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Weather forecast information will very likely find
increasing application in the control of future
energy systems. In this paper, we introduce an
augmented state space model formulation with linear
dynamics, within which one can incorporate forecast
information that is dynamically revealed alongside
the evolution of the underlying state variable. We use
the martingale model for forecast evolution (MMFE)
to enforce the necessary consistency properties
that must govern the joint evolution of forecasts
with the underlying state. The formulation also
generates jointly Markovian dynamics that give rise
to Markov decision processes (MDPs) that remain
computationally tractable. This paper is the first to
enforce MMFE consistency requirements within an
MDP formulation that preserves tractability.

This article is part of the theme issue ‘The
mathematics of energy systems’.

1. Introduction
Forecasts are ubiquitous in energy system control
problems and there is reason to believe their importance
will only grow, e.g. in the fast changing electric
sector. This is especially true for forecasts that provide
weather-related information, as weather patterns have
a strong impact on energy demand and increasingly
on (renewable) energy production. The meteorological
community has made significant progress in that field
over the past decades and can now offer several
advantages over purely statistical models [1]. In a
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recent review of forecasting for renewable energy [2], the authors note a rise in demand for
probabilistic forecasting and that the typical renewable energy production use cases for weather
forecasts correspond to timescales of weeks to years, or hours to a day ahead.

Much deeper transformations are in store once very high penetrations of renewables are
reached. A growing number of applications will require storing electricity with durations from 10
to 100 h [3–5]. Wind generation is one example for which low availability levels can be observed
for several consecutive days. The need for longer duration storage will appear more clearly with
penetrations of greater than 70% wind and solar generation on a regional grid—e.g. Fig. 1 from [5].
As soon as longer duration storage becomes available, we will correspondingly need new energy
management strategies. At these timescales, conditioning on forecasts, in particular for weather
variables, will very likely have large impacts on problems of decision making under uncertainty.

Using forecast information in the context of control problems is a difficult general problem
that implicitly appears in many real-life applications. In sequential decision problems, it is often
the case that exogenous forecast information is presented to the controller at regular intervals.
Given the key role of Markov decision processes (MDPs) in the computation of optimal policies
in such settings, a full accounting of the impact of future forecast information requires introducing
the forecasts into the Markov state variable, thereby leading to potential high-dimensional
state representations. Another fundamental issue relates to the fact that the forecasts should be
‘compatible’ with the state variable that is being forecast (e.g. weather), so that the forecasted state
variable (i.e. the state variable for which forecasts are available) and the forecasts themselves
should exhibit self-consistent dynamics. To gain some appreciation for this issue, note that the
s-period forecast must contain information that implicitly ‘peeks’ s periods into the future of the
underlying state space model, so that the s-period forecast implicitly constrains the dynamics of
the underlying model over the next s periods. These constraints need to be built into the joint
dynamics in such a way that the Markov structure is preserved. The preservation of Markov
structure is critical if we wish to be able to compute optimal policies via the use of MDP-based
theory and algorithms.

In this paper, we use the martingale model for forecast evolution (MMFE) as a vehicle for
imposing the appropriate mathematical consistency between the dynamics of the forecasts and
the forecasted state variables. The MMFE framework was introduced and developed by [6–8]
and has since been used extensively by the inventory control and supply chain management
community (e.g. [9] and the references therein). Applications of the MMFE and studies on the
impact of forecasts on decision making can also be found in the energy community, e.g. for
hydraulic reservoir management [10] or wind energy integration [11,12].

To our knowledge, this paper is the first to rigorously introduce forecast model consistency
into MDPs, specifically in the context of linear state space models. This work gives us the first
principled and mathematically consistent framework for the incorporation of forecasts into MDPs
in the setting of state space models with linear dynamics, and uses no ad hoc elements to add
forecast information into the MDP setting. Linear state space models are widely applied across
many disciplines, and can even represent the linearized dynamics associated with nonlinear
structure [13].

We note that forecasts must depend on a richer information filtration than that associated
with the forecasted state variable, because an optimal MDP policy computed from the forecasted
state variable already fully uses all the information associated with the forecasted state variable’s
filtration. In our setting, the extra information that enters the forecasts is the meteorological
data available to the forecasters that is unobserved by the energy system manager. Thus, a key
contribution of our paper is the development of an MMFE framework in which one can rigorously
discuss, via the use of the language of σ -algebras, the different ways in which forecast information
can be incorporated into an MDP framework. In our carefully chosen formulation, each of these
different approaches for incorporating MMFE forecasts leads to a different, but computationally
tractable, MDP.

Our first new MDP (§4) incorporates the ‘static’ forecast information that is available to the
decision-maker at the beginning of the decision horizon, and leads to an MDP that has the same
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state space as for the forecasted state variable, but with transition probabilities that are non-
stationary as a consequence of the initial set of forecasts. The model has the property that when
one conditions the future dynamics of the forecasted state variable on the forecast information
available at the beginning of the decision horizon, the Markov structure is preserved with no
need to increase the dimensionality of the state representation. In §5, we develop an MDP in
which the forecasts are dynamically updated over time, along with the forecasted state variable.
Thus, this formulation explicitly models the additional forecasting information that is revealed to
the decision-maker over time. In this dynamic forecasting formulation, one needs to expand the
state space of the MDP to incorporate the forecast evolution, but the MDP has stationary transition
probabilities. Our final MDP is a formulation in which new r-period lookahead forecasts are made
available to the decision-maker over time, in addition to an extended set of static forecasts that
provides forecast information more than r periods into the future. This MDP that combines both
static and dynamic forecasts is introduced in §6, and leads to both an enlarged state space and
non-stationary transition probabilities.

An alternative means of using the availability of forecasts in the control setting is to apply the
ideas of model predictive control (MPC). MPC has become a standard tool for many industrial
applications and provides a practical way of dealing with forecasts [14–16]. In this approach, one
uses the forecasts available to solve a sequence of MDP formulations over time. At each decision
epoch, a conventional MDP that incorporates the forecasts available is solved, the optimal first
period action is taken, and this process is repeated at the next decision epoch. In particular, the
MDPs that are used by MPC at each decision epoch do not explicitly model, within the MDP,
the fact that the decision-maker will have available a new set of forecasts at each future decision
epoch within the decision horizon associated with the MDP. This is also the case in adaptations
of standard MPC to the setting where the forecasts contain probabilistic information [16]. By
contrast, the MDPs introduced by this paper model the fact that the forecasts are continually
‘refreshed’ over the MDP’s decision horizon, and do so via a formulation that preserves the
computational tractability of the MDP.

In §7, we introduce a simple energy system control model that controls interior building
temperatures in an external weather environment for which forecasts are available. In the
presence of a quadratic cost structure, we are able to use the existing linear-quadratic stochastic
control theory to compute the optimal value associated with MDPs for the energy system in which
no forecast information is available and also the optimal value for the dynamic forecasting MDP
of §5. This allows us to analyse the degree of improvement that can be obtained by incorporating
dynamic forecast information into the MDP formulation in the context of our simple energy
system example. Section 8 concludes the paper with a discussion of additional research questions
that this paper motivates.

2. Markov decision processes with no forecasts
In this section, we review the basic MDP framework that can be used when making sequential
decisions involving an energy system that is affected by the weather. Our formulation here does
not take advantage of any forecast information that may be available. We model the dynamics
in discrete time, and take the view that the weather variables Wn at time n can be represented
by an R

d-valued random variable (rv). Given our MDP modelling perspective, we assume that
(Wn : n ∈ Z) is a stationary R

d-valued stochastic process that enjoys the Markov property, so that

Wn+1 = f (Wn, Zn+1) (2.1)

for n ∈ Z, where (Zn : n ∈ Z) is an independent and identically distributed (iid) sequence of R
m1 -

valued rv’s and f is a (deterministic) mapping from R
d × R

m1 into R
d. The stationarity is intended

here to simplify the exposition and is (at best) only approximately valid in the weather setting. For
example, in examining daily weather records, it may be that such time series look approximately
stationary over time scales of (say) one month. Given that our decision horizon is typically much
shorter than a month, the stationarity assumption will often be a reasonable one in practice.
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For the energy system’s control, we model its state evolution via an R
l-valued sequence (Xn :

n ∈ Z) for which

Xn+1 = φ(Xn, An, Wn+1, Vn+1) (2.2)

for n ∈ Z, where (Vn : n ∈ Z) is an iid sequence of R
m2 -valued rv’s independent of the Zj’s, An is an

A-valued action taken at time n, and φ is a deterministic mapping. The action An must be adapted
to the history Fn � σ ((Wj, Xj) : j ≤ n), so that it can depend only on previously observed values of
the weather and control system state. The joint dynamics (2.1) and (2.2) assume (reasonably) that
the weather affects the control system dynamics, but not vice-versa.

We now describe the dynamic program (DP) backwards dynamic recursion that is commonly
used to compute the optimal A∗

j ’s, when optimizing the control of such an energy system over a
finite horizon [0, t + 1). Throughout this paper, we take n = 0 as the time at which the sequence of
control actions will be computed. Suppose that our goal is to minimize the total expected cost of
running the energy system over [0, t + 1), namely

E

⎡
⎣ t∑

j=0

c(Xj, Aj, Wj+1)

∣∣∣∣∣∣ X0 = x, W0 = w

⎤
⎦ (2.3)

over all Fj-adapted controls (Aj : 0 ≤ j ≤ t). Here c(Xj, Aj, Wj+1) represents the one-period cost
for running the energy system over [j, j + 1). For an (appropriately integrable) function h with
domain R

l × R
d, define the operator

(Pah)(x, w) =
∫
R

m1

∫
R

m2
h(φ(x, a, f (w, z), v), f (w, z))P(Z1 ∈ dz)P(V1 ∈ dv) (2.4)

and set

c̃(x, a, w) =
∫
R

m1
c(x, a, f (w, z))P(Z1 ∈ dz) (2.5)

The DP value functions (vi(·) : 0 ≤ i ≤ t) are then computed via the recursion

vi(x, w) = min
a∈A

[
c̃(x, a, w) + (Pavi+1)(x, w)

]
(2.6)

for 0 ≤ i < t, subject to the terminal condition

vt(x, w) = min
a∈A

c̃(x, a, w). (2.7)

Assuming that vt, vt−1, . . . , v0 are recursively computed via (2.6) and (2.7) , we then select a∗
i (x, w)

(a∗
t (x, w)) as any minimizer (assumed to exist) of the right-hand side of (2.6) (2.7), and put A∗

i =
a∗

i (Xi, Wi) for 0 ≤ i ≤ t. Under suitable integrability hypotheses, it is well known that (A∗
i : 0 ≤ i ≤ t)

is then the desired cost-minimizing adapted optimal control, e.g. [17].

3. The mathematical structure of forecasts
In order to build forecast information into the Markov model of §2, we review the mathematical
structure of forecasts, so that we can ensure that the model combining Markovian state dynamics
and forecast information respects the appropriate mathematical constraints. To this end, we
assume that E||Wn||2 < ∞ (where || · || is the Euclidian norm). We model the (point) forecast
Fn|k of Wn available at time k ≤ n as the rv E[Wn|Gk], where Gk is a σ -algebra representing the
information available to the forecaster. Since weather forecasters have available vastly more
weather information than does the energy system manager, we expect that Gk represents a strictly
richer ‘information set’ than FW

k � σ (Wj : j ≤ k). Consequently, we require Gk to be strictly larger
than FW

k . In fact, if Gk =FW
k , the availability of forecasts will offer no advantage over the optimal

control (A∗
j : 0 ≤ j ≤ t) computed in §2, since that policy is already guaranteed to be optimal over

all FW
k -adapted policies.
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We note that Fn|n = Wn and that the tower property of conditional expectation implies that

E[Fn|k+1|Gk] = E
[
E[Wn|Gk+1]|Gk

]
= E[Wn|Gk]

= Fn|k, (3.1)

so that (Fn|k : k ≤ n) is a martingale (in k) adapted to the Gk’s for each fixed n ∈ Z. For k ≤ n, let

Dn|k = Fn|k − Fn|k−1 (3.2)

be the k’th martingale difference associated with the martingale (Fn|k : k ≤ n). The square
integrability of the Wn’s implies that Dn|kDm|j is integrable and

E[Dn|kDm|j|Gj] = Dm|jE
[
E[Dn|k|Gk]|Gj

] = 0 (3.3)

for j ≤ k, so that

EDn|kDm|j = 0 (3.4)

for j �= k and n ≥ k, m ≥ j. This orthogonality of Dn|k and Dm|j is a key property of such martingale
differences. As was discussed in the Introduction, the fact that such martingale structure is a
reasonable requirement to impose on forecasts has been noted previously [6–8,12].

4. Markov decision processes incorporating a static forecast
We now wish to build a tractable model under which (Wk : 0 ≤ k ≤ t + 1) evolves over the decision
horizon, conditional on the forecasts (Fn|0 : n ≥ 0) available at the outset of the decision interval.

To this end, let Kn � σ (Fm+j|m : j ∈ Z+, m ≤ n) denote the σ -algebra associated with the forecasts
collected by time n, and note that Kn ⊆ Gn, the σ -algebra associated with all the information
observed by the forecaster by time n. We now wish to construct an MDP formulation appropriate
to decision-making by the energy system manager when she has access to the information
available both in Fn and K0. In other words, her decision at time n must be Fn ∨ K0 adapted,
where B1 ∨ B2 ∨ · · · ∨ Bl is our notation for the smallest σ -algebra containing B1, B2, . . . ,Bl. We
call this a static forecast formulation, since the decision maker only uses the forecasts available at
time 0 in making decisions.

In particular, we shall build a model under which the (conditional on G0) Markov property

P(Wn+1 ∈ ·|G0, Wj : j ≤ n) = P(Wn+1 ∈ ·|K0, Wn) (4.1)

holds for 0 ≤ n ≤ t. This ensures that

P(Wn+1 ∈ ·|K0, Wj : 0 ≤ j ≤ n) = P(Wn+1 ∈ ·|K0, Wn). (4.2)

We will now formulate a flexible model that satisfies both the ordinary Markov property
(as expressed through the recursion (2.1)) and the conditional Markov property (as expressed
through (4.1)). In particular, we now specialize the stochastic recursion (2.1) to a linear state space
model of the form

Wn+1 = GWn + Zn+1, (4.3)

where G is a deterministic d × d matrix having spectral radius less than 1, and for which the
Zi’s are iid R

d-valued rv’s for which E||Z1||2 < ∞. Then, EWn = (I − G)−1
EZ1 for n ∈ Z. Let W̃n =
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Wn − EW0 and Z̃n = Zn − EZ1 and note that (4.3) implies that

W̃n+1 = GW̃n + Z̃n+1 (4.4)

for n ∈ Z. We further assume that for each n ∈ Z, we can write Z̃n in the form

Z̃n =
∞∑

j=0

εn(n − j), (4.5)

where the sum in (4.5) is assumed to converge a.s. and in mean square. The family of rv’s (εn( j), j ≤
n, n ∈ Z) is assumed to satisfy:

A1. The collection (εn(n − j) : n ∈ Z, j ∈ Z+) is a family of independent mean zero square
integrable rv’s.

A2. εn(n − j) D= ε0(−j), for n ∈ Z (where D= means ‘equality in distribution’).

Remark. The εn(k) disturbance models the information gathered by the forecaster at time k that
is relevant to the forecast for time n. In view of this interpretation, it is natural that we then ‘model’
the σ -algebra Gn of §3 as Gn � σ (εm( j) : j ≤ n, m ≥ j) in the context of this state space model. In this
case Gn =Kn, as we will see later in this section, although we note that in general Gn could be
strictly richer than Kn. We further note that A2 implies that the distribution for εn(k) only depends
on n − k. A1 and A2 ensure that (Z̃n : n ∈ Z) is an iid sequence of mean zero square integrable rv’s.

If we set Hn � σ (εn(m − j) : m ≤ n, j ∈ Z+), we note that FW
n � σ (Wj : j ≤ n) ⊆Hn and that the

independence of (εn+1(n + 1 − j) : j ∈ Z+) from Hn ensures that

P(Wn+1 ∈ ·|Hn) = P(Wn+1 ∈ ·|Wn). (4.6)

It follows that the policy (A∗
n : 0 ≤ n ≤ t) computed in §2 is optimal not only over the Fn-adapted

policies but also over the Hn ∨ Fn-adapted policies.
Furthermore, for k ≤ n,

Wn = EW0 + Gn−kW̃k +
n−k−1∑

i=0

GiZ̃n−i

= EW0 + Gn−kW̃k +
n−k−1∑

i=0

Gi
∞∑

j=0

εn−i(n − i − j)

= EW0 + Gn−kW̃k +
n−k−1∑

i=0

Gi
n−k−1∑
r=−∞

εn−i(r)

= EW0 + Gn−kW̃k +
k∑

r=−∞

n−k−1∑
i=0

Giεn−i(r) +
n∑

r=k+1

n−r∑
i=0

Giεn−i(r). (4.7)

We recall that Gn contains the sequence of rv’s (εm( j) : j ≤ n, m > n) that are independent of Hn

(and hence Fn). This represents the additional information available to the forecaster about the
weather in future time periods that goes beyond the predictive information present in observing
Wn that is locally available to the energy system manager. Figures 1 and 2 illustrate the differences
in the information sets Hn and Gn.

We then note that (4.7) implies that for n ≥ k,

Fn|k = E[Wn|Gk]

= EW0 + Gn−kW̃k +
k∑

r=−∞

n−k−1∑
i=0

Giεn−i(r), (4.8)
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Figure 1. Weather-related information set associated withHn. (Online version in colour.)

Figure 2. Weather-related information set associated withGn. (Online version in colour.)

and the corresponding martingale differences are given by

Dn|k =
n−k∑
i=0

Giεn−i(k). (4.9)

In addition, we note that (4.8) implies that

Fn+1|k − EW0 = G

⎛
⎝Gn−kW̃k +

k∑
r=−∞

n−k−1∑
i=0

Giεn−i(r)

⎞
⎠ +

k∑
r=−∞

εn+1(r) (4.10)

so that

Fn+1|k − EW0 = G(Fn|k − EW0) +
k∑

r=−∞
εn+1(r). (4.11)

Since (I − G)EW0 = EZ0, it follows that

Fn+1|k = GFn|k + Yn+1(Gk) (4.12)

where

Yn+1(Gk) � EZ0 +
k∑

r=−∞
εn+1(r). (4.13)

As a consequence of (4.12), we see that the ‘forward forecasts’ from time k are correlated, and form
(for each k) their own state space model with independent (but not identically distributed) ‘noise’
rv’s (Yn(Gk) : n > k), initialized at Fk|k = Wk. Such correlation in the forward forecasts is clearly
desirable from a modelling perspective.
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Figure 3. Weather-related information set associated withHn ∨ G0. (Online version in colour.)

We now turn to the conditional dynamics of (Wn : n ≥ k), conditional on Gk. Define the Wn(Gk)’s
via

P
(
(Wn(Gk) : n ≥ k) ∈ ·) = P

(
(Wn : n ≥ k) ∈ ·|Gk

)
. (4.14)

The relations (4.7) and (4.8) imply that

Wn+1(Gk) − Fn+1|k =
n+1∑

r=k+1

n+1−r∑
i=0

Giεn+1−i(r)

= G
n∑

r=k+1

n−r∑
j=0

Gjεn−j(r) +
n+1∑

r=k+1

εn+1(r)

= G(Wn(Gk) − Fn|k) +
n+1∑

r=k+1

εn+1(r). (4.15)

It follows that for n ≥ k,
Wn+1(Gk) = GWn(Gk) + Zn+1(Gk), (4.16)

where

Zn+1(Gk) = Fn+1|k − GFn|k +
n+1∑

r=k+1

εn+1(r). (4.17)

Consequently, (Wn(Gk) : n ≥ k) is (conditional on Gk) a Markov chain that is a linear state space
model driven by a sequence (Zn(Gk) : n > k) of conditionally independent (but non-identically
distributed) rv’s. For a given k, the variance of the Zn(Gk) sequence (conditional on Gk) increases
with n, so the ‘uncertainty plume’ correspondingly grows with time, as one would expect.

With (4.16) in hand, we can now modify the value function recursion of §2 so as to compute the
optimal policy when the energy system decision maker has available at time n ≥ 0 the information
present in Fn ∨ K0, the smallest σ -algebra containing both Fn and the forecasts collected up to
time 0 by the manager. The structure of our model implies that the policy that is optimal over Fn ∨
Hn ∨ G0-adapted policies is actually Fn ∨ K0-measurable. Figure 3 illustrates the weather-related
information set associated with Hn ∨ G0.

Our goal is to minimize
t∑

j=0

E[c(xj, Aj, Wj+1)|G0, X0] (4.18)

over all Fn ∨ Hn ∨ G0-adapted policies (Aj : 0 ≤ j ≤ t). For 1 ≤ i ≤ t, define the operator Pa,i(G0) via

(Pa,i(G0)h)(x, w) =
∫
Rd

∫
R

m2
h(φ(x, a, Gw + z, v), Gw + z)P(Zi(G0) ∈ dz)P(v1 ∈ dv) (4.19)
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and set
c̃i(G0, x, a, w)

∫
Rd

c(x, a, Gw + z)P(Zi(G0) ∈ dz) (4.20)

for 1 ≤ i ≤ t + 1. The appropriate value function backwards recursion in this setting is then given
by

vi(x, w) = min
a∈A

[c̃i+1(G0, x, a, w) + (Pa,i+1(G0)vi+1)(x, w)] (4.21)

for 0 ≤ i < t, subject to the terminal condition

vt(x, w) = min
a∈A

c̃t+1(G0, x, a, w). (4.22)

As in §2, an optimal Fn ∨ Hn ∨ G0-adapted policy is then given by A∗
i = a∗

i (Xi, Wi) for 0 ≤ i ≤ t,
where a∗

i (x, w) is any minimizer of the right-hand side of (4.21) and (4.22).

5. Markov decision processes incorporating a dynamic forecast
In this section, we discuss how our energy system manager should modify her decision-making
when she has access to a new set of forecasts each day. More precisely, suppose that at each
time k through the decision horizon, the decision maker receives the forecasts (Fn|k : n ≥ k) prior to
making the decision for that period. Now, the decision made at time k can depend on both Wk and
the Fn|k’s. In particular, the decision can now be Fk ∨ Kk-adapted. Since there is more information
about (Wn : n ≥ k) available when one uses the forecasts, this will typically modify the optimal
control relative to the previously discussed formulations of §2 and 4. Since the forecasts used by
the decision maker are constantly updated as k increases, we refer to this setting as a dynamic
forecast formulation.

Let Fn = (Fn+j|n : j ∈ Z+) be the entire set of forward forecasts issued at time n (and computed
from the history Gn). Recall that Wn = Fn|n. We claim that the infinite-dimensional process (Fn :
n ∈ Z) is a Markov chain. To see this, observe that (4.9) implies that

Fn+1+j|n+1 = Fn+j+1|n + Dn+j+1|n+1

= Fn+j+1|n +
j∑

i=0

Giεn+1+j−i(n + 1) (5.1)

for j ≥ 0. Since the collection of rv’s (εn+1+j(n + 1) : j ≥ 0) is independent of Gn, it follows that (Fn :
n ∈ Z) is a Markov chain. One important and related characteristic of our model is that the Markov
chain can be initialized from an arbitrary set of values. This means that our model is consistent
with any set of forecast values specified at time 0.

Of course, we cannot effectively compute optimal policies with a Markov chain having an
infinite dimensional state space. So, we need to truncate the set of forecasts that we use within
our formulation in order to generate a finite dimensional Markov state variable. In particular,
suppose that Gn,r is the smallest σ -algebra containing both Hn and the σ -algebra σ (εn+j(k) : k ≤
n, 1 ≤ j ≤ r), so that it contains only the forecaster’s information about the r future forecasts for
periods n + 1, . . . , n + r, in addition to the information associated with Hn. Figure 4 illustrates the
weather-related information set associated with Gn,r. We note that Gn ⊇ Gn,r and that for 1 ≤ j ≤ r,
Fn+j|n = E[Wn+j|Gn] is a function only of rv’s associated with Gn,r, and hence is Gn,r-measurable.

Using the information associated with Gn,r, we can use the recursion in (5.1) for 0 ≤ j < r. For
j = r, we can use (4.12) to expand Fn+1+r|n, which yields the recursion

Fn+1+r|n+1 = Fn+1+r|n + Dn+1+r|n+1

= GFn+r|n + EZ0 +
n∑

j=−∞
εn+1+r( j) +

r∑
i=0

Giεn+1+r−i(n + 1). (5.2)

As a result, Fn+1,r � (Fn+1+j|n+1 : 1 ≤ j ≤ r) is a linear function of Fn,r and a collection of rv’s
(εn+1+i(n + 1), εn+1+r( j) : 1 ≤ i ≤ r, j ≤ n) that are independent of Gn,r. It follows that (Fn,r : n ∈ Z)
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Figure 4. Weather-related information set associated withGn,r . (Online version in colour.)

is an rd-dimensional Markov chain. It is also easily seen that it is a Markov chain with stationary
transition probabilities. Furthermore, Wn+1 = Fn+1|n+1 is a simple stochastic function of Fn,r,
specifically

Wn+1 = Fn+1|n + εn+1(n + 1), (5.3)

so that it can easily be generated from Fn,r simultaneously with Fn+1,r. We can now turn to the
computation of the optimal policy in this setting. In particular, we seek the Fn ∨ Gn,r-adapted
policy that minimizes

t∑
j=0

E[c(Xj, Aj, Wj+1)|X0, F0,r] (5.4)

over all Fn ∨ Gn,r-adapted policies (An : 0 ≤ n ≤ t). Define the operator Pa (acting on integrable
functions h) via

(Pah)(x, f ) = E[h(φ(x, a, W1, V1), F1,r)|F0,r = f )] (5.5)

and let

c̃(x, a, f ) = E[c(x, a, W1)|F0,r = f )]. (5.6)

We can then compute the associated value functions for this formulation via the backwards
recursion

vi(x, f ) = min
a∈A

[c̃(x, a, f ) + (Pavi+1)(x, f )] (5.7)

for 0 ≤ i < t, subject to the terminal condition

vt(x, f ) = min
a∈A

c̃(x, a, f ). (5.8)

The optimal Fn ∨ Gn,r-adapted action A∗
n to be taken in period n is then given by A∗

n = a∗
n(Xn, Fn,r),

where a∗
n(x, f ) is the minimizer of the right-hand side of (5.7) or (5.8) corresponding to vn(x, f ) for

0 ≤ n ≤ t.

Remark 5.1. We note that the use of the reduced Markov state variable Fn,r for the weather
variables (as opposed to using the state variable (Wn, Fn,r)) is possible only because we made the
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Figure 5. Weather-related information set associated withG0 ∨ Gn,r . (Online version in colour.)

modelling decision in §2 to express the control state recursion in the form

Xn+1 = φ(Xn, An, Wn+1, Vn+1) (5.9)

and cost c(Xm, An, Wn+1) in terms of Wn+1 rather than Wn. If we had instead modelled the control
state evolution via

Xn+1 = φ(Xn, An, Wn, Vn+1) (5.10)

and/or cost c(Xm, An, Wn), then the decision maker at time n would need to know Wn, and Wn

would then need to be added to the Markov state variable for the weather. Since either choice, Wn

or Wn+1, is typically reasonable from a modelling viewpoint, we choose to use Wn+1 in order to
obtain this state reduction.

6. Markov decision processes incorporating both static and dynamic forecasts
For computational tractability, the value of r used in Fn,r will typically need to be small. But
weather forecasters will typically provide forward forecasts over a much larger number of
periods. In order to (partially) account for these longer range forecasts (without expanding our
state description for the MDP), we now build a formulation that takes into account all the forward
forecasts that are present in G0 (i.e. the static forecasts that are available at time 0), as well as
the dynamic forecasts associated with Gn,r for 1 ≤ n ≤ t. Thus, in this formulation, the decision
maker at time n has access to Xn, Fn+1|n, . . . , Fn+r|n and Fj|0 for j ≥ 1. Figure 5 illustrates the
weather-related information set corresponding to G0 ∨ Gn,r.

We now turn to the conditional dynamics of (Fn,r : n ≥ 0), conditional on G0. Define the
Fn,r(G0)’s via

P((Fn,r(G0) : n ≥ 0) ∈ ·) = P((Fn,r : n ≥ 0) ∈ ·|G0) (6.1)

Because the martingale difference terms on the right-hand side of (5.1) are independent of G0,

Fn+1+j|n+1(G0) = Fn+1+j|n(G0) + βn+1,j(G0) (6.2)

for 0 ≤ j < r, where βn+1,j(G0) is independent of G0 ∨ Gn,r and

βn+1,j(G0) D=
j∑

i=0

Giεn+1+j−i(n + 1). (6.3)

On the other hand, the right-hand side of (5.2) contains terms that are G0-measurable. In
particular,

Fn+1+r|n+1(G0) = GFn+r|n(G0) + EZ0 + βn+1,r(G0), (6.4)
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where

βn+1,r(G0) =
0∑

j=−∞
εn+1+r( j) + Λn+1,r (6.5)

where
∑0

j=−∞ εn+1+r( j) is G0-measurable and Λn+1,r is independent of G0 ∨ Gn,r, where

Λn+1,r
D=

n∑
j=1

εn+1+r( j) +
r∑

i=0

Giεn+1+r−i(n + 1). (6.6)

Since Fn+1,r(G0) can be expressed as a function of Fn,r(G0) and a family of rv’s βn+1(G0) �
(βn+1,j(G0) : 1 ≤ j ≤ r) that are independent of H0

n, it follows that (Fn,r(G0) : n ≥ 0) is (conditional on
G0) a Markov chain. However, as with the Markov chain of §4, the conditioning on G0 makes this a
Markov chain with non-stationary transition probabilities; see (6.5) in particular. Furthermore, as
in §4, the variance of βn+1,r(G0) (conditional on G0) increases in n, so that the ‘uncertainty plume’
increases over time.

We now turn to the computation of a policy (A∗
n : 0 ≤ n ≤ t) that minimizes

E[
t∑

j=0

c(Xj, Aj, Wj+1)|X0,G0] (6.7)

over all policies (An : 0 ≤ n ≤ t) that are H0
n-adapted. For f = (f1, f2, . . . , fr), define the operator

Pa,i(G0) (acting on integrable functions h) via

(Pa,i(G0)h)(x, f ) =
∫
R(r+1)d

∫
R

m2
h(φ(x, a, w, v), y1, y2, . . . , yr)P(f1 + βi,0(G0) ∈ dw,

fj+1 + βi,j(G0) ∈ dyj, 1 ≤ j ≤ r, Gfr + EZ0 + βi,r(G0) ∈ dyr)P(V1 ∈ dv)
(6.8)

and set

c̃i(G0, x, a, f )
∫
Rd

c(x, a, w)P(f1 + βi,0(G0) ∈ dw) (6.9)

for 1 ≤ i ≤ t + 1. As in §5, the value function recursion takes the form

vi(x, f ) = min
a

[c̃i+1(G0, x, a, f ) + (Pa,i(G0)vi+1)(x, f )] (6.10)

for 1 ≤ i < t, with terminal condition

vt(x, f ) = min
a

c̃t(G0, x, a, f ). (6.11)

Again, the optimal H0
n-adapted policy is then given by A∗

i = a∗
i (Xi, Fi) for 0 ≤ i ≤ t, where a∗

i (x, f )
is any minimizer of the right-hand side of (6.10) and (6.11).

7. An energy control system example
In this section, we illustrate some of our theory in the setting of a simple energy control system
example. In particular, we let Wn represent the ambient outdoors temperature at the beginning
of period n at the site of the energy system that is under control. We assume that (Wn : n ∈ Z) is a
real-valued Markov chain corresponding to a first-order autoregressive process, so that

Wn+1 = gWn + Zn+1 (7.1)

for n ∈ Z, where g ∈ (0, 1) and the Zi’s are iid with EZ2
0 < ∞. To help interpret g, we note

that corr(Wj, Wj+n) = gn, so that the number of periods for the correlation to decay to 0.1 is
approximately log(0.1)/ log g.

We now describe our simplified energy control system corresponding to heating and cooling
a building. We assume that the difference �n(� Xn − Wn) between the internal (Xn) and external
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(Wn) temperatures is ‘mean reverting’, so that the �n’s satisfy their own first order autoregression.
In particular, in the absence of control,

�n+1 = ρ�n + Vn+1, (7.2)

where the Vj’s are iid and independent of the Zk’s with EV2
0 < ∞. We expect the building to

equilibrate more rapidly than does the outdoors temperature, so we expect ρ ∈ (0, g). Substituting
(7.1) into (7.2), we find that in the presence of the control An,

Xn+1 = (g − ρ)Wn + ρXn + Zn+1 + Vn+1 + An (7.3)

for n ∈ Z.
We now wish to take advantage of the powerful toolset that is available when our state space

model has a quadratic cost structure. We assume that our goal is to minimize the expected infinite
horizon discounted cost given by

E

∞∑
j=0

αj
[
(Xj − τ )2 + κA2

j

]
(7.4)

over all Fj-adapted controls, where κ > 0, α ∈ (0, 1) is the discount factor, and τ is the reference
temperature to which we are trying to steer the system. To incorporate τ into the linear/quadratic
formulation, we add Yj as a state variable for which Yj = Yj−1 for j ∈ Z. Furthermore, we let W̃j =
Wj − (1 − g)−1

EZ0, Z̃j = Zj − EZ0, X̃j = Xj − τ0, τ0 = (1 − g)−1
EZ0 + (1 − ρ)−1

EV0 and Ṽj = Vj −
EV0, and rewrite (7.1) and (7.3) in terms of the mean zero ‘noise’ rv’s Z̃n+1 and Ṽn+1:

W̃n+1 = gW̃n + Z̃n+1

and X̃n+1 = (g − ρ)W̃n + ρX̃n + Z̃n+1 + Ṽn+1 + An.

⎫⎬
⎭ (7.5)

Furthermore, we can express Xn − τ as X̃n − Yn, where we take Y0 = τ − τ0.
Set χn = (W̃n, X̃n, Yn)T and ξn = (Z̃n, Z̃n + Ṽn, 0)T, and observe that we can express our control

system dynamics as

χn+1 = Aχn + BAn + ξn+1 (7.6)

for n ≥ 0, where

A =

⎛
⎜⎝

g 0 0
g − ρ ρ 0

0 0 1

⎞
⎟⎠ , B =

⎛
⎜⎝

0
1
0

⎞
⎟⎠ . (7.7)

The objective (7.4) can then be re-expressed as

E

∞∑
j=0

αj[χT
j Qχj + AT

j RAj], (7.8)

where

Q =

⎛
⎜⎝

0 0 0
0 1 −1
0 −1 1

⎞
⎟⎠ , R = κ . (7.9)

We observe that this model does not satisfy the standard controllabillity hypothesis that is
commonly used within the literature on state space models with quadratic costs (in particular,
the Yj’s are not controllable). Nevertheless, the special problem structure here allows us to follow
the approach on pp. 231–233 of [18] to obtain the solution of this stochastic control problem in
closed form.
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In particular, define the optimal return operator T (defined on suitably integrable functions h)
via

(T h)(z) = min
a

[zTQz + a2κ + αEh(Az + Ba + ξ1)] (7.10)

for z = (w, x, y)T and note that this stochastic control problem corresponds to a positive dynamic
program; see p. 214 of [18]. Hence, if v0(x) ≡ 0, it follows that T v0 ≥ v0, thereby implying that
vk ≡ T kv0 ≥ T k−1v0 = vk−1, so that the vk’s are functions that are monotone increasing in k. Hence,

v∞ = lim
k→∞

vk (7.11)

exists. Furthermore, if h0(z) ≡ 0 and

hk+1(z) = zTQz + αEhk(Az + ξ ) (7.12)

for k ≥ 0, vk ≤ hk for k ≥ 0. As for the vk’s, (hk : k ≥ 0) is also a monotone sequence so that hk → h∞.
The limit h∞ is the value function corresponding to the policy in which Ak = 0 for k ≥ 0. Since
|g| < 1 and |ρ| < 1, the associated stochastic dynamical system is stable and h∞ is finite-valued.
We can therefore conclude that v∞ is finite-valued.

We further note that if J = (J(i, k) : 1 ≤ i, k ≤ 3) is a symmetric non-negative definite matrix,
the scalar αBTJB + R = αJ(2, 2) + κ > 0 (since the diagonal entries of such a matrix must be
non-negative), so that αBTJB + R is guaranteed to be non-singular. As a result, the matrix
recursion

Kj+1 = AT(αKj − α2KjB(αBTKjB + R)−1BTKj)A + Q, (7.13)

subject to K0 = Q, is well defined, and

vj+1(z) = zTKjz +
j−1∑
i=0

αj−i
EξT

1 Kiξ1; (7.14)

see p. 231 of [18]. By following the argument on p. 156 of [19], we can conclude that there exists
a finite-valued non-negative definite matrix K∞ = (K∞(i, k) : 1 ≤ i, k ≤ 3) for which Kj → K∞ as
j → ∞. Taking limits in (7.13), we find that K∞ satisfies the matrix Ricatti equation

K∞ = AT(αK∞ − α2K∞B(αBTK∞B + R)−1BTK∞)A + Q. (7.15)

Furthermore, as seen from p. 232 of [18], we conclude that the optimal value function for the
control problem is

v∞(z) = zTK∞z + α

1 − α
EξT

1 K∞ξ1, (7.16)

and the associated optimal action A∗
j to be taken at time j is

A∗
j = −α(αBTK∞B + κ)−1BTK∞Aχj

= −α(αK∞(2, 2) + κ)−1[K∞(2, 1)gW̃j + K∞(2, 2)((g − ρ)Wj + ρX̃j)

+ K∞(3, 3)[τ − τ0]]. (7.17)

We now turn to analysing exactly the same MDP when the dynamic forecasts of §5 are
incorporated into the problem. To simplify our exposition, we set r = 2, so that our energy system
manager has access to the forecasts Fn+1|n and Fn+2|n (in addition to Wn and Xn) at the time
that the decision at time n is taken. Put F̃n+i|n = Fn+i|n − EZ0/(1 − g), for i = 1, 2 and n ∈ Z. If
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˜
χn = (W̃n, F̃n+1|n, F̃n+2|n, X̃n, Yn)T, §5’s discussion establishes that

˜
χn+1 =A

˜
χn + BAn +

˜
ξn+1, (7.18)

where

A=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 g 0 0

−ρ 1 0 ρ 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

and B =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎠

(7.19)

and

˜
ξn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

εn+1(n + 1)
εn+2(n + 1) + gεn+1(n + 1)

εn+3(n + 1) + gεn+2(n + 1) + g2εn+1(n + 1) +
n∑

j=−∞
εn+3( j)

εn+1(n + 1) + Ṽn+1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.20)

We can also re-express the objective (7.4) in terms of the
˜
χj’s, namely

E

∞∑
j=0

αj
[
˜
χT

j Q˜
χj + AjRAj

]
, (7.21)

where

Q=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 −1
0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎠

. (7.22)

We now assume a specific probability structure on the εn+j(n)’s and Vn’s, namely that the εn+j(n)’s
and Vn’s are independent normally distributed rv’s with var εn+j(n) = σ 2γ 2j and var Vn � σ 2

V ,
where γ ∈ (0, 1). With this choice, the

˜
ξn’s are iid multivariate normally distributed random

vectors with common matrix covariance C defined by

C =

⎛
⎜⎜⎜⎜⎜⎝

σ 2 σ 2g σ 2g2 σ 2 0
σ 2g σ 2(γ 2 + g2) σ 2(γ 2g + g3) σ 2g 0

σ 2g2 σ 2(γ 2g + g3) σ 2(γ 4 + γ 2g2 + g4 + γ 6

1−γ 2 ) σ 2g2 0

σ 2 σ 2g σ 2g2 σ 2 + σ 2
V 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (7.23)

The solution of the stochastic control problem defined by the quadratic objective (7.21) subject to
the state-specific dynamics (7.18) follows the same lines as for the control system (7.6) and (7.8)
without forecasts. In particular, there exists a solution to the matrix Ricatti equation

K∞ =AT(αK∞ − α2K∞B(αK∞(4, 4) + κ)−1BTK∞)A + Q, (7.24)

where K∞(4, 4) is the (4, 4) entry of K∞ and the optimal value function ˜vn for this MDP is given
by

˜v∞(˜z) = ˜z
TK∞˜z − α

1 − α
E

˜
ξTK∞

˜
ξ , (7.25)

where ˜z = (w, f1, f2, x, y)T. Furthermore, the optimal action adapted to Gn,r is given by

A∗
n = −α(αK∞(4, 4) + κ)−1BK∞A

˜
χn. (7.26)

To compare the two optimal controls, we note that the system is controlled only over [0, ∞) and
uncontrolled over (−∞, 0). Hence, the distribution of the control system at time 0 is given by
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the distribution of ((W̃0, X̃0) : n ≤ 0) for the system without forecasts and by the distribution of
(
˜
χ0 : n ≤ 0) for the system with forecasts.

The expected cost for the system with the optimal Fn-adapted policy is therefore
Ev∞(W̃0, X̃0, τ − τ0), while the expected cost for the optimal Gn,r-adapted policy is E˜v∞(

˜
χ0). To

explicitly compute the distribution of (W̃0, X̃0), we note that the uncontrolled system is Gaussian
with zero mean, so the distribution of (W̃0, X̃0) is completely determined by its covariance
structure. Because the Wj’s and �j’s are independent first order autoregressive processes,
var W̃0 = (1 − g2)−1var Z0 and var �̃0 = (1 − ρ2)−1var V0. Since X0 = W0 + �0, it follows that
var X̃0 = (1 − g2)−1var Z0 + (1 − ρ2)−1var V0 and cov (W̃0, X̃0) = (1 − g2)−1var Z0.

It follows that

Ev∞(W̃0, X̃0, τ − (1 − g)−1
EZ0 − (1 − ρ)−1

EV0)

= K∞(1, 1)
var Z0

1 − g2 + 2K∞(1, 2)
var Z0

1 − g2 + K∞(2, 2)
(

var Z0

1 − g2 + var V0

1 − ρ2

)

+ K∞(3, 3)(τ − (1 − g)−1
EZ0 − (1 − ρ)−1

EV0)2

+ α

1 − α
[K∞(1, 1)var Z0 + 2K∞(1, 2)var Z0 + K∞(2, 2)(var Z0 + var V0)]. (7.27)

We turn next to the evaluation of E˜v∞(
˜
χ0). We write

˜
χT

n = (
˜
χn(1), . . . ,

˜
χn(5)) and

˜
ξT

n =
(
˜
ξn(1), . . . ,

˜
ξn(5)). With this notation in hand, we can write

E˜v∞(
˜
χ0) =

5∑
i,j=1

K∞(i, j)[E
˜
χ0(i)

˜
χ0( j) + C(i, j)], (7.28)

where C(i, j) is the (i, j)’th entry of the covariance matrix C. As for E

˜
χ0(i)

˜
χ0( j), note that

E

˜
χ0(i)

˜
χ0(5) = 0 for 1 ≤ i ≤ 4, and

E

˜
χ0(5)2 =

(
τ − EZ0

1 − g
− EV0

1 − ρ

)2
. (7.29)

We again note that X0 = W0 + �0, so that E

˜
χ0(1)2 = var W̃0 = (1 − g2)−1var Z0, E

˜
χ0(4)2 =

var X̃0 = (1 − g2)−1var Z0 + (1 − ρ2)−1var V0 and E

˜
χ0(i)

˜
χ0(4) = E

˜
χ0(i)(W0 + �0) = E

˜
χ0(i)W0 =

E

˜
χ0(i)

˜
χ0(1) for 1 ≤ i ≤ 3. Also, since (F̃j+2|j : j ≤ 0) is a first-order autoregressive process, E

˜
χ2

0 (3) =
var F̃2|0 = C(3, 3)/(1 − g2). To compute a closed form for the remaining entries of (E

˜
χ0(i)

˜
χ0( j) : 1 ≤

i, j ≤ 5), we note that

˜
χ0

D=A
˜
χ0 +

˜
ξ1. (7.30)

For example, we have
˜
χ0(2) D=

˜
χ0(3) +

˜
ξ0(2), so that

E

˜
χ0(2)2 = E

˜
χ0(3)2 + C(2, 2) = C(3, 3)

1 − g2 + C(2, 2). (7.31)

Similarly, we find that

E

˜
χ0(1)

˜
χ0(2) = gC(3, 3)

1 − g2 + C(2, 3) + C(1, 2),

E

˜
χ0(1)

˜
χ0(3) = g2C(3, 3)

1 − g2 + C(2, 3) + C(1, 3)

and E

˜
χ0(2)

˜
χ0(3) = gC(3, 3)

1 − g2 + C(2, 3).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.32)

As an alternative to using the closed forms (7.27) and (7.28) to compute Ev∞(W̃0, X̃0, τ − τ0)
and E˜v∞(

˜
χ0), an iterative approach can be used to compute the covariance matrices; this may be
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Figure 6. Relative improvement D (%) in (7.35) from using dynamic forecasts versus no forecasts for the energy system control
example of §7. Contour plots are shown for D as a function of pairs of system parameters. In the bottom right plot, a dashed line
is drawn at τ0 = (1 − g)−1

EZ0 + (1 − ρ)−1
EV0. Unless otherwise specified, values used for parameters areEW0 = 80F,

EV0 = 2F,EW0 = 80F, γ = 0.95,α = 0.9, g= 0.6,ρ = 0.3, τ = 74F,σ 2 = σ 2
V = 1. (Online version in colour.)

preferable for some applications. Given the recursion χn+1 = Aχn + ξn+1,

χn
D=

∞∑
k=0

Akξk. (7.33)

It follows that the covariance matrix for χn satisfies

Λ = AΛAT + Σξ , (7.34)

subject to Λ0 = 0 [20].
Implementations for both the closed-form and the iterative approaches are provided in the

case of our energy control system example in the electronic supplementary material for this paper.
Figure 6 shows the percentage reduction in cost from using dynamic forecasts, namely

D �
Ev∞

(
W̃0, X̃0, τ − τ0

)
− E˜v∞(

˜
χ0)

Ev∞
(

W̃0, X̃0, τ − τ0

) ∗ 100. (7.35)

Contour plots are used to explore D’s dependence as a function of selected pairs of parameters for
the system. In the top right plot of figure 6, the improvement increases as γ grows closer to 1. As
γ grows, previous terms in the εn(k) sequence play a larger role so the value of forecasts increases.
On the other hand, as g grows closer to 1, the dependence across time of the Wn sequence grows,
and so the value of forecasts decreases. On the top right plot, the value of forecasts increases
as the dependence of Xn+1 on Xn grows (with ρ). In the bottom left plot, the value of forecasts
increases with the noise in the weather sequence Wn (controlled by σ 2) but decreases with the
noise in the building temperature sequence Xn (controlled by σ 2

V). Finally, the bottom right plot
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shows a symmetry in the improvement with respect to the control setpoint τ around τ0. We note
that τ0 = EX0, the building temperature in the absence of control. The value of forecasts decreases
when the target setpoint is farther from τ0: as the weight of the action in the value function grows,
the relative value of forecasts weakens.

8. Conclusion
In this work, we introduced the first principled and mathematically consistent framework for the
incorporation of forecasts into MDPs in the setting of state space models with linear dynamics,
using no ad hoc elements to add forecast information into the MDP setting. In this framework,
we discussed the different ways in which forecast information can be incorporated (static,
dynamic, static and dynamic together). Through an illustrative energy system control example,
we provided a numerical comparison of the optimal value functions for the setting with no
forecasts to the setting with dynamic forecasts.

The introduction of this framework opens the door to several theoretical and applied research
questions, e.g. on how the quality of forecasts affects control methods in different disciplines and
in different applications. Potential theoretical research directions include extensions to periodic
Markov chains (e.g. to model time-of-day effects), non-stationary Markov chains, forecast updates
that are not synchronized with decisions epochs, and Markov chains with nonlinear dynamics.
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