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Abstract
Perpetuities (i.e., random variables of the form D = ∫ ∞

0
e−Γ(t−)dΛ(t) play an impor-

tant role in many application settings. We develop approximations for the distribution

of D when the “accumulated short rate process”, Γ, is small. We provide: (1) charac-

terizations for the distribution of D whenΓ andΛ are driven by Markov processes; (2)

general sufficient conditions under which weak convergence results can be derived

for D, and (3) Edgeworth expansions for the distribution of D in the iid case and the

case in which Λ is a Levy process and the interest rate is a function of an ergodic

Markov process.
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1 INTRODUCTION

It is our pleasure to contribute to this special issue in honor

of A. F. Veinott. Prof. Veinott’s interests spanned many areas

of operations research. This article contributes to the study

of infinite horizon stochastic discounted rewards with small

discount rates. This topic is closely related to the study of

concepts such as strong present value optimality, which was

introduced in Blackwell (1962) and extensively studied and

extended in Veinott Jr (1969). While the focus in their work

was on expected values, we concentrate on the study of the

distribution of the perpetuity in the small discount rate setting.

Given an R
2-valued cadlag (right continuous paths with

left limits) process (Λ(t),Γ(t) ∶ t ≥ 0), the corresponding

perpetuity is the random variable (rv)

D = ∫
∞

0

exp (−Γ (t−)) dΛ(t). (1)

The simplest possible perpetuity (in continuous time) arises

when Γ and Λ are differentiable with dΛ(t)∕dt = Λ̇(t) ≜
𝜆(t) = 𝜆 and dΓ(t)∕dt = Γ̇(t) ≜ 𝛾(t) = 𝛾 , in which case

D = 𝜆∕𝛾 . This arises, in the insurance setting, as the present

value of a benefit payable to a policy holder in perpetuity at

a fixed rate 𝜆, under the assumption that the interest rate is

fixed at the level 𝛾 . When considering an entire group of pol-

icy holders (as arises in managing a private pension fund),

a more realistic formulation models the aggregate rate 𝜆(t)

paid out by the company and the instantaneous “force of inter-

est” (i.e., the “short rate”) at time t as stochastic processes.

This stochastic formulation has been followed, for example,

by Dufresne (1990) for valuing a pension fund.

In many applications contexts, the expectation ED is of

principal interest. For example, many economics and opera-

tions research models compute, as a key mathematical quan-

tity, the infinite horizon net present value of an economic

consumption/investment strategy. Such a net present value

can be characterized as the expectation of a perpetuity. How-

ever, there are a number of important applications domains in

which the entire distribution of D is relevant:

(a) The distribution of D plays an important role in

the above pension fund valuation approach as intro-

duced by Dufresne (1990), where it serves as a

critical ingredient in computing critical rates that

ensure that the fund is managed in a balanced man-

ner relative to its actuarial liabilities; see Bédard and

Dufresne (2001) for additional details.

(b) The stochastic equation

dD̃(t) = 𝛼(t)D̃(t)dt + 𝜆(t)dt (2)

arises in several different settings. For example, if D̃(t) is

the reserve of an insurance company that receives premiums

at a rate of p dollars per unit time and pays out claims at

a rate c(t) at time t, then D̃(t) satisfies the above equation,
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with 𝜆(t) = p − c(t) and 𝛼(t) representing the rate of

return on the invested risk reserve at time t. Harrison (1977)

showed that when 𝛼 is constant and deterministic, then the

infinite horizon ruin probability P
(

inft≥0 D̃(t) < 0
)

for the

insurance company can be computed in terms of the distri-

bution of an appropriately defined perpetuity of the form (1).

Paulsen (1998) extended this to the case of stochastic 𝛼(⋅);
see also Paulsen (1993), Nyrhinen (2001) and the work of

Kluppelberg and Kostadinova (2007).

Note that if D̃(0) = 0, the solution of (2) is given by

D̃(t) = ∫
t

0

exp

(
∫

t

u
𝛼(s)ds

)
𝜆(u)du

= ∫
0

−t
exp

(
∫

0

v
𝛼(r + t)dr

)
𝜆(v + t)dv

It follows that if ((𝜆(t), 𝛼(t)) ∶ t ∈ (−∞,∞)) is strictly

stationary with 𝛼(⋅) = −𝛾(⋅) < 0 and 𝜆(⋅) positive, then

D̃(t)
D
= ∫

0

−t
exp

(
∫

0

v
𝛼(r)ds

)
𝜆(v)dv

→ ∫
0

−∞
exp

(
−∫

0

v
𝛾(r)ds

)
𝜆(v)dv ≜ D̃(∞)

as t ↗ ∞ (where
D
= denotes equality in distribution). Hence,

computing the equilibrium distribution of the solution to

the stochastic Equation (2) is equivalent to calculating the

distribution of a perpetuity.

An important special case is that of an ARCH (1) process(
D̃n ∶ n ≥ 0

)
. Such a model satisfies a discrete-time analog

of (2), namely

D̃n+1 − D̃n = AnD̃n + Bn, (3)

where the sequence ((An,Bn) ∶ n ≥ 0) is independent and

identically distributed (iid). This class of time series mod-

els is widely applied within the statistics and economet-

rics communities, and has been used to describe log-asset

returns, exchange rates, inflation, and many other financial

and economic time series; see Campbell et al. (1999), Shep-

hard (1996) and Wilkie (1986). Again, under modest addi-

tional conditions, D̃n ⇒ D̃∞ as n ↗ ∞, where D̃∞ is a

perpetuity of the form (1).

(c) The distribution of the perpetuity D arises also

in complexity theory (in the context of the

so-called “Quicksort” algorithm) and analytic

number theory; see Goldie and Grübel (1996)

for details. Carmona et al. (2001) and Embrechts

and Goldie (1994) describe several other applica-

tions, including mathematical physics and finance,

where the distribution of D is relevant. Further

connections and related notions are discussed in

Diaconis and Freedman (1999).

This article is concerned with developing tools for comput-

ing and/or approximating the distribution of the perpetuity D.

Our approximations are rigorously justified in the context of a

small force of interest, which is a setting that arises often in the

applications described before such as pension fund modeling,

insurance, finance, and econometrics. Our main contributions

include:

i) A derivation of the equations to be solved in the

Markov setting when calculating both the Laplace

transform of D (Theorem 1) and D’s distribution

function (Theorem 2).

ii) A central limit-type theorem (Theorem 4) for D
that holds when the force of interest process (𝛾(t) ∶
t ≥ 0) is small. In contrast to previous results

in the literature, such as those by Nelson (1990),

Bucklew et al. (1993), Forniari and Mele (1997)

our assumptions do not require stationarity or that

the accumulated force of interest and rewards sat-

isfy a Brownian weak convergence limit, nor do we

require strong assumptions on the discounting pro-

cess as in Whitt (1972) or Gerber (1971) (where the

force of interest is assumed to be constant).

iii) Edgeworth expansions for the distribution of D in

the iid case (Theorem 5) and in the case in which

Λ is a Levy process and 𝛾(t) is a function of a geo-

metrically ergodic Markov process. The iid result

covers, for example, the ARCH (1) process, while

the Levy/Markov expansion (Theorem 6) is of par-

ticular interest when investment returns on the

reserve are considered within the insurance context

(since it is common to model pure claim processes

as Levy motions and interest rates as functions

of Markovian mean-reverting processes). Formal

Edgeworth expansions are also given for more gen-

eral Markov processes. Related results have been

derived for autoregressive processes, in which the

techniques are similar to the case of constant force

of interest, see Miao et al. (2013).

It should further be noted that the tail asymptotics for a

fixed (not necessarily small) interest rate have been developed

for D in some special cases (such as independent increment

processes in discrete settings or Levy-driven discount fac-

tors in the continuous case) by, for example, Goldie (1991),

Kesten (1973) and Maulik and Zwart (2006). Large devi-

ations results and sharp asymptotics are investigated in

Blanchet (2004).

The rest of the article is organized as follows. Section 2

discusses the exact computation of the Laplace transform and

distribution of D in the Markov setting. Section 3 develops

sufficient conditions that guarantee weak convergence of D as

the “interest rate” goes to zero. We formulate these results in

an asymptotic environment in which we introduce a discount

rate parameter 𝛼, consider an accumulated force of interest

process of the form (𝛼Γ(t) ∶ t ≥ 0), and send 𝛼 to zero. The

development of Edgeworth expansions for both the iid case

and the case of Markov-driven discount and reward rates is

given in our final section, namely Section 4.
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2 EXACT COMPUTATION

We develop here the equations that need to be solved in order

to compute the Laplace transform of D, its moments, and

the distribution of D in the Markov setting. In particular, we

assume here that 𝜆(⋅) and 𝛾(⋅) take the form 𝜆(t) ≜ 𝜆(Y(t))
and 𝛾(t) ≜ �̃�(Y(t)), where Y = (Y(t) ∶ t ≥ 0) is a cad-

lag (i.e., right-continuous with left-limits) Ξ-valued Markov

process with stationary transition probabilities and 𝜆 and �̃�

are real-valued functions. We shall assume throughout this

section that Ξ is a Polish space. For y ∈ Ξ, let Py(⋅) and Ey(⋅)
be the probability distribution and expectation operators on

the path-space of Y , conditional on Y(0) = y.

We first provide an informal discussion of the equations

that arise in computing the Laplace transform, moments, and

distribution of D. Later in this section, we state and prove

theorems that rigorously guarantee that solutions to these

equations coincide with the expectations and probabilities we

seek. Proceeding informally, let AY be the generator of Y and

D (AY ) its corresponding domain; a precise definition will be

given later in this section. For example, whenΞ is a finite state

space and Y is a Markov jump process, AY is Y’s associated

rate matrix and D (AY ) is the set of all real-valued functions

(encoded as column vectors) defined on Ξ.

The equation for the Laplace transform 𝜙(y, 𝜃) ≜
Ey exp(𝜃D) for 𝜃 non-positive:

Solve

(A𝜙)(y, 𝜃) =
(
𝜕𝜃𝜙(y, 𝜃)�̃�(y)𝜃 − 𝜙(y, 𝜃)𝜆(y)𝜃

)
, (4)

for (y, 𝜃) ∈ Ξ× ⊴ −∞, 0], subject to 𝜙(⋅) being positive and

𝜙(y, 0) = 1 for y ∈ Ξ.

The equation for the k’th moment 𝜙k(y) ≜ EyDk:

Let 𝜙0 = 1 and solve for (𝜙m ∶ 1 ≤ m ≤ k) recursively (in

m) via the system of.

equations

(A𝜙m) (y) = m𝜙m(y)�̃�(y) + 𝜆(y)𝜙m−1(y). (5)

The equation for the distribution function h(y, z) ≜ Py
(D ≤ z):

Solve

(Ah)(y, z) = (𝜆(y) − z�̃�(y)) (𝜕zh) (y, z), (y, z) ∈ Ξ × R, (6)

subject to 0 ≤ h(y, z) ≤ 1, such that limz→∞ h(y, z) = 1 and

limz→−∞ h(y, z) = 0.

We now provide several theorems that offer sufficient con-

ditions under which one is guaranteed that the solutions to

(4)–(6) correspond to D’s Laplace transform, its moments,

and its distribution, respectively.

Given a Markov process Y = (Y(t) ∶ t ≥ 0), we say that f
belongs to the domain of the (extended) generator AY of the

process Y and write f ∈ D (AY ) if there exists a function g for

which the process

M(t) = f (Y(t)) − ∫
t

0

g(Y(u))du (7)

is a local martingale with respect to Py for each y ∈ Ξ.

Furthermore, we then write AYf ≜ g, where g is any given

member selected from the class of functions that satisfy (7).

For the Markov models that arise in the great majority of prac-

tical applications, it is straightforward to identify sufficient

conditions ensuring that f ∈ D (AY ) and to compute AYf :

Markov jump processes: Suppose that Y is a non-explosive

Markov jump process living on a discrete state space Ξ and

possessing rate matrix Q = (Q(x, y) ∶ x, y ∈ Ξ). Then, any

function f for which
∑

y |Q(x, y)f (y)| < ∞ for each x ∈ Ξ lies

in D (AY ) and (AYf ) (x) =
∑

y Q(x, y)f (y); see, for example,

Ethier and Kurtz (1985), p. 327.

Stochastic differential equations (SDE’s): Suppose that for

each y ∈ R
d, there exists a non-explosive solution Y to the

SDE

dY(t) = a(Y(t))dt + b(Y(t))dB(t),
subject to the initial condition Y(0) = y. If f is twice differ-

entiable on R
d, then f ∈ D (AY ) and AYf = Lf, where L is the

second-order differential operator given by

(Lf)(y) = a(y) ⋅ ∇f (y) + 1

2
Trace

(
b(y)b(y)TD2f (y)

)
,

where D2f denotes the second derivative of f . See, for

instance, Stroock and Varadhan (2006), chapters 5–7, or

Rogers and Williams (1994), chapter 5, theorem 24.1.

A similar easily verified sufficient condition for deter-

mining when f ∈ D (AY ) and computing AYf is available

in the jump-diffusion context; see, for example, Jacod and

Shiryaev (2003) pp. 155–159.

Define Z(t) = (Y(t),Γ(t),D(t)), where

D(t) = ∫
t

0

exp(−Γ(s))𝜆(Y(s))ds.

Under the assumptions we have made in this section, Z =
(Z(t) ∶ t ≥ 0) is a Markov process on Ξ × R × R. The first

part of the following result provides a sufficient condition for

a function to be in the domain D (AZ) and computes the action

of AZ on such functions in terms of the generator AY , while

the second part shows that the local martingale property is

inherited by a certain class of positive processes constructed

from Z. Such conditions will be the key to proving the validity

of Equations (4)–(6).

Lemma 1 Let 𝜅 ∶ Ξ × R × R → R be such
that:

i) For each (r, 𝜌) ∈ R×R, we have 𝜅(⋅, r, 𝜌) ∈
D (AY ) and 𝜕r𝜅(⋅, r, 𝜌) and 𝜕𝜌𝜅(⋅, r, 𝜌) are
continuous on Ξ.

ii) For every fixed y ∈ Ξ, 𝜅(y, ⋅) is con-
tinuously differentiable on R × R and
(AY𝜅) (y, ⋅) is continuous.

If

𝛽(Z(t)) = (AY𝜅) (Z(t)) + 𝜕r𝜅(Z(t))�̃�(Y(t))

+ 𝜕𝜌𝜅(Z(t))e−Γ(t)𝜆(Y(t))
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for t ≥ 0, then, for every z ∈ Ξ × R × R, the
process (M1(t) ∶ t ≥ 0) defined via

M1(t) = 𝜅(Z(t)) − ∫
t

0

𝛽(Z(s))ds

is a local martingale, conditional on Z(0) = z,
with respect to the filtration generated by Z. If,
in addition to i) and ii), inf0≤s≤t 𝜅(Z(s)) > 0 a.s.
for every t ≥ 0, then, for every z ∈ Ξ × R × R,
the process (M2(t) ∶ t ≥ 0) defined by

M2(t) = 𝜅(Z(t)) exp

(
−∫

t

0

𝛽(Z(s))
𝜅(Z(s))

ds
)

is also a local martingale, conditional on Z(0)
= z, with respect to the filtration generated by Z.

Proof The proof that M1 is a local martingale

follows the lines of lemma 3.4, p. 176 in Ethier

and Kurtz (1985). The fact that M2 is a local

martingale is a consequence of corollary 3.3,

p. 66 of Ethier and Kurtz (1985). ▪

We now are ready to rigorously verify the Equation (4). We

shall assume, for the remainder of this section, that 𝜆 and �̃�

are non-negative functions and that Γ(t) → ∞ a.s. as t ↗ ∞,

given Y(0) = y for any y ∈ Ξ. Gjessing and Paulsen (1997)

provide rigorous verification for Equation (4) when the accu-

mulated discount and reward processes follow independent

Levy process; see also Pollack and Siegmund (1985) for the

case in which Γ follows a geometric Brownian motion and Λ
grows linearly.

Theorem 1 Assume that:

i) For all y ∈ Ξ, 𝜙(y, ⋅) is continuously
differentiable on (−∞, 0].

ii) For all 𝜃 ∈ (−∞, 0], 𝜙(⋅, 𝜃) ∈ D (AY ) and
𝜕𝜃𝜙(⋅, 𝜃) is continuous.

iii) 𝜙 is a bounded solution of (4) subject to
𝜙(⋅, 0) = 1.

iv) The function 𝜕𝜃𝜙(⋅) is bounded on compact
subsets of Ξ × (−∞, 0].

v) For each y ∈ Ξ, (Y(t) ∶ t ≥ 0) is tight
given Y(0) = y.

Then 𝜙(y, 𝜃) = Ey exp(𝜃D) for (y, 𝜃) ∈ Ξ× ⊴
−∞, 0].

Proof Letting 𝜅(Y(s),Γ(s)) = 𝜙(Y(s), 𝜃 exp

(−Γ(s))), we can directly apply Lemma 1. In

particular, note that

(AZ𝜙)
(
Y(s), 𝜃e−Γ(s)

)
= A𝜙

(
Y(s), 𝜃e−Γ(s)

)
− 𝜃𝜙𝜃

(
Y(s), 𝜃e−Γ(s)

)
e−Γ(s)g(Y(s))

= −𝜃e−Γ(s)𝜆(Y(s))𝜙
(
Y(s), 𝜃e−Γ(s)

)
.

and therefore

M(t) = 𝜙
(
Y(t), 𝜃e−Γ(t)

)
exp

(
𝜃∫

t

0

e−Γ(s)𝜆(Y(s))ds
)
.

is a local martingale. In fact, since M(⋅) is

bounded, the martingale convergence theorem

guarantees that it converges almost surely and in

L1 as t ↗ ∞. Let 𝜀 > 0 and pick K compact so

that

Py(Y(t) ∈ K) ≥ 1 − 𝜀.

We obtain that|||||𝜙(y, 𝜃) − Ey

(
𝜙
(
Y(t)𝜃e−Γ(t)

)
exp

(
𝜃∫

t

0

e−Γ(s)𝜆(Y(s))ds
)
;Y(t) ∈ K

)||||| ≤ c𝜀

for some c > 0. The conclusion of the result

follows after showing that

𝜙
(
Y(t), 𝜃e−Γ(t)

)
I(Y(t) ∈ K) − I(Y(t) ∈ K) → 0 (8)

as t ↗ ∞. Equation (8) follows from the fact

that

1 − 𝜙(y, 𝜃) = ∫
0

𝜃

𝜕𝜃𝜙(y, s)ds,

and because 𝜕𝜃𝜙(⋅) is bounded on the compact

set K × 𝜃, 0]. ▪

Sufficient conditions for existence/uniqueness to (4) have

been well studied in the case in which Y is a diffusion with

associated uniformly elliptic second-order differential oper-

ator L. In this case, we can transform Equation (4) into a

parabolic equation by introducing the change of variable 𝜃 =
−et (which imposes the restriction 𝜃 < 0). We then let

𝜙 (y, et) = 𝜙(y, t) and find that (4) is transformed into

(A𝜙)(y, t) =
(
𝜕t𝜙(y, t)g(y) − 𝜙(y, t)f (y)et

)
, (y, t) ∈ Ξ × R.

The verification of Equation (6) is given next.

Theorem 2 Assume that:

i) For all y ∈ Ξ, h(y, ⋅) is continuously differ-
entiable on (−∞,∞).

ii) For all z ∈ (−∞,∞), h(⋅, z) ∈ D (AY ) and
𝜕zh(⋅, z) is continuous.

iii) h is a bounded solution of (6).

iv) Uniformly on compact sets of Ξ, h(⋅, z) →
1 as z → ∞ and h(⋅, z) → 0

as z → −∞

v) For each y ∈ Ξ, (Y(t) ∶ t ≥ 0) is tight
given Y(0) = y.

Then, h(y, z) = Py(D ≤ z) for each (y, z) ∈ Ξ×
R for which z is a continuity point of Py(D ≤ ⋅).
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Proof Let

D(t) = ∫
t

0

e−Γ(s)f (Y(s))ds,

and define M = (M(t) ∶ t ≥ 0) as

M(t) = h
(
Y(t), (z − D(t))eΓ(t)

)
,

it follows from Lemma 1 that M is a local

martingale. In fact, since h is bounded, M is

martingale. Hence, it follows that

h(y, z) = Eyh
(
Y(t), (z − D(t))eΓ(t)

)
.

An argument similar to that given in the proof

of Theorem 1 (using the uniform convergence

on compact sets and the continuity of Py(D ≤ ⋅)
at z) implies, upon letting t → ∞, that

h(y, z) = Py(D ≤ z)

as we claimed. ▪

When �̃� is bounded below by 𝜀 > 0 and 𝜆 is non-negative

and bounded (by m, say), then 0 ≤ D ≤ m∕𝜀, so that the

boundary conditions for (6) can be modified to h(y, 0) = 0

and h(y,m∕𝜀) = 1 for y ∈ Ξ (so that the boundary conditions

“at infinity” can be eliminated, simplifying numerical com-

putation). We further note that for numerical computation of

the distribution of D, solving (6) appears preferable to solving

(4), followed by numerical inversion (given the similar degree

of numerical difficulty associated with solving (4) and (6)).

Finally, we provide sufficient conditions for the verifica-

tion of (5). We assume that 𝜆 and �̃� are non-negative and that

Γ(t) → ∞ as t ↗ ∞ with probability one given Y(0) = y for

every y ∈ Ξ.

Theorem 3 Assume that 𝜙0 = 1 and for 1 ≤
m ≤ k: Assume that 𝜙m(⋅) ∈ AY for all 1 ≤ m ≤
k, 𝜙0 = 1 and that (5) is satisfied. In addition,
suppose that 𝜙m(⋅) is bounded. Then, 𝜙k(y) =
EyDk.

Proof The proof proceeds by induction along

the lines of the previous results by studying

the Dynkin martingale generated by 𝜅1(Y(t),
Γ(t)) = 𝜙1(Y(t)) exp(−Γ(t)) and subsequently

to 𝜅m(Y(t),Γ(t)) = 𝜙m(Y(t)) exp(−mΓ(t)) for

m ≤ k. The details are omitted. ▪

3 WEAK CONVERGENCE

Our results in this section in particular will imply that when

the accumulated force of interest process Γ(⋅) is close to zero,

then we can approximate the distribution of D as

D
D
≈ N(ED,Var(D)), (9)

where N
(
𝜇, 𝜎2

)
is a Gaussian rv having mean 𝜇 and variance

𝜎2, and
D
≈ is a non-rigorous symbol meaning “has approxi-

mately the same distribution as.” The mean ED and Var(D)
can either be computed by solving the first two moment

equations of Section 2 (which are substantially easier to solve

numerically than computing the entire distribution of D) or

by using the approximations to ED and Var(D) that appear

in the limit theorem given below. Our limit theorem below

also supports other types of approximations (based on stable

processes) depending on the structure of the rewards or the

interest rate dynamics.

There are other results in the literature that suggest Gaus-

sian limit laws for D (see for instance Nelson (1990), Bucklew

et al. (1993) and Forniari and Mele (1997)), where weak con-

vergence proofs are provided at the process level on finite time

intervals. Of course, it is easy to construct examples for which

weak convergence fails for the infinite horizon perpetuity D
despite the process-level weak convergence on finite time

intervals. A major contribution of the results in this section

is to provide general machinery for extending finite-time

weak convergence results to the infinite horizon quantity D.

Moreover, as we have mentioned before, our assumptions

do not require that the accumulated force of interest and

rewards satisfy a Brownian weak convergence law, nor do we

require strong assumptions on the discounting process as in

Whitt (1972) or Gerber (1971) (where the force of interest is

assumed to be constant). Finally, in contrast to most of the

prior work discussed earlier, our results are developed both in

discrete and continuous time, which is a feature that is con-

venient in some of the applications discussed in Section 1, in

particular in the context of insurance and finance.

To make the above approximation rigorous, we introduce

a parameter 𝛼 and a family of systems indexed by 𝛼 in the

following way. Assume that the cumulative force of interest

and the accumulated reward process the form (𝛼Γ𝛼(t) ∶ t ≥ 0)
and (Λ𝛼(t) ∶ t ≥ 0), respectively. The idea is to now study the

rv

D(𝛼) = ∫
∞

0

exp (−𝛼Γ𝛼 (t−)) dΛ𝛼(t) (10)

as 𝛼 ↘ 0. As noted earlier, a small force of interest is often a

reasonable assumption in the setting of insurance perpetuities.

In the ARCH contest, 𝛼 small corresponds to a model that is

close to a unit autoregressive root (when 𝛾 is deterministic).

Consequently, the asymptotic regime in which 𝛼 ↘ 0 is of

significant applied interest when computing approximations

to the distribution of D.

We prove here a very general central limit theorem (CLT)

for D. In order to make sense of the stochastic integral appear-

ing in (10), we assume that Λ is a semi-martingale adapted to

a suitable filtration, so that

Λ𝛼 = Λ(b)
𝛼 + Λ(M)

𝛼 ,

where Λ(M)
𝛼 is a local martingale and Λ(b)

𝛼 is a process with

locally bounded variation (i.e., bounded variation on finite
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time intervals). We further require that Λ𝛼 and Γ𝛼 be cadlag

processes, with Γ𝛼 being adapted to the same filtration as Λ𝛼 .

Our first assumption is a “finite time” functional limit

theorem for Λ𝛼 and Γ𝛼 .

W1 Assume that there exist constants 𝛾 > 0, 𝜆 ∈ (−∞,∞)
and 𝛽 ∈ (0, 1] such that(

Γ𝛼,Λ𝛼
) ≜ 𝛼−𝛽 (𝛼Γ𝛼(⋅∕𝛼) − 𝛾⋅, 𝛼Λ𝛼(⋅∕𝛼) − 𝜆⋅)

⇒ (ZΓ(⋅),ZΛ(⋅))

as 𝛼 ↘ 0 in D2[0,∞) = D[0,∞) × D[0,∞) (under the

standard Skorohod J1 topology).

Note that in typical applications, (ZΓ,ZΛ) will be a

two-dimensional Brownian motion with 𝛽 = 1∕2. But W1

permits more general limit processes, like stable process and

fractional stable motions (as might be appropriate for models

containing heavy-tailed rv’s). In such applications, it may be

that the natural (marginal) normalizations for each of the pro-

cesses 𝛼Γ𝛼(⋅∕𝛼) and 𝛼Λ𝛼(⋅∕𝛼) are different, say 𝛼−𝛽1 and 𝛼−𝛽2 ,

respectively. In such contexts, we set 𝛽 = min (𝛽1, 𝛽2) > 0 in

W1, so that one of the two limit processes is degenerate and

identically equal to zero.

In the proof of the central limit theorem, it is necessary

to deal with weak convergence of a stochastic integral that

involves integrating Γ𝛼(⋅) against Λ𝛼(⋅). The next condition

is closely related to a key condition identified by Kurtz and

Protter (1991) that justifies weak convergence of stochastic

integrals based on the joint weak convergence of the integrand

and integrator.

W2 There exists 𝛼0 > 0 such that

lim
t→∞

sup
0<𝛼≤𝛼0

⎛⎜⎜⎜⎝
E |||Λ(b)

𝛼
||| (t)

t
+

E
[
Λ(M)
𝛼

]
(t)

t

⎞⎟⎟⎟⎠ < ∞,

where
[
Λ(M)
𝛼

]
(⋅) denotes the quadratic variation ofΛ(M)

𝛼 (⋅) and|||Λ(b)
𝛼
||| (⋅) is the total variation of Λ(b)

𝛼 (⋅).
As noted earlier, because W1 does not control the

finite-time behavior of the process, it is easily seen that W1,

by itself, does not guarantee a limit law for D(𝛼) as 𝛼 ↘ 0.

Our final condition imposes the necessary regularity needed

to control the discounted infinite-time behavior of the process

underlying the perpetuity.

W3

lim
𝛼↘0

E log

(
1 + sup

u∈0,1]

|||Λ𝛼(u)|||
)
<∞,

lim
𝛼↘0

E
(

sup
u∈0,1]

|||Γ𝛼(u)|||
)
< ∞.

We are now ready to state the main result of this section.

Theorem 4 Under W1 to W3,

𝛼−𝛽(D(𝛼) − 𝜆∕𝛾) ⇒ ∫
∞

0

e−𝛾sdZΛ
1
(s) − 𝜆∫

∞

0

e−𝛾sdZΓ
2
(s)

as 𝛼 ↘ 0.

Remark The stochastic integrals appearing in

the limiting rv can be equivalently expressed,

via an appropriate integration by parts, as

∫
∞

0

e−𝛾sdZΛ
1
(s) − 𝜆∫

∞

0

e−𝛾sdZΓ
2
(s)

= 𝛾∫
∞

0

e−𝛾sZΛ
1
(s)ds − ZΛ

1
(0)

− 𝜆𝛾∫
∞

0

e−𝛾sZΓ
2
(s)ds + 𝜆ZΓ

2
(0).

The proof also shows that the resulting rv’s are finite-valued

quantities under W1 to W3.

Remark Condition W2 can be somewhat

relaxed, by means of localization, as in Kurtz

and Protter (1991), condition C2.2(i).

The following lemma connects condition W3 to a more suit-

able technical condition that controls the large-time behavior

of the processes Λ and Γ. The proof of this lemma is given at

the end of the present section.

Lemma 2 If condition W3 holds, then for
each 𝛿, 𝛿0 > 0 we have that

lim
t0↗∞

lim
𝛼↘0

P
(

sup
t≥t0

e−𝛿t |||Λ𝛼(u)||| > 𝛿0

)
= 0.

Moreover,

lim
t0↗∞

lim
𝛼↘0

P
(

sup
t≥t0

|||Γ𝛼(u)||| > 𝛿0

)
= 0.

With the aid of the previous lemma we can proceed to the

proof of the main result of this section.

Proof of Theorem 4 Note that

𝛼−𝛽
(
∫

t

0

e−𝛼Γ𝛼 (s∕𝛼−)𝛼dΛ𝛼(s∕𝛼) − ∫
t

0

e−𝛾s𝜆ds
)

= 𝛼−𝛽∫
t

0

(
e−𝛼Γ𝛼 (s∕𝛼−) − e−𝛾s) 𝛼dΛ𝛼(s∕𝛼) (11)

+ 𝛼−𝛽∫
t

0

e−𝛾sd
[
𝛼Λ𝛼(s∕𝛼) − 𝜆s

]
.

Now observe that

𝛼Λ𝛼(⋅∕𝛼) ⇒ 𝜆⋅

as 𝛼 ↘ 0 in D[0,∞) and because the limit is

deterministic and continuous the convergence

actually holds in probability and uniformly on

compact sets. Now, we wish to show that(
∫

⋅

0

e−𝛾sdΛ𝛼(s), 𝛼−𝛽∫
⋅

0

(
e−𝛼Γ𝛼 (s∕𝛼−) − e−𝛾s)

𝛼dΛ𝛼(s∕𝛼),Γ𝛼(⋅),Λ𝛼(⋅)

)
D4[0,∞)
=====⇒

(
∫

⋅

0

e−𝛾sdZΛ
1
(s),−𝜆∫

⋅

0

e−𝛾sZΓ
2
(s)ds,ZΓ

2
(⋅),ZΛ

1
(⋅)
)
.

(12)
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This result is expected given assumption W1

and the fact that

e−𝛼Γ𝛼 (s∕𝛼−) − e−𝛾s = e−𝛾s
(

e−[𝛼Γ𝛼(s∕𝛼−)−𝛾s] − 1
)

≈ −e−𝛾s (𝛼Γ (s∕𝛼−) − 𝛾s) ,

which suggests the convergence of the second

component in (12). Now, in order to justify

the convergence in (12), we will apply theorem

7.10 of Kurtz and Protter (1996). In particu-

lar, such a result guarantees that if the integrand

and integrator converge weakly jointly and the

integrator possesses “uniformly controlled vari-

ations” (UCV), according to definition 7.5 of

Kurtz and Protter (1996), then weak conver-

gence in the form of (12) is justified. So, in order

to deal with the second component of the vec-

tor process in (12) we need to ensure UCV of

𝛼Λ𝛼(⋅∕𝛼). Equation (7.12) of Kurtz and Prot-

ter (1996) indicates that UCV is satisfied if we

can show that for any u > 0

sup
0<𝛼≤𝛼0

(
E |||𝛼Λ(b)

𝛼
||| (u∕𝛼) + 𝛼2E

[
Λ(M)
𝛼

]
(u∕𝛼)

)
< ∞.

This condition is readily satisfied in view of

W2. Furthermore, a simple Taylor development

implies||||𝛼−𝛽e−𝛾s
[
e−(𝛼Γ𝛼 (s∕𝛼−)−𝛾s) − 1

]
− 𝛼−𝛽e−𝛾s [𝛼Γ𝛼(s∕𝛼−) − 𝛾s

]||||
≤ 𝛼−𝛽e−𝛾s|𝛼Γ𝛼(s∕𝛼−) − 𝛾s|2e|𝛼Γ𝛼(s∕𝛼−)−𝛾s|
≤ 𝛼𝛽e−𝛾s𝛼−2𝛽|𝛼Γ𝛼(s∕𝛼−) − 𝛾s|2e|𝛼Γ𝛼 (s∕𝛼−)−𝛾s|.
Sending 𝛼 ↘ 0 and using assumption W1 we

then obtain that||||𝛼−𝛽e−𝛾s
[
e−(𝛼Γ𝛼(s∕𝛼−)−𝛾s) − 1

]
+ 𝛼−𝛽e−𝛾s [𝛼Γ𝛼(s∕𝛼−) − 𝛾s

]||| → 0

in probability uniformly on compact sets and

therefore we can invoke theorem 7.10 of Kurtz

and Protter (1996) to conclude(
𝛼−𝛽∫

⋅

0

(
e−𝛼Γ𝛼 (s∕𝛼−) − e−𝛾s) 𝛼dΛ𝛼(s∕𝛼),Γ𝛼(⋅),Λ𝛼(⋅)

)
D3[0,∞)
=====⇒

(
−𝜆∫

⋅

0

e−𝛾sZΓ
2
(s)ds,ZΓ

2
(⋅),ZΛ

1
(⋅)
)
.

In order to lift the previous convergence result

to the four components in (12) we use lemma

2.1 of Whitt (1972) to show that the first com-

ponent of (12) is a continuous function of Λ𝛼(⋅)
in D[0,∞). Now we can apply the continu-

ous mapping principle here to the sum of the

first two components of (12) in D4[0,∞), the

validity of this application is ensured because

∫ ⋅
0

e−𝛾sZΓ
2
(s)ds is continuous (see Whitt (2001)),

yielding

𝛼−𝛽
(
∫

⋅

0

e−𝛼Γ𝛼 (s∕𝛼−)𝛼dΛ𝛼(s∕𝛼) − ∫
⋅

0

e−𝛾s𝜆ds
)

D[0,∞)
=====⇒∫

⋅

0

e−𝛾sdZΛ
1
(s) − 𝜆∫

⋅

0

e−𝛾sZΓ
2
(s)ds.

Now, to extend the previous result to the infinite

horizon and complete the proof, we must show

that for each 𝛿0, 𝜀 > 0, there exists t = t(𝜀) > 0

large enough such that

lim
𝛼→0

P

(|||||𝛼−𝛽
(
∫

∞

t
e−𝛼Γ𝛼 (s∕𝛼−)𝛼dΛ𝛼(s∕𝛼)

−∫
∞

t
e−𝛾s𝜆ds

)||||| > 𝛿0

)
≤ 𝜀. (13)

So, we have to study

𝛼−𝛽
(
∫

∞

t
e−𝛼Γ𝛼 (s∕𝛼−)𝛼dΛ𝛼(s∕𝛼) − ∫

∞

t
e−𝛾s𝜆ds

)
= 𝛼−𝛽∫

∞

t

(
e−𝛼Γ𝛼 (s∕𝛼−) − e−𝛾s) 𝛼dΛ𝛼(s∕𝛼) (14)

+ 𝛼−𝛽∫
∞

t
e−𝛾sd (𝛼Λ𝛼(s∕𝛼) − 𝜆s) . (15)

First we analyze (14). We decompose

this term using the decomposition for the

semi-martingale Λ𝛼 . We find that the integral

(14) equals

𝛼−𝛽∫
∞

t

(
e−𝛼Γ𝛼 (s∕𝛼−) − e−𝛾s) 𝛼dΛ(b)

𝛼 (s∕𝛼) (16)

+ 𝛼−𝛽∫
∞

t

(
e−𝛼Γ𝛼 (s∕𝛼−) − e−𝛾s) 𝛼dΛ(M)

𝛼 (s∕𝛼). (17)

We shall start by showing that the contribution

of the integral (17) is small for large t (uniformly

in 𝛼). Define the stopping time

T1 = inf
{

u ≥ t ∶ u−1 |𝛼Γ𝛼(u∕𝛼) − 𝛾u| > 𝛿1𝛼
𝛽
}
,

Note that

P
(||||𝛼−𝛽∫ ∞

t

(
e−𝛼Γ𝛼 (s∕𝛼−) − e−𝛾s) 𝛼dΛ(M)

𝛼 (s∕𝛼)
|||| > 𝛿

)
(18)

≤ P

(|||||𝛼−𝛽∫
T1

t

(
e−𝛼Γ𝛼 (s∕𝛼−) − e−𝛾s) 𝛼dΛ(M)

𝛼 (s∕𝛼)
||||| > 𝛿;T1 = ∞

)

+P (T1 < ∞)

≤ (
𝛼−2(𝛽−1∕2)∕𝛿

)
E∫

T1

t

(
e−𝛼Γ𝛼 (s∕𝛼−) − e−𝛾s)2

𝛼d
[
Λ(M)
𝛼

]
(s∕𝛼)

(19)

+P (T1 < ∞) . (20)

Now, observe that, for some constant c1 > 0,

E∫
T1

t
e−2𝛾s

(
e−(𝛼Γ𝛼(s∕𝛼−)−𝛾s) − 1

)2

𝛼d
[
Λ(M)
𝛼

]
(s∕𝛼)
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≤ c1𝛼
𝛽E∫

T1

t
e−𝛾s𝛼d

[
Λ(M)
𝛼

]
(s∕𝛼)

≤ c1𝛼
𝛽E∫

∞

t
e−𝛾s𝛼d

[
Λ(M)
𝛼

]
(s∕𝛼).

This estimate implies that (19) is bounded by

c1
𝛼−2(𝛽−1∕2)

𝛿
𝛼𝛽E∫

∞

t
e−𝛾s𝛼d [ΛM] (s∕𝛼)

≤ c1𝛾
𝛼1−𝛽

𝛿
E∫

∞

t
e−𝛾s𝛼

[
Λ(M)
𝛼

]
(s∕𝛼)ds < c2𝛼

1−𝛽e−t𝛾∕2, (21)

for some constant c2 > 0 (where we have used

assumption W2 combined with integration by

parts). For P (T1 <∞), note that

P (T1 < ∞) ≤ P
(

sup
u≥t

||||𝛼Γ𝛼(u∕𝛼) − 𝛾u
u

|||| ≥ 𝛿1𝛼
𝛽

)
.

Therefore, this estimate combined with (21) and

Lemma 2 yields that for each 𝜀 > 0, we can

find t = t(𝜀) sufficiently large and 𝛼0 > 0 small

enough such that

sup
0<𝛼<𝛼0

P
(||||𝛼−𝛽∫ ∞

t

(
e−𝛼Γ𝛼(s∕𝛼−) − e−𝛾s) dΛ(M)

𝛼 (s∕𝛼)
|||| > 𝛿

)
≤ 𝜀. (22)

This takes care of (18). The analysis of (16) is

similar to that of (17). In particular, we note that

P
(||||𝛼−𝛽∫ ∞

t

(
e−𝛼Γ𝛼(s−) − e−𝛾s) 𝛼dΛ(b)

𝛼 (s∕𝛼)
|||| > 𝛿

)
≤ P

(|||||𝛼−𝛽∫
T1

t

(
e−𝛼Γ𝛼 (s−) − e−𝛾s) 𝛼dΛ(b)

𝛼 (s∕𝛼)
||||| > 𝛿

)
+ P (T1 < ∞) . (23)

Note that the definition of T1 implies that we

can find a constant c1 > 0 and a finite random

variable C(𝜔) such that

P

(|||||𝛼−𝛽∫
T1

t

(
e−𝛼Γ𝛼 (s−) − e−𝛾s) 𝛼dΛ(b)

𝛼 (s∕𝛼)
||||| > 𝛿

)
≤ P

(
c1∫

T1

t
e−𝛾s∕2𝛼d |||Λ(b)

𝛼
||| (s∕𝛼) > 𝛿

)
≤ P

(
c1∫

∞

t
e−𝛾s∕2𝛼d |||Λ(b)

𝛼
||| (s∕𝛼) > 𝛿

)
≤ P

(
C(𝜔)e−𝛾t∕2 > 𝛿

)
, (24)

where the last line above follows from integra-

tion by parts and assumption W2. Consequently,

(24) together with (22) allows one to control

the behavior of (14). Finally, we study (15).

Integration by parts yields

𝛼−𝛽∫
∞

t
e−𝛾sd

[
𝛼Λ𝛼(s∕𝛼) − 𝜆s

]
= 𝛼−𝛽∫

∞

t
𝛾𝛼Λ𝛼(s∕𝛼) − 𝜆s]e−𝛾sds − e−𝛾t𝛼−𝛽

[
𝛼Λ𝛼(s∕𝛼) − 𝜆s

]
.

Hence, as an immediate consequence of

Lemma 2, we obtain that

lim
t↗∞

lim
𝛼↘0

P
(
𝛼−𝛽

||||∫ ∞

t
e−𝛾sd

[
𝛼Λ𝛼(s∕𝛼) − 𝜆s

]|||| > 𝛿0

)
= 0,

yielding (13). ▪

Proof of Lemma 2 Let t0 be a large but fixed

number, 𝛼 > 0 and pick 𝜃 > 1. Then

P
(

sup
t≥t0

e−𝛿t𝛼−𝛽 |Λ𝛼(t∕𝛼) − 𝜆t| > 𝛿0

)

≤
∞∑

k=0

P

(
sup

t∈t0𝜃k ,t0𝜃k+1)
e−𝛿t𝛼−𝛽 |𝛼Λ𝛼(t∕𝛼) − 𝜆t| > 𝛿0

)

≤
∞∑

k=0

P

(
sup

t∈t0𝜃k ,t0𝜃k+1)
𝛼−𝛽

|𝛼Λ𝛼(t∕𝛼) − 𝜆t|(
t0𝜃k+1

)𝛽 >
t0 exp

(
𝛿𝜃k) 𝛿0(

t0𝜃k+1
)𝛽

)

≤
∞∑

k=0

P

(
sup

t∈0,t0𝜃k+1)
𝛼−𝛽

|𝛼Λ𝛼(t∕𝛼) − 𝜆t|(
t0𝜃k+1

)1−𝛽 >
t𝛽
0

exp
(
𝛿𝜃k) 𝛿0

𝜃(k+1)𝛽

)
.

(25)

Put rk = t0𝜃k+1, and set urk = t and 𝛼∕rk = 𝛼.

Then,

sup
t∈0,rk]

𝛼−𝛽
|𝛼𝛬𝛼(t∕𝛼) − 𝜆t|

r1−𝛽
k

= sup
u∈0,1]

|𝛼𝛬𝛼 (urk∕𝛼) − 𝜆urk|
𝛼𝛽r1−𝛽

k

= sup
u∈0,1]

|𝛼𝛬𝛼 (urk∕𝛼) − 𝜆urk|
(𝛼∕rk)𝛽rk

= sup
u∈0,1]

|𝛼𝛬𝛼 (urk∕𝛼) − 𝜆urk|
𝛼𝛽

.

Therefore, by property W3, (25) implies that

there exists a constant b > 0 such that for all 𝛼

sufficiently small

P
(

sup
t≥t0

e−𝛿t𝛼−𝛽 |𝛼Λ𝛼(t∕𝛼) − 𝜆t| > 𝛿0

)

≤
∞∑

k=0

P

(
sup

t∈0,t0𝜃k+1)
𝛼−𝛽

|𝛼Λ𝛼(t∕𝛼) − 𝜆t|(
t0𝜃k+1

)1−𝛽 >
t𝛽
0

exp
(
𝛿𝜃k) 𝛿0

𝜃(k+1)𝛽

)

≤ b
∞∑

k=0

1

𝛽 log (t0) + 𝛿𝜃k − (k + 1)𝛽 log(𝜃) − log 𝛿0

.

Since 𝜃 > 1, the previous quantity is finite and

it goes to zero (because 𝛽 > 0) as t0 ↗ ∞.

The corresponding property for Γ𝛼 follows com-

pletely analogous steps and therefore is omitted.

This concludes the proof of the lemma. ▪

Now, let us discuss how the previous result can be applied

in practice. In many applications, the processes (Γ𝛼,Λ𝛼) can

be taken to be independent of 𝛼. In addition, one often has

𝛽 = 1∕2 and Z corresponds to Brownian motion, so that

𝛼1∕2

((
Λ(⋅∕𝛼)
Γ(⋅∕𝛼)

)
−

(
𝜆 ⋅ ∕𝛼
𝛾 ⋅ ∕𝛼

))
⇒ G

(
B1(⋅)
B2(⋅)

)
,
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where B = (B1,B2) is a two dimensional Brownian motion

and GGT = C is the corresponding covariance matrix.

Typically, one would have

C1,2 = lim
t→∞

E
(Λ(t) − 𝜆t)(Γ(t) − 𝛾t)

t
,

C1,1 = lim
t→∞

E (Λ(t) − 𝜆t)2

t
,

C2,2 = lim
t→∞

E
(Γ(t) − 𝛾t)2

t
.

Therefore, Theorem 4 guarantees that under mild assumptions

𝛼−1∕2(𝛼D(𝛼) − 𝜆∕𝛾) ⇒ Z(∞)
D
= 𝜎∕𝛾1∕2N(0, 1),

where

𝜎2 = 1

2

(
C11 − 2

𝜆

𝛾
C12 +

𝜆2

𝛾2
C22

)
.

The expression for 𝜎2 was obtained using integration by parts,

which allows us to obtain the representation

Z(∞) = ∫
∞

0

e−𝛾sd (G1⋅B(s)) −
𝜆

𝛾 ∫
∞

0

e−𝛾sd (G2⋅B(s)) ,

where G1⋅ =
(
G11,G1,2

)
and G2⋅ = (G21,G22). This represen-

tation, combined with Ito’s isometry, yields 𝜎2. In practical

situations, one is typically dealing with a single problem

instance, so that the parameter 𝛼 > 0 does not appear naturally

in the problem structure. Theorem 4 then provides rigorous

support for the formal approximation

D = ∫
∞

0

exp (−Γ (t−)) dΛ(t)
D
≈ 𝜆

𝛾
+ 𝜎∕𝛾1∕2N(0, 1), (26)

which is free of 𝛼. Under appropriate uniform integrability

in Theorem 4, ED(𝛼) = 𝜆∕𝛾𝛼 + o
(
𝛼−1∕2

)
and Var(D(𝛼)) =

𝜎2∕𝛾𝛼+o(1) as 𝛼 ↘ 0. We can therefore interpret Theorem 4

as also offering rigorous support for (9) in the presence of

small interest rates. Because (9) uses the exact moments, we

expect a better approximation to the distribution of D than as

in the case of (26). On the other hand, (26) does not require

solving any equations, whereas (9) requires computing 𝜙1

and 𝜙2..

4 EDGEWORTH EXPANSIONS

In this section, we provide refined versions for some of the

approximations given in the previous sections. The refined

approximation takes the form of an Edgeworth expansion for

the distribution of D. We shall derive these approximations in

the iid setting for the discrete time case and under Markovian

assumptions for the continuous time case. More precisely, in

the discrete time case, motivated by the applications to ARCH

processes described in Section 2, we consider

D =
∞∑

k=0

exp

(
−

k−1∑
j=0

Zj

)
Xk,

where (Xk,Zk)k≥1 is a sequence of iid random vectors satisfy-

ing certain assumptions to be described later (see assumptions

ED1 to ED4 below); while in the continuous time context, we

work with

D = ∫
∞

0

exp

(
−∫

t

0

𝛾(Y(s))ds
)

dΛ(t),

where Y = (Y(s) ∶ s ≥ 0) is a time-homogeneous Markov

process and Λ is a stationary independent increment pro-

cess. This pair of assumptions is motivated by our interest

in risk theory applications. The stationary independent incre-

ment assumption of the risk processΛ has been argued to hold

by many authors in the risk theory community and includes

the so-called classical risk model; see Asmussen (2001) and

Grandell (1991)). Gjessing and Paulsen (1997) assume that

Γ and Λ are two independent Levy processes. Our develop-

ment here replaces the Levy assumption on Γ with the more

common finance assumption that the short-rate process can

be modeled as an ergodic diffusion with mean reversion.

Before presenting our mathematical development, let us

discuss the general strategy that we will follow. The basic

idea (say, assuming just momentarily that the Xk’s are pos-

itive or that Λ is increasing so that ED > 0) is to develop

an expansion for the complex cumulant generating function

log E exp
(
i𝜃(ED)−1∕2(D − ED)

)
. This approach is common

in the development of Gram-Charlier and Edgeworth expan-

sions. The development of the approximation proceeds by

Fourier inversion. In particular, we obtain

E exp
(
i𝜃(ED)−1∕2(D − ED)

)
≈ exp

(
−𝜃

2Var(D)
2ED

)⎛⎜⎜⎝1 −
i𝜃3𝜅

(3)
D

3!

⎞⎟⎟⎠ , (27)

where 𝜅
(3)
D

corresponds to the third cumulant of the centered

and scaled random variable (D − ED)∕(ED)1∕2. A sensible

approximation then becomes

P
(
(ED)−1∕2(D − ED) ≤ x

)
≈ P(N(0,Var(D)∕ED) ≤ x)

− (ED)3∕2
𝜅
(3)
D

H
(
x(ED∕Var(D))1∕2

)
3!Var(D)3∕2

, (28)

where H(y) =
(
y2 − 1

)
𝜂(y) and 𝜂(y) = exp

(
−y2∕2

)
∕

(2𝜋)1∕2.

The formal approximation (28) will be rigorously justified,

as in the previous section, in the context of small discount

rates. We shall study, for 𝛼 > 0 small

D(𝛼) =
∞∑

k=0

exp

(
−𝛼

k−1∑
j=0

Zj

)
Xk.

The strategy is to analyze 𝜓𝛼(𝜃) ≜ log E exp(
i𝜃𝛼1∕2(D(𝛼) − 𝜆∕(𝛼𝛾))

)
. Note that in this setting we typ-

ically have (under the appropriate uniform integrability

assumptions) 𝛼ED(𝛼) ≈ 𝜆∕𝛾 and therefore𝜓𝛼(𝜃) corresponds

asymptotically to the cumulant generating function displayed

of (D − ED)∕(ED)1∕2. One can write
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exp (𝜓𝛼(𝜃))
= exp

(
v1(𝛼)i𝜃𝛼1∕2 − v2(𝛼)𝜃2𝛼∕2 − i𝜃3𝛼3∕2v3(𝛼)∕3! + · · ·

)
,

where vk(𝛼) is the kth cumulant of D(𝛼)−𝜆(𝛼𝛾)−1. It is natural

to expect that v1(𝛼) = c1 + o(1), v2(𝛼) = 𝜎2𝛼−1 + c2 + o(1),
v3(𝛼) = c3𝛼

−1 + O(1), which would yield (up to quantities of

order o
(
𝛼1∕2

)
)

exp (𝜓𝛼(𝜃)) ≈ exp
(
−𝜎2𝜃2∕2

) (
1 +

(
c1i𝜃 + c3(i𝜃)3

)
𝛼1∕2

)
.

(29)

This expression is in correspondence (neglecting terms of

order o
(
𝛼1∕2

)
) with (27). A formal Edgeworth expansion is

then obtained by applying inverse Fourier transforms to both

sides of the previous approximation (as previously indicated

for (28)). The following subsections provide rigorous support

to the Edgeworth expansion obtained after sending 𝛼 ↘ 0; we

also provide explicit expressions for the ck’s. We shall carry

over this program both in the discrete-time iid case and the

continuous-time setting under Markovian assumptions.

4.1 The discrete-time setting

In this section, we shall consider the following set of assump-

tions.

ED1 Assume that Z1 ≥ 0, E (Z1) = 𝛾 < ∞, E
(
Z2

1

)
=

𝜇
(2)
Z < ∞, and E

(|Z1|3) < ∞. Let 𝜎2
Z be the variance of Z1

and 𝜅
(3)
Z its third order cumulant, which can be written as

𝜅
(3)
Z = 𝜇

(3)
Z − 3𝜇

(2)
Z 𝛾 + 2𝛾3.

ED2 Suppose that X1 has non-lattice distribution with

E (X1) = 𝜆, Var
(
X2

1

)
= 𝜎2

X , and E
(|X1|3) < ∞. Let E

(
X3

1

)
=

𝜇X
3

and write 𝜅
(3)
X to denote the third order cumulant of X1.

ED3 Suppose that E
(|X1|j|Z1|k) < ∞ for 0 < j+k ≤ 3 and

for j, k ≥ 1 denote 𝜇jk = E
(

Xj
1
Zk

1

)
. Moreover, let us define,

𝛿 (𝜃,Z1) =
||||E (

ei𝜃X1
||| Z1

)||||
and assume that

lim
h→0

sup
𝜀≤|𝜃|≤1∕𝜀

P (𝛿 (𝜃,Z1) > 1 − h)
h

< ∞, (30)

for 𝜀 > 0.

Condition (30) may be seen as a form of strong non-latticity

of X1 given Z1. Notice that in the important special case

in which the Xk’s are independent of the Zk’s, assumption

ED3 is an immediate consequence of ED2. Indeed, if X1 is

non-lattice, we have that 𝛿 (𝜃,Z1) = 𝛿(𝜃) < 1. Therefore, for

all h > 0 sufficiently small, 𝛿(𝜃) < 1 − h. This implies that

the limit in (30) is zero.

As a remark, we also note that, alternatively, the

non-negativity of Z1 required in assumption ED1 can be

replaced by the existence of exponential moments and EZ1 >

0. We record this observation as our alternative assumption

ED1’.

ED1′ Assume that EZ1 > 0 and E exp (𝜌Z1) < ∞ for 𝜌 in a

vicinity of the origin.

Under these assumptions, the constants 𝜎2, c1, and c2

appearing in (29) take the form

𝜎2 = 1

2

(
𝜎2

X − 2
𝜆

𝛾
𝜎XZ +

𝜆2

𝛾2
𝜎2

Z

)
,

c1 =
𝜇
(2)
Z 𝜆

2𝛾2
,

c3 = 𝜅
(3)
X − 2𝜅21

𝜆

𝛾
+ 3𝜅12

𝜆2

𝛾2
− 3

𝜅11

𝛾

(
𝜎2

X − 2
𝜆

𝛾
𝜎XZ +

𝜆2

𝛾2
𝜎2

Z

)
+ 3𝜎2

Z
𝜆

𝛾2

(
𝜎2

X − 2
𝜆

𝛾
𝜎XZ +

𝜆2

𝛾2
𝜎2

Z

)
−
𝜅
(3)
Z 𝜆3

𝛾3
,

with

𝜅12 = 𝜇12 + 𝜇11 − 𝜇(2)
Z − 3𝛾𝜇11 + 2𝛾2𝜆,

𝜅21 = 𝜇21 + 𝜇11 − 𝜇(2)
X − 3𝜆𝜇11 + 2𝜆2𝛾,

𝜅11 = 𝜇11 − 𝜆𝛾 = 𝜎XZ ≜ cov(X,Z).

In view of (28), this analysis yields the approximation,

P(D ≤ y) ≈ P
(
N
(
𝜆∕𝛾, 𝜎2∕𝛾

) ≤ y
)
−
√
𝛾𝛽1𝜂

(
(y − 𝜆∕𝛾)

√
𝛾

𝜎

)

−
√
𝛾

18
𝛽2H

(
(y − 𝜆∕𝛾)

√
𝛾

𝜎

)
, (31)

where 𝛽1 = c1∕𝜎 and 𝛽2 = c3∕𝜎3, and 𝜂(y) and H(y)
were defined after display (28). In approximation (31), the

exact moments appearing in (26) have been replaced by their

asymptotic limits (as 𝛼 → 0). This Edgeworth approximation

can be viewed as a refinement of the normal approxima-

tion (26).

To rigorously state our Edgeworth approximation, we intro-

duce (as we done before) a small scaling parameter 𝛼 > 0 and

define

D(𝛼) =
∞∑

k=0

exp

(
−𝛼

k−1∑
j=0

Zj

)
Xk.

Theorem 5 If the set of assumptions ED1 to
ED3 are in force (or if ED1′, ED2, and ED3

hold), then

P
(√

𝛼

(
D(𝛼) − 𝜆

𝛾𝛼

)
≤ y

)
= P

(
N
(

0,
𝜎2

𝛾

)
≤ y

)
−
√
𝛼𝛽1𝜂(y)

−
√
𝛼

18

𝛽2

𝛾
H(y) + G𝛼(y); (32)

where G𝛼 = o(
√
𝛼) uniformly over y in compact

intervals as 𝛼 ↘ 0.

Before presenting the proof of Theorem 1, we present a

simple example to illustrate the accuracy of the proposed

approximations.
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FIGURE 1 Diagram illustrating the fit of the Edgeworth approximation

Example Suppose that X1 ∼ 𝜆Exp(1) and

Z1 ∼ 𝛾Exp(1). Under these assumptions it

follows (see, Vervaat (1979), example 3.8.2, and

Gjessing and Paulsen (1997)) that

D =
∞∑

k=0

exp

(
−

k−1∑
j=0

Zj

)
Xk ∼ 𝜆Γ(1∕𝛾 + 1, 1),

where Γ(1∕𝛾 + 1, 1) represents a random vari-

able with distribution gamma with the param-

eters given. In order to illustrate the numerical

fit of our approximation, we consider the case

in which 𝜆 = 1 and 𝛾 = 0.1 and 𝛾 = 0.5

respectively. Figure 1 compares the CLT and

Edgeworth approximations developed against

the true distribution of D (the x-axis is dis-

played centered and standardized so that the line

labeled as “CLT” corresponds to the cumulative

distribution function of a standard Gaussian).

We now provide the rigorous statement supporting approxi-

mation (31). Our first result provides an asymptotic expansion

for 𝜓𝛼(𝜃) = log E exp
(
i𝜃𝛼−1∕2(𝛼D(𝛼) − 𝜆∕𝛾)

)
in powers of√

𝛼.

Lemma 3 Assume ED1 to ED3 (or ED1′,

ED2, and ED3). Then, there exists 𝛿 > 0 for
which

𝜓𝛼(𝜃) =

(
𝜇
(2)
Z 𝜆

2𝛾2
+ O(𝛼)

)
i𝜃𝛼1∕2

+
(

1

2𝛾𝛼

(
𝜎2

X − 2
𝜆

𝛾
𝜎XZ +

𝜆2

𝛾2
𝜎2

Z

)
+ O(1)

)
(i𝜃)2

2
𝛼

+
(c3

𝛼
+ O(1)

) (i𝜃)3

6
𝛼3∕2 + o

(
𝛼1∕2

)
,

uniformly in 𝜃 ∈ (−𝛿, 𝛿) (𝛿 > 0), where

3𝛾c3 =𝜅(3)X − 2𝜅21
𝜆

𝛾
+ 3𝜅12

𝜆2

𝛾2
+ 3

(
𝜎2

Z
𝜆

𝛾2
− 𝜎XZ

𝛾

)
×
(
𝜎2

X − 2
𝜆

𝛾
𝜎XZ +

𝜆2

𝛾2
𝜎2

Z

)
−
𝜅
(3)
Z 𝜆3

𝛾3
.

Proof The idea is to write

𝜙𝛼(𝜃) = exp(i𝜃𝜆∕𝛾
√
𝛼)𝜙(𝜃

√
𝛼, 𝛼),

where 𝜙𝛼(𝜃) ≜ exp (𝜓𝛼(𝜃)) and 𝜙(𝜃, 𝛼) ≜
E exp(i𝜃D(𝛼)). Notice that 𝜙(𝜃, 𝛼) satisfies

𝜙(𝜃, 𝛼) = E (exp (i𝜃 (X1 + exp (−𝛼Z1)D1(𝛼)))) ,

with D1(𝛼) independent of (X1,Z1). Thus, we

have,

𝜙(𝜃, 𝛼) = E (exp (i𝜃 (X1 + exp (−𝛼Z1)D1(𝛼))))
= E (E (exp (i𝜃 (X1 + exp (−𝛼Z1)D1(𝛼)))|X1,Z1))
= E (E (exp (i𝜃X1)𝜙 (𝜃 exp (−𝛼Z1) 𝛼)|X1,Z1))
= E (exp (i𝜃X1)𝜙 (𝜃 exp (−𝛼Z1) , 𝛼)) .

Using the Taylor development for characteris-

tic functions (see Feller (1971) sec. XV.5 and

Breiman (1992), prop. 8.44) applied to 𝜙(𝜃, 𝛼)
and 𝜙𝛼(𝜃), together with the moment conditions

implied by assumptions ED1 (or ED1′) to ED3,

we arrive at the expression stated for 𝜓𝛼(𝜃). ▪

Lemma 4 Under assumptions ED1 to ED3

(or assumptions ED1′, ED2, and ED3), 𝜙(𝜃, 𝛼)
≜ E exp(i𝜃D(𝛼)) satisfies|𝜙(𝜃, 𝛼)| = o

(
𝛼1∕2

)
as 𝛼 → 0 uniformly in 𝜃 over compact sets not
containing the origin.

Proof Let 𝜙X (𝜃,Z1) = E
(

ei𝜃X1 || Z1

)
, set

Sk = Z1 + … + Zk, and define T𝛼 =
inf {k ∶ Sk > 1∕𝛼}. Then,

|𝜙(𝜃, 𝛼)| = ||||||E
(

E

(
exp

(
i𝜃

∞∑
k=1

Xk exp (−𝛼Sk−1)

)|Z))||||||
= |||E (

𝛱∞
k=1
𝜙X

(
𝜃e−𝛼Sk−1 ,Zk

)) |||
≤ E

(
𝛱∞

k=1

|||𝜙X
(
𝜃e−𝛼Sk−1 Zk

) |||)
≤ E

(
𝛱

T𝛼−1

k=1

|||𝜙X
(
𝜃e−𝛼Sk−1 Zk

) |||)
≤ E

(
𝛱

T𝛼−1

k=1

|||𝛥 (𝜃Zk)
|||) ,

where Δ (𝜃,Z1) = sup {|𝜙X (𝜃∗,Z1)| ∶ |𝜃∗|
> ||𝜃e−1||}. Since the distribution of X1, given

Z1, is non-lattice, we must have that 0 ≤
Δ (𝜃,Z1) < 1. So,

|𝜙(𝜃, 𝛼)| ≤ E
(
ΠT𝛼−1

k=1
|Δ (𝜃,Zk)|)

≤ P
(
𝛼
||||T𝛼 − 1

𝛼𝛾

|||| > 𝜀
)

+ E
(
ΠT𝛼−1

k=1
|Δ (𝜃Zk)| ; 𝛼 |T𝛼 − 1∕𝛼𝛾| ≤ 𝜀

)
≤ P

(
𝛼
||||T𝛼 − 1

𝛼𝛾

|||| > 𝜀
)

+ E
(|Δ (𝜃,Z1)|1∕𝛼(1∕𝛾−𝜀)−1

)
.
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Since condition ED1 (ED1’) implies that 0 <

EZ1 < ∞ and Var (Z1) < ∞, we have that(
𝛼1∕2 |||T𝛼 − 1

𝛼𝛾

|||)2

is uniformly integrable (see

Gut (1988), p. 92.) In particular, this implies,

using Chebyshev’s inequality, that

P
(
𝛼
||||T𝛼 − 1

𝛼𝛾

|||| > 𝜀
)

= O(𝛼).

Finally, if we choose 𝜀 > 0 small enough so that

c ≜ 1∕𝛾 − 𝜀 > 0, we must show (for 𝜃 not in a

neighborhood of the origin) that

E
(|Δ (𝜃,Z1)|c∕𝛼) = o(

√
𝛼).

Let W𝛿′ = − log
(
max

(|Δ (𝜃Z1)| , 𝛿′)) for a

given 𝛿′ > 0 and select 𝛽 = c∕𝛼. Then,

E
(|Δ (𝜃,Z1)|𝛽) ≤ E (exp (−𝛽W𝛿′ ))

= ∫
∞

0

exp(−u)P (u∕𝛽 > W𝛿′ ) du.

Thus,

𝛽E
(|Δ (𝜃,Z1)|𝛽) ≤ ∫

∞

0

exp(−u)𝛽P (u∕𝛽 > W𝛿′ ) du.

Fix 𝜀 > 0 and write

𝛽E
(|Δ (𝜃,Z1)|𝛽)
≤ ∫

𝜀

0

exp(−u)𝛽P (u∕𝛽 > W𝛿′ ) du

+ ∫
∞

𝜀

u exp(−u)𝛽∕uP (u∕𝛽 > W𝛿′ ) du

≤ 𝛽P (𝜀∕𝛽 > W𝛿′ ) + ∫
∞

𝜀

u exp(−u)𝛽∕uP (u∕𝛽 > W𝛿′ ) du.

(33)

We want to apply Fatou’s lemma in the form

lim
𝛽→∞∫

∞

𝜀

u exp(−u)𝛽∕uP (u∕𝛽 > W𝛿′ ) du

≤ ∫
∞

𝜀

lim
𝛽→∞

u exp(−u)𝛽∕uP (u∕𝛽 > W𝛿′ ) du.

In order to justify this application of Fatou, we

must show that

0 ≤ 𝛽∕uP (u∕𝛽 > W𝛿′ ) ≤ M

for some M > 0 for u ∈ 𝜀,∞], and 𝛽 large. By

right continuity and the existence of left limits,

it suffices to show that

lim
𝛽→∞

P (h > W𝛿′ )
h

< ∞.

But

lim
h→0

P (h > W𝛿′ )
h

= lim
h→0

P (h > − log (max (|Δ (𝜃Z1)| , 𝛿′)))
h

= lim
h→0

P (exp(−h) < |Δ (𝜃, Z1)|)
h

= lim
h→0

P (|Δ (𝜃,Z1)| > 1 − h)
h

<∞,

by virtue of assumption ED3. This is what we

require in order to apply Fatou’s lemma. Conse-

quently, we have

lim
𝛽→∞

𝛽E
(|Δ (𝜃,Z1)|𝛽) <∞,

which implies

lim
𝛽→∞

√
𝛽E

(|Δ (𝜃,Z1)|𝛽) = 0,

and this is what we needed to conclude the proof

of the lemma. ▪

We now are ready to prove Theorem 5.

Proof of Theorem 5 The proof of this

theorem follows closely the steps of Feller

(1971), p. 512. To simplify the exposition, let

us consider E (X1) = 0 and E
(
X2

1

)
= 2𝛾

and the Xk’s independent of the Zk’s. This sim-

plification is helpful in the development of

a local expansion. As we shall see from the

proof, the adaptation of the present proof to

the case in which Xk and Zk are dependent is

straightforward using the corresponding local

expansion given in Lemma 3. Once this local

expansion is applied, the key part of the proof

involves invoking Lemma 4, we will provide

explicit guidance for the part of the proof in

which the simplifying assumptions are used.

Let Ĝ(𝜃) = e−𝜃2∕2
(

1 + (i𝜃)3𝜅(3)X

√
𝛼∕(18𝛾)

)
.

Esséen’s lemma applies here since

G(x) = Φ(x) −
𝜅
(3)
X

18𝛾

√
a
(
x2 − 1

)
𝜂(x)

is bounded uniformly by some constant C. Also

Ĝ(0) = 0 and
dĜ(𝜃)

d𝜃

|||||𝜃=0

= 1.

Therefore, defining F𝛼(x) = P
(
𝛼−1∕2(𝛼D(𝛼)

−𝜆∕𝛾) ≤ x
)
, we have

|F𝛼(x) − G(x)| ≤ 1

𝜋∫
T

−T

1|𝜃| |𝜙(√𝛼𝜃, 𝛼) − Ĝ(𝜃)|d𝜃 + 24C
𝜋T

.

Let T = M∕
√
𝛼, for some M > 0 big. Then, for

any 𝛿 > 0 small, we have

|F𝛼(x) − G(x)| ≤ I1 + I2 + I3 +
√
𝛼

24C
𝜋M

,

where

I1 = 1

𝜋∫
𝛿∕

√
𝛼

−𝛿∕
√
𝛼

1|𝜃| |||𝜙(√𝛼𝜃, 𝛼) − Ĝ(𝜃)|||d𝜃,
I2 = 1

𝜋∫
M∕

√
𝛼

𝛿∕
√
𝛼

1|𝜃| |||𝜙(√𝛼𝜃, 𝛼) − Ĝ(𝜃)|||d𝜃,
I3 = 1

𝜋∫
−𝛿∕

√
𝛼

−M∕
√
𝛼

1|𝜃| |||𝜙(√𝛼𝜃, 𝛼) − Ĝ(𝜃)|||d𝜃.
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Observe that

I2 ≤ 1

𝜋∫
M∕

√
𝛼

𝛿∕
√
𝛼

1|𝜃| |||𝜙(√𝛼𝜃, 𝛼)|||d𝜃 + 1

𝜋∫
M∕

√
𝛼

𝛿∕
√
𝛼

1|𝜃| |||Ĝ(𝜃)|||d𝜃
= 1

𝜋∫
M

𝛿

1|𝜃| |||𝜙(𝜃, 𝛼)|||d𝜃 + 1

𝜋∫
M∕

√
𝛼

𝛿∕
√
𝛼

1|𝜃| |||Ĝ(𝜃)|||d𝜃.
By virtue of Lemma 4, it is clear that I2 goes to

zero faster than
√
𝛼, similarly for I3; the argu-

ment here would be identical even if we deal

with dependent Xk and Zk. Thus, we just have

to study I1, and this is the part which is eas-

ier to explain (notationally) under our simplified

assumptions. Let

𝜁(𝜃, 𝛼) ≜ log(𝜙(𝜃, 𝛼)) + 𝜃2𝛾

(1 − m(−2𝛼))
,

where m(−𝜐) = E
(
e−𝜐Z1

)
. Hence, we can write

I1 = 1

𝜋∫
𝛿∕

√
𝛼

−𝛿∕
√
𝛼

1|𝜃| |||𝜙(√𝛼𝜃, 𝛼) − Ĝ(𝜃)|||d𝜃
= 1

𝜋∫
𝛿∕

√
𝛼

−𝛿∕
√
𝛼

1|𝜃| ||| exp

(
𝜁(
√
𝛼𝜃, 𝛼) − 𝜃2𝛾

(1 − m(−2𝛼))

)
− Ĝ(𝜃)|||d𝜃

= 1

𝜋∫
𝛿∕

√
𝛼

−𝛿∕
√
𝛼

1|𝜃|e−𝜃2∕2
|||||e

(
𝜁(
√
𝛼𝜃,𝛼)− 𝜃2

2

(
𝛼𝛾

(1−m(−2𝛼)) −1
))

− 1 −
(i𝜃)3𝜅(3)X

√
𝛼

18𝛾

|||||d𝜃.
Using Feller (1971), p. 507, we have that for any

𝛽1 and 𝛽2 complex numbers,|||e𝛽1 − 1 − 𝛽2
||| ≤ (|||𝛽1 − 𝛽2

||| + 1

2
𝛽2

2

)
exp(𝜐), (34)

where 𝜐 ≥ max
(|||𝛽1

||| , |||𝛽2
|||). Given 𝜀 > 0, we

can choose 𝛿 > 0 small enough so that when|𝜃√𝛼| < 𝛿 (as in Feller (1971), p. 507), the

following three properties hold. First,||||||𝜁(𝜃
√
𝛼, 𝛼) −

𝛼3∕2(i𝜃)3𝜅(3)X

3!(1 − m(−3𝛼))

|||||| ≤ 𝜀
𝜃3𝛼3∕2|(1 − m(−3𝛼))|

≤ 𝜀K1𝜃
3𝛼1∕2

for 𝛼 small enough and some constant K1 inde-

pendent of 𝛼 and 𝜀 (because
𝛼3∕2𝜅

(3)
X

(1−m(−3𝛼))
is the

cumulant of order 3 for the random variable√
𝛼D(𝛼), which is well defined for 𝛼 > 0

small enough). Second, 𝛿 can also be chosen

satisfying that if |𝜃√𝛼| < 𝛿
|𝜁(𝜃√𝛼, 𝛼)| < 1

2

𝛾𝛼𝜃2

(1 − m(−2𝛼))
≤ K2

3
𝜃2

for some K2 > 0 for 𝛼 small enough. And, third,

𝛿 can be chosen also with the property that

||||||
𝛼3∕2(i𝜃)3𝜅(3)X

3!(1 − m(−3𝛼))

|||||| <
K2

3
𝜃2.

Notice that|||||e
(
𝜁(
√
𝛼𝜃,𝛼)− 𝜃2

2

(
𝛼𝛾

(1−m(−2𝛼)) −1
))

− 1 −
(i𝜃)3𝜅(3)X

18𝛾

|||||
≤ |||||e

(
𝜁(
√
𝛼𝜃,𝛼)− 𝜃2

2

(
𝛼𝛾

(1−m(−2𝛼)) −1
))

− 1 −
𝛼3∕2(i𝜃)3𝜅(3)X

3!(1 − m(−3𝛼))

|||||
+
||||| 𝛼3∕2(i𝜃)3𝜅(3)X

3!(1 − m(−3𝛼))
−

(i𝜃)3𝜅(3)X

18𝛾

√
𝛼
|||||,

and observe that||||||
𝛼3∕2(i𝜃)3𝜅(3)X

3!(1 − m(−3𝛼))
−

(i𝜃)3𝜅(3)X

18𝛾

√
𝛼

|||||| ≤
√
𝛼|𝜃|3o(1),

as 𝛼 → 0 (uniformly for |𝜃| ≤ 𝛿 with 𝛿 > 0

sufficiently small). Finally, we apply inequality

(34) with 𝛽1 = 𝜁(
√
𝛼𝜃, 𝛼) − 𝜃2

2

(
𝛼𝛾

(1−m(−2𝛼))
− 1

)
and 𝛽2 = 𝛼3∕2(i𝜃)3𝜅(3)X

3!(1−m(−3𝛼))
for 𝛿 > 0 small enough so

that

I1 ≤ 𝜀

𝜋
K1

√
𝛼∫

∞

−∞
𝜃2e−𝜃2∕6d𝜃 + 𝛼

𝜋
K2

1∫
∞

−∞
e−𝜃2∕6𝜃6d𝜃

+
√
𝛼

𝜋
o(1)∫

∞

−∞
|𝜃|3e−𝜃2∕6d𝜃.

Hence we conclude that

lim sup
𝛼→0

1√
𝛼

sup
x

|F𝛼(x) − G(x)| ≤ 𝜀K,

for some constant K. Since 𝜀 was arbitrary, this

concludes the proof of the theorem. ▪

4.2 The continuous-time setting

As noted earlier, we assume that Λ = (Λ(t) ∶ t ≥ 0) is

a Levy process and suppose that Y = (Y(s) ∶ s ≥ 0)
is a time-homogeneous Ito diffusion process living in an

open subset  of R
d (see, for instance, Stroock and Varad-

han (2006) chapters 4 and 8). Moreover, we shall assume

that Y(⋅) possesses a smooth transition semigroup. That is, we

assume that for each y ∈  , Py(Y(s) ∈ ⋅) has a continuously

differentiable density for each s > 0. This can be guaranteed

by means of hypoellipticity; see for instance Nualart (2006)

p. 129. The extended generator of the process Y , which is

denoted in this section as AY , is defined as in Section 2. We

also set 𝜓Λ(i𝜃) = log E exp(i𝜃Λ(1)).
We further assume appropriate ergodicity and smoothness

assumptions. In particular, we assume:

EC1 Λ and Y are independent and the distribution of Λ(1)
is non-lattice and E|Λ(1)|p < ∞ for some p > 3.

EC2 There exists x0 ∈  such that for any x ∈  and any

open set B whose closure contains x0 we have

lim
t→∞

Px(Y(t) ∈ B) > 0. (35)
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EC3 There exists a continuous, unbounded function w ∶
R

d → [1,∞) (in the sense that supx w(x) = ∞), a continuous

v ∶ R
d → [0,∞)with exp(v) ∈ D (AY ), and constants 𝛿, b > 0

such that for some ball C (with appropriate center and radius)

we have

exp(−v)AY exp(v) ≤ −𝛿w + bIC.

EC4 �̃�(⋅) ∶ R
d → (0,∞) is a positive continuous mapping

and that

�̃�(x)I(w(x) > r)∕w(x) → 0

as r ↗ ∞.

Finally, define

Γ(t) = ∫
t

0

�̃�(Y(s))ds.

Assumption EC2 ensures irreducibility and aperiodicity of Y
(see proposition 2.2 from Kontoyiannis and Meyn (2017)).

Moreover, under assumptions EC2 to EC4, we can guaran-

tee (see Kontoyiannis and Meyn (2005) theorem 2.1) that

Ey�̃�(Y(t)) = 𝛾 + O (e−rt) as t → ∞, for some r > 0.

We shall see later that under EC3, there exists a solution

pair (u, 𝜓Γ) to the generalized eigenvalue problem

(AYu) (y, z) =
(
𝜓Γ(z) − z�̃�(y)

)
u(y, z), (36)

for all z in a neighborhood of the origin in the complex plane.

The function u(⋅) is unique up to constant multiples (we select

u(⋅) so that u(y, 0) = 1). Further, under assumption EC3,

additional regularity properties hold for the pair (u, 𝜓Γ). In

particular, we have that 𝜓 ′
Γ(0) = 𝛾 > 0 and therefore we

can define 𝜒(⋅) in a neighborhood of the origin via 𝜒(z) =
−𝜓−1

Γ (−𝜓Λ(z)), which implies 𝜒 ′(0) = 𝜆∕𝛾 , with 𝜆 = EΛ(1).
Our goal in this section is to provide rigorous support for

the approximation

Py0
(D ≤ y) ≈ P

(
N
(
𝜆∕𝛾, 𝜒 (2)(0)∕2

) ≤ y
)

−
√
𝛾
𝜆

𝛾
uz (y0, 0) 𝜂

(
(y − 𝜆∕𝛾)

√
2∕𝜒 (2)(0)

)
−

√
𝛾

18
𝜒 (3)(0)H

(
(y − 𝜆∕𝛾)

√
2∕𝜒 (2)(0)

)
,

(37)

when the force of interest 𝛾 is small, where uz (y0, 0) repre-

sents 𝜕u (y0, 0) ∕𝜕z.

Just as in the discrete time case, we shall make rigorous

the approximation (37) in the context of small interest rates

for a suitably parameterized family of discounted rewards. In

particular, we shall prove the approximation

P(
√
𝛼(D(𝛼) − 𝜆∕(𝛾𝛼)) ≤ y)

= P
(
N
(
0, 𝜒 (2)(0)∕2

) ≤ y
)

−
√
𝛾𝛼
𝜆

𝛾
uz (y0, 0) 𝜂

(
y
√

2∕𝜒 (2)(0)
)

−
√
𝛾𝛼

18
𝜒 (3)(0)H

(
y
√

2∕𝜒 (2)(0)
)
+ o

(
𝛼1∕2

)

as 𝛼 ↘ 0, where

D(𝛼) = ∫
∞

0

exp(−𝛼Γ(t))dΛ(t).

In order to provide the proof of our result, we first collect

some regularity properties of Y and the pair (u, 𝜓Γ).

Proposition 1 Assume EC2 to EC4, then
exists 𝜂 > 0 such that:

i) For each y, both 𝜓Γ(⋅) and u(y, ⋅) are ana-
lytic in the complex neighborhood N𝜂 =
{z ∈ C ∶ |z| < 𝜂}.

ii) For each 0 ≤ 𝜃 < 𝜂, we have that 𝜓Γ(𝜃) >
0 and u(⋅, 𝜃) can be taken to be strictly
positive.

iii) We have |u(y, z)| ≤ exp(a𝜂(v(y) + 1)) and|uz(y, z)∕u(y, z)| ≤ a𝜂(v(y) + 1) and a > 0.

In addition:

iv) For each 𝛽 ∈ (0, 1) we have

exp(−𝛽v)AY exp(𝛽v) ≤ −𝛿𝛽w + b𝛽IC

v) For each y0 there exists 𝛿 > 0 such that.

sup
t>0

Ey0
exp(𝛿v(Y(t))) < ∞.

Proof These properties follow from Kon-

toyiannis and Meyn (2005). They provide

explicit translation of their results from the

discrete to the continuous case in some cases

but they mostly state their results in discrete

time. Nevertheless, since we are assuming that

Y(⋅) is an Ito diffusion with a smooth transi-

tion semigroup, the adaptation of their analy-

sis to our setting is easy (although somewhat

lengthy). Alternatively, one might invoke the

results from Kontoyiannis and Meyn (2017)

which approximate spectral quantities of diffu-

sions by Hidden-Markov modes. The approach

that we follow here is to take advantage of the

properties from Kontoyiannis and Meyn (2005).

So, parts i) and ii) follow from theorem 3.1

in Kontoyiannis and Meyn (2005); part iii) is

a consequence of proposition 4.4 and equation

(2.2). Part iv) follows from part iii) and the anal-

ysis of theorem 3.4 and proposition 4.5. Finally,

part v) follows as in part ii) of theorem 3.4. ▪

Proposition 2 If assumption EC3 holds then
there exists 𝜀 > 0 such that for all 𝛽 ∈ (0, 1),

Ey0
exp

(
∫

∞

0

𝛽(𝛿w(Y(s)) + 𝛼v(Y(s))�̃�(Y(s))) exp(−𝛼Γ(s))ds
)

≤ exp (b𝛽∕(𝛼𝜀) + v (y0) 𝛽)

Proof Consider the Markov process (Y ,Γ) =
((Y(t),Γ(t)) ∶ t ≥ 0). The coordinate Γ evolves
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according to the differential equation Γ′(t) =
�̃�(Y(t)) subject to Γ(0) = 𝔤. Using Lemma 1 we

have that (Y ,Γ) has generator

(Ãf )(y, 𝔤) = (Af)(y, 𝔤) + 𝔤𝜕𝔤f (y, 𝔤).

Since C is compact and �̃� is continuous and

positive we have that infy∈C �̃�(y) ≥ 𝜀 > 0. Con-

sequently, if we consider the function H(y, 𝔤) =
exp(𝛽v(y) exp(−𝛼𝔤)) for 𝛽 ∈ (0, 1) we obtain

H−1ÃH ≤ −𝛿𝛽 exp(−𝛼𝔤)w(y) − 𝛼𝛽v(y)�̃�(y) exp(−𝛼𝔤)
+ b𝛽 exp(−𝛼𝔤)IC

≤ −𝛿𝛽 exp(−𝛼𝔤)w(y) − 𝛼𝛽v(y)�̃�(y) exp(−𝛼𝔤)
+ b𝛽�̃�(y) exp(−𝛼𝔤)∕𝜀

Therefore, combining Lemma 1 with Fatou’s

lemma, we obtain

exp (v (y0) 𝛽 exp(−𝛼𝔤))

≥ E(y0,𝔤) exp

(
∫

∞

0

𝛽(𝛿w(Y(s))

+ 𝛼v(Y(s))�̃�(Y(s))) exp(−𝛼Γ(s))ds
)

exp(−b𝛽 exp(−𝛼𝔤)∕(𝛼𝜀)).

The proposition then follows. ▪

We now state the main result of this section.

Theorem 6 Suppose that EC1 to EC4 hold.
Then,

P
(√

𝛼
(
D(𝛼) − 𝜒 ′(0)∕𝛼

) ≤ y
)

= P
(
N
(
0, 𝜒 (2)(0)∕2

) ≤ y
)

−
√
𝛾𝛼uz (y0, 0) 𝜂

(
y
√

2∕𝜒 (2)(0)
)

−
√
𝛾𝛼

18
𝜒 (3)(0)H

(
y
√

2∕𝜒 (2)(0)
)
+ G𝛼(y);

where G𝛼(y) = o(
√
𝛼) as 𝛼 ↘ 0, uniformly over

y in compact sets.

The proof of the previous theorem parallels its corre-

sponding discrete time analog described in the previous

section. We first obtain a local description of 𝜓𝛼(𝜃) =
log E exp(i𝜃

√
𝛼(D(𝛼) − 𝜆∕(𝛾𝛼))).

Lemma 5 Under assumptions EC1 to EC4 we
have that

𝜓𝛼(𝜃) = −
𝜒 (2)(0)

2
𝜃2 +

√
𝛼

(
𝜒 (3)(0)

18
(i𝜃)3 − 𝜆

𝛾
uz (y0, 0) i𝜃

)
+ o(

√
𝛼)

(uniformly in 𝜃 ∈ (−𝜂, 𝜂), 𝜂 > 0).

Proof Using a variant of Lemma 1, we have

that for 𝜃 in a neighborhood of the origin, the

process

Mt(i𝜃) =
u
(
Y(t),−𝜒

(
i𝜃e−𝛼𝛤 (t)

))
u
(
y0,−𝜒

(
i𝜃e−𝛼𝛤 (t)

))
× exp

(
∫

t

0

𝜓𝛬
(
i𝜃e−𝛼𝛤 (s)

)
ds

− ∫
t

0

𝜒
(
i𝜃e−𝛼𝛤 (s)

)
d𝛤 (s)

)
× exp

(
−𝛼∫

t

0

i𝜃e−𝛼𝛤 (s)
u𝜃

(
Y(s),−𝜒

(
i𝜃e−𝛼𝛤 (s)

))
u
(
Y(s),−𝜒

(
i𝜃e−𝛼𝛤 (s)

))
�̇�
(
i𝜃e−𝛼𝛤 (s)

)
d𝛤 (s)

)
is a local martingale. Note that

Ey0

(
Ey0

(
exp

(
i𝜃∫

∞

0

exp(−𝛼Γ(t))dΛ(t)
)|||||Γ

))
= Ey0

(
exp

(
∫

∞

0

𝜓Λ(i𝜃 exp(−𝛼Γ(t)))dt
))

.

In addition,|||||∫
t

0

𝜒
(
i𝜃e−𝛼Γ(s)

)
dΓ(s)

||||| ≤ ∫
∞

0

|𝜒 (i𝜃e−𝛼s)| ds

= ∫
𝜃

0

||||𝜒(iy)𝛼y
|||| dy < ∞.

We wish to establish that M⋅(i𝜃) is a uniformly

integrable martingale for all 𝜃 in a neighbor-

hood of the origin. In view of the previous pair

of estimates (after applying Cauchy-Schwarz

inequality) we then must show that the random

variables 𝜆(t, i𝜃) defined via

𝜆(t, i𝜃) = u
(
Y(t),−𝜒

(
i𝜃e−𝛼Γ(t)

))
× exp

(
∫

t

0

u𝜃
(
Y(s),−𝜒

(
i𝜃e−𝛼Γ(s)

))
u
(
Y(s),−𝜒

(
i𝜃e−𝛼Γ(s)

)) d𝜒
(
i𝜃e−𝛼Γ(s)

))
are uniformly integrable for all t > 0 and 𝜃 ∈
(−𝜂, 𝜂) provided 𝜂 is chosen small enough. By

virtue of Proposition 1, part iv) and because Lp
boundedness implies uniform integrability for

some p > 1, it suffices to verify that there exists

𝛿 > 0 such that

sup
t>0

Ey0
exp(𝛿v(Y(t)) exp(−𝛼Γ(t))) <∞,

Ey0
exp

(
𝛿𝛼∫

∞

0

v(Y(s))�̃�(Y(s)) exp(−𝛼Γ(s))ds
)
< ∞.

However, this follows from part v) of Proposi-

tions 1 and 2. On the other hand, the uniform

integrability properties established in the previ-

ous display imply the identity

u(y, z) = Ey
{

u(Y(t), z) exp
[
t (𝜓Λ(z) − 𝜒(z)Γ(t))

]}
, (38)

which is obtained by considering 𝛼 = 0, and|z| sufficiently small in the definition of Mt(z)
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and noting that 1 = EMt(z). Now, it follows as

in lemma 9.2.2 of Stroock and Varadhan (2006)

(thanks to the fact that Y(⋅) has a continu-

ously differentiable transition density and that

Y(⋅), being an Ito diffusion possesses, has the

strong Feller property) that for each bounded

measurable function g(⋅), the mapping (t, x) →
Ex[g(Y(t))] is continuous on (0,∞) ×  . Con-

sequently, it follows from representation (38)

that u(⋅) is continuous over any set of the form

K × {z ∈ C ∶ |z| ≤ 𝜂} with K compact,

assuming that 𝜂 > 0 is sufficiently small. We

then obtain that u(⋅, z) → 0 as z → 0 uni-

formly over compact sets and therefore, because

(Y(t) ∶ t ≥ 0) is tight and 𝜒
(
i𝜃e−𝛼Γ(t)

)
→ 0 a.s.

as t → ∞, we conclude that

Mt(i𝜃) →
1

u (y0, i𝜃)
exp

(
∫

∞

0

𝜓Λ
(
i𝜃e−𝛼Γ(t)

)
dt

−∫
∞

0

𝜒
(
i𝜃e−𝛼t) dt − 𝜉(𝛼, i𝜃)

)
in probability as t → ∞, where

𝜉(𝛼, i𝜃) = 𝛼∫
∞

0

i𝜃e−𝛼Γ(t)
u𝜃

(
Y(t),−𝜒

(
i𝜃e−𝛼Γ(t)

))
u
(
Y(t),−𝜒

(
i𝜃e−𝛼Γ(t)

))
�̇�
(
i𝜃e−𝛼Γ(t)

)
dΓ(t).

Using the uniform integrability established for

{𝜆(ti𝜃) ∶ t > 0, 𝜃 ∈ −𝜂, 𝜂]} and sending t ↗ ∞
we obtain that for all 𝛼 > 0 sufficiently small

exp

(
∫

∞

0

𝜒
(
i𝜃e−𝛼t) dt

)
u (y0, i𝜃)

= Ey0
exp

(
∫

∞

0

𝜓Λ
(
i𝜃e−𝛼Γ(t)

)
dt − 𝜉(𝛼, i𝜃)

)
.

Finally, we claim that

exp

(
∫

∞

0

(
𝜒
(√

𝛼i𝜃e−𝛼t
)
−
√
𝛼i𝜃e−𝛼t𝜆∕𝛾

)
dt
)

× u
(

y0,−𝜒(
√
𝛼i𝜃)

)
= E exp

(
∫

∞

0

𝜓Λ

(
i𝜃
√
𝛼e−𝛼Γ(t)

)
dt − i𝜃 𝜆

𝛾
√
𝛼
− 𝜉(𝛼,

√
𝛼i𝜃)

)
= E exp(i𝜃

√
𝛼(D(𝛼) − 𝜆∕(𝛾𝛼))) + o(

√
𝛼) (39)

uniformly in 𝜃 ∈ (−𝜂, 𝜂) for some 𝜂 > 0.

Equality (39) follows because

E𝜉(𝛼,
√
𝛼i𝜃)

=
√
𝛼i𝜃𝛼E∫

∞

0

e−𝛼Γ(t)
u𝜃

(
Y(t),−𝜒

(√
𝛼i𝜃e−𝛼Γ(t)

))
u
(

Y(t),−𝜒
(√

𝛼i𝜃e−𝛼Γ(t)
))

× �̇�
(√

𝛼i𝜃e−𝛼Γ(t)
)

dΓ(t)

=
√
𝛼𝜃
𝜆

𝛾
E𝛼∫

∞

0

e−𝛼Γ(t)u𝜃(Y(t), 0)dt + O(𝛼),

which implies that

𝛼E∫
∞

0

e−𝛼Γ(t)u𝜃(Y(t), 0)dt = E∫
∞

0

e−𝛼Γ(t∕𝛼)u𝜃(Y(t∕𝛼), 0)dt

→ Eu𝜃(Y(∞), 0)∕𝛾 = 0.

The previous estimate, combined with the

asymptotic independence of

∫
∞

0

e−𝛼Γ(t∕𝛼)u𝜃(Y(t∕𝛼), 0)dt

and

∫
∞

0

(
𝜓Λ

(
i𝜃
√
𝛼e−𝛼Γ(t)

)
− 𝜆i𝜃

√
𝛼e−𝛼t𝛾

)
dt,

implies (39). The conclusion of the result fol-

lows by expanding the left hand side of (39). ▪

The proof of Theorem 6 can be completed along the same

lines as in the discrete time case after showing that 𝜙(𝜃, 𝛼) ≜
E exp(i𝜃D(𝛼)) goes to zero fast enough for |𝜃| ∈ (w0,w1) for

any 0 < w0 < w1 < ∞ as the next result shows.

Lemma 6 Suppose that EC1 to EC4 are in
force, then 𝜙(𝜃, 𝛼) ≜ E exp(i𝜃D(𝛼)) satisfies

sup|𝜃|∈(𝜃0,𝜃1)
|𝜙(𝜃, 𝛼)| = o(

√
𝛼),

for all 0 < 𝜃0 < 𝜃1 < ∞..

Proof Note that

|𝜙(𝜃, 𝛼)| = |||||E exp

(
∫

∞

0

𝜓Λ(i𝜃 exp(−𝛼Γ(t)))dt
)|||||

≤ E
||||||exp

(
∫

Γ−1(1∕𝛼)

0

𝜓Λ(i𝜃 exp(−𝛼Γ(t)))dt

)|||||| ,
where Γ−1(1∕𝛼) = inf{t ≥ 0 ∶ Γ(t) > 1∕𝛼}.

Define

Δ(𝜃) = sup
{|exp (𝜓Λ(i𝛽))| ∶ |𝛽| > |||𝜃e−1|||} .

Since Λ(1) is non-lattice, we have that Δ(𝜃) ∈
(0, 1). But

|𝜙(𝜃, 𝛼)| ≤ E
(
Δ(𝜃)Γ−1(1∕𝛼)

)
≤ E

(
Δ(𝜃)2∕(𝛾𝛼)

)
+ P

(
Γ−1(1∕𝛼) ≤ 2∕(𝛾𝛼)

)
.

The analysis of Kontoyiannis and Meyn (2005)

yields a large deviations principle for 𝛼Γ(t∕𝛼) as

𝛼 ↘ 0 just by simply applying the Gartner-Ellis

theorem. Therefore, since 𝛼Γ(t∕𝛼) → t𝛾 as 𝛼 ↘
0 we conclude that for sufficiently small 𝛿 > 0,

𝛼 log P
(
𝛼Γ−1(1∕𝛼) ≤ 1∕𝛾 − 𝛿

)
= 𝛼 log P(𝛼Γ(1∕𝛾 − 𝛿]∕𝛼) ≥ 1) → −I(𝛿)

for some constant I(𝛿) > 0. Therefore, we actu-

ally obtain an exponential rate of convergence
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instead of the rate o
(
𝛼1∕2

)
, which is more than

we need. ▪

As an example of the previous ideas we can consider a per-

petuity with discount rates driven by model that is often used

in finance, namely a Cox-Ingersoll-Ross (CIR) model.

Example 1 Let 𝜅, 𝜇 and 𝜎 be positive real

numbers. The CIR model follows the stochastic

differential equation.

dY(t) = 𝜅(𝜇 − Y(t))dt + 𝜎Y(t)1∕2dB(t)

subject to y0 > 0. The generator of Y(⋅)
(restricted to twice continuously differentiable

functions) takes the form

(AYh) (y) = 𝜅(𝜇 − y)h′(y) + 𝜎2yh′′(y)∕2.

Suppose that 𝛾(y) = y. Then the solution to (36)

is given by

u(y, 𝜃) = exp(𝜉(𝜃)y), 𝜓Γ(𝜃) = 𝜅𝜇𝜉(𝜃)

where 𝜉(𝜃) =
(
𝜅 −

(
𝜅2 − 2𝜃𝜎2

)1∕2
)
∕𝜎2.

Assumptions EC2 and EC3 can be easily ver-

ified using the function u(⋅) directly. Now,

assumption EC4 is not satisfied in this setting,

but such an assumption was only imposed in our

analysis to guarantee the smoothness of 𝜓Γ(⋅)
and the uniform integrability in the proof of

Lemma 5. Fortunately, since we have an explicit

expression for u(⋅) and 𝜓Γ(⋅), the regularity

properties follow immediately and one can eas-

ily adapt the analysis in the proof of Lemma 5

to our current situation if 𝛼 > 0 is sufficiently

close to zero.

Let us conclude by pointing out how the methods discussed

here can be adapted to situations where the reward rates are

driven by more general Markov processes than the Levy case

that we discuss here. In particular, following the same ideas

as in Lemma 5, a local expansion for 𝜓𝛼(𝜃) can be obtained

for the case in which

D(a) = ∫
∞

0

exp

(
−𝛼∫

t

0

�̃�(Y(s))ds
)
𝜆(Y(s))ds.

In this case, the corresponding generalized eigenvalue

problem takes the form

(Au)(y, 𝜃) = (�̃�(y)𝜒(𝜃) − 𝜃𝜆(y))u(y, 𝜃). (40)

and a formal corrected approximation can be written as

P(D ≤ y) ≈ P
(
N
(
𝜆∕𝛾, 𝜒 (2)(0)∕2

) ≤ y
)

−
√
𝛾u𝜃 (y0, 0) 𝜂

(
(y − 𝜆∕𝛾)

√
2∕𝜒 (2)(0)

)
−

√
𝛾

18
𝜒 (3)(0)H

(
(y − 𝜆∕𝛾)

√
2∕𝜒 (2)(0)

)
.

The only step (in addition to the existence of a solution to

(40)) required to make the previous approximation rigorous is

to show that for all 0 < 𝜃0 < 𝜃1 < ∞, sup|𝜃|∈(𝜃0,𝜃1) |𝜙(𝜃, 𝛼)| =
o(
√
𝛼) as in Lemma 6. This essentially involves assuming

enough structure to ensure strongly non-lattice properties of

D. We have chosen Levy processes in our exposition because

they are both natural from a modeling viewpoint and pro-

vide a convenient framework in which to easily verify, from

the model primitives, the non-lattice conditions that yield the

described Edgeworth expansions.

ACKNOWLEDGMENT
This work builds upon a research thread that was signifi-

cantly advanced through the research of Pete Veinott. The first

author acknowledges the guidance and encouragement of Pete

Veinott during his years as a Ph.D. student at Stanford. The

second author wishes to take this opportunity to gratefully

acknowledge the many years of friendship and intellectual

guidance he received from Pete, starting in his days as a Ph.D.

student at Stanford and later deepening when he became a

colleague of Pete’s at Stanford. He also has great memo-

ries of Pete’s personal creativity and his enthusiasm for deep

intellectual contribution to our field. He is greatly missed.

Material in this article is based upon work supported by the

Air Force Office of Scientific Research under award number

FA9550-20-1-0397. Additional support is gratefully acknowl-

edged from NSF Grants 1915967, 1820942, and 1838576.

DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article. No new data were

created or analyzed in this study.

REFERENCES

Asmussen, S. (2001). Ruin probabilities. World Scientific.

Bédard, D., & Dufresne, D. (2001). Pension funding with moving

average rates of return. Scandinavian Actuarial Journal, 101, 1–17.

Blackwell, D. (1962). Discrete dynamic programming. Annals of Math-
ematical Statistics, 33(2), 719–726.

Blanchet, J. (2004) Limit theorems and approximations with applications
to insurance risk and queueing theory. [Ph.D. dissertation]. Stanford

University.

Breiman, L. (1992). Probability. Addison-Wesley.

Bucklew, K., Kurtz, T., & Sethares, W. (1993). Weak convergence and

local stability properties of fixed step size recursive algorithms. IEEE
Transactions on Information Theory, 39(3), 966–978.

Campbell, J., Lo, A., & Mackinlay, C. (1999). The econometrics of

financial markets. Princeton University Press.

Carmona, P., Petit, F., & Yor, M. (2001). Exponential functionals of Lévy
processes. In O. Barndorff-Nielsen, T. Mikosch, & S. Resnick (Eds.),

Lévy processes: Theory and applications (pp. 41–55). Birkhauser.

Diaconis, P., & Freedman, D. (1999). Iterated random functions. SIAM
Review, 41, 45–76.

Dufresne, D. (1990). The distribution of a perpetuity, with applications

to risk theory and pension funding. Scandinavian Actuarial Journal,
1, 39–79.



18 BLANCHET AND GLYNN

Embrechts, P., & Goldie, C. (1994). Perpetuities and random equations.

In P. Mandl & M. Huskova (Eds.), Asymptotic statistics. Proceedings

of the 5th Prague Symposium (pp. 75–86). Physica-Verlag.

Ethier, S., & Kurtz, T. (1985). Markov processes: Characterization and

convergence. Wiley.

Feller, W. (1971). An introduction to probability models and its applica-

tions II. Wiley.

Forniari, F., & Mele, A. (1997). Weak convergence and distributional

assumptions for a general class of non-linear ARCH models. Econo-
metric Reviews, 16(2), 205–227.

Gerber, H. (1971). The discounted central limit theorem and its

berry-Esséen analogue. Annals of Mathematical Statistics, 42(1),

389–392.

Gjessing, H., & Paulsen, J. (1997). Present value distributions with appli-

cations to ruin theory and stochastic equations. Stochastic Processes
and Their Applications, 71, 123–144.

Goldie, C. (1991). Implicit renewal theory and tails of solutions of

random equations. Annals of Applied Probability, 1, 126–166.

Goldie, C., & Grübel, R. (1996). Perpetuities with thin tails. The
Advances in Applied Probability, 28, 463–480.

Grandell, J. (1991). Aspects of risk theory. Springer-Verlag.

Gut, A. (1988). Stopped random walks. Springer-Verlag.

Harrison, M. (1977). Ruin problems with compounding assets. Stochas-
tic Processes and Their Applications, 5, 67–79.

Jacod, J., & Shiryaev, A. (2003). Limit theorems for stochastic processes.

Springer-Verlag.

Kesten, H. (1973). Random difference equations and renewal theory for

products of random matrices. Acta Mathematica, 131, 207–248.

Kluppelberg, C., & Kostadinova, R. (2007). Integrated insurance risk

models with exponential levy investment. Insurance: Mathemat-
ics and Economics, 42, 560–577.

Kontoyiannis, I., & Meyn, S. (2005). Large deviations asymptotics and

the spectral theory of multiplicatively regular Markov processes.

Electronic Journal of Probability, 10, 61–123.

Kontoyiannis, I., & Meyn, S. (2017). Approximating a diffusion by a

hidden Markov model. Stochastic Processes and Their Applications,

127, 2482–2507.

Kurtz, T., & Protter, P. (1991). Weak limit theorems for stochastic inte-

grals and stochastic differential equations. Annals of Probability, 19,

1035–1070.

Kurtz, T., & Protter, P. (1996). Weak convergence of stochastic inte-
grals and differential equations. In D. Talay & L. Tubaro (Eds.),

Probabilistic models for nonlinear partial differential equations.

Springer-Verlag.

Maulik, K., & Zwart, B. (2006). Tail asymptotics of exponential func-

tionals of Lévy processes. Stochastic Processes and Their Applica-
tions, 116, 156–177.

Miao, Y., Xue, T., & Du, T. (2013). The discounted berry-Esséen ana-

logue for autoregressive processes. Communications in Statistics -
Theory and Methods, 42, 2684–2693.

Nelson, D. (1990). ARCH models as diffusion approximations. Journal
of Econometrics, 45, 7–38.

Nualart, D. (2006). The Malliavin calculus and related topics.

Springer-Verlag.

Nyrhinen, H. (2001). Finite and infinite time ruin probabilities in a

stochastic economic environment. Stochastic Processes and Their
Applications, 92, 265–285.

Paulsen, J. (1993). Risk theory in a stochastic economic environment.

Stochastic Processes and Their Applications, 46, 327–361.

Paulsen, J. (1998). Sharp conditions for certain ruin in a risk process with

stochastic return on investments. Stochastic Processes and Their
Applications, 75, 135–148.

Pollack, M., & Siegmund, D. (1985). A diffusion and its applications to

detecting a change in the drift of Brownian motion. Biometrika, 72,

267–280.

Rogers, L., & Williams, D. (1994). Diffusions, Markov processes and

martingales. Cambridge University Press.

Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatil-
ity. In D. R. Cox, D. V. Hinkley, & O. E. Barndorff-Nielsen (Eds.),

Likelihood, time series with econometric and other applications.

Chapman & Hall.

Stroock, D., & Varadhan, S. (2006). Multidimensional Diffusion Pro-

cesses. Springer-Verlag.

Veinott, A. F., Jr. (1969). Discrete dynamic programming with sensi-

tive discount optimality criteria. Annals of Mathematical Statistics,

40(5), 1635–1660.

Vervaat, W. (1979). On a stochastic difference equation and a representa-

tion of nonnegative infinitely divisible random variables. Advances
in Applied Probability, 11, 750–783.

Whitt, W. (1972). Stochastic abelian and Tauberian theorems. Zeitschrift
für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 22, 25–267.

Whitt, W. (2001). Stochastic-process limits. Springer-Verlag.

Wilkie, A. (1986). A stochastic investment model for actuarial use.

Transactions of the Faculty of Actuaries, 39, 341–363.

How to cite this article: Blanchet, J., & Glynn, P.

(2022). Approximations for the distribution of

perpetuities with small discount rates. Naval Research
Logistics (NRL), 1–18. https://doi.org/10.1002/nav.

22058

https://doi.org/10.1002/nav.22058
https://doi.org/10.1002/nav.22058
https://doi.org/10.1002/nav.22058
https://doi.org/10.1002/nav.22058
https://doi.org/10.1002/nav.22058
https://doi.org/10.1002/nav.22058
https://doi.org/10.1002/nav.22058

	Approximations for the distribution of perpetuities with small discount rates
	1 INTRODUCTION
	2 EXACT COMPUTATION
	3 WEAK CONVERGENCE
	4 EDGEWORTH EXPANSIONS
	4.1 The discrete-time setting
	4.2 The continuous-time setting


	ACKNOWLEDGMENT
	DATA AVAILABILITY STATEMENT
	REFERENCES

