0 and p̂ ∈ (p0, 1). To obtain the oracle complexity, we require
∑K

k�1Nk gradients in which K � �log(1=p̂)(C=ε)�.

N0
∑K
k�1

ρ−k ≤ N0

1
ρ
− 1

( ) 1
ρ

( )2+K
≤ N0

1
ρ
− 1

( ) 1
ρ

( )3+log(1=p̂ )(C=ε)
≤ N0

ρ2(1− ρ)
1
ρ

( )log1=p̂ (C=ε)

� N0

ρ2(1− ρ)
1
ρ

( )log1=ρ(C=ε)log1=p̂ (1=ρ)
� N0

ρ2(1− ρ)
C

ε

( )log1=p̂ (1=ρ)
� p20

ρ2

( )
N0

p02(1− ρ)
C

ε

( )log1=p̂ (1=ρ)

≤ p20
ρ2

( )
16(1+ 1=δ)â2

(1− q)2
C

ε

( )logp̂
(1=ρ) :

It follows that the oracle complexity is O κ̃3 C
ε

( )log1=p̂ (1=ρ)( )
: Similarly, it can be shown that, when ρ > p0 (or ρ < p0), the oracle

complexity is O κ̃3C
ε

( ) (
or O κ̃3 C

ε

( )log1=p0 (1=ρ)( ))
. w

Proof of Lemma 4. Because f̃η(x,ω) ≤ f̃ (x,ω) ≤ f̃η(x,ω) + ηβ(ω) for any x, by taking expectations on both sides and recalling
that E[β(ω)] ≤ β̃, we have that

E[ f̃η(x,ω)] ≤ E[ f̃ (x,ω)] ≤ E[ f̃η(x,ω)] + ηE[β(ω)] ∀x:

Suppose fη is defined as

fη(x)¢E[ f̃η(x,ω)], (A.26)

implying that fη(x) ≤ f (x) ≤ fη(x) + ηβ̃: In addition, because ‖∇x f̃η(x,ω) − ∇x f̃η(y,ω)‖ ≤ α(ω)
η ‖x− y‖, for all x, y, by taking expect-

ations on both sides and invoking Jensen’s inequality, we have that

‖∇x fη(x) − ∇x fη(y)‖ � ‖∇xE[ f̃ η(x,ω)] −∇xE[ f̃η(y,ω)]‖

(Jensen′s inequality) ≤ E[‖∇x f̃η(x,ω) − ∇x f̃η(y,ω)‖](
f̃η(·,ω) is

α(ω)
η

-smooth
)
≤ E

α(ω)
η

[ ]
‖x− y‖

≤ α̃

η
‖x− y‖ ∀x,y,

Where, in the first inequality, we use theorem 7.47 in Shapiro et al. (2009) (interchangeability of the derivative and the
expectation). It follows that fη is α̃=η-smooth. We may conclude that (α̃, β̃)-smoothability of f follows. w

Endnotes
1 We thank P. Dvurechensky for alerting us to Tran-Dinh et al. (2018) and Van Nguyen et al. (2017).
2 The Lambert function W(x) is the inverse function of yey � x and is denoted by y �W(x). This function has two real branches: an upper
branchW0(x) for x ∈ [− 1

e , +∞] and a lower branchW−1(x) for x ∈ − 1
e , 0

[ ]
(Veberic 2010).

3 While pursuing submission of the present work, we were informed of related work by Jofré and Thompson (2017) through a private
communication.
4 The update rule for xk, according to Lemma A.4, is equivalent to that in the algorithm. Also, compared with the approach by Nesterov, we
employ inexact (rather than exact) gradients; the key difference in the proof is term (c).
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