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Abstract
A“scheduled” arrival process is one in which the nth arrival is scheduled for time n,
but instead occurs at n+ξn , where the ξ j ’s are i.i.d.We describe here the behavior of a
single server queue fed by such traffic in which the processing times are deterministic.
A particular focus is on perturbations with Pareto-like tails but with finite mean.
We obtain tail approximations for the steady-state workload in both cases where the
queue is critically loaded and under a heavy-traffic regime. A key to our approach is
our analysis of the tail behavior of a sum of independent Bernoulli random variables
with parameters of the form pn ∼ c n−α as n → ∞, for c > 0 and α > 1.
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1 Introduction

In conventional queueing models, it is frequently assumed that the exogenous arrivals
to the system are described by a renewal (counting) process. Specifically, the sequence
χ = (χn : n ≥ 1) of inter-arrival times of successive customers is assumed to be
a sequence of independent and identically distributed (i.i.d.) non-negative random
variables (rv’s). More complex (arrival) traffic models can be obtained by assuming
that the χ j ’s are Markov-dependent or form a stationary time series.

While such traffic models are frequently appropriate, there are some modeling
settings in which one may seek alternatives. One such setting is that in which arrivals
are scheduled in advance; for example, an outpatient clinic. Patients are typically
scheduled to arrive at regular fifteen or twenty minute intervals. Of course, some
patients arrive early for their appointments, and others arrive late, so that there is
some random variation present. A natural traffic model to adopt here is to assume
that the nth patient is scheduled to arrive at the clinic at time nh, but actually arrives
at time nh + ξn, where ξ = (ξn : n ≥ 0) is a stationary sequence of rv’s. We call
such an arrival process a “scheduled traffic model”, and we refer to the ξn’s as the
(random) perturbations about the schedule. For the rest of the paper and without loss
of generality, we assume h = 1.

Such scheduled traffic occurs naturally in other setups as well. Consider a retailer
that places orders for an item at the end of each week, where the number of orders
placed is a time-stationary sequence. If the supplier then fulfills each of these orders
with i.i.d. random delays, then the times at which the retailer’s inventory is replenished
with additional units of that item forms a scheduled traffic process.

To the best of our knowledge, such traffic seems to have been first analyzed by
Winsten [20], in the context of a single server queue. He restricted his attention to
the case of exponential service times and bounded perturbations, and argued that the
number-in-system process has an equilibrium distribution that is conditional geomet-
ric (whereby, it is geometric for values of the queue larger than the bound of the
perturbation). Mercer [16,17] generalized the results of Winsten [20] by analyzing
various variants of such queueing system, including bulk arrivals and more general
service time distributions. Loynes [14] obtained a probabilistic characterization, akin
to our Eq. (4.1) for the workload, for the equilibrium waiting time of a single server
queue for arrival processes that includes our scheduled arrival process. (However, this
characterization does not lend itself to direct quantitative computation, and this current
paper is a partial effort to address this via a study of related limit theorems.)

Doi et al. [7] considered a modified version of our scheduled model, by dropping
any arrival that occurs beyond the next customer’s scheduled time. Another approach
to modeling appointment scheduling has been considered by Hassin and Mendel [10],
who took the view that either customers arrive on time or are considered as “no-shows.”
Zacharias and Armony [21] modeled the process of taking an appointment, as well as
the resulting in-clinic queueing that follows, by assuming that only a fraction of those
scheduled will show up. However, those showing up are assumed to follow a renewal-
like process. Kemper et al. [12] suggested a procedure for scheduling appointments
when the i.i.d. perturbations are assumed to be substantially smaller than a typical job
duration.
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We also note the work of Luo et al. [15] who studied an appointment-based ser-
vice system modeled by two queues in tandem, with a possibility of no-show. These
assumptions lead to an arrival process in which arrivals occur in the same order than
the initial appointments, unlike our scheduled arrival process. Recently, Honnappa
et al. [11] considered so-called transitory queues, and introduced an arrival process
in which the customers scheduled for a given day have arrival times that are i.i.d.,
randomly scattered over the day. This is an arrival process that, while non-renewal, is
quite different from the scheduled traffic that is our main focus.

The current paper derives from theobservation that scheduled traffic shouldgenerate
a much more regular arrival stream than does a renewal or Markov-dependent arrival
process. In particular, one expects that such queues will often have qualitative structure
similar to that of a queue fed by deterministic inter-arrivals. Indeed, adopting here
Kendall’s notation for queues, and denoting scheduled traffic by S, Kingman [13]
obtained a general heavy-traffic result for single server queues that shows that the
heavy traffic limit theorem for the equilibrium distribution of an S/G/1 queue (with
G having positive and finite variance) is identical to that of the corresponding D/G/1
queue. (However, we have previously shown that heavy traffic limit theory looks quite
different when the perturbations have infinite mean; see Araman and Glynn [1]. In
particular, the limit then involves fractional Brownian motion with a Hurst parameter
H < 1/2, rather than Brownianmotion.) Chen and Zhao [3] considered an application
of the S/D/1 queue to the air traffic control space in the vicinity of an airport, and
showed that the S/D/1 queue is frequently stable even when the utilization, ρ, equals
one (i.e., under critical loading), unlike the renewal arrival version of the same model.
Moreover, in a forthcoming work, we show that the tail asymptotic for the equilibrium
waiting time in an S/G/1 queue mirrors that of a D/G/1 queue when the service
times are non-degenerate and light-tailed, in the sense that the exponential decay rates
are identical.

Of course, in practice, we expect that a queue fed by scheduled traffic has behavior
different from that of the associated queue with deterministic arrivals. In view of these
considerations, it seems mathematically natural to explore a setting in which we can
study the differences between a queue fed by scheduled traffic and a queue fed by
deterministic traffic. As discussed above, the presence of truly random service times
in a single server system creates a mathematical environment in which the service
time variability far dominates the relative difference in queueing behavior between a
scheduled and deterministic arrival process. However, as we shall see in this paper,
the S/D/1 queue having deterministic service times exhibits effects that are quite
differentiated from those associated with both the D/D/1 queue and the G/D/1
queue. In other words, we see qualitatively different queueing behavior (from D/D/1
and G/D/1) for scheduled traffic in this S/D/1 setting.

Specifically, we show in this paper that:

(1) when the arrival rate equals the service rate, and the perturbations are Pareto
distributed, the workload process W (t) of an S/D/1 queue grows without bound,
specifically at a rate of log t/ log log t , unlike the bounded workload associated
with a D/D/1 queue or the square root rate associated with a G/D/1 queue fed
by renewal arrivals; see Theorem 5.
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(2) when the arrival rate is less than the service rate, and the perturbations are Pareto
distributed, we derive a heavy-traffic limit theorem for the equilibrium distribu-
tion of the S/D/1 workload scales process that establishes that the equilibrium
workload scales as log(1/(1 − ρ))/ log log(1/(1 − ρ)) in the utilization ρ, in
contrast to the 1/(1−ρ) scaling associated with a G/D/1 queue in heavy traffic;
see Theorem 6.

This paper also includes several new results on the class of point processes that are
generated by our scheduled arrival model. In particular, when the perturbations are
i.i.d., we establish:

(3) asymptotics for the covariance structure of the counting process N (t) that counts
the number of arrivals in [0, t], when the tails of the perturbations display both
power law decay and exponential decay; see Proposition 1.

(4) stochastic boundedness in t for the difference between the number of arrivals
N (t) and the number scheduled for [0, t] when the perturbations have finite
mean, in contrast to the square root stochastic fluctuations typically associated
with renewal traffic; see Theorem 1.

(5) the tail of the difference between N (t) and the number scheduled for [0, t] when
the perturbations have Pareto tails has a Poisson-type decay; see Theorem 3 and
Proposition 2.

Along the way to proving these results, we also develop new exact and logarithmic tail
asymptotics for sums of independent Bernoulli random variables with probabilities of
the form pn ∼ c n−α as n → ∞, for c > 0 and α > 1.

This paper is organized as follows: In the next section,we present some properties of
scheduled traffic. In Sect. 3 we study sums of independent Bernoulli random variables,
thereby allowing us to infer the tail of asymptotics of N (t). We next analyze the
behavior of a single server queue when fed by a scheduled traffic. Specifically, in
Sects. 4 and 5, we investigate the S/D/1 queue, and obtain limiting results for the
workload, both when the queue is critically loaded and under a heavy traffic regime.

2 Properties of scheduled traffic

Let (ξ j : j ∈ Z)be an i.i.d. sequence of perturbations.Wenote that independence of the
ξ j ’s seems plausible in many settings, given that perturbation j is typically determined
by decisions or preferences that are idiosyncratic to consumer j . Given the ξ j ’s, for
any measurable subset of the real line, A, we define the random measure ˜N via

˜N (A) =
∑

j

I ( j + ξ j +U ∈ A),

whereU is a uniform r.v. on [0, 1] independent of the ξ j ’s. It is easily argued that ˜N is

time-stationary, in the sense that ˜N (·+t)
D= ˜N (·) for t ∈ R (where A+t

�= {x+t : x ∈
A}, D=denotes equality in distribution, and

�= denotes equality bydefinition.)We further
define the counting process N = (

N (t) : t ≥ 0
)

via N (t) = ˜N
(

(0, t]); N (t) counts
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the cumulative number of arrivals to the system in (0, t]. Our focus, in this section, is
on the scheduled arrival process N . We introduce the uniform r.v.U in order to obtain

a version of Ñ that has stationary increments. (Without U , Ñ (· + n)
D= Ñ (·) only for

n ∈ Z.) One can interpret U as random time origin chosen independently of the ξ j ’s.
We start by noting that, regardless of whether ξ0 has infinite mean or not, N is a

unit intensity counting process. Specifically,

EN (t) =
∑

j

∫ 1

0
P
(

j + x + ξ j ∈ (0, t])dx

=
∑

j

∫ 1

0
P
(

j + x + ξ0 ∈ (0, t])dx

=
∫ ∞

−∞
P
(

r + ξ0 ∈ (0, t])dr

= E

∫ ∞

−∞
I
(

r ∈ (−ξ0, t − ξ0]
)

dr

= t .

In fact, regardless of the tails of the ξ j ’s, the counting process N has light tails. In
particular, the moment generating function of N (t) is always finite-valued. Specifi-
cally, the independence of the ξ j ’s ensures that, for any θ ,

log (E exp(θ N (t))) =
∑

j

log

(∫ 1

0
E exp

(

θ I
(

j + x + ξ j ∈ (0, t])
)

dx

)

=
∑

j

log

(∫ j+1

j
E exp

(

θ I
(

r + ξ0 ∈ (0, t])
)

dr

)

=
∑

j

log

(

1 + (eθ − 1)
∫ j+1

j
P(r + ξ0 ∈ (0, t])dr

)

≤ (eθ − 1)
∑

j

∫ j+1

j
P(r + ξ0 ∈ (0, t])dr = (eθ − 1) t .

In order to obtain insight into the dependence structure of N , we next study its
covariance properties. Set �N (t) = N (t) − N (t − 1) for t ≥ 1, and recall that

Cov(�N (1),�N (t))

= ECov
(

(�N (1),�N (t))|U)+ Cov
(

E(�N (1)|U ),E(�N (t)|U )
); (2.1)

see p. 381 of Ross [19]. Noting that

�N (t) =
∑

j

I
(

j + ξ j +U ∈ (t − 1, t])
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=
∑

j

I
(

j − �t	 + ξ j +U ∈ (t − �t	 − 1, t − �t	])

D=
∑

k

I
(

k + ξk +U ∈ (t − �t	 − 1, t − �t	]),

it is evident that E(�N (t)|U ) depends on t only through t − �t	. The second term in
(2.1) does not decay to zero as t → ∞ and it reflects the correlation due to the common
random placement of the time origin associated with U . The more informative term
on the right-hand side of (2.1) is Cov

(

(�N (1),�N (t))|U). Note that, for t ≥ 2,

Cov
(

(�N (1),�N (t))|U)

=
∑

i, j

P(i + ξi +U ∈ (0, 1], j + ξ j +U ∈ (t − 1, t]|U )

−
∑

i, j

P(i + ξi +U ∈ (0, 1]|U )P( j + ξ j +U ∈ (t − 1, t]|U )

=
∑

i 
= j

P(i + ξi +U ∈ (0, 1], j + ξ j +U ∈ (t − 1, t]|U )

−
∑

i, j

P(i + ξi +U ∈ (0, 1]|U )P( j + ξ j +U ∈ (t − 1, t]|U )

= −
∑

i

P(i + ξ0 +U ∈ (0, 1]|U )P(i + ξ0 +U ∈ (t − 1, t]|U ),

(2.2)

so the conditional covariance is always non-positive. This is intuitively reasonable,
since scheduled traffic has the characteristic that if an abnormally large number of cus-
tomers arrive in an interval, this reduces the number available to arrive in a subsequent
interval. We can now use (2.2) to develop asymptotics for the conditional covariance.

Proposition 1 (i.) Suppose that ξ0 has a bounded density f for which there exist
positive constants c1, c2, α1, α2 such that

f (x) ∼ c1 x
−α1−1,

f (−x) ∼ c2 x
−α2−1

as x → ∞. If α1 < α2, then

Cov
(

(�N (1),�N (n))|U) ∼ −c1 n
−α1−1

as n → ∞, whereas if α2 < α1, then

Cov
(

(�N (1),�N (n))|U) ∼ −c2 n
−α2−1

as n → ∞. If α1 = α2, then

Cov
(

(�N (1),�N (n))|U) ∼ −(c1 + c2) n
−α1−1
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as n → ∞.
(ii.) Suppose that ξ0 has a bounded density f for which there exist positive constants

d1, d2, β1, β2 such that

f (x) ∼ d1 e
−β1 x ,

f (−x) ∼ d2 e
−β2 x

as x → ∞. If β1 < β2, then

Cov
(

(�N (1),�N (n))|U) ∼ −e−β1 n d1
β1

(eβ1 − 1)

×
∑

j

e−β1 ( j−U )
P(ξ0 +U ∈ ( j − 1, j]|U )

as n → ∞, whereas if β2 < β1, then

Cov
(

(�N (1),�N (n))|U) ∼ −e−β2 n d2
β2

(1 − e−β2)

×
∑

j

e−β2 ( j+U )
P(ξ0 +U ∈ ( j − 1, j]|U )

as n → ∞. If β1 = β2, then

Cov
(

(�N (1),�N (n))|U) ∼ −n e−β1 (n+1) d1 d2
β2
1

(1 − e−β1)2

as n → ∞.

Proof According to (2.2), the conditional covariance is given by

−
∑

j

P(ξ0 +U ∈ ( j − 1, j]|U )P(ξ0 +U ∈ (n + j − 1, n + j]|U )

= −
∑

j>−n/2

P(ξ0 +U ∈ ( j − 1, j]|U )P(ξ0 +U ∈ (n + j − 1, n + j]|U )

−
∑

k≤n/2

P(ξ0 +U ∈ (k − n − 1, k − n]|U )P(ξ0 +U ∈ (k − 1, k]|U ).

Given our bounded density assumption, the (conditional) Bounded Convergence The-
orem implies that

nα1+1
P(ξ0 +U ∈ (n + j − 1, n + j]|U ) → c1

as n → ∞, and
(

nα1+1
P(ξ0 +U ∈ (n + j − 1, n + j]) : j > −n/2

∣

∣U ) is uniformly
bounded. Another application of the (conditional) Bounded Convergence Theorem
therefore implies that
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nα1+1
∑

j>−n/2

P(ξ0 +U ∈ ( j − 1, j]|U )P(ξ0 +U ∈ (n + j − 1, n + j]|U ) → c1

as n → ∞. Similarly,

nα2+1
∑

k≤n/2

P(ξ0 +U ∈ (k − n − 1, k − n]|U )P(ξ0 +U ∈ (k − 1, k]|U ) → c2

as n → ∞, proving part i.).
For part ii.), suppose first that β1 < β2 and note that

∑

j

e−β1 j P(ξ0 +U ∈ ( j − 1, j]|U ) < ∞.

Furthermore, our assumption on f guarantees that

eβ1n P(ξ0 +U ∈ (n + j − 1, n + j]|U ) → d1
β1

(eβ1 − 1) e−β1( j−U )

as n → ∞, and
(

eβ1 j P(ξ0 + U ∈ ( j − 1, j]|U ) : j ≥ 0
)

is uniformly bounded.
Applying the Bounded Convergence Theorem, we conclude that

eβ1 n
∑

j>−n

P(ξ0 +U ∈ ( j − 1, j]|U )P(ξ0 +U ∈ (n + j − 1, n + j]|U )

=
∑

j>−n

P(ξ0 +U ∈ ( j − 1, j]|U ) e−β1 j · eβ1 (n+ j)
P(ξ0 +U ∈ (n + j − 1, n + j]|U )

→ d1
β1

(eβ1 − 1) eβ1U
∑

j

e−β1 j P(ξ0 +U ∈ ( j − 1, j]|U )

as n → ∞. Similarly,

eβ2 n
∑

k<0

P(ξ0 +U ∈ (k − n − 1, k − n]|U )P(ξ0 +U ∈ (k − 1, k]|U )

→ d2
β2

(1 − e−β2) e−β2U
∑

k<0

P(ξ0 +U ∈ (k − 1, k]|U ) eβ2 k
(2.3)

as n → ∞, thereby establishing that the conditional covariance satisfies

eβ1n
∑

j

P(ξ0 +U ∈ ( j − 1, j]|U )P(ξ0 +U ∈ (n + j − 1, n + j]|U )

→ d1
β1

(eβ1 − 1)
∑

j

e−β1( j−U )
P(ξ0 +U ∈ ( j − 1, j]|U )

as n → ∞. The case where β2 < β1 can be handled identically.
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To handle the case where β1 = β2, we write the conditional covariance as

−
∑

j≥0

P(ξ0 +U ∈ ( j − 1, j]|U )P(ξ0 +U ∈ (n + j − 1, n + j]|U )

−
∑

−n≤ j<0

P(ξ0 +U ∈ ( j − 1, j]|U )P(ξ0 +U ∈ (n + j − 1, n + j]|U )

−
∑

k<0

P(ξ0 +U ∈ (k − n − 1, k − n]|U )P(ξ0 +U ∈ (k − 1, k]|U ).

Relation (2.3) shows that the third term is of order O(e−β2 n) as n → ∞; a similar
argument proves that the first term is of order O(e−β1 n). To handle the second term,
we write it as

−
∑

−n≤ j<−n/2

P(ξ0 +U ∈ ( j − 1, j]|U )P(ξ0 +U ∈ (n + j − 1, n + j]|U )

−
∑

−n/2≤ j<0

P(ξ0 +U ∈ ( j − 1, j]|U )P(ξ0 +U ∈ (n + j − 1, n + j]|U )

= −
∑

0≤k<n/2

P(ξ0 +U ∈ (k − n − 1, k − n]|U )P(ξ0 +U ∈ (k − 1, k]|U )

−
∑

−n/2≤ j<0

P(ξ0 +U ∈ ( j − 1, j]|U )P(ξ0 +U ∈ (n + j − 1, n + j]|U ).

(2.4)

But the second term above equals

−
∑

−n/2≤ j<0

P(ξ0 +U ∈ ( j − 1, j]|U )
d1
β1

(eβ1 − 1) e−β1(n+ j−U )
(

1 + o(1)
)

,

as n → ∞, where the o(1) term is uniform in −n/2 ≤ j < 0. So this sum equals

−(1 + o(1)
)

e−β1 n
∑

−n/2≤ j<0

P(ξ0 +U ∈ ( j − 1, j]|U )
d1
β1

(eβ1 − 1) e−β1( j−U ).

Since β1 = β2, P
(

ξ0 +U ∈ ( j − 1, j]|U) eβ1 j → d2
β1

(1− e−β1) e−β1U as j → −∞.

Consequently, the second term is asymptotic to −e−β1 (n+1)(n/2) d1 d2
β2
1

(1 − e−β1)2

as n → ∞. A similar analysis works for the first term in (2.4), proving part ii.) for
β1 = β2. ��

Proposition 1 i.) asserts that the conditional autocorrelations are always summable,
regardless of the values of α1, α2 > 0. In particular, this occurs even when the per-
turbations have infinite mean. This case is discussed in Araman and Glynn [1]. It is
shown there that N (·) then satisfies a functional limit theorem with normalization
n(1−min{α1,α2)}/2 and with fractional Brownian motion with H < 1/2 as a limit.
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We turn next to a key representation for N that holds only when E|ξ0| < ∞. In
preparation for stating this result, let

E(t) =
∑

i+U>t

I (i + ξi +U ≤ t)

L(t) =
∑

i+U≤t

I (i + ξi +U > t).

The r.v. E(t) represents the total number of early customers at time t , who have
arrived earlier than scheduled, while L(t) is the total number of late customers that
will arrive after t but were scheduled to arrive before t . The Borel-Cantelli lemma
makes clear that E(t) is finite-valued a.s. if and only if Eξ−

0
�= Emax(−ξ0, 0) < ∞,

while L(t) is finite-valued a.s. if and only if Eξ+
0

�= Emax(ξ0, 0) < ∞. Furthermore,
(

(E(t),L(t)) : t ∈ R
)

is a time-stationary process, where for every t , E(t) and L(t)
are independent random variables.

Proposition 2 Suppose that E|ξ0| < ∞. Then, for t ≥ 0,

N (t) − t =
⎛

⎝

∑

i+U∈(0,t]
1

⎞

⎠− t + (E(t) − L(t)
)− (E(0) − L(0)

)

. (2.5)

Proof Observe that

N (t) − t =
∑

i+U∈(0,t]
I (i + ξi +U ∈ (0, t]) +

∑

i+U>t

I (i + ξi +U ∈ (0, t])

+
∑

i+U≤0

I (i + ξi +U ∈ (0, t]) − t

=
∑

i+U∈(0,t]

(

1 − I (i + ξi +U > t) − I (i + ξi +U ≤ 0)
)− t

+
∑

i+U>t

(

I (i + ξi +U ≤ t) − I (i + ξi +U ≤ 0)
)

+
∑

i+U≤0

(

I (i + ξi +U > 0) − I (i + ξi +U > t)
)

.

(2.6)

Wenowcombine thefirst indicator sumwith the sixth (to obtain−L(t)), and the second
indicator sum with the fourth (to obtain −E(0)), thereby proving the result. ��

The previous result is quite intuitive. Indeed, the term
∑

i+U∈(0,t] I (i + ξi + U ∈
(0, t]) is equal to the number initially scheduled in [0, t), while E(t)−E(0) counts the
number of arrivals that showed up in (0, t] butwere not scheduled to, whileL(t)−L(0)
counts the number of arrivals that were scheduled to arrive in (0, t] but did not.

We can now prove that N (t)− t converges weakly as t → ∞, when we let t → ∞
in such a way that t − �t	 is constant.
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Theorem 1 Suppose that E|ξ0| < ∞, and fix s ∈ [0, 1). Then,

N (n + s) − (n + s) ⇒ −s + I (U ≤ s) + (E ′(s) − L′(s)
)− (E(0) − L(0)

)

as n → ∞, where E ′(s),L′(s), E(0),L(0) are independent of one another given U,

and E ′(s) D= E(0), L′(s) D= L(0).

Proof Recall that

N (n + s) − (n + s) =
∑

i+U∈(0,n+s]
1 − (n + s) + (E(n + s) − E(0)) − (L(n + s)

−L(0)).

We start by observing that

∑

i+U∈(0,n+s]
1 − (n + s) = −s + I (U ≤ s)

for n ∈ Z+, s ∈ [0, 1). Furthermore, if kn is an integer-valued sequence such that
kn/n → ν ∈ (0, 1) as n → ∞, we can write

(E(n + s) − E(0),L(n + s) − L(0)
)

=
⎛

⎝

∑

i+U>n+s

I (i +U + ξi ∈ (0, n + s]) −
∑

i+U∈(0,n+s]
I (i +U + ξi ≤ 0),

∑

i+U∈(0,n+s]
I (i + ξi +U > n + s) −

∑

i+U≤0

I (i +U + ξi ∈ (0, n + s])
⎞

⎠

=
(

∑

i+U>n+s

I (i +U + ξi ∈ (0, n + s])

−
∑

i+U∈(0,kn ]
I (i +U + ξi ≤ 0) −

∑

i+U∈(kn ,n+s]
I (i +U + ξi ≤ 0),

∑

i+U∈(0,kn ]
I (i + ξi +U > n + s) +

∑

i+U∈(kn ,n+s]
I (i + ξi +U > n + s)

−
∑

i+U≤0

I (i +U + ξi ∈ (0, n + s])
⎞

⎠

D=
(

E ′′(n + s) − Ên − Ê ′′
n (n + s), L̂′′

n(n + s) + L′′
n(n + s) − L̂(n + s)

)

.

Note that, because Eξ+
0 < ∞,

123



72 Queueing Systems (2022) 100:61–91

E[L̂′′
n(n + s)|U ] =

∑

i+U∈(0,kn ]
P(i + ξi +U > n + s|U )

≤
∑

j+U≤0

P(ξ0 > n − kn − j − 1|U ) → 0

as n → ∞, proving that L̂′′
n(n + s) ⇒ 0 as n → ∞. Similarly, the fact that Eξ−

0 <

∞ implies that Ê ′′
n (n + s) ⇒ 0 as n → ∞. Finally, the four random variables

(E ′′(n + s), Ên,L′′
n(n + s), L̂(n + s)

)

all involve sums over subsets in i that are
disjoint, so they are conditionally independent of one another, given U . Furthermore,
note that

L′′
n(n + s) =

∑

i+U∈(kn ,n+s]
I (i + ξi +U > n + s)

=
∑

j+U∈(kn−n,s]
I ( j + ξn+ j +U > s)

D=
∑

j+U∈(kn−n,s]
I ( j + ξ j +U > s) →

∑

j+U<s

I ( j + ξ j +U > s)

as n → ∞, proving thatL′′
n(n+s) ⇒ L′(s) as n → ∞. Similarly, E ′′

n (n+s) ⇒ E ′(s),
while Ên ⇒ E(0) and L̂n ⇒ L(0) as n → ∞, proving the theorem. ��

Note that we must restrict convergence to sequences of the form tn = n + s with
n → ∞. In particular, weak convergence does not hold when t → ∞ without any
restrictions. To see this, consider the case in which ξ0 = 0 a.s. Then,

N (t) − t =
∑

i+U∈(0,t]
1 − t

= −(t − �t	) + I (U ≤ t − �t	),

and observe that the distribution of the right-hand side depends on t − �t	, regardless
of the magnitude of t .

Theorem 1 shows that N (t) − t is stochastically bounded in t . This is in sharp
contrast to the case in which (for example) N is a unit rate renewal counting process
with finite-variance inter-arrival times, in which event t−1/2

(

N (t) − t
)

converges
weakly to a normal r.v. (see Ross [18]), so that N (t)− t exhibits stochastic fluctuations
of order t1/2.

3 Tail asymptotics for sums of Bernoulli random variables

The analysis of Sect. 2 establishes that N , E and L all can be clearly represented
as sums of independent Bernoulli r.v.’s. As we will see in the next section, the tail
behavior of these r.v.’s significantly affects the queueing dynamics of systems that are
fed by scheduled traffic. In addition, Bernoulli sums arise in many other application
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settings (for example, credit risk). As a consequence, this section is focused on tail
behavior for such Bernoulli sums.

Let (I j : j ∈ Z) be a family of independent r.v.’s, in which p j = P(I j = 1) =
1 − P(I j = 0).

Theorem 2 Suppose that there exist constants c > 0 and α > 1 for which pn ∼ c n−α

as n → ∞. If Z =∑ j≥0 I j , then

1

z log z
logP(Z > z) → −α

as z → ∞.

Proof We shall employ an argument similar to that commonly used in the theory of
large deviations; see, for example, p. 44 in Dembo and Zeitouni [6]. (Note, however,
that the asymptotic setting described by Theorem 2 is not covered by traditional large
deviations.) We start by observing that

ψ(θ)
�= logE exp

(

θ Z
) =

∑

j≥0

log
(

p j (e
θ − 1) + 1

)

(where the sum converges absolutely since α > 1). Choose θ = θ(z) such that
eθ(z) = r zα (where r > 0), and note that, for ε > 0, θ > 0, and z sufficiently large,

ψ
(

θ(z)
) =

∑

0≤ j≤�εz	
log
(

p j (e
θ(z) − 1) + 1

)+
∑

j>�εz	
log
(

p j (e
θ(z) − 1) + 1

)

≤
∑

0≤ j≤�εz	
log
(

eθ(z) + 1
)+

∑

j>�εz	
log
(

(1 + ε)c j−αeθ(z) + 1
)

≤ (�εz	 + 1) log(1 + r zα) +
∑

j>�εz	
log
(

(1 + ε) rc ( j/z)−α + 1
)

. (3.1)

Note that the second term in (3.1), when multiplied by 1/z, is a Riemann sum approx-
imation, and hence

1

z

∑

j>�εz	
log
(

(1 + ε) rc ( j/z)−α + 1
)

→
∫ ∞

ε

log
(

(1 + ε) rc x−α + 1
)

dx

as z → ∞. (Specifically, the function log
(

(1 + ε) rc x−α + 1
)

is directly Riemann
integrable (see Asmussen [2]), so the Riemann approximation over [ε,∞) converges.)
It follows that

limz→∞
1

z log z
ψ
(

θ(z)
) ≤ ε α.
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Markov’s inequality guarantees that

P(Z > z) ≤ exp
(− θ(z)z + ψ(θ(z))

)

,

and hence

limz→∞
1

z log z
logP(Z > z) ≤ −α (1 − ε).

Since ε > 0 can be chosen to be arbitrarily small, we conclude that

limz→∞
1

z log z
logP(Z > z) ≤ −α. (3.2)

To obtain the lower bound needed for Theorem 2, we apply a change-of-measure
argument. For z > 0, put

˜Pz(·) = EI (·) exp (θ(z) Z − ψ(θ(z))
)

,

and let˜Ez(·) be the associated expectation operator. Then,

P(Z > z) = ˜Ez I (Z > z) exp
(− θ(z)Z + ψ(θ(z))

)

. (3.3)

Of course,

˜Ez Z = ψ ′(θ(z)) =
∑

j≥0

p j eθ(z)

p j (eθ(z) − 1) + 1
. (3.4)

So,

1

z
˜Ez Z =

∑

j≥0

p j r zα

p j (r zα − 1) + 1
· 1
z
.

Since p j zα ∼ c ( j/z)−α as j → ∞, a simple adaptation of the earlier Riemann sum
approximation argument proves that

1

z
˜Ez Z →

∫ ∞

0

c r

c r + xα
dx

as z → ∞. Similarly,

1

z
ṽarz Z = 1

z
ψ ′′(θ(z)) =

∑

j≥0

p j (1 − p j ) eθ(z)

(p j (eθ(z) − 1) + 1)2
· 1
z

→
∫ ∞

0

c r xα

(c r + xα)2
dx
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as z → ∞. For ε > 0, we now select r > 0 (uniquely) so that

∫ ∞

0

c r

c r + xα
dx = 1 + ε.

Observe that because ψ(θ(z)) > 0,

P(Z > z) = ˜Ez I (Z > z) exp
(− θ(z) Z + ψ(θ(z))

)

≥ exp
(− θ(z) z(1 + 2ε) + ψ(θ(z))

)

˜Pz((1 + 2ε)z > Z > z)

≥ exp
(− θ(z) z(1 + 2ε)

)

˜Pz((1 + 2ε)z > Z > z). (3.5)

But, for z large enough, we have that

−ε/2 ≤ 1

z
˜Ez Z − (1 + ε) ≤ ε/2

so that

˜Pz((1 + 2ε)z > Z > z) =˜Pz((1 + 2ε)z −˜Ez Z > Z −˜Ez Z > z −˜Ez Z)

≥˜Pz((1 + 2ε)z − (1 + 3ε/2)z > Z −˜Ez Z > z − (1 + ε − ε/2) z)

≥ 1 −˜Pz(|Z −˜Ez Z | > ε z/2)

≥ 1 − 4
ṽarz Z

z2ε2
→ 1

as z → ∞, where the last inequality is an application of Chebyshev’s inequality.
Hence, (3.5) implies that

limz→∞
1

z log z
logP(Z > z) ≥ −α,

proving the theorem. ��
We now turn to the tail of Z when Z is the difference of two independent Bernoulli

sums,
∑

j≥0 I j and
∑

j<0 Ĩ j .

Corollary 1 Suppose that E
∑

j<0 Ĩ j < ∞ and that there exists c > 0 and α > 1 for

which EIn ∼ c n−α as n → +∞. If Z =∑ j≥0 I j −∑ j<0 Ĩ j , then

1

z log z
logP(Z > z) → −α

as z → ∞.

Proof We note that P(Z > z) ≤ P(
∑

j≥0 I j > z), and apply Theorem 2 to conclude
that

limz→∞
1

z log z
logP(Z > z) ≤ −α.
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For the lower bound, observe that the independence yields

P(Z > z) ≥ P

⎛

⎝

∑

j≥0

I j > z + d,
∑

j<0

Ĩ j ≤ d

⎞

⎠

= P

⎛

⎝

∑

j≥0

I j > z + d

⎞

⎠ P

⎛

⎝

∑

j<0

Ĩ j ≤ d

⎞

⎠ .

Hence, we apply Theorem 2 to conclude that

limz→∞
1

z log z
logP(Z > z) ≥ limz→∞

1

z log z
logP

⎛

⎝

∑

j≥0

I j > z + d

⎞

⎠ = −α,

proving the result. ��
We can immediately apply Theorem 2 and its corollary to the tail asymptotics of

E,L and N (t).

Theorem 3 i.) Suppose that ξ0 is such that P(ξ0 > x) ∼ c1x−α1 as x → ∞ for
c1 > 0, α1 > 1. Then,

1

x log x
logP

(L(t) > x
)→ −α1

as x → ∞.

ii.) Suppose that ξ0 is such that P(ξ0 < −x) ∼ c2x−α2 as x → ∞ for c2 > 0, α2 > 1.
Then,

1

x log x
logP

(E(t) > x
)→ −α2

as x → ∞.

iii.) Suppose that ξ0 has a bounded density f for which there exist positive constants
c1, c2, α1, α2 such that

f (x) ∼ c1 x
−α1−1,

f (−x) ∼ c2 x
−α2−1

as x → ∞. Then,

1

x log x
logP

(

N (t) > x
)→ −min(α1 + 1, α2 + 1) (3.6)

as x → ∞.
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Proof For part i.) we recall that L(t)
D= L(0). Furthermore, P(ξ j+1 > j) ≤ P(− j +

ξ− j +U > 0) ≤ P(ξ j > j − 1), so that

P

⎛

⎝

∞
∑

j=1

I j > x

⎞

⎠ ≤ P(L(t) > x) ≤ P

⎛

⎝

∞
∑

j=0

I j > x

⎞

⎠ , (3.7)

where the I j ’s are independentBernoulli r.v.’s inwhich I j = I (ξ j > j−1). Theorem2
can then be applied to the extreme members of (3.7), yielding i.). Part ii.) follows
similarly. As for iii.), suppose that α1 ≤ α2 and set I j = I ( j + ξ j +U ∈ (0, t]). Fix
an integer d ≥ 1 and observe that

P

⎛

⎝

∑

j≤0

I j > x

⎞

⎠ ≤ P
(

N (t) > x
)

≤
d−1
∑

k=0

P

⎛

⎝

∑

j≤0

I j ∈ x [k/d, (k + 1)/d),
∑

j>0

I j > x (1 − (k + 1)/d)

⎞

⎠

≤ d max
0≤k≤d−1

P

⎛

⎝

∑

j≤0

I j ≥ x k/d

⎞

⎠ P

⎛

⎝

∑

j>0

I j ≥ x (1 − (k + 1)/d)

⎞

⎠ .

(3.8)

Recalling our bounded density assumption, the Bounded Convergence Theorem
implies that P(I− j = 1) ∼ c1 t j−α1−1 and P(I j = 1) ∼ c2 t j−α2−1 as j → ∞.

Arguing as for i.) and ii.), we find that

1

x log x
logP

⎛

⎝

∑

j≤0

I j > x

⎞

⎠→ −(α1 + 1) (3.9)

and

1

x log x
logP

⎛

⎝

∑

j>0

I j > x

⎞

⎠→ −(α2 + 1) (3.10)

as x → ∞. Utilizing (3.9) and (3.10), we observe that, for 0 ≤ k ≤ d − 1, the term

1

x log x
log

⎡

⎣P

⎛

⎝

∑

j≤0

I j ≥ x k/d

⎞

⎠ P

⎛

⎝

∑

j>0

I j ≥ x (1 − (k + 1)/d)

⎞

⎠

⎤

⎦

→ − (α1 + 1) k

d
− (α2 + 1) (d − (k + 1))

d
≤ −(α1 + 1)

d − 1

d

(3.11)

as x → ∞. Hence, letting x → ∞ on the extreme terms of (3.8), followed by sending
d → ∞ yields iii.). A symmetric argument works for α1 > α2. ��
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The next result shows that the tail exponent of N (t) given in i i i .) of Theorem 3 is
not inherited by its equilibrium limit given in Theorem 1. In other words, one cannot
interchange x → ∞ in the logarithmic limit in (3.6), with t → ∞ in time.

For our next result, we fix s ∈ [0, 1] and recall Theorem 1 and the quantities E ′(s)
and E ′(s) defined there.

Proposition 3 Suppose that ξ0 is such that P(ξ0 > x) ∼ c1 x−α1 and P(ξ0 < −x) ∼
c2 x−α2 as x → ∞ for c1, c2 > 0 and α1, α2 > 1. Then,

1

x log x
logP

(

(E ′(s) − L′(s)
)− (E(0) − L(0)

)

> x
)

→ −min(α1, α2)

as x → ∞.

Proof Utilizing Corollary 1 and arguing as in the proof of Theorem 3, we find that

1

x log x
logP

(E ′(s) − L′(s) > x)
)→ −α2,

and

1

x log x
logP

(L(0) − E(0) > x)
)→ −α1

as x → ∞. We can now use the same upper bound argument as in (3.8) to conclude
that

limx→∞
1

x log x
logP

(

(E ′(s) − L′(s)
)− (E(0) − L(0)

)

> x
)

≤ −min(α1, α2).

For the lower bound, suppose that α2 ≤ α1. We find that

P
((E ′(s) − L′(s)

)− (E(0) − L(0)
)

> x
)

≥ P
(E ′(s) − L′(s) > x + d

)

P
(L(0) − E(0) ≥ −d

)

,

so that

limx→∞
1

x log x
logP

((E ′(s) − L′(s)
)− (E(0) − L(0)

)

> x
) ≥ −α2.

A symmetric argument holds for α1 < α2. ��
We have already argued in Sect. 2 that for any i.i.d. sequence of perturbations, the

corresponding counting process N (t) has a light tail. Theorem 3 shows that when the
perturbations have Pareto tails, then N (t) has a tail lighter than an exponential and
heavier than a normal distribution.

Because of their intrinsic interest and their importance for scheduled queues, we
now provide exact tail asymptotics for Bernoulli sums.
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Theorem 4 i.) Suppose that there exists c > 0 and α > 1 such that pn = c n−α(1 +
O(1/n)) as n → ∞. Then,

P

⎛

⎝

∑

j≥0

I j ≥ n

⎞

⎠ ∼ 1√
2πη∗

r−n∗ n−αn−1/2 exp
(

ψ(r∗nα)
)

as n → ∞, where r∗ satisfies

∫ ∞

0

c r∗
c r∗ + xα

dx = 1

and

η∗ =
∫ ∞

0

c r∗ xα

(c r∗ + xα)2
dx .

ii.) Suppose that pn = c(w + n)−α for n ≥ 0, where c, w > 0 and α > 1. Then,

P

⎛

⎝

∑

j≥0

I j ≥ n

⎞

⎠ ∼
( 1√

2π

)α+1 �(w)α√
η∗

(c r∗)
1
2−w n−αn+ 1

2 (α−1)−wα eγ n

as n → ∞, where γ = ∫ 10 log
(

1 + 1
c r∗ x

α
)

dx + ∫∞
1 log

(

1 + c r∗ x−α
)

dx + α +
log(c).

Proof We start from the change-of-measure formula (3.3), with the specific choice
θ∗(n) = log r∗ + α log n (so that exp(θ∗(n)) = r∗nα). Then,

P(Z ≥ n) = exp
(− θ∗(n) n + ψ(r∗nα)

) ·˜En I (Z ≥ n) exp
(− θ∗(n)(Z − n)

)

.

We wish now to apply the local central limit theorem (CLT) to Z under ˜Pn . Recall
(3.4) and note that

˜En Z =
∑

j≥0

p j r∗nα

p j (r∗ nα − 1) + 1

= p0 r∗nα

p0 (r∗ nα − 1) + 1
+
∑

j≥1

(n/ j)αc r∗
(n/ j)α c r∗ − p j + 1

(1 + O(1/ j))

= 1

1 + O(n−α)
+
∑

j≥1

c r∗
c r∗ + ( j/n)α − ( j/n)α p j

(1 + O(1/ j))

=
∑

j≥0

c r∗
c r∗ + ( j/n)α + O(n−α)

(1 + O(1/ j))

=
∑

j≥0

c r∗
c r∗ + ( j/n)α

(1 + O(1/ j))
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=
∑

j≥0

c r∗
c r∗ + ( j/n)α

+
∑

0≤ j≤kn

O(1/ j) + O(k−1
n )

∑

j>kn

c r∗
c r∗ + ( j/n)α

= n
∑

j≥0

1

n
v( j/n) + O(log kn) + O(n k−1

n )
∑

j>kn

1

n
v( j/n),

where v(x) = c r∗ (c r∗ + xα)−1 and kn is selected so that kn/n2/3 → 1 as n → ∞.

But

n
∑

j≥0

1

n
v( j/n) = n

∫ ∞

0
v(x)dx + n

∑

j≥0

∫ ( j+1)/n

j/n
[v( j/n) − v(x)]dx .

The defining equation for r∗ implies that
∫∞
0 v(x)dx = 1. Set

ωn(x) =
∫ x

j/n
[v( j/n) − v(y)]dy.

Since ωn is twice differentiable with w′
n(x) = v( j/n) − v(x) and w′′

n(x) = −v′(x),
there exists x j,n ∈ [ j/n, ( j + 1)/n] such that

ωn
(

( j + 1)/n
) = ωn( j/n) + 1/n · ω′

n( j/n) + 1/n2 · ω′′
n(x j,n)/2

so that

∫ ( j+1)/n

j/n
[v( j/n) − v(y)]dy = −v′(x j,n) · 1

2 n2

and hence

n
∑

j≥0

∫ ( j+1)/n

j/n
[v( j/n) − v(x)]dx = −1/2

∑

j≥0

v′(x j,n)
1

n
.

The latter sum is a Riemann sum approximation to the integral of− 1
2v

′(·) over [0,∞).

Consequently,

n
∑

j≥0

∫ ( j+1)/n

j/n
[v( j/n) − v(x)]dx → −1

2

∫ ∞

0
v′(x)dx = 1/2. (3.12)

Similarly,

∑

j>kn

1

n
v( j/n) −

∫ ∞

kn/n
v(x)dx → 0
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as n → ∞. It follows that

˜En Z = n + O(n1/3) (3.13)

as n → ∞. Also, as noted in the proof of Theorem 2,

1

n
ṽarn Z → η∗ (3.14)

as n → ∞.

We are now ready to apply the local CLT due to Davis and McDonald [5]. We
first write Z = ∑bn

j=0 I j + Yn , where bn → ∞ fast enough that ˜EnY 2
n /n → 0

as n → ∞. It is easily verified that the conditions of the Lindeberg-Feller CLT
apply to (Z − ˜En Z)/(ṽarn Z)1/2; see p. 215 of Chung [4]. Furthermore, by recall-
ing that, ṽarn I j = ˜Pn(I j = 1)˜Pn(I j = 0), we conclude that the sequence
Qn = ∑ j≤bn min

(

˜Pn(I j = 0),˜Pn(I j = 1)
)

that appears in the hypotheses of Theo-
rem 1.2 of Davis and McDonald [5] can be lower bounded by

∑

j≤bn ṽarn I j ∼ n η∗
as n → ∞. Consequently, Theorem 1.2 asserts that

˜Pn(Z = k) = φ

(

k −˜En Z√
n η∗

)

1√
n η∗

(1 + o(1))

uniformly in k as n → ∞, where φ(·) is the density of a N (0, 1) r.v. Hence, in view
of (3.13) and (3.14),

˜Pn(Z = n + k) = φ

(

k√
n η∗

)

1√
n η∗

(1 + o(1))

as n → ∞, so that

˜En I (Z ≥ n) exp
(− θ∗(n) (Z − n)

)

=
∑

k≥0

˜Pn(Z = n + k) exp
(− θ∗(n) k

)

∼ 1√
2π n η∗

as n → ∞, proving part i.).
Part ii.) is a special case of i.). All that is needed is the development of an asymptotic

for ψ(r∗ nα), to the order of o(1). Denoting (as usual) the gamma function by �(·),
we write

ψ(r∗ nα) =
n−1
∑

j=0

log
(

c ( j + w)−α (r∗ nα − 1) + 1
)

+
∑

j≥n

log
(

c ( j + w)−α (r∗ nα − 1) + 1
)
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= log

⎛

⎝

n−1
∏

j=0

(

n

j + w

)α

(c r∗)n
⎞

⎠+
n−1
∑

j=0

log

(

1 + ( j + w

n

)α 1

c r∗
− 1

c r∗ nα

)

+
∑

j≥n

log

(

1 + c r∗
(

j + w

n

)−α (

1 − 1

r∗ nα

)

)

(3.15)

= log

((

nn �(w)

�(w + n)

)α

(c r∗)n
)

+ n
∫ 1+w/n

w/n
log

(

1 + 1

c r∗
xα − 1

c r∗nα

)

dx

+n
∫ ∞

1+w/n
log

(

1 + c r∗ x−α

(

1 − 1

r∗ nα

))

dx

+n
n−1
∑

j=0

∫ ( j+1)/n

j/n
[hn( j/n) − hn(x)]dx + n

∑

j≥n

∫ ( j+1)/n

j/n
[h̃n( j/n) − h̃n(x)]dx,

where

hn(x) = log

(

1 +
(

x + w

n

)α 1

c r∗
− 1

c r∗nα

)

,

h̃n(x) = log

(

1 + c r∗
(

x + w

n

)−α
(

1 − 1

r∗ nα

))

.

The first term in the third equality is due to the property of the Gamma function
whereby, for any z > 0, �(z + 1) = z�(z). Set h(x) = log

(

1 + 1
c r∗ xα

)

, h̃(x) =
log
(

1 + c r∗ x−α
)

. Arguing as in (3.12), the sum of the last two terms converges to

− 1/2
∫ 1

0
h′(x)dx − 1/2

∫ ∞

1
h̃′(x)dx

= −1/2 (h(1) − h(0)) − 1/2 (h̃(∞) − h̃(1))

= −1/2

(

log

(

1 + 1

c r∗

)

− log(1 + c r∗)
)

= 1/2 log(c r∗).

(3.16)

Also,

n
∫ 1+w/n

w/n
log

(

1 + 1

c r∗
xα − 1

c r∗nα

)

dx

= n
∫ 1+w/n

w/n
log

(

1 + 1

c r∗
xα

)

dx + O(n1−α)

= n
∫ 1

0
log

(

1 + 1

c r∗
xα

)

dx + w h(1) − w h(0) + o(1)

(3.17)
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as n → ∞. Similarly,

n
∫ ∞

1+w/n
log

(

1 + c r∗ x−α

(

1 − 1

nα

))

dx

= n
∫ ∞

1
log
(

1 + c r∗ x−α
)

dx − w h̃(1).

(3.18)

Finally, we use the asymptotic

�(w + n) ∼ √
2π n

(

w + n − 1

e

)n+w−1

as n → ∞ (see p. 63 of Feller [8]), to conclude that

(

nn�(w)

�(w + n)

)α

∼
(

�(w)√
2π

)α

n(−w+1/2) α eα n (3.19)

as n → ∞. Combining (3.15) through (3.19) yields part ii.). ��
With Theorem 4 at our disposal, we can now derive exact asymptotics for the

r.v.’s E(t) and L(t). For example, in view of the fact that the proof of part i i .) holds
uniformly in w,

P(E(0) ≥ n) ∼
( 1√

2π

)α+1
√

c r∗
η∗

E

[

�(U )α

(c r∗ nα)U

]

n−αn+ 1
2 (α−1) eγ n

as n → ∞, provided that P(ξ0 ≤ −x) = c x−α for x > 1 and where γ is the same
constant defined in Theorem 4.

4 Behavior of the S/D/1 workload process under critical loading

In this section, we consider a queue that is fed by a scheduled traffic in which each
customer’s service time requirement is of unit duration, and in which the server has
the capacity to process work at unit rate. Under these assumptions, the rate at which
work arrives per unit time equals the service capacity of the system, so that the queue
is subject to critical loading.

Note that the total work to arrive in (0, t] is given by N (t).LetW (t) be theworkload
in the system at time t (i.e. t+W (t) is the first time subsequent to t at which the system
would empty if no additional work were to arrive after t .) If W (0) = 0, then

W (t) = max
0≤s≤t

[

(N (t) − t) − (N (s) − s)
]

. (4.1)

Our goal is to analyze the behavior of W (t) for t large. We note that because the
service times are deterministic with unit duration, the number-in-system at time t
equals �W (t)�. Therefore, our results on the workload can be easily converted into
results on the number-in-system.
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If E|ξ0| < ∞, Proposition 2 applies so that

W (t) = max
0≤s≤t

[

E(t) − E(s) − L(t) + L(s)
]

+ Op(1), (4.2)

where Op(1) is a term that is stochastically bounded in t . Because of the stationarity
of
((E(t),L(t)

) : t ∈ R
)

, the first term in (4.2) has the same distribution as

M(t) = max
0≤s≤t

[

E(0) − E(−(t − s)) − L(0) + L(−(t − s))
]

,

= max
0≤r≤t

[

E∗(r) − L∗(r)
]

− E∗(0) + L∗(0).
(4.3)

Note that E∗(·) is the “early customer” process for the time-reversed system in which
the perturbations are given by (−ξ− j : j ∈ Z), and L∗(·) is the corresponding “late

customer” process. As a result, E∗(r) D= L(−r) and L∗(r) D= E(−r). As a matter of
fact these equalities hold pathwise except for the fact that E∗ and L∗ are generated
following the uniform distribution, 1−U , instead ofU . Given that E∗ andL∗ are non-
negative processes for which E∗(r) is independent of L∗(r) for r ∈ R, it is evident
that the growth of M(t) will be determined by E∗ and that the left tail of −ξ0 (or right
tail of ξ0) governs the large time behavior of M(·) (and hence W (·)). The dominance
of the right tail of ξ0 over the left tail is perhaps explained by the fact that the left
tail induces the arrival of “early customers” from the future evolution of the queue.
More such early arrivals in an interval mean fewer potential customers available from
which to stimulate a future burst of arrivals, so that the left tail has less influence over
“growing” M(·) over time.

Theorem 5 Suppose that Eξ−
0 < ∞ and that there exists constant c > 0 and α > 1

for which P(ξ0 > x) ∼ c x−α as x → ∞. Then,

W (t)

log t/ log log t
⇒ 1/α

as t → ∞.

Proof Clearly,

max
0≤r≤t

[E∗(r) − L∗(r)
] ≤ max

0≤r≤t
E∗(r)

≤ max
1≤n≤�t	+1

max
0≤s<1

E∗(n − s).

For 0 ≤ s < 1 and n ≥ 1,

E∗(n − s) =
∑

j+U≤−n+s

I ( j +U + ξ j > −n + s)

≤
∑

j+U≤−n+s

I ( j +U + ξ j > −n)

= E∗(n) +
∑

−n< j+U≤−n+s

I ( j +U + ξ j > −n)
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≤ E∗(n) +
∑

−n< j+U≤−n+s

1

= E∗(n) + 1 (4.4)

So,

max
0≤r≤t

[E∗(r) − L∗(r)
] ≤ 1 + max

1≤n≤�t	+1
E∗(n).

Hence, for ε > 0 and t sufficiently large,

P

(

max
0≤r≤t

[E∗(r) − L∗(r)
]

>
1 + 3 ε

α

log t

log log t

)

≤ P

(

max
0≤n≤�t	+1

E∗(n) >
1 + 2 ε

α

log t

log log t

)

≤
�t	+1
∑

n=1

P

(

E∗(n) >
1 + 2 ε

α

log t

log log t

)

≤ (�t	 + 1)P

(

E∗(0) >
1 + 2 ε

α

log t

log log t

)

= (�t	 + 1) exp

(

log

(

P

(

L(0) >
1 + 2 ε

α

log t

log log t

)))

≤ (�t	 + 1) exp
(− (1 + ε) log t

)

= O(t−ε) → 0

as t → ∞, where we used Theorem 3 for the final inequality.
To obtain the necessary lower bound, fix ε ∈ (0, 1/8α) and note that, for such ε,

1− 2 ε + ε2 < 1− 2 ε − ε2 + ε/2α (< 1). Choose τ in the interval (1− 2 ε + ε2, 1−
2 ε − ε2 + ε/2α). Put b(t) = (1/α)(log t/ log log t), c(t) = (1 − 2ε)2 b(t)2, and
k(t) = �tτ �. As in the proof of Theorem 2, we find that, for θ > 0,

P(E(0) ≥ n) ≤ P

⎛

⎝

∑

j≥−1

I ( j + ξ j ≤ 0) ≥ n

⎞

⎠

≤ exp

⎛

⎝−θn +
∑

j≥−1

log
(

P( j + ξ0 ≤ 0)(eθ − 1) + 1
)

⎞

⎠

≤ exp

⎛

⎝−θn +
∑

j≥−1

P( j + ξ0 ≤ 0)(eθ − 1)

⎞

⎠

= exp

⎛

⎝−θn + (eθ − 1)E
�−ξ0�
∑

j=−1

1

⎞

⎠
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≤ exp
(−θn + (eθ − 1)(Eξ−

0 + 3)
)

.

By setting θ = log n, we conclude that

P
(E(0) ≥ n)

) ≤ exp
(− n log n + O(n)

)

so that

P
(E(0) ≥ ε b(t)

) ≤ t−ε/2α (4.5)

for t sufficiently large. In addition, an examination of the proof of Theorem 2 shows
that, under the conditions stated there,

1

z log z
logP

⎛

⎝

�z2�
∑

j=0

I j > z

⎞

⎠→ −α (4.6)

as z → ∞.

We now subdivide the interval [−t, 0] into k(t) subintervals of equal length, and
let r1, r2, ..., rk(t) be the right endpoints of the k(t) subintervals.

Then,

P

(

max
0≤r≤t

[E∗(r) − L∗(r)
]

> (1 − 3 ε) b(t)
)

≥ P

(

max
1≤i≤k(t)

[L(ri ) − E(ri )
]

> (1 − 3 ε) b(t)
)

≥ P

(

max
1≤i≤k(t)

[

(L(ri ) − E(ri )) I
(L∗(ri ) ≤ ε b(t)

)]

> (1 − 3 ε) b(t)
)

≥ P

(

max
1≤i≤k(t)

[L(ri ) I
(E(ri ) ≤ ε b(t)

)]

> (1 − 2 ε) b(t)
)

Let i∗ be the maximizer of L(ri ). We can then write that

P

(

max
0≤r≤t

[E∗(r) − L∗(r)
]

> (1 − 3 ε) b(t)
)

≥ P

(

max
1≤i≤k(t)

L(ri ) > (1 − 2 ε) b(t) , E(ri∗) ≤ ε b(t)
)

= P

(

max
1≤i≤k(t)

L(ri ) > (1 − 2 ε) b(t)
)

− P

(

max
1≤i≤k(t)

L(ri ) > (1 − 2 ε) b(t) , E(ri∗) > ε b(t)
)

≥ P

(

max
1≤i≤k(t)

L(ri ) > (1 − 2 ε) b(t)
)

− P

(

max
1≤i≤k(t)

L(ri )I
(E(ri ) > ε b(t)

)

> (1 − 2 ε) b(t)
)

≥ P

(

max
1≤i≤k(t)

L(ri ) > (1 − 2 ε) b(t)
)
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−
k(t)
∑

i=1

P(L(ri )I (E(ri ) > ε b(t)) > (1 − 2 ε) b(t)).

Recall that L(ri )
D= L(0), (E(ri )

D= E(0)). We conclude that

P

(

max
0≤r≤t

[E∗(r) − L∗(r)
]

> (1 − 3 ε) b(t)
)

≥ P

(

max
1≤i≤k(t)

L(ri ) > (1 − 2 ε) b(t)
)

− k(t)P
(

L(0) > (1 − 2 ε) b(t), E(0) > ε b(t)
)

≥ P

(

max
1≤i≤k(t)

∑

ri−c(t)≤ j≤ri−1

I ( j + ξ j > ri ) > (1 − 2 ε) b(t)
)

− k(t)P
(

L(0) > (1 − 2 ε) b(t)
)

P

(

E(0) > ε b(t)
)

= 1 −
⎛

⎝1 − P

⎛

⎝

∑

−c(t)≤ j≤−1

I ( j + ξ j > 0) > (1 − 2 ε) b(t)

⎞

⎠

⎞

⎠

k(t)

− k(t)P
(

L(0) > (1 − 2 ε) b(t)
)

P

(

E(0) > ε b(t)
)

, (4.7)

where we used again the independence of E(t) andL(t), and that of disjointly indexed
indicator r.v.’s for both of the last two lines displayed above.

Given (4.6), it follows that

P

⎛

⎝

∑

−c(t)≤ j≤−1

I ( j + ξ j > 0) > (1 − 2 ε) b(t)

⎞

⎠ ≥ t−(1−2 ε)−ε2

for t sufficiently large. In view of the choice of τ , we conclude that

⎛

⎝1 − P

⎛

⎝

∑

−c(t)≤ j≤−1

I ( j + ξ j > 0) > (1 − 2 ε) b(t)

⎞

⎠

⎞

⎠

k(t)

→ 0 (4.8)

as t → ∞. On the other hand,

P

(

L(0) > (1 − 2 ε) b(t)
)

≤ t−(1−2 ε)+ε2

for t sufficiently large. Given (4.5) and our choice of τ , we find that

k(t)P
(

L(0) > (1 − 2 ε) b(t)
)

P

(

E(0) > ε b(t)
)

→ 0 (4.9)

as t → ∞. Relations (4.5), (4.7), (4.8) and (4.9) prove the theorem. ��
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Theorem 5 shows that the workload of the S/D/1 queue under critical loading
increases very slowly (at log t/

(

log log t
)

rate), even in the presence of “heavy tailed”
perturbations. This is in sharp contrast to the t1/2 increase in workload that occurs
under critical loading for a G/D/1 queue, in which the arriving traffic is described by
a renewal process with finite positive variance (see Glynn [9]). This result makes clear
the significant positive impact that scheduling can have upon queue performance.

5 Behavior of the S/D/1 workload process in heavy traffic

We now turn to the analysis of the S/D/1 queue when the system has more service
capacity than is needed. We assume, as in Sect. 4, that work is arriving at unit rate (on
average) via deterministic service time requirements of unit size, but give the server
a capacity to process work at the rate 1/ρ with ρ < 1 (so that the queue’s utilization
factor is ρ). Let Wρ(·) be the associated workload process. Then,

Wρ(t) = max
0≤s≤t

[

E(t) − E(s) − L(t) + L(s) + a(t) − a(s) − 1 − ρ

ρ
(t − s)

]

,

where a(t)
�= −(t − �t	) + I (U ≤ t − �t	). As argued in Sect. 4, Wρ(t)

D= Mρ(t),
where

Mρ(t) = max
0≤r≤t

[

E∗(r) − L∗(r) − 1 − ρ

ρ
r + a(0) − a(−r)

]

+ L∗(0) − E∗(0).

(5.1)

Since Mρ(t) ↗ Mρ(∞) a.s. as t → ∞, it follows that Wρ(t) ⇒ Wρ(∞) as t → ∞,

where Wρ(∞)
D= Mρ(∞). Our key result in this section describes the “heavy traffic”

behavior of Wρ(∞) as ρ ↗ 1.

Theorem 6 Suppose that Eξ−
0 < ∞ and that there exist constants c > 0 and α > 1

for which P(ξ0 > x) ∼ c x−α as x → ∞. Then,

log log
(

1
1−ρ

)

log
(

1
1−ρ

) Wρ(∞) ⇒ 1

α
(5.2)

as ρ ↗ 1.

Proof Note that, for 1/2 < ρ < 1,

max
r≥0

[

E∗(r) − L∗(r) − 1 − ρ

ρ
r
]

≥ max
0≤r≤1/(1−ρ)

[

E∗(r) − L∗(r) − 1 − ρ

ρ
r
]
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≥ max
0≤r≤1/(1−ρ)

[

E∗(r) − L∗(r)
]

− 2.

Of course, Theorem 5 establishes that

log log
(

1
1−ρ

)

log
(

1
1−ρ

) max
0≤r≤1/(1−ρ)

[

E∗(r) − L∗(r)
]

⇒ 1

α
(5.3)

as ρ ↗ 1, proving the required lower bound for (5.2).
To prove the upper bound, observe that

max
r≥0

[

E∗(r) − L∗(r) − 1 − ρ

ρ
r
]

≤ max
0≤r≤

(

1
1−ρ

)1+ε

[

E∗(r) − L∗(r)
]

+ max
r≥
(

1
1−ρ

)1+ε

[

E∗(r) − 1 − ρ

ρ
r
]

. (5.4)

Application of Theorem 5 proves that

log log
(

1
1−ρ

)

log
(

1
1−ρ

) max
0≤r≤

(

1
1−ρ

)1+ε

[

E∗(r) − L∗(r)
]

⇒ 1 + ε

α
(5.5)

as ρ ↗ 1. On the other hand,

P

⎛

⎜

⎝
max

r≥
(

1
1−ρ

)1+ε

[

E∗(r) − 1 − ρ

ρ
r

]

≥ 1

⎞

⎟

⎠

≤ P

(

max
n≥0

[

max
0≤s≤1

E∗
(

(

1

1 − ρ

)1+ε

+ n + s

)

−
(

1

1 − ρ

)ε 1

ρ
− 1 − ρ

ρ
n

]

≥ 1

)

≤ P

(

max
n≥1

[

E∗
(

(

1

1 − ρ

)1+ε

+ n

)

− 1

(1 − ρ)ε
− (1 − ρ) n

]

≥ 0

)

, (5.6)

where we used (4.4) for the last inequality. The quantity (5.6) can, in turn, be upper
bounded by

∞
∑

n=0

P

(

E∗(0) ≥ 1

(1 − ρ)ε
+ (1 − ρ) n

)

.

Theorem 3 proves that

P(E∗(0) ≥ t) ≤ exp(−α t)
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for t sufficiently large, and hence the above sum is dominated by

∞
∑

n=0

exp

(

−α

(

1

(1 − ρ)ε
+ (1 − ρ) n

))

= exp

(

− α

(1 − ρ)ε

)

(1 − exp (−α (1 − ρ)))−1

∼ exp

(

− α

(1 − ρ)ε

) (

1

α (1 − ρ)

)

→ 0

as ρ ↗ 1. Relations (5.3), (5.4), (5.5), and (5.6) then prove the theorem, in view of
the fact that ε can be made arbitrarily small. ��

This S/D/1 heavy traffic limit theorem should be contrasted against the analogous
G/D/1 limit theorem, for which the steady-state r.v. Wρ(∞) scales as 1/(1 − ρ) as
ρ ↗ 1; see Glynn [9]. For the G/D/1 queue, time scales of order 1/(1 − ρ)2 are
needed in order that fluctuations of order 1/(1 − ρ) are exhibited (when Wρ(0) = 0)
(see again Glynn [9]). The proof of Theorem 6 shows that the time scale needed for
Wρ to reach equilibrium is of order 1/(1 − ρ), so that the S/D/1 queue equilibrates
more quickly than does the G/D/1 queue.

Acknowledgements The authors are very grateful to the Associate Editor and the two referees for their
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