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Abstract We provide a new proof of a central limit theorem for empirical quantiles
in the positive-recurrent Markov process setting under conditions that are essentially
tight. We also establish the validity of the method of nonoverlapping batch means
with a fixed number of batches for interval estimation of the quantile. The conditions
of these results are likely to be difficult to verify in practice, and so we also provide
more easily verified sufficient conditions.

1 Introduction

Given a real-valued random variable Y with cumulative distribution function (CDF)
F, the pth quantile q (for 0 < p < 1) is q = F−1(p) = inf{x : F (x) ≥ p}. The
problem of quantile estimation is, given p, to determine q = F−1(p).

We focus on the case whereY is a random variable associated with the steady-state
regime of a Markov chain. To be more precise, let X = (Xt : t ≥ 0) be a positive
(Harris) recurrent Markov chain on a general state space S in discrete or continuous
time, and denote the stationary distribution of X by π. Let f : S → R be a real-valued
function defined on the state space S of X . We consider the problem of computing
the pth quantile q of the random variable Y = f (X0), where X0 has distribution π.
Under mild additional conditions, the pth quantile Qt of the empirical CDF

F (·, t) =
1
t

∫ t

0
1( f (Xs ) ≤ ·) ds. (1)
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converges to q almost surely. Our main result is a central limit theorem (CLT) for Qt .
We further show that this CLT can be leveraged to establish the validity of the non-
overlapping batch means procedure for reporting asymptotically valid confidence
intervals for q.

A CLT for empirical quantiles can be established by appealing to regenerative
theory. This is the approach taken in [1, 2, 3], for example, and indeed we use this
approach in this paper. We exploit the “1-dependent regenerative property” of Harris
processes to obtain our main results. In addition to smoothness conditions on the
target CDF at the quantile q, our main assumption is that the second moment of the
cycle lengths is finite. As we will show, one cannot expect the CLT to hold in general
if this condition is relaxed.

Since the conditions of our main result are hard to verify in practice, we also
provide more easily-verifiable conditions under which the required properties hold.
These conditions are Lyapunov drift criteria, together with a condition that ensures
that the target distribution is appropriately smooth at the quantile q.

Why are these particular results of interest to the simulation community? It is
known that any discrete-event simulation that is “well-posed”, in a certain precise
sense, can be modelled as a positive Harris recurrent Markov chain [4]. If the state
space of the simulation is continuous, as is often the case, then the analysis in this
paper is relevant. To buttress this point we provide an example in Section 6.

Another application area where this problem is of great interest is inMarkov chain
Monte Carlo (MCMC); see, e.g., [5], [6, Chapter 5], [7, Chapter XIII] and especially
[3]. In this setting, one is typically interested in exploring a given distribution π
that is known only up to a normalizing constant. A Markov chain may be produced
whose steady-state distribution is the given distribution π, and one then attempts to
infer properties of the distribution π from Markov chain simulations. Unlike most
work in MCMC, we neither assume nor require reversibility.

Quantile estimation has received a great deal of attention in the simulation com-
munity. In the case where the observations are i.i.d., [8] developed a number of
important results including bias expansions that expand on the general theory for
the i.i.d. case available in, e.g., [9, Section 2.3]. [10] derived large-deviations results
for quantile estimators and explored the use of stratification techniques in estimat-
ing quantiles. Other papers that explore the use of variance reduction techniques in
quantile estimation for i.i.d. observations include [11, 12, 13, 14, 15]. Additional
work that develops sufficient conditions for quantile estimators that employ variance
reduction techniques to satisfy a CLT includes [16, 17, 18].

In the case of estimating steady-state quantiles as in the present paper, work
includes [19], where sufficient conditions for the validity of the method of nonover-
lapping batch quantiles are presented, along with a practical algorithm for providing
a confidence interval for a quantile. Additional practical algorithms may be found
in [20, 21, 22]. Asymptotic results for the method of overlapping batch means are
stated in [23]. In closely related work, [24] gives sufficient conditions for the quan-
tile estimator to satisfy a central limit theorem in the Markov-chain setting. The
sufficient conditions ensure that the chain is geometrically ergodic through the use
of Lyapunov drift criteria, along with additional conditions on the time-dependent
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distribution of the chain. In contrast, our conditions are much weaker and we do
not require conditions on the time-dependent distribution. The sufficient conditions
of [24] permit a comparison of the bias and mean-squared error of 3 estimators of
steady-state quantiles in [25].

Perhaps the closest work to ours is [3], though that paper has a more practical
focus on estimation methods while we strive for minimal conditions for the CLT. [3]
establishes the quantile CLT and describes how to estimate the variance constant that
appears in the CLT using both batch means and regenerative methods. The central
assumption there is polynomial ergodicity of an order strictly greater than 1, which
implies that the length of regenerative cycles in Harris chains have a finite (2 + ε )
moment for some ε > 0 (see the proof of Theorem 5 in [3]), while we only require a
finite 2ndmoment.Moreover, polynomially ergodic chains are necessarily aperiodic;
we do not require aperiodicity. Finally, [3] assumes independent regenerative cycles,
yet some Harris chains arising in practice cannot have independent cycles [26].

In early work, [27, 28] established CLTs and laws of the iterated logarithm for
empirical quantiles obtained from φ-mixing stochastic processes. Given that ergodic
Markov chains are strongmixing [29, 30] one could apply these results to theMarkov
setting. However, we believe that the hypotheses of these results are difficult to verify
in practice. The assumptions of [31] are more readily verified and were employed in
the quantile estimation context by [19], but may require stronger conditions than does
our analysis. For example, in the single-server example in Section 6 where we require
a finite second moment condition, [32] instead requires a finite moment-generating
function to verify a key assumption in [31]. Still, the machinery of [31] may be more
directly applicable to some stochastic processes than ours, so the two approaches are
complementary.

The remainder of this paper is organized as follows. Section 2 proves a CLT
for empirical quantiles under very general hypotheses. The key hypothesis there is
a uniform CLT for the empirical distribution function in a neighbourhood of the
true quantile. Section 3 proves a uniform CLT for 1-dependent sequences. Section 4
specializes the results of the previous sections to obtain the desired quantile CLT for
Harris processes in discrete or continuous time. Section 5 establishes the validity of
non-overlapping batch means, partly through the development of a Bahadur-Ghosh
representation of the quantile estimator, which may be of independent interest.
Finally, Section 6 gives some sufficient conditions for the quantile CLT to hold, and
presents a small example.

2 A Quantile Central Limit Theorem

Given a real-valued stochastic process (W (t) : t ≥ 0), let

F (·, t) = t−1
∫ t

0
1(W (s) ≤ ·) ds
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be its empirical CDF. For a real-valued process (Wk : k = 0, 1, . . .) in discrete time,
define W (t) = W bt c and F (·, t) as above.

For any fixed x ∈ R, we say that F (x, ·) satisfies a CLT if there exist constants
σ2(x) > 0, F (x) such that for any y ∈ R

P

(
t1/2[F (x, t) − F (x)]

σ(x)
≤ y

)
− Φ(y) → 0

as t → ∞, where Φ denotes the distribution function of a standard normal random
variable. If this CLT holds, then the pointwise convergence is uniform in y, i.e.,

sup
y

�����
P

(
t1/2[F (x, t) − F (x)]

σ(x)
≤ y

)
− Φ(y)

�����
→ 0

as t → ∞; see, e.g., [9, p. 18].
We say that F (·, ·) satisfies a CLT uniformly in the set N if

sup
x∈N

sup
y

�����
P

(
t1/2[F (x, t) − F (x)]

σ(x)
≤ y

)
− Φ(y)

�����
→ 0 (2)

as t → ∞.

Theorem 1 Fix q ∈ R and suppose that F (·, ·) satisfies a CLT uniformly in an open
neighborhood N of q. Suppose further that F (·) is differentiable at q, F ′(q) > 0,
σ2(q) > 0 and σ2(·) is continuous at q. Let p = F (q) and let Qt = F−1(p, t) =
inf{x : F (x, t) ≥ p} be the pth quantile of F (·, t). Let

G(y, t) = P
[ √

t(Qt − q)
σ(q)/F ′(q)

≤ y

]
.

Then G(·, t) ⇒ Φ as t → ∞.

Proof We employ a similar proof to the one for empirical quantiles in the i.i.d. case
given in [9, p. 78]. Define qt = q + t−1/2σ(q)y/F ′(q). Then

G(y, t) = P[Qt ≤ qt ] = P[p ≤ F (qt, t)],

since for any cumulative distribution function H and arbitrary real x and u ∈ (0, 1),
H−1(u) ≤ x if and only if u ≤ H (x) [9, Lemma 1.1.4(iii)]. Now,

G(y, t) = P
[
t1/2

F (qt, t) − F (qt )
σ(qt )

≥ t1/2
p − F (qt )
σ(qt )

]

= P(U (qt, t) ≥ −yt ),

where

U (z, t) =
t1/2(F (z, t) − F (z))

σ(z)
and yt =

t1/2[F (qt ) − p]
σ(qt )

,

and so
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Φ(y) − G(y, t) = P[U (qt, t) < −yt ] − (1 − Φ(y))
= [P[U (qt, t) < −yt ] − Φ(−yt )] + [Φ(y) − Φ(yt )]. (3)

We now show that the two bracketed terms in (3) converge to 0 as t → ∞.
For the first term in (3), for t sufficiently large that qt ∈ N ,

|P(U (qt, t) < −yt ) − Φ(−yt ) | ≤ sup
x∈N

sup
−∞<w<∞

|P(U (x, t) < w) − Φ(w) |.

The uniform CLT assumption ensures that this term converges to 0 as t → ∞.
To show that the second term in (3) converges to 0, it suffices to show that yt → y

as t → ∞. Since F is differentiable at q,

F (qt ) − p = F (qt ) − F (q) = F ′(q)(qt − q) + o(qt − q),

where a quantity rt is said to be o(ht ) if rt/ht → 0 as t → ∞. Thus,

yt =
F ′(q)t1/2(qt − q)

σ(qt )
=
σ(q)y + o(1)

σ(qt )

as t → ∞. Since σ(qt ) → σ(q) > 0 as t → ∞, yt → y as t → ∞.

3 A Uniform CLT for 1-Dependent Sequences

The key ingredient in Theorem 1 is the uniform CLT. In this section we establish a
uniformCLT for 1-dependent processes.We then apply this result to Harris processes
in Section 4.

Let Z (θ) = (Zn (θ) : n ≥ 1) be a stationary sequence of real-valued, 1-dependent,
mean 0 random variables for each θ ∈ Θ. Let

Sn (θ) =
n∑
i=1

Zi (θ).

It is well known that if EZ2
1 (θ) < ∞ and

η2(θ) = EZ2
1 (θ) + 2EZ1(θ)Z2(θ) > 0

then as n → ∞, we have the CLT

sup
y∈R

�����
P

(
Sn (θ)
η(θ)
√

n
≤ y

)
− Φ(y)

�����
→ 0.

We seek a uniform (in θ) version of this result, which requires a linking assumption.

A1 The family of random variables (Z2
1 (θ) : θ ∈ Θ) is uniformly integrable.
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Theorem 2 Let Z (θ) and η2(θ) be defined as above for all θ ∈ Θ. Suppose that
Assumption A1 holds and η2(θ) is bounded away from 0 for θ ∈ Θ. Then, as n → ∞,

sup
θ∈Θ

sup
y∈R

�����
P

(
Sn (θ)
η(θ)
√

n
≤ y

)
− Φ(y)

�����
→ 0.

We need some preliminary results before proving Theorem 2. First, we show that
in proving a uniform CLT, we can ignore terms that are uniformly small in θ. The
proof is an extension of that of the converging together lemma [9, p. 19] and omitted.

Lemma 1 Let Un (θ),Vn (θ),Wn (θ) and Xn (θ) be real-valued random variables for
all n ≥ 1 and all θ ∈ Θ. Suppose that for all n ≥ 1 and all θ ∈ Θ, Xn (θ) =
Un (θ)Vn (θ) +Wn (θ). Suppose that for all ε > 0,

lim
n→∞

sup
θ∈Θ
P(|Un (θ) − 1| > ε ) = 0 and lim

n→∞
sup
θ∈Θ
P(|Wn (θ) | > ε ) = 0, and

lim
n→∞

sup
θ∈Θ

sup
y
|P(Vn (θ) ≤ y) − G(y) | = 0

for some distribution function G. Then (Xn (·) : n ≥ 1) satisfies

lim
n→∞

sup
θ∈Θ

sup
y
|P(Xn (θ) ≤ y) − G(y) | = 0.

Lemma 2 is a special case of Theorem 18.1 and Corollary 18.3 of [33].

Lemma 2 Suppose that (Un : n ≥ 1) is an i.i.d. sequence of r.v.’s with mean 0 and
variance 1, and let N denote a standard normal random variable. Let g(x, a) =
x2I (|x | > a), and Gn denote the distribution function of n−1/2

∑n
i=1 Ui . Then

1.
������
Eg *

,

1
√

n

n∑
i=1

Ui, a+
-
− Eg(N , a)

������
≤ cδn , and

2. sup
y
|Gn (y) − Φ(y) | ≤ cδn ,

where the constant c does not depend on a, n, or the distribution of U1, and

δn = inf
ε∈[0,1]

(
ε + E[U2

1 ;U
2
1 > nε2]

)
.

Let Z̃ (θ) = (Z̃n (θ) : n ≥ 1) be an i.i.d. sequence of real-valued random variables
with Z̃1(θ) having the same distribution as Z1(θ) for all θ ∈ Θ. Define the variance
γ2(θ) = EZ2

1 (θ), and for n ≥ 1 let S̃n (θ) =
∑n

i=1 Z̃i (θ).

Lemma 3 (Uniform integrability assuming independence)
Under the conditions of Theorem 2, as n → ∞,

sup
θ∈Θ
E

[
S̃2
n (θ)

nγ2(θ)
; S̃2

n (θ) > nγ2(θ)an

]
→ 0

for any sequence of positive constants {an }with the property that an → ∞ as n → ∞.
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Proof For a > 0, define g(x, a) = x2I (|x | > a), and letN denote a standard normal
random variable. Since EN 2 < ∞, Eg(N , an ) → 0 as n → ∞. Part 1 of Lemma 2
implies that

�����
Eg

(
S̃n (θ)
√

nγ(θ)
, an

)
− Eg(N , an )

�����
≤ cδn (θ),

where c is a constant that does not depend on an, n or θ and

δn (θ) = inf
ε∈[0,1]

*
,
ε + E



Z̃2
1 (θ)

γ2(θ)
; Z̃2

1 (θ) > nε2γ2(θ)


+
-
. (4)

We assumed that η2(θ) is bounded away from 0, and therefore so is γ2(θ), since

η2(θ) = γ2(θ) + 2EZ1(θ)Z2(θ) ≤ γ2(θ) + EZ2
1 (θ) + EZ2

2 (θ) = 3γ2(θ).

Let γ2 > 0 be a lower bound on γ2(θ) over θ ∈ Θ. It follows that the second term in
the infimum in (4) is bounded above by

γ−2E[Z̃2
1 (θ); Z̃2

1 (θ) > nε2γ2] = γ−2E[Z2
1 (θ); Z2

1 (θ) > nε2γ2].

If we now choose ε = ε (n) in such a way that nε2(n) → ∞ and ε (n) → 0 as n → ∞,
then A1 ensures that supθ∈Θ δn (θ) → 0 as n → ∞, proving the result. �

Lemma 4 (Uniform integrability assuming 1-dependence)
Under the conditions of Theorem 2, as n → ∞,

sup
θ∈Θ
E

[
S2
n (θ)

nη2(θ)
; S2

n (θ) > nη2(θ)an

]
→ 0

for any sequence of positive constants {an }with the property that an → ∞ as n → ∞.

Proof We can write

Sn (θ) =
n∑

i=1, i odd

Zi (θ) +
n∑

i=1, i even

Zi (θ)

= S̃n (θ, 1) + S̃n (θ, 2) (say).

Let Mn (θ) = max{|S̃n (θ, 1) |, | S̃n (θ, 2) |} so that S2
n (θ) ≤ [2Mn (θ)]2. Now, |Sn (θ) | >

u implies that |S̃n (θ, i) | > u/2 for at least one of i = 1, 2, which is, in turn, equivalent
to Mn (θ) > u/2. Thus,

E

[
S2
n (θ)

nη2(θ)
; S2

n (θ) > nη2(θ)an

]
≤ E

[
4M2

n (θ)
nη2(θ)

; M2
n (θ) > nη2(θ)an/4

]

≤

2∑
i=1

E

[
4S̃2

n (θ, i)
nη2(θ)

; S̃2
n (θ, i) > nη2(θ)an/4

]
. (5)
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We now apply Lemma 3 to each of the summands in (5) to complete the proof. We
use the fact that each of the summands consists of essentially n/2 terms, and also
that γ2(θ)/η2(θ) is bounded away from 0 and bounded above. �

Proof (of Theorem 2) Weuse the “big block, little block” argument (e.g., [34, Theo-
rem 7.3.1]) to reduce the problem for 1-dependent summands to one for independent
summands. The big blocks are sums of consecutive Zi (θ)s, which are separated by
small blocks of size 1 that ensure, together with 1-dependence, that the big blocks
are independent. When the big blocks grow at an appropriate rate with n, the result
follows. Let mn = bnαc be the size of the blocks, where α ∈ (0, 1). Let kn = bn/mnc

be the number of big blocks. For 1 ≤ j ≤ kn , define the jth big block to be

Γj (θ, n) =
jmn−1∑

i=( j−1)mn+1

Zi (θ).

Then for n ≥ 1,

Sn (θ) =
kn∑
j=1

Γj (θ, n) +
kn∑
j=1

Z jmn (θ) +
n∑

i=knmn+1

Zi (θ)

= S′n (θ) + S′′n (θ) + S′′′n (θ) say.

The hypothesis of 1-dependence ensures that for n sufficiently large, the Γj (θ, n)s
are i.i.d. (in j). Furthermore, so are the Z jmn (θ)s provided that mn > 1, which is
again assured for n large enough. For any ε > 0 and n sufficiently large that mn > 1,

P

(
|S′′n (θ) |
η(θ)
√

n
> ε

)
≤
ES′′n (θ)2

nε2η2(θ)
≤

knγ2(θ)
nε2η2

, (6)

where η2 > 0 is a lower bound on η2(θ) over θ ∈ Θ. Assumption A1 implies that
γ2(θ) is bounded above, so that (6) converges to 0 uniformly in θ ∈ Θ as n → ∞.
Similarly, we can show that S′′′n (θ) does not figure in the asymptotics (uniformly in
θ ∈ Θ). So by Lemma 1 it suffices to show a uniform CLT for n−1/2S′n (θ)/η(θ). Let

v2n (θ) = Var Γj (θ, n) = (mn − 1)η2(θ) − 2EZ1(θ)Z2(θ)

be the variance of the big blocks. Applying Part 2 of Lemma 2 to a normalized
version of S′n (θ), we get

sup
y∈R

�����
P

(
S′n (θ)

vn (θ)
√

kn
≤ y

)
− Φ(y)

�����
≤ cδn (θ),

where c is a constant that does not depend on n or θ, and

δn (θ) = inf
ε∈[0,1]

*
,
ε + E



Γ21 (θ, n)

v2n (θ)
; Γ21 (θ, n) > knε2v2n (θ)


+
-
. (7)



A Central Limit Theorem For Empirical Quantiles in the Markov Chain Setting 9

Now choose ε = ε (n) in such a way that knε2(n) → ∞ and ε (n) → 0 as n → ∞.
We then apply Lemma 4 to the second term in the infimum in (7), using the facts
that Γ1(θ, n) = Smn (θ) and v2n (θ)/(mnη

2(θ)) → 1 as n → ∞ uniformly in θ. We
can then conclude that (7) converges to 0 uniformly in θ as n → ∞.

To complete the proof, observe that

S′n (θ)

vn (θ)
√

kn
−

S′n (θ)
η(θ)
√

n
=
βn (θ)S′n (θ)

vn (θ)
√

kn
,

where βn (θ) → 0 as n → ∞ uniformly in θ. Thus,

P

(�����
βn (θ)S′n (θ)

vn (θ)
√

kn

�����
> ε

)
≤
ES′n (θ)2

knv2n (θ)
β2n (θ)
ε2

=
β2n (θ)
ε2

→ 0

as n → ∞, uniformly in θ. The result now follows from Lemma 1. �

4 A Quantile Central Limit Theorem for Harris Processes

We now specialize the preceding results to positive-recurrent Harris processes X
on state space S in both discrete and continuous time. These processes possess 1-
dependent structure that we exploit. Suppose that S is a complete, separable metric
space equipped with Borel sigma algebra S. We assume without further comment
that if X is a continuous-time process, then it is non-explosive and strong Markov,
and that its sample paths are right-continuous with left limits. (See [35, pp. 198–206,
407–410] for background.) Let Px and Ex be the probability and expectation over
path space when X0 = x. We first define a Harris chain in discrete time.

Definition 1 We say that X = (Xn : n = 0, 1, 2, . . .) is a Harris chain on (S,S) if
there exists a set C ∈ S, a γ > 0, a probability measure ϕ and an m ≥ 1 such that

A2 Px (Xm ∈ A) ≥ γϕ(A) for all x ∈ C and all A ∈ S, and
A3 Px (

∑∞
n=0 I (Xn ∈ C) = ∞) = 1 for all x ∈ S.

Harris processes in continuous time can be defined as follows.

Definition 2 We say that X = (Xt : t ∈ [0,∞)) is a Harris process on (S,S)
if there exists a probability measure ν on (S,S) such that whenever ν(A) > 0,
Px (

∫ ∞
t=0 1(Xt ∈ A) = ∞) = 1 for all x ∈ S.

A Harris process X in discrete or continuous time automatically possesses a
unique (up to a multiplicative constant) stationary measure π. If π(S) < ∞, then we
can normalize π to a probability and we then say that X is positive Harris recurrent.

Harris processes are regenerative. For Harris chains (in discrete time), regenera-
tion times can be defined through the famous split-chain construction; see [36] for
a complete treatment. For Harris processes (in continuous time), regeneration times
can be defined using the fact that Harris processes in continuous time observed at
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the event times of an independent homogeneous Poisson process are Harris chains
(let us call the resulting chain the sampled chain), and then using the split-chain con-
struction as discussed in [37]; see also [35, p. 199]. (Asmussen uses a non-standard
definition of Harris recurrence in continuous time, but the basic ideas are present.)
Here we sketch the key ideas behind this construction of regeneration times, as we
will need the construction later.

Let (Λ(i) : i ≥ 0) be the event times in a homogeneous Poisson process that
is independent of X , where Λ(0) = 0, and let N (t) = max{i ≥ 0 : Λ(i) ≤ t}
for t ≥ 0 be the associated counting process. Define X̃i = XΛ(i) for i ≥ 0. Then
X̃ = (X̃i : i ≥ 0) is an embedded discrete-time Harris chain.

Proposition 1 Let (X̃n : n = 0, 1, 2, . . .) be the sampled chain as constructed above
from a unit-rate Poisson process. Then we may assume that A2 holds with m = 1.

Proof Sample the Harris process X = (Xt : t ∈ [0,∞)) at the event times of a
Poisson process with rate 2 that is independent of X to obtain a sampled chain
X̂ = (X̂n : n = 0, 1, 2, . . .). The sampled chain X̂ then satisfies A2 for some m ≥ 1,
C and γ > 0. Thus, for all x ∈ C, Px (X̂m ∈ ·) ≥ γϕ(·), i.e.,∫ ∞

0

2mtm−1e−2t

(m − 1)!
Px (Xt ∈ ·) dt ≥ γϕ(·).

We can find some c > 0 so that

ce−t ≥
2mtm−1e−2t

(m − 1)!

for all t ≥ 0, and it follows that for all x ∈ C,∫ ∞

0
e−t Px (Xt ∈ ·) dt ≥

γ

c
ϕ(·),

i.e., Px (X̃1 ∈ ·) ≥ (γ/c)ϕ(·) for all x ∈ C, as required. �

Turning to the construction of regeneration times, if the chain is to be initiated
with distribution ϕ then define T (0) = 0 (the “zeroth” regeneration time), set the
number of complete regeneration cycles ` = 0, a counter of “attempted splits” n = 0,
the “wall clock time” t = 0 and generate X̃0 from ϕ. Otherwise, set T (−1) = 0, set
the number of complete regenerative cycles ` = −1, the counter n = 0 and t = 0,
and generate X̃0 from the desired distribution of the process X at time 0. Next,
generate (X̃1, X̃2, . . . , X̃N ), where N = inf{ j ≥ 0 : X̃ j ∈ C} is the (discrete) first
hitting time of the set C. Also generate the (continuous) time process X up to time
Λ(N ) from its appropriate conditional distribution. Next, independent of all else,
set n = n + 1 and generate a Bernoulli random variable In , with P(In = 1) = γ. If
In = 1, then a regeneration occurs on the next (discrete-time) step, so set ` = ` + 1,
set the `th regeneration time T (`) equal toΛ(N +1), the time of the next event in the
Poisson process beyond time Λ(N ), and generate X̃N+1 according to ϕ. If In = 0,
then generate X̃N+1 according to (P̃(x, ·) − γϕ(·))/(1− γ), where P̃ is the transition
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kernel for the sampled chain and x = X̃N . Then generate the (continuous-time)
intervening values (Xs : Λ(N ) < s < Λ(N + 1)) from the appropriate conditional
distribution given the endpoint values. Set the “current time” t = Λ(N + 1) and
repeat this process, thereby inductively constructing the continuous time process
and its regeneration times (T (k) : k ≥ 0).

In the remainder of this section we exploit the fact that Harris processes are
regenerative. In order to simultaneously treat Harris processes in both discrete and
continuous time, in the remainder of this section we view a Harris chain (Xn : n ≥ 0)
as a continuous-time process (Xt : t ≥ 0) where Xt = X bt c . Such a process is no
longer a Markov process, but it is regenerative.

For i ≥ 0, let τi = T (i) − T (i − 1) be the length of the ith regenerative cycle, and
define the ith cycle to be Wi = (XT (i−1)+s : 0 ≤ s < τi, τi ). As discussed in [35], the
cycles (W0,W1,W2, . . .) are 1-dependent and the cycles (W1,W2, . . .) are identically
distributed. This structure allows us to define the stationary measure π as follows.

For a function g : S → [0,∞) define, for i ≥ 0, Yi (g) =
∫ T (i)
T (i−1) g(Xs ) ds. Define

Yi (g) for signed g by splitting g into its positive and negative components. Now,
for A ∈ S, define π(A) = E[Y1(1(· ∈ A))]. Then π(S) = Eτ1, so that π has finite
total mass and the process is positive Harris recurrent if and only if Eτ1 < ∞. We
now restrict our attention to the positive Harris recurrent case, and normalize π to a
probability measure by redefining π(A) = E[Y1(1(· ∈ A))]/Eτ1. Also, for g : S → R,
define π(g) =

∫
S
g(x)π(dx).

Now, let f : S → R and for real x and t > 0, let F (x, t) = t−1
∫ t

0 1( f (Xs ) ≤ x) ds
be the empirical distribution function at time t. The strong law for positive Harris
recurrent processes (see, e.g., [35, p. 203]), asserts that F (x, t) → F (x) as t → ∞
almost surely, where

F (x) = π(1( f (·) ≤ x)) =
E

∫ T (1)
T (0) 1( f (Xs ) ≤ x) ds

Eτ1
.

Also, let Qt be the pth quantile associated with F (·, t) and q be the pth quantile of
F. Our goal in this section is a CLT for Qt .

For t ≥ 0, let `(t) = max{k : T (k) ≤ t} be the number of identically-distributed
cycles completed by time t and let λ = 1/Eτ1. Also, for i ≥ 1, define the cycle
quantity

Zi (x) =
∫ T (i)

T (i−1)
[1( f (Xs ) ≤ x) − F (x)] ds.

Lemma 5 Suppose that Eτ21 < ∞. Then

√
t(F (x, t) − F (x)) =

1
√

t

bλt c∑
i=1

Zi (x) + R(x, t)

where limt→∞ supx P(|R(x, t) | > ε ) = 0 for any ε > 0.

Proof Observe that
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t(F (x, t) − F (x)) =
∫ t

0
[1( f (Xs ) ≤ x) − F (x)] ds

= O(τ0) +
∫ T (`(t ))

T (0)
[1( f (Xs ) ≤ x) − F (x)] ds +O(τ`(t )+1) (8)

where O(x) denotes a value z such that |z | ≤ cx for some constant c > 0. We can
then write (8) as

`(t )∑
i=1

Zi (x) +O(τ0 + τ`(t )+1). (9)

Now, (Zi (x) : i ≥ 1) is a 1-dependent, identically distributed sequence of random
variables, and

Var Z1(x) = EZ2
1 (x)

= E

(∫ T (1)

T (0)
[1( f (Xs ) ≤ x) − F (x)] ds

)2
≤ E

(∫ T (1)

T (0)
|1( f (Xs ) ≤ x) − F (x) | ds

)2
≤ Eτ21 . (10)

From (9) we see that

R(x, t) = t−1/2O(τ0 + τ`(t )+1) + t−1/2
`(t )∑
i=1

Zi (x) − t−1/2
bλt c∑
i=1

Zi (x). (11)

The first term on the right-hand side of (11) does not depend on x, and furthermore,
converges almost surely to 0 as n → ∞; see, e.g., [36, p. 420]. So it suffices to study
the second and third terms on the right-hand side of (11). We use a modification
of a standard argument (see, e.g., [36, p. 420] or [34, p. 216] for the standard case)
that accounts for the 1-dependence of the sequence (Zi (x) : i ≥ 1) and our goal of
uniformity in x. Let ε and δ be arbitrary positive quantities. Then

P
*.
,

������

`(t )∑
i=1

Zi (x) −
bλt c∑
i=1

Zi (x)
������
> εt1/2+/

-

≤ P
*.
,

������

`(t )∑
i=1

Zi (x) −
bλt c∑
i=1

Zi (x)
������
> εt1/2; |`(t) − λt | > δt+/

-

+ P
*.
,

������

`(t )∑
i=1

Zi (x) −
bλt c∑
i=1

Zi (x)
������
> εt1/2; |`(t) − λt | ≤ δt+/

-
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≤ P(|`(t) − λt | > δt) + P *
,

dδt e
max
k=1

������

k∑
i=1

Zi (x)
������
> εt1/2+

-

≤ P( |`(t) − λt | > δt) + P *.
,

dδt e
max
k=1

�������

k∑
i=1, i odd

Zi (x)
�������
> εt1/2/2+/

-

+ P
*.
,

dδt e
max
k=1

�������

k∑
i=1, i even

Zi (x)
�������
> εt1/2/2+/

-
(12)

≤ P( |`(t) − λt | > δt) +
(δt + 1) Var Zi (x)

ε2t/4
(13)

where (13) follows fromKolmogorov’s maximum inequality; see, e.g., [34, Theorem
5.3.1]. We add only over odd cycles or even cycles, so the terms in the sums in (12)
are independent, and there are a total of at most δt + 1 terms. Now choose δ = ε3,
so that the bound (13) becomes

P( |`(t)−λt | > δt)+4(ε+ε−2t−1) Var Zi (x) ≤ P(|`(t)−λt | > δt)+4(ε+ε−2t−1)Eτ21 .

This bound does not depend on x, and a standard renewal-theoretic result ensures
that `(t)/t → λ as t → ∞ almost surely and hence in probability. Since ε > 0 was
arbitrary, this completes the proof.

The representation given in Lemma 5 is sufficient to obtain a CLT for F (x, ·) for
any fixed x. In particular, using a CLT for 1-dependent sequences and assuming that
Eτ21 < ∞ we see that

√
t(F (x, t) − F (x)) ⇒ σ(x)N (0, 1) as t → ∞, where

σ2(x) =
EZ2

1 (x) + 2EZ1(x)Z2(x)
Eτ1

.

To apply Theorem 1 we need σ2(·) to be continuous in a neighborhood of q. To this
end we have the following result.

Lemma 6 Suppose that Eτ21 < ∞ and that F is continuous at q. Then σ2(·) as
defined above is continuous at q.

Proof Since F (·) = Pπ ( f (X0) ≤ ·) is continuous at q, it follows that Pπ ( f (X0) =
q) = 0. But then, for all i ≥ 1,

0 = Pπ ( f (X0) = q) =
E

∫ T (i)
T (i−1) 1( f (Xs ) = q) ds

Eτ1
,

so that E
∫ T (i)
T (i−1) 1( f (Xs ) = q) ds = 0. It immediately follows that Zi (x) → Zi (q)

as x → q almost surely for any i ≥ 1. Hence

Z2
1 (x) + 2Z1(x)Z2(x) → Z2

1 (q) + 2Z1(q)Z2(q)
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as x → q almost surely. Furthermore, |Z2
1 (x) + 2Z1(x)Z2(x) | ≤ τ21 + 2τ1τ2 for any

x and E(τ21 + 2τ1τ2) ≤ 3Eτ21 < ∞. The dominated convergence theorem then gives

σ2(x) =
E(Z2

1 (x) + 2Z1(x)Z2(x))
Eτ1

→
E(Z2

1 (q) + 2Z1(q)Z2(q))
Eτ1

= σ2(q)

as x → q as desired. �

We are now in a position to state and prove the main result of the paper.

Theorem 3 Suppose that Eτ21 < ∞, F is differentiable at q with F ′(q) > 0 and
σ2(q) > 0. Then, as t → ∞,

√
t(Qt − q)

σ(q)/F ′(q)
⇒ N (0, 1).

Proof Lemma 6 together with the assumption that σ2(q) > 0 ensures that σ2(·) is
bounded away from 0 in a neighborhood N of q. Furthermore, the random variables
(Z1(x) : x ∈ (−∞,∞)) are uniformly integrable, as can be seen from (10). These
observations, together with the representation given in Lemma 5 and Theorem 2
ensure that the uniform CLT holds, i.e.,

sup
x∈N

sup
y

�����
P

(
t1/2[F (x, t) − F (x)]

σ(x)
≤ y

)
− Φ(y)

�����
→ 0

as t → ∞. The result now follows from Theorem 1. �

Remark 1 The following example indicates that we cannot relax the assumption that
Eτ21 < ∞. Let τ1, τ2, . . . be i.i.d. nonnegative random variables where 0 < Eτ1 < ∞
and Eτ21 = ∞. For n ≥ 1 let T (n) = τ1 + · · · + τn and let T (0) = 0. For t ≥ 0
let `(t) = sup{n : T (n) ≤ t} be the number of completed cycles by time t. Let
Xt = t − T (`(t)), so that X = (Xt : t ≥ 0) is the age process associated with the
renewal process (`(t) : t ≥ 0). Take f to be the identity function, and note that

F (x) =
E

∫ τ1

0 I (Xs ≤ x)

Eτ1
ds =

E[x ∧ τ1]
Eτ1

,

where a ∧ b = min(a, b). To simplify things, we assume that τ1 > 1 a.s., so that for
x ∈ [0, 1], F (x) = x/Eτ1. Choose p ∈ (0, 1/Eτ1) so that q = F−1(p) = pEτ1 < 1.
Then for y ∈ R and t sufficiently large that q + yt−1/2 < 1,

P(t1/2(Qt − q) ≤ y) = P(Qt ≤ q + yt−1/2)

= P(p ≤ F (q + yt−1/2, t)) (14)

= P(pt ≤ [q + yt−1/2]`(t) + Rt ), (15)

where Rt = (q + yt−1/2) ∧ Xt . Equality (14) follows from [9, Lemma 1.1.4], and
(15) since tF (x, t) = x`(t) + x ∧ Xt for x < 1. Now, since q = pEτ1,
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P(t1/2(Qt − q) ≤ y) = P
(

pt3/2

`(t)
− pEτ1

√
t −

Rt

√
t

`(t)
≤ y

)
= P

(
pt
`(t)

t − `(t)Eτ1
√

t
−

Rt

√
t

`(t)
≤ y

)

= P
*.
,

pt
`(t)

1
√

t

`(t )∑
i=1

(τi − Eτ1) +
pt
`(t)

Xt
√

t
−

Rt

√
t

`(t)
≤ y

+/
-
. (16)

Now, t/`(t) → Eτ1 as t → ∞ a.s. Furthermore, the set of random variables
(Xt : t ≥ 0) is tight (see [38, Proposition 1] and [39, Proposition 9]), and so

pt
`(t)

Xt
√

t
−

Rt

√
t

`(t)
⇒ 0

as t → ∞. Thus, from the converging together lemma (e.g., [34, Theorem 4.4.6
and corollary]) and (16), t1/2(Qt − q) converges in distribution to a normal random
variable if and only if

t−1/2
`(t )∑
i=1

(τi − Eτ1) (17)

converges in distribution to a normal random variable. From [38], (17) converges in
distribution to a normal random variable if and only if Eτ21 < ∞, so the desired CLT
does not hold. The other conditions of Theorem 3 are easily seen to hold for this
example. Thus, the condition Eτ21 < ∞ is, in a certain sense, sharp.

5 The Validity of Non-Overlapping Batch-Means Estimation

Theorem 3 establishes conditions under which the quantile estimator Qt is asymp-
totically normally distributed. One would like to leverage this result to provide
confidence intervals for q. Constructing such confidence intervals by directly es-
timating the variance constant σ(q)/F ′(q) is difficult, because both terms in this
expression are challenging to estimate. Indeed, regenerative estimators of σ(q) re-
quire the ability to identify the cycle boundaries (T (i) : i ≥ 0), and this is, at
best, extremely difficult in general discrete-event simulations [26]. Furthermore, the
density term F ′(q) requires some form of density estimator, and such estimators
typically converge at a rate that is slower than the canonical t−1/2 rate [40].

An alternative is themethod of non-overlapping batch quantiles; see, e.g., [24, 41].
In this method, the sample path (Xs : 0 ≤ s ≤ t) is divided into b batches, with the
ith batch given by (Xs : (i − 1)t/b < s ≤ it/b), i = 1, 2, . . . , b. Let Fi (·, t) denote the
empirical CDF based on the ith batch, so that

Fi (x, t) =
b
t

∫ it/b

(i−1)t/b
1( f (Xs ) ≤ x) ds,
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for all x ∈ R and all i = 1, 2, . . . , b. Let Qi (t) = F−1i (p, t) be the estimator of the
p quantile based on the ith batch. Theorem 3 basically establishes that, for each i,
Qi (t) is approximately normal. If, in addition,Qi (t) is asymptotically independent of
Q j (t) for i , j, then standard confidence interval theory ensures that an approximate
100(1 − α)% confidence interval is given by

Q̄(t) ± tα,b−1
sb
√

b
, (18)

where Q̄(t) = b−1
∑b

i=1 Qi (t) is the average of the batch quantiles, s2
b
is the sam-

ple variance of Q1(t),Q2(t), . . . ,Qb (t), and tα,b−1 is the 1 − α/2 quantile of a t
distribution with b − 1 degrees of freedom.

This procedure is rigorously justified through a joint CLT for (Qi (t) : i =
1, 2, . . . , b), which we provide in Theorem 4 below.

Quantile estimators are known to exhibit bias, with the bias being on the order of
the inverse of the runlength [8]. Accordingly, the estimator Q̄(t) has a bias that can
be expected to be approximately b times as large as that of the estimator Qt of the
quantile based on the entire length-t sample path. The coverage of the confidence
interval (18) can be expected to be improved if the average of the batch quantiles
Q̄(t) is replaced by Qt . The asymptotic validity of confidence intervals constructed
in this way is assured through the joint CLT, Theorem 4, and a result that establishes
that Qt and Q̄(t) are “close” in the sense that t1/2(Qt − Q̄(t)) ⇒ 0 as t → ∞. This
latter result is a direct consequence of Proposition 2 below, which gives a so-called
Bahadur-Ghosh representation of quantile estimators in the Markov chain setting.

Our first result in this section provides a representation for the batch empirical
CDFs along the lines of Lemma 5. The proof follows almost exactly the same lines
as that of Lemma 5, using a vector version of Lemma 1, and so is omitted.

Lemma 7 If Eτ2 < ∞ then for x ∈ Rb ,

√
t
b

*.....
,

F1(x1, t) − F (x1)
F2(x2, t) − F (x2)

...
Fb (xb, t) − F (xb )

+/////
-

=
1√
t
b

*......
,

∑l
j=1 Z j (x1)∑2l

j=l+1 Z j (x2)
...∑bl

j=(b−1)l+1 Z j (x2)

+//////
-

+ R(x, t),

where l = bλt/bc and the vector-valued error term R(x, t) satisfies, for any ε > 0,

lim
t→∞

sup
x
P(‖R(x, t)‖ > ε ) = 0.

The next result is a vector version of the uniform CLT, Theorem 2. The proof is
very similar to that of Theorem 2 and so we only provide a sketch of the proof.

Lemma 8 Let (q1, q2, . . . , qb ) ∈ Rb and let Ni be an open neighbourhood of qi
for each i = 1, 2, . . . , b. Let Ñ = N1 × N2 × · · · × Nb . If Eτ2 < ∞ and η(x) =
EZ2

1 (x) + 2E[Z1(x)Z2(x)] is bounded away from 0 for x ∈ ∪b
i=1Ni , then
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sup
x∈Ñ

sup
y∈Rb

�������
P *.

,

∑il
j=(i−1)l+1 Z j (xi )

η(xi )
√

l
≤ yi, i = 1, 2, . . . , b+/

-
−

b∏
i=1

Φ(yi )
�������
→ 0

as t → ∞, where l = l (t) = bλt/bc.

Proof (Sketch) Within each batch, apply the “big block little block” argument to
obtain asymptotic (marginal) normality, as in the proof of Theorem 2 for each batch.
To obtain the desired asymptotic independence, drop the last cycle in each batch,
i.e., write the ith batch sum as√

l − 1
l

∑il−1
j=(i−1)l+1 Z j (xi )

η(xi )
√

l − 1
+

Zil (xi )

η(xi )
√

l

and now apply the matrix version of Lemma 1. �

Theorem 4 Suppose that Eτ2 < ∞. Suppose further that F (·) is differentiable at q,
F ′(q) > 0, σ2(q) > 0 and σ2(·) is continuous at q. For y ∈ Rb let

G(y, t) = P
(√

t/b(Qi (t) − q)
σ(q)/F ′(q)

≤ yi, i = 1, . . . , b
)
.

Then G(y, t) →
∏b

i=1Φ(yi ) as t → ∞.

Proof The proof is very similar to that of Theorem 1. Define

qt, i = q +
σ(q)yi

F ′(q)
√

t/b
,

for i = 1, 2, . . . , b. Then

G(y, t) = P(Qi (t) ≤ qt, i, i = 1, 2, . . . , b)
= P(p ≤ Fi (qt, i, t), i = 1, 2, . . . , b)
= P(Ui (qt, i, t) ≥ −yt, i, i = 1, 2, . . . , b),

where

Ui (z, t) =

√
t
b

Fi (z, t) − F (z)
σ(z)

and yt, i =

√
t
b

F (qt, i ) − p
σ(qt, i )

.

Defining Φ̄(a) = 1 − Φ(a), we have that Φ(a) = Φ̄(−a), and so

G(y, t) −
b∏
i=1

Φ(yi ) = P(Ui (qt, i, t) ≥ −yt, i, i = 1, 2, . . . , b) −
b∏
i=1

Φ̄(−yt, i )

+

b∏
i=1

Φ(yt, i ) −
b∏
i=1

Φ(yi ).
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The first line of the right-hand side converges to 0 by the uniform law of large
numbers. The second line converges to 0 because yt, i → yi as t → ∞. �

This is the desired multivariate CLT. Thus batch means using the average of the
batch quantiles is asymptotically valid.

Recall that if t1/2(Qt − Q̄(t)) ⇒ 0, then we can replace the average of the batch
quantiles, Q̄(t), in the joint CLT above with Qt , the quantile estimator based on the
entire sample path. We now establish the Bahadur-Ghosh representation

Qt = q −
F (q, t) − F (q)

F ′(q)
+ R(t), (19)

where t1/2R(t) ⇒ 0 as t → ∞. Applying this representation to each batch, i =
1, 2, . . . , b yields

Qi (t) = q −
Fi (q, t) − F (q)

F ′(q)
+ Ri (t),

and averaging gives

Q̄(t) = q −
F (q, t) − F (q)

F ′(q)
+
1
b

b∑
i=1

Ri (t)

= Qt − R(t) +
1
b

b∑
i=1

Ri (t)

which gives the desired result. It therefore remains to prove the Bahadur-Ghosh
representation. We first state a lemma due to [42], and then prove the representation.

Lemma 9 ([42])
Let (νt : t ≥ 0) and (ξt : t ≥ 0) be two stochastic processes satisfying the

following conditions.

1. The process (ξt : t ≥ 0) is tight, i.e., for all δ > 0 there exists M > 0 such that
P(|ξt | > M) ≤ δ.

2. For all y ∈ R and h > 0,

lim
t→∞
P(νt ≤ y, ξt ≥ y + h) = lim

t→∞
P(νt ≥ y + h, ξt ≤ y) = 0.

Then νt − ξt ⇒ 0 as t → ∞.

Proposition 2 Suppose that F is differentiable at q with F ′(q) > 0 and Eτ2 < ∞.
Then the Bahadur-Ghosh representation (19) is valid.

Proof The essential elements of our proof are similar to those in [42] for the i.i.d.
case. Let y ∈ R be arbitrary. As in the proof of Theorem 1, the events {t1/2(Qt −q) ≤
y} and {

− t1/2(F (q + t−1/2y, t) − F (q + t−1/2y)) ≤ t1/2(F (q + t−1/2y) − p)
}
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are identical.
The differentiability of F at q ensures that t1/2(F (q+t−1/2y)−p) = F ′(q)y+o(1)

as t → ∞. Furthermore,

t1/2(F (q + t−1/2y, t) − F (q + t−1/2y)) = t1/2(F (q, t) − F (q)) + V (t),

where the remainder term V (t) is given by

t1/2(F (q + t−1/2y, t) − F (q + t−1/2y) − F (q, t) + F (q)).

The proof will be complete if we show that V (t) ⇒ 0 as t → ∞. (To see why, take
νt = t1/2(Qt − q) and ξt = t1/2(F (q, t) − F (q))/F ′(q) + V (t)/F ′(q) in Lemma 9
above.)

From Lemma 5, we can write

V (t) = t−1/2
bλt c∑
i=1

Wi (t) + R(t),

where the (mean-zero) cycle-term Wi (t) = Zi (q + t−1/2y) − Zi (q) and R(t) ⇒ 0 as
t → ∞. Chebyshev’s inequality then gives that for arbitrary ε > 0,

P
*.
,

������
t−1/2

bλt c∑
i=1

Wi (t)
������
> ε

+/
-
≤

1
ε2t

(
bλtcEW2

1 (t) + 2(bλtc − 1)E[W1(t)W2(t)]
)
.

(20)
Now, exactly as in Lemma 6, for any fixed i, Wi (t) → 0 as t → ∞ a.s., and
|Wi (t) | ≤ τi , and so dominated convergence ensures that the right-hand side of (20)
converges to 0 as t → ∞, thereby completing the proof. �

Remark 2 The Bahadur-Ghosh representation immediately provides a weak law of
large numbers for the quantile estimatorQt aswell as themeans to prove a CLT forQt

based on the empirical CDF. It is natural to ask whywe did not use this representation
earlier in our development. An inspection of the proof of Proposition 2 shows that
the essential elements of the proof are the same as those we developed in earlier
sections, so it does not appear that there is anything to gain from doing so.

6 Sufficient Conditions

The assumptions of Theorems 3 and 4 are difficult to verify as stated. In this section
we provide sufficient conditions for some of those assumptions that are often more
easily verified in applications. Where possible, we try to give a unified treatment
of both discrete-time and continuous-time Harris processes. Let (Xt : t ≥ 0) be a
Markov process in discrete or continuous time as defined in Section 4. (Recall that in
continuous time we assume that the process is non-explosive, strongMarkov, and has
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sample paths that are right continuous with left limits.) We begin with the condition
that the regenerative cycle lengths have finite second moment, i.e., that Eτ21 < ∞,
which can be verified through the use of drift criteria.

Definition 3 Let X = (Xt : t ≥ 0) be a Markov process on a complete, separable
metric space in discrete or continuous time. Let u : S → R and suppose that there
exists h : S → R such that M = (Mt : t ≥ 0) is a Px -local martingale for all x ∈ S,
where

Mt = u(Xt ) − u(X0) −
∫ t

0
h(Xs ) ds, (21)

and t is restricted to discrete or continuous time as appropriate. We then say that u
is contained in the domain D (A) of the generator A of X , and Au = h.

Suppose that in addition to A2 for discrete chains, or A2 with m = 1 for the
embedded chain for continuous-time processes, we also have the following, where
the set C is as in A2 for the sampled chain.

A4 There exists g1 : S → [0,∞) such that for all x ∈ S, and some b1 > 0,

Ag1(x) ≤ −1 + b11(x ∈ C).

A5 There exists g2 : S → [0,∞) such that for all x ∈ S and some b2 > 0,

Ag2(x) ≤ −g1(x) + b21(x ∈ C).

Assumption A4 implies that X is positive-Harris recurrent; see [36, Theorem
14.0.1] for the discrete case and [43] for the continuous case. Assumptions A4 and
A5 imply a finite second moment of the regeneration times, i.e., that Eϕτ21 < ∞.
We prove the continuous-time result; the discrete-time result follows essentially the
same proof with a modest modification since m in A2 cannot be assumed to equal 1.

Lemma 10 Suppose that A4 holds for the continuous-time process X . Let X̃ be the
sampled chain. Then, for all x,

Exg1(X̃1) − g1(x) ≤ −1 + b1Px (X̃1 ∈ C). (22)

Proof Since g1 lies in the domain of the generator, (21) with u = g1 is a Px local
martingale for all x ∈ S. It follows from the observations on p. 311 of [44] that

e−tg1(Xt ) − g1(X0) +
∫ t

0
e−s (g1(Xs ) − Ag1(Xs )) ds

is also a Px local martingale for all x ∈ S. Thus, since g1 ≥ 0, for a sequence of
stopping times On → ∞ as n → ∞ Px a.s.,

Ex [e−t∧Ong1(Xt∧On )] + Ex
∫ t∧On

0
e−s (g1(Xs ) − Ag1(Xs )) ds = g1(x). (23)

Now, A4 implies that g1(x)+1 ≤ g1(x)−Ag1(x)+ b1I (x ∈ C) for all x ∈ S. Hence
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Ex

∫ t∧On

0
e−s (g1(Xs ) + 1) ds ≤ Ex

∫ t∧On

0
e−s (g1(Xs ) − Ag1(Xs )) ds

+ b1Ex

∫ t∧On

0
e−s I (Xs ∈ C) ds

≤ g1(x) + b1Ex

∫ ∞

0
e−s I (Xs ∈ C) ds,

where, in the second inequality we used (23). Taking n → ∞ and then t → ∞,
monotone convergence gives

Ex

∫ ∞

0
e−sg1(Xs ) ds + 1 ≤ g1(x) + b1Ex

∫ ∞

0
e−s I (Xs ∈ C) ds,

i.e., that Exg1(X̃1) − g1(x) ≤ −1 + b1Px (X̃1 ∈ C). �

Proposition 3 Suppose that A4 and A5 hold. Then Eϕτ21 < ∞.

Proof Recall that we have enlarged the path space of the Markov process X to
include an independent unit-rate Poisson process (N (t) : t ≥ 0) with event times
(Λ(n) : n ≥ 0) with Λ(0) = 0 and an i.i.d. sequence of Bernoulli random variables
(In : n ≥ 1) with P(I1 = 1) = γ.

Let Eϕ and Pϕ denote the expectation and probability on the enlarged probability
space when the chain X has initial distribution ϕ, so that a regeneration occurs at
time 0. For convenience, write τ for τ1. For n ≥ 0, let M (n) =

∑n
j=0 I (X̃ j ∈ C) be

the number of attempted regenerations by time n. Define the discrete-time stopping
time τ̃ = inf{n ≥ 0 : IM (n) = 1}. Under Pϕ , the regeneration time τ = Λ(τ̃ + 1).

From (22) and the comparison theorem [36, Theorem 14.2.2],

Ex τ̃ ≤ g1(x) + b1Ex
τ̃−1∑
j=0

h(X̃ j ),

where h(x) = Px (X̃1 ∈ C). Since I (τ̃ > j) is measurable with respect to Gj =

σ(X̃0, . . . , X̃ j, I1, . . . , IM ( j )), it follows that

Ex

τ̃−1∑
j=0

h(X̃ j ) =
∞∑
j=0

Px (τ̃ > j, X̃ j+1 ∈ C) = Ex
τ̃∑
j=1

I (X̃ j ∈ C).

Now, each time j that X̃ j ∈ C, we regenerate with probability γ, so that
∑τ̃

j=1 I (X̃ j ∈

C) is geometrically distributed with success probability γ and thus has mean γ−1.
We conclude that Ex τ̃ ≤ g1(x) + b1/γ.

With that result in hand,
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Eϕ τ̃
2 ≤ 2Eϕ

τ̃−1∑
j=0

(τ̃ − j)

= 2Eϕ
∞∑
j=0

Eϕ[(τ̃ − j)I (τ̃ > j) |Gj ]

≤ 2Eϕ
τ̃−1∑
j=0

(g1(X̃ j ) + b1/γ)

= 2Eϕ
τ̃−1∑
j=0

g1(X̃ j ) + 2b1Eϕ τ̃/γ

= 2(Eϕ τ̃) (Eπg1(X0)) + 2b1(Eϕ τ̃)/γ < ∞,

where Eπg1(X0) is finite by virtue of A5 and [43, Theorem 4.2]. Since τ = Λ(τ̃ + 1)
under Pϕ , Wald’s second moment identity then implies that Eϕτ2 < ∞. �

The hypotheses A4 and A5 simplify when the chain X is V -uniformly ergodic
as is assumed in [24]. In fact, A4 and A5 are implied by A6 below; see, e.g., [36,
Lemma 17.5.1] and [45].

A6 For the set C defined in A2 there exist constants b, β > 0, and a function
V : S → [1,∞) such that for all x ∈ S,

AV (x) ≤ −βV (x) + bI (x ∈ C).

For the other hypotheses of Theorem 3 it is not clear exactly what form “easily
verifiable” conditions should take. Indeed, it appears that one may need to tailor the
conditions to a given application. It is difficult to imagine a practical application
where the condition σ2(q) > 0 would be violated, so we content ourselves with
an example sufficient condition for the hypothesis that F is differentiable at q with
F ′(q) > 0. Recall that A2 and A4 imply that the chain X is positive Harris recurrent,
and therefore possesses a stationary distribution, so that F (y) = Pπ ( f (X0) ≤ y) is
well-defined. In what follows we assume that X is positive Harris recurrent.

Proposition 4 Suppose there exists a t > 0 such that for all y in an open neighbour-
hood N of q and all x ∈ S,

P( f (Xt ) ∈ dy |X0 = x) = p(x, y)dy.

Suppose further that for each fixed x ∈ S, p(x, ·) is Lipschitz continuous in y ∈ N
with Lipschitz constant L(x), where L(·) is π-integrable. Then F is differentiable in
N . If, in addition, p(x, q) > 0 for x in some set of positive π measure, then F ′(q) > 0.

Proof The proof is very similar to that of Proposition 2 in [46]. Let B = (a, b] ⊆ N .
Then
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F (b) − F (a) = Pπ ( f (Xt ) ∈ B)

=

∫
S

π(dx)P( f (Xt ) ∈ B |X0 = x)

=

∫
S

∫
B

π(dx)p(x, y)dy

=

∫
B

∫
S

π(dx)p(x, y)dy.

It follows immediately that F has a density ψ in N , where

ψ(y) =
∫
S

π(dx)p(x, y) (24)

at y ∈ N . Now, for h such that both y and y + h ∈ N ,

|ψ(y + h) − ψ(y) | =
�����

∫
S

π(dx)(p(x, y + h) − p(x, y))
�����
≤ h

∫
S

π(dx)L(x). (25)

Since L is π integrable, it follows that ψ is Lipschitz continuous in N . Since F
has a continuous density in N , we may conclude that it is differentiable (in fact,
continuously differentiable) in N with derivative ψ.

Finally, observe from (24) that the condition that p(x, q) > 0 for all x in a set of
positive π measure implies that ψ(q) = F ′(q) is positive at q. �

Proposition 4 basically requires that the t-step probabilities P( f (Xt ) ∈ dy |X0 =

x) have a density with respect to Lebesgue measure for all x. Typically this condition
will be easiest to verify for Harris processes in discrete time in the case where t = 1.
Example: Consider the problem of computing quantiles of the steady-state waiting
time distribution in the GI/G/1 queue. It is well-known that the sequence X = (Xn :
n ≥ 0) of customer waiting times in the FIFO single-server queue is a Markov chain
on state space S = [0,∞). In particular, X satisfies the Lindley recursion [35, p. 23]
Xn+1 = [Xn +Yn+1]+, where [x]+ = max(x, 0), Y = (Yn : n ≥ 1) is an i.i.d. sequence
with Yn+1 = Vn −Un+1, Vn is the service time of the nth customer, and Un+1 is the
interarrival time between the nth and (n + 1)st customer. Take f (x) = x, so that we
are interested in computing the quantiles of the steady-state waiting time distribution.
We now verify the key conditions of Theorem 3.

As in [35, p. 23], it is straightforward to show that if EY 2
1 < ∞ and µ = EY1 < 0,

then A4 and A5 are satisfied for the Markov chain X with g1(x) = 2x/|µ| and
g2(x) = 2x2/µ2. Now, for y > 0, we have that P(x, dy) = P(Y1 ∈ d(y − x)). So if
Y1 has a Lipschitz continuous density with respect to Lebesgue measure and q > 0,
then Proposition 4 implies that the distribution function F is differentiable in a
neighbourhood of q. It remains to establish that F ′(q) > 0.

First, π({0}) = 1 − EV1/EU1 > 0, since EY1 < 0. Furthermore, since Y1 has a
continuous density and negative mean, P(Y1 > 0) > 0 then implies that for each
0 ≤ a < b < ∞, there exists an m = m(a, b) such that Pm (0, (a, b)) > 0. Therefore,
π((a, b)) ≥ π({0})Pm (0, (a, b)) > 0. Proposition 4 then implies that F ′(q) > 0.



24 Peter W. Glynn and Shane G. Henderson

Acknowledgements We have benefited enormously from our association with Pierre L’Ecuyer
over many years. We are grateful for Pierre’s scholarship, leadership and friendship.

This work was partially supported by National Science Foundation grant CMMI-2035086.

References

1. Donald L. Iglehart. Simulating stable stochastic systems, VI: quantile estimation. Journal of
the Association for Computing Machinery, 23:347–360, 1976.

2. Andrew F. Seila. A batching approach to quantile estimation in regenerative simulations.
Management Science, 28:573–581, 1982.

3. Charles R Doss, James M Flegal, Galin L Jones, and Ronald C Neath. Markov chain Monte
Carlo estimation of quantiles. Electronic Journal of Statistics, 8(2):2448–2478, 2014.

4. P. W. Glynn. Some topics in regenerative steady-state simulation. Acta Applicandae Mathe-
maticae, 34:225–236, 1994.

5. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo in
Practice. Chapman & Hall, London, 1996.

6. George S. Fishman. Monte Carlo: Concepts, Algorithms and Applications. Springer Series in
Operations Research. Springer, New York, 1996.

7. S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis, volume 57 of
Stochastic Modeling and Applied Probability. Springer, New York, 2007.

8. Athanassios N. Avramidis and James R. Wilson. Correlation-induction techniques for estimat-
ing quantiles in simulation experiments. Operations Research, 46:574–592, 1998.

9. Robert J. Serfling. Approximation Theorems of Mathematical Statistics. Wiley, New York,
1980.

10. X. Jin, M. C. Fu, and X. Xiong. Probabilistic error bounds for simulation quantile estimators.
Management Science, 49:230–246, 2003.

11. J. C. Hsu and B. L. Nelson. Control variates for quantile estimation. Management Science,
36:835–851, 1990.

12. Timothy C. Hesterberg and Barry L. Nelson. Control variates for probability and quantile
estimation. Management Science, 44(9):1295–1312, 1998.

13. P. W. Glynn. Importance sampling for Monte Carlo estimation of quantiles. Proceedings of
the Second International Workshop on Mathematical Methods in Stochastic Simulation and
Experimental Design, pages 180–185, 1996.

14. PaulGlasserman, PhilipHeidelberger, andPerwezShahabuddin. Variance reduction techniques
for estimating value-at-risk. Management Science, 46:1349–1364, 2000.

15. Marvin K. Nakayama. Asymptotically valid confidence intervals for quantiles and values-at-
risk when applying Latin hypercube sampling. International Journal on Advances in Systems
and Measurements, 4:86–94, 2011.

16. L. Sun and L. J. Hong. Asymptotic representations for importance-sampling estimators of
value-at-risk and conditional value-at-risk. Operations Research Letters, 38:246–251, 2010.

17. Fang Chu and Marvin K. Nakayama. Confidence intervals for quantiles when applying
variance-reduction techniques. ACM Transactions on Modeling and Computer Simulation,
22(2):Article 10, 2012.

18. Marvin K. Nakayama. Using sectioning to construct confidence intervals for quantiles when
applying importance sampling. In C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and
A. M. Uhrmacher, editors, Proceedings of the 2012 Winter Simulation Conference. IEEE,
2012.

19. Christos Alexopoulos, David Goldsman, Anup C. Mokashi, Kai-Wen Tien, and James R.
Wilson. Sequest: A sequential procedure for estimating quantiles in steady-state simulations.
Operations Research, 67(4):1162–1183, 2019.

20. P. Heidelberger and P. A. W. Lewis. Quantile estimation in dependent sequences. Operations
Research, 32:185–209, 1984.



A Central Limit Theorem For Empirical Quantiles in the Markov Chain Setting 25

21. E. Jack Chen and W. David Kelton. Quantile and tolerance-interval estimation in simulation.
European Journal of Operational Research, 168:520–540, 2006.

22. J. E. Bekki, G.Mackulak, J.W. Fowler, andB. L.Nelson. Indirect cycle time quantile estimation
using the Cornish-Fisher expansion. IIE Transactions, 42:31–44, 2009.

23. Demet C. Wood and Bruce W. Schmeiser. Overlapping batch quantiles. In C. Alexopoulos,
K.Kang,W.R. Lilegdon, andD.Goldsman, editors,Proceedings of the 1995Winter Simulation
Conference, pages 303–308, Piscataway, New Jersey, 1995. IEEE.

24. David F. Muñoz. On the validity of the batch quantile method for Markov chains. Operations
Research Letters, 38:223–226, 2010.

25. David F. Muñoz and Adán Ramírez-López. A note on bias and mean squared error in steady-
state quantile estimation. Operations Research Letters, 43:374–377, 2015.

26. Shane G. Henderson and Peter W. Glynn. Regenerative steady-state simulation of discrete
event systems. ACM Transactions on Modeling and Computer Simulation, 11:313–345, 2001.

27. P. K. Sen. On the Bahadur representation of sample quantiles for sequences of φ-mixing
random variables. Journal of Multivariate Analysis, 2:77–95, 1972.

28. G. J. Babu and K. Singh. On deviations between empirical and quantile processes for mixing
random variables. Journal of Multivariate Analysis, 8:532–549, 1978.

29. Ju. A. Davydov. Mixing conditions for Markov chains. Teor. Verojatnost. i Primenen., 18:321–
338, 1973.

30. K. B. Athreya and S. G. Pantula. Mixing properties of Harris chains and autoregressive
processes. Journal of Applied Probability, 23:880–892, 1986.

31. Wei Biao Wu. On the Bahadur representation of sample quantiles for dependent sequences.
Annals of Statistics, 33(4):1934–1963, 2005.

32. KemalDinçerDingeç, ChristosAlexopoulos,DavidGoldsman,Athanasios Lolos, and JamesR.
Wilson. Geometric-moment contraction of G/G/1 waiting times. Manuscript, 2022.

33. R. N. Bhattacharya and R. Ranga Rao. Normal Approximation and Asymptotic Expansions.
Wiley, New York, 1976.

34. K. L. Chung. A Course in Probability Theory, volume 21 of Probability and Mathematical
Statistics. Academic Press, San Diego, 2nd edition, 1974.

35. Soren Asmussen. Applied Probability and Queues, volume 51 of Applications of Mathematics:
Stochastic Modeling and Applied Probability. Springer, New York, 2nd edition, 2003.

36. S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer-Verlag,
London, 1993.

37. Karl Sigman. One-dependent regenerative processes and queues in continuous time. Mathe-
matics of Operations Research, 15(1):175–189, 1990.

38. P. W. Glynn and W. Whitt. Necessary conditions in limit theorems for cumulative processes.
Stochastic Processes and Their Applications, 98:199–209, 2002.

39. P. W. Glynn andW.Whitt. Limit theorems for cumulative processes. Stochastic Processes and
Their Applications, 47:299–314, 1993.

40. M.P. Wand and M.C. Jones. Kernel Smoothing. Chapman & Hall, London, 1995.
41. Christos Alexopoulos, David Goldsman, and James R. Wilson. A new perspective on batched

quantile estimation. In C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M.
Uhrmacher, editors, Proceedings of the 2012 Winter Simulation Conference. IEEE, 2012.

42. J. K. Ghosh. A new proof of the Bahadur representation of quantiles and an application. Annals
of Mathematical Statistics, 42(6):1957–1961, 1971.

43. S. P. Meyn and R. L. Tweedie. Stability of Markovian processes III: Foster-Lyapunov criteria
for continuous-time processes. Advances in Applied Probability, 25:518–548, 1993.

44. S. Karlin and H.M. Taylor. A Second Course in Stochastic Processes. Academic Press, Boston,
1981.

45. P. W. Glynn and S. P. Meyn. A Liapounov bound for solutions of the Poisson equation. Annals
of Probability, 24:916–931, 1996.

46. S. G. Henderson and P. W. Glynn. Computing densities for Markov chains via simulation.
Mathematics of Operations Research, 26:375–400, 2001.


