
This article was downloaded by: [128.12.122.217] On: 21 May 2022, At: 10:32
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Robust Power Management via Learning and Game Design
Zhengyuan Zhou, Panayotis Mertikopoulos, Aris L. Moustakas, Nicholas Bambos, Peter Glynn

To cite this article:
Zhengyuan Zhou, Panayotis Mertikopoulos, Aris L. Moustakas, Nicholas Bambos, Peter Glynn (2021) Robust Power Management
via Learning and Game Design. Operations Research 69(1):331-345. https://doi.org/10.1287/opre.2020.1996

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2020, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.2020.1996
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


OPERATIONS RESEARCH
Vol. 69, No. 1, January–February 2021, pp. 331–345

http://pubsonline.informs.org/journal/opre ISSN 0030-364X (print), ISSN 1526-5463 (online)

Methods

Robust Power Management via Learning and Game Design
Zhengyuan Zhou,a Panayotis Mertikopoulos,b Aris L. Moustakas,c Nicholas Bambos,d Peter Glynnd

aDepartment of Technology, Operations, and Statistics, Stern School of Business, New York University, New York, New York 10012;
bUniversity Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, F-38000 Grenoble, France; cDepartment of Physics, University of Athens,
Athens, Greece; dDepartment of Management Science and Engineering, Stanford University, Stanford, California 94305
Contact: zzhou@stern.nyu.edu, https://orcid.org/0000-0002-0005-9411 (ZZ); panayotis.mertikopoulos@imag.fr,

https://orcid.org/0000-0003-2026-9616 (PM); arislm@phys.uoa.gr (ALM); bambos@stanford.edu (NB); glynn@stanford.edu (PG)

Received: August 22, 2017
Accepted: September 18, 2020
Published Online in Articles in Advance:
December 24, 2020

Subject Classifications: computer science:
artificial intelligence; games/group decisions
Area of Review: Machine Learning

https://doi.org/10.1287/opre.2020.1996

Copyright: © 2020 INFORMS

Abstract. We consider the target-rate power management problem for wireless networks;
and we propose two simple, distributed power management schemes that regulate power
in a provably robust manner by efficiently leveraging past information. Both schemes are
obtained via a combined approach of learning and “game design” where we (1) design a
gamewith suitable payoff functions such that the optimal joint power profile in the original
power management problem is the unique Nash equilibrium of the designed game; (2) de-
rive distributed power management algorithms by directing the networks’ users to employ
a no-regret learning algorithm to maximize their individual utility over time. To establish
convergence, we focus on the well-known online eager gradient descent learning algorithm
in the class of weighted stronglymonotone games. In this class of games, we show that when
players only have access to imperfect stochastic feedback, multiagent online eager gradient
descent converges to the unique Nash equilibrium in mean square at a O

(
1
T

)
rate.

In the context of power management in static networks, we show that the designed
games are weighted strongly monotone if the network is feasible (i.e., when all users can
concurrently attain their target rates). This allows us to derive a geometric convergence rate
to the joint optimal transmission power. More importantly, in stochastic networks where
channel quality fluctuates over time, the designed games are also weighted strongly
monotone and the proposed algorithms converge in mean square to the joint optimal
transmission power at a O

(
1
T

)
rate, even when the network is only feasible on average

(i.e., users may be unable to meet their requirements with positive probability). This comes
in stark contrast to existing algorithms (like the seminal Foschini–Miljanic algorithm and its
variants) that may fail to converge altogether.
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1. Introduction
Viewed abstractly, power management (or power
control) is a collection of techniques that allows the
users of a wireless network to achieve their performance
requirements (e.g., in terms of throughput) while mini-
mizing the power consumed by their equipment. Thus,
given the key part played by transmitted power in in-
creasing battery life andnetwork capacity, power control
has been a core aspect of network design ever since the
early development stages of wireless networks.

In this general context, distributed power manage-
ment has proven to be the predominant power man-
agement paradigm, and with good reason: centralized
coordination is extremely difficult to achieve in large-
scale wireless networks; a single point of failure in a

centralized allocator could have devastating network-
wide effects; the communication overhead alone be-
comes unmanageable in cellular networks; and the list
goes on (Rappaport 2001, Goldsmith 2005). Conse-
quently, considerable effort has been devoted to de-
signing distributed power management algorithms
that are provably capable of attaining various per-
formance guarantees required by the network’s users
while leaving a sufficiently small footprint at the
device level.
The problem of distributed power management

becomes even more important and challenging in the
emerging era of the Internet of Things (Bradley et al.
2013), which paints the compelling vision (in part
already under way) of embedding uniquely identifiable
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wireless devices in the world around us and connecting
these devices/sensors to the existing internet infra-
structure to forman intelligent and coherently functional
entity—as in “smart cities” (Deakin 2013), patient
monitoring (Byrne and Lim 2007), and digital health
(Au-Yeung et al. 2010). Thus, as the exponentially
growing number of wireless communicating “things”
has been pushing the entire wireless ecosystem from
the low-traffic, low-interference regime to the high-
traffic, high-interference limit, the power management
question grows ever more urgent: how can the power of
battery-driven (and hence energy-constrained) devices
be regulated in a distributed, real-time manner so as to
achieve the quality-of-service guarantees using mini-
mum power in the presence of the inherent stochastic
fluctuations of the underlying wireless network?

The current gold standard for power management
is the seminal method of Foschini andMiljanic (1993),
which, owing to its elegance, simplicity and strong
convergence properties, is still widely deployed (in
one variant or another). The original Foschini–Miljanic
(FM) algorithm was expanded upon in a series of
subsequent works (Mitra 1994, Yates 1996, Ulukus
and Yates 1998) that considered different variants of
the problem (e.g., working with maximum power
constraints, allowing devices to asynchronously up-
date their power, etc.). Thereafter, various other ob-
jectives related to power management have been
considered in wireless networks (as well as in the
closely related wireline networks), resulting in more
sophisticated models and more complex algorithms
addressing issues related to throughput (El Gamal
et al. 2006a, b; Reddy et al. 2008; Seferoglu et al. 2008),
fairness (Eryilmaz et al. 2006), delays (Eryilmaz et al.
2008, Altman et al. 2010), backlog (Gitzenis and
Bambos 2002, Reddy et al. 2012, Gopalan et al. 2015),
and weighted-sum-of-rates (Candogan et al. 2010,
Weeraddana et al. 2012).1

Importantly, most of the existing (distributed) power
management/control schemes tend to rely implicitly
only on the previous power iterate when selecting the
power for the current iteration (especially when per-
taining to the target-rate power management problem
that we consider here). In some respects, there is good
reason to do so: the resulting power control algorithm is
simple to use and implement; it does not need to use up
memory to keep track of the entire radiated power
history (a scarce resource in small wireless devices); and,
as a pleasant by-product, the algorithm becomes much
easier to analyze theoretically.

Notwithstanding, a crucial andwell-knowndownside
to this approach is that such algorithms tend to be un-
stable because a single power iterate is the sole power
selection criterion. In particular, despite the various
convergence and optimality guarantees observed when
the underlyingwireless network is static/slowly varying

(see, e.g., Chiang et al. 2008, Tan 2015, and references
therein), this instability is acutely manifested in time-
varying, stochastic networks, especially when the
number of mobile devices is large and/or power
control is occasionally infeasible due to device mo-
bility (a case that is much less studied and under-
stood; compare (cf.) Section 2.3 for a detailed dis-
cussion). As we discuss in the rest of this paper, this
instability is in some sense the root cause for the lack
of both convergence and optimality results when the
network is stochastic and time varying. Under this
light, the explicit use of all past iterates holds great
promise for the overall stability of a power man-
agement policy, as the influence of the last iterate
cannot have a dominating effect over the algorithm’s
previous iterates (provided they are utilized in an
intelligent, memory-efficient way).
Our aim in this paper is to provide a distributed

power control algorithm satisfying the above desid-
erata. This task faces two key challenges from a
practical perspective: First, such an algorithm cannot
take for granted that each transmitter has access to the
power characteristics of all other transmitters, as such
information is typically unavailable in practical sce-
narios. This dictates that any given transmitter can
only make explicit use of link-specific information,
such as its signal-to-interference plus noise ratio
(SINR) and/or the total interference and noise at the
receiver (i.e., information that can be sensed by each
individual link in the network). Second (and perhaps
more stringently), a transmitter should not be re-
quired to store all past information (including past
power, SINR, and/or interference measurements)
in an explicit fashion. If met, this requirement is
highly desirable for a memory-constrained wireless
transmitter where such bookkeeping is in general
infeasible—in other words, past information must be
exploited in an implicit, parsimonious manner.

1.1. Related Work and Our Contributions
Our contributions are three-fold, andwediscuss them
in the context of existing work below.
First, we propose two novel power control algo-

rithms (Variants A and B in Algorithm 2), both of
which require meager, O(1) operational overhead
while leveraging past information in an efficient way.
In particular, the information on past power iterates is
represented in the most parsimonious form possible:
it takes only a constant amount of memory inde-
pendent of the number of time steps involved. In fact,
the amount of memory required is the same as that of
the algorithms using only the last power iterates (e.g.,
FM), even though the latter do notmake explicit use of
past power information. The proposed algorithms are
quite simple and lend themselves easily to being
implemented on wireless devices.
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Second, we provide theoretic performance guar-
antees that establish the robustness and optimality of
the proposed algorithms. More precisely, in the case
of a static network environment that is feasible (i.e.,
when all users can concurrently attain their target
rates), the proposed algorithms converge to the joint
optimum transmission power vector at a geometric
rate O(κ−T) (for some κ > 1). More importantly, in a
stochastic iid network environment (where the fluc-
tuating network is sometimes feasible and sometimes
not), we show that the proposed algorithms still
converge to a deterministic power vector in mean
square at a O(1/T) rate, provided only that the net-
work is feasible in the mean, that is, even if the network
is infeasible with positive probability. We find this
guarantee particularly appealing because it incor-
porates elements of both stability and optimality. The
former (stability) is because the proposed algorithm
converges to a fixed constant power vector despite the
persistent, random fluctuations in the network (and,
in particular, even if power control is not feasible for a
given channel realization). The latter (optimality) is
because the algorithms’ end state is an optimal solu-
tion to the network’s power management problem
with respect to the channels’ mean value statistics.
This comes in sharp contrast to the FM algorithm,
which, when the channel is feasible on average, may
fail to converge altogether or, at best, only converges
in distribution to a power profile that is not optimal in
any way (Zhou et al. 2016c).

We obtain these theoretic guarantees via a com-
bined approach of learning and “game design”where
wedesign a gamewith suitable reward functions such
that the optimal joint power profile in the original
power management problem is the unique Nash
equilibrium of the designed game.We then show that
if the network environment is feasible, the designed
game is weighted strongly monotone (WSM): this is an
important class of games where convergence to a
Nash equilibrium can be characterized under suitable
no-regret online learning algorithms. We then es-
tablish the equivalence between the proposed power
control algorithms and multiagent online eager gra-
dient descent (EGD) as applied to the designed games:
by showing that the latter converges to the unique
Nash equilibrium of a WSM game, and because the
uniqueNash equilibrium by design is the optimal joint
power profile, we readily obtain all the desired results
for the proposed power control algorithms.

Importantly, establishing the algorithms’ conver-
gence takes us through a distinct (albeit related) line
of research, namely, utility-based models of power
management in wireless networks (Alpcan et al. 2002,
2006; Fan et al. 2006; Menache and Ozdaglar 2010;
Han et al. 2014; Zhou and Bambos 2015; Zhou et al.
2016a, b, 2018a). This flourishing literature has taken

the view that each device is a self-interested entity
with its individual objective depending on howmuch
power it uses as well as howmuch power all the other
devices use (via the interference that they create). In
this literature, the cost function of each device (as a
function of, say, signal-to-interference ratio) is mod-
eled explicitly and pertains to the utility of each user of
that device: in other words, the resulting game is a
priori assumed to model the underlying reality. In
contrast, the game design approach thatwe take in this
paper leads to a virtual game that only enters the
problem as a theoretic tool to aid the design of robust
power management algorithms (which are imple-
mented at the device level and are not subject to game-
theoretic rationality postulates). Nevertheless, the
resulting games do admit a natural interpretation as
they effectively measure the distance between the
users’ achieved throughput and their target rates.
The idea of game design has been explored before,

and our approach here is inspired by the work of
Candogan et al. (2010) and Li and Marden (2013). In
more detail, Candogan et al. (2010) designed a near-
potential game for the maximum weighted-sum-of-
rates problem and used best-response dynamics to
derive a power control algorithm. Li and Marden
(2013) designed a potential game and used a partic-
ular method (called gradient-play) to derive a distrib-
uted optimization algorithm for the network con-
sensus problem. In addition to considering a different
problem altogether (power minimization subject to
rate constraints), ourwork here differs from the above
in several key aspects: First, our game-theoretic analysis
is not limited to potential games, but it instead applies to
WSM games. Second, by focusing on online gradient
descent (see below), our results can also be framed in the
context of no-regret learning in games. Finally, to tackle
the stochastic regime, we consider a more general
framework with imperfect feedback, which is only ac-
curate up to a bounded-variance error. The above ele-
ments cannot be treated with the techniques of
Candogan et al. (2010) and/or Li and Marden (2013),
leading us to introduce a new set of tools.
Our third contribution is to establish quantitative

Nash equilibrium convergence results for multiagent
no-regret learning in the class of WSM games. Spe-
cifically, we consider a general game-theoretic learning
framework where each agent is endowed with a con-
tinuous action set anddoes not have the knowledge of its
(or any other agent’s) reward function. Instead, each
agent only has access to an imperfect gradient feed-
back during the learning process.2 In this setting, we
focus on online eager gradient descent, a learning
algorithm with tight regret bounds: when the se-
quence of reward functions are concave (as a function
of an agent’s own action), then up to a multiplicative
constant related to the problem’s dimensionality, it

Zhou et al.: Robust Power Management
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achieves the O( ̅
T̅

√ ) regret bound that is min-max
optimal; the stronger O(logT) regret bound can be
achieved if the sequence of reward functions are strongly
concave (see Shalev-Shwartz 2012, Hazan 2016).

In this context, we show that if each agent employs
online eager gradient descent to maximize their cumu-
lative reward, the last iterate of the joint action profile
of all agents (now a random variable as a result of
stochastic first-order feedback) converges in mean
square to the uniqueNash equilibrium at aO(1/T) rate,
provided the underlying game is WSM. In comparison,
much of the existing literature on no-regret game-
theoretic learning (including other no-regret algo-
rithms) focuses on the convergence of the time-
averaged sequence of the joint action x̄t �∑t

k�1γkxk/∑t
k�1γ

k (where γt is the step-size and xt is the joint
action at time t) in different special classes of games,
such as convex potential games, zero-sum games,
routing games, and so on (Cesa-Bianchi and Lugosi
2006, Krichene et al. 2015, Balandat et al. 2016, Lam
et al. 2016). Such time-average convergence results,
although useful in their own right, are weaker than
the corresponding last-iterate convergence results
(i.e., convergence of xt) and are not fine grained
enough to characterize the actual joint evolution of
the agents’ sequence of play.

Other related considerations date as far back as the
work of Arrow and Hurwicz (1960) who considered a
special class of multiagent games that is a general-
ization of two-player zero-sum games and showed
that if each agent applies gradient descent (without
projection), then the continuous-time approximation
of the discrete-time dynamics (modelled by a dif-
ferential equation) converges to the unique Nash equi-
librium of the game. However, whether the discrete-
time iterates converge to Nash in that class is unclear;
our convergence analysis can be seen as a partial an-
swer to this question. More recently, Antipin (2002)
considered a class of two-player game with a gen-
eralized potential function and established that gra-
dient prediction-type projection method, a central-
ized algorithm the authors developed, converges to
a Nash equilibrium at a geometric rate. However, this
gradient prediction-type projection method cannot
be decentralized: in each iteration, one player applies a
partial gradient toupdate its actionand the secondplayer
applies its own partial gradient but using the already
updatedactionvalue fromthefirst player.Consequently,
this cannot be used in an online learning setting where
each player updates its own action simultaneously.

At around the same time as Antipin (2002), Flåm
(2002) considered a class of multiagent games called
evolutionary stable games (a very broad class of
games that includeWSM games as a special case) and
established local convergence results. In particular,

they showed that if each player applies eager gradient
descent with perfect feedback, convergence to a Nash
equilibrium is guaranteed if one starts in the vicinity
of a Nash equilibrium. Facchinei and Pang (2007)
strengthened both the assumption and the conclu-
sion and gave explicit convergence rates: translating
their results (originally in variational inequalities)
into games, they established that in strongly mono-
tone games, if each player applies eager gradient
descent, then convergence to the unique Nash equilibrium
is guaranteed at a geometric rate, a result we apply to
give sharper performance guarantees for our designed
algorithms in the static network environment case. Cui
et al. (2008) considered a particular game in medium
access control and investigated a distributed algo-
rithm called gradient-play (in addition to other algo-
rithms, such as best response and Jacobi play) and
established geometric convergence to the uniqueNash
equilibrium of the game when each agent applies the
gradient-play algorithm. However, this gradient-play
algorithm is different from gradient descent in that
each player applies a partial gradient only to part of
one’s reward function; because of this, it is unclear
whether this algorithm is no-regret if applied in an
online learning setting.
Importantly, all works discussed above are con-

cerned with the case where agents receive perfect
gradient feedback on their actions (some time with
observability of a nonindividual gradient). From a
dynamical system viewpoint, Kar et al. (2012) con-
sidered the more general case where the gradient is
corrupted by a stochastic but unbiased noise and
established that if the game is strongly monotone,
then if each agent applies gradient descent with noise
(without projection), almost sure convergence to the
unique Nash equilibrium is guaranteed. Recently,
(Zhou et al. 2017b, Mertikopoulos and Zhou 2019)
established that in variationally stable games (a broad
classofgames that includes stronglymonotonegames), if
each agent applies gradient descentwith lazy projection,
then even with stochastic (unbiased) noise, almost sure
convergence to Nash is guaranteed. Zhou et al. (2017a,
2018b) further considered other types of imperfect
feedback in variationally stable games that include
delay and loss and characterized the robustness of the
algorithms therein. However, all these convergence
results are asymptotic and finite-time rates are im-
possible at such generality. Further, to the best of our
knowledge, a qualitative O(1/T) convergence rate is
not known for multiagent online gradient descent
(with our without projection) in WSM games. Our
work fills in this gap in the literature with a relatively
simple proof.
For convenience, we summarize this thread of

findings in Table 1.
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2. Model, Background, Motivation
We describe below the target-rate power manage-
ment problem on wireless networks (Weeraddana
et al. 2012, Tan 2014). After introducing the prob-
lem in Section 2.1, we discuss in Section 2.2 the well-
known FM power control algorithm (Foschini and
Miljanic 1993). This discussion will provide an ac-
count of some of the drawbacks of the FM algorithm,
both quantitative and qualitative, and will serve as
the motivation of the paper (cf. Section 2.3).

2.1. Setup
Consider a wireless network of N communication
links, each link consisting of a transmitter and an
intended receiver. Assume further that the i-th trans-
mitter transmits with power pi and let p� (p1, . . . ,pN) ∈
RN+ denote the joint power profile of all users (trans-
mitters) in the network. In this context, the most com-
monly used measure of link service quality is SINR.
Intuitively, link i’s SINR depends not only on how
much power its transmitter is employing but also on
how much power all the other transmitters are con-
currently employing. Specifically, link i’s SINR,
which we denote by ri(p), is given by the follow-
ing ratio:

ri p( ) � Giipi∑
j��i Gijpj + ηi

, (1)

where ηi is the thermal noise associated with the re-
ceiver of link i and Gij ≥ 0 is the power gain between
transmitter j and receiver i, representing the inter-
ference caused to receiver i by transmitter j per unit
transmission power used. We further assume through-
out the paper that Gii > 0 for otherwise transmission
for link i ismeaningless.We collect all the power gains
Gij into the gain matrix G and all the thermal noises
into the noise vector η. Note that the power gain
matrix G depends on the underlying network to-
pology of the wireless links. Each link has a target
SINR threshold r∗i > 0: the minimum acceptable ser-
vice quality threshold for that link.

The target-rate power management problem
(Weeraddana et al. 2012, Tan 2014) then lies in finding
a power assignment p, such that the following quality-
of-service constraints hold:

ri p( ) ≥ r∗i ,∀i. (2)
In order to find a joint transmission power p that sat-
isfies the quality-of-service constraints in Equation (2),
such a p must exist in the first place: the notion
of wireless network channel feasibility, formalized
in the next definition, characterizes such scenarios.

Definition 1. The channel given by (G, η) is feasiblewith
respect to a target SINR vector r∗ � (r∗1 , . . . , r∗N) if there
exists a p satisfying Equation (2). The channel is oth-
erwise said to be infeasible.

In their original paper, Foschini andMiljanic (1993)
presented a simple, necessary, and sufficient condi-
tion for deciding when a channel is feasible. To state
it, we first need a convenient and equivalent char-
acterization of a wireless network channel:

Definition 2. A wireless network channel (or channel
for short) specified by (G, η) can be alternatively rep-
resented by the pair (W, γ) consisting of the follow-
ing components:
1. The reweighted gain matrix W, where for i,

j∈ {1,2, . . . ,N}:

Wij :�
0, i � j

r∗i Gij

Gii
, i �� j.

{
(3)

2. The reweighted noise vector γ, where

γi � r∗i
ηi
Gii

, i ∈ 1, 2, . . . ,N{ }. (4)

3. Define λmax(W) to be the spectral radius of the
matrix W: λmax(W) is the eigenvalue with the largest
absolute value. As noted in Tan (2014), the reweighted
gain matrix W is a nonnegative (and without loss of
generality, irreducible)matrix; thus by Perron-Frobenius
theorem, there is auniquepositive real eigenvalueρ∗ that
has the largest magnitude.

Theorem 1 (Tan 2014). A channel is feasible with respect
to r∗ if and only if the largest eigenvalue λmax(W) of the
reweighted gain matrix W satisfies λmax(W) < 1.

Fact 1. Given a feasible channel (G, η), we have λmax
(W)< 1, which implies that (I −W)−1 exists and is
component-wise strictly positive. This further implies
that the joint transmission power p∗ � (I −W)−1γ sat-
isfies the quality-of-service constraints given inEquation (2)
and it is component-wise strictly positive. Finally, p∗ is
the unique vector that satisfies the following property:

Table 1. Number of Iterations Required by the FM and EGD
Algorithms to Reach an ε-Optimal State in Wireless
Networks with Fixed (Deterministic) or
Fluctuating (Stochastic) Channels

Deterministic Stochastic

Foschini–Miljanic algorithm log(1/ε) ______
Eager gradient descent (our paper) log(1/ε) O(1/ε)
Note. In the static case, both algorithms converge at a geometric rate;
in the stochastic case, the FM algorithm may fail to stabilize (even in
probability), whereas the proposed EGD policy converges within
O(1/ε) iterations.
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if p is any vector satisfying Equation (2), then p∗ ≤ p
(component-wise).

In other words, in a feasible channel, p∗ is the
“smallest” joint transmission power that satisfies the
quality-of-service constraints. To highlight the im-
portance of this quantity and to recognize the fact that
the results in this paper will mostly pertain to p∗, we
have the following definition:

Definition 3. In a feasible channel (G, η) (or equiva-
lently (W, γ)), p∗ defined in Fact 1 is called the optimal
joint transmission power vector.

2.2. Foschini-Miljanic Power Control Algorithm
We now present the well-known FM power control
algorithm, which finds the optimal joint transmission
power if one exists (i.e., in a feasible channel). Fol-
lowing the standard convention in wireless com-
munications literature (Han et al. 2011), the trans-
mission power pi for transmitter i is assumed to lie in a
compact interval Pi � [0, pmax

i ]. Therefore, p is con-
strained to lie in the feasible support set P≜

∏N
i�1

Pi �∏N
i�1[0,pmax

i ]. We shall adopt this convention for
the rest of the paper. The FM algorithm is then for-
mally given in Algorithm 1:

Algorithm 1 (FM Algorithm: Bounded Power Support)
1: Each link i chooses an initial power p0i ∈ [0, pmax

i ].
2: for t � 0, 1, 2, . . . do
3: for i � 1, . . . ,N do
4: pt+1i � min(pti r∗i

ri(pt) , p
max
i )

5: end for
6: end for

In the classical power control setting, the channel
(G, η) is assumed to be deterministic and time-invariant,
that is, (G, η) remains the same from iteration to it-
eration. By amonotonicity argument, we can leverage
the results in Foschini and Miljanic (1993) to give the
following characterization:

Theorem 2 (Foschini and Miljanic 1993). Let the channel
(G, η) be deterministic and time invariant.

• If the channel is feasible with respect to r∗ and if the
power support includes the optimal power vector (i.e.,
p∗ ∈ P), then the joint power iterate pt in Algorithm 1
converges to the optimal joint transmission power p∗,
irrespective of the initial point p0.

• If the channel is infeasible with respect to r∗ or if the
power support does not include the optimal power vector
(i.e., p∗ /∈ P), then the joint power iterate in Algorithm 1
converges to pmax, irrespective of the initial point p0.

Remark 1. The original result in Foschini and Miljanic
(1993) assumes there is no contraint on the maximum
power (and hence in their original setting, the joint
power iterate in Algorithm 1 would diverge to infinity

if the channel is not feasible). However, the corre-
sponding results when there is a constrained feasible
power support set (as given in Theorem 2) is almost an
immediate corollary therefrom via a simple monoto-
nicity argument. Because in practice, maximum power
is always bounded, and because the subsequent power
management literature (Tan 2014) in wireless networks
do assume bounded power, we follow this convention
in this paper too.

2.3. Motivation of the Paper
Although FM enjoys good convergence properties
in deterministic channels (as given in Theorem 2),
it quickly loses its appeal in stochastic channels (i.e.,
when (Gt, ηt)∞t�0 are stochastic processes): this can
occur when the transmitters and receivers in the
wireless network are moving while communicating
with each other, thereby causing the channel gain
matrix (and potentially the thermal noises) to fluc-
tuate from iteration to iteration. This is because FM, in
only using pt to determine the next power iterate pt+1,
has certain inherent instability, which is particularly
manifested when the underlying channel is stochas-
tic. In stochastic channels, we useWt and γt to denote
the random reweighted gain matrix and the random
reweighted noise at iteration t, respectively. Pt de-
notes the random power vector at iteration t. More
concisely, denoting ΠP(y) � argminx∈P ‖x−y‖ and the
projection operatorΠP(·) for P, the FM update can be
written as:

Pt+1 � ΠP WtPt + γt( )
. (5)

In a stochastic channel, the power iterates generated
by FM will be random variables and may fail to
converge altogether. Even when FM does converge, it
will at best, under uncertain conditions of the chan-
nel, converge to a stationary distribution (Zhou et al.
2016c) rather than a deterministic quantity. In fact,
convergence to a stationary distribution is already the
best one can hope for when using FM. This reveals
two main drawbacks of FM. First, as mentioned
previously, when operating in a stochastic channel,
FM is not very stable. Second, convergence to a
limiting stationary distribution is not fully desirable.
Even when FM does converge to a stationary distri-
bution, it is not clear what performance guarantees
are achieved by that limiting power distribution.
Specifically, the stationary distribution that FM con-
verges to is not optimal in any sense.
The above two drawbacks lead to the problem of

designing a distributed power control algorithm that
has both stability and performance guarantees. More
specifically, in light of the root cause of the instability
of FM, it is natural to ask whether it is possible to
incorporate all the past power iterates to synthesize a
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distributed power control scheme so as to stabilize the
power iterate more quickly, such that the resulting
power iterate converges (almost surely) to a fixed
vector even in the presence of a stochastic channel? If
so, would this vector be optimal in some (average)
sense? Aswe shall see in the next section, both questions
have affirmative answers.

3. Proposed Power Control Algorithms
In this section,we present twonewand closely related
distributed power control algorithms that utilize all
the power iterates in the past to achieve better sta-
bility and optimality guarantees. The design of such a
distributed algorithm (that uses past information)
faces at least two challenges. First, such an algorithm
cannot assume that each transmitter has access to the
power used by all the other transmitters, as such
communications is infeasible in practice.3 This dic-
tates that a transmitter can only use the aggregate
information, such as SINR and/or total interference
and noise (i.e., information that can be sensed by each
individual link), as opposed to the individual powers.
Second, more stringently, one should not expect a
transmitter to store all the past information that is
available to it, which could include its own past
transmission powers, past SINRs, etc. This additional
constraint is highly desirable and necessary in prac-
tice because, for a memory-constrained wireless trans-
mitter, such bookkeeping is in general infeasible. In fact,
the popularity of the FM algorithm stems in large part
from the very limited memory it requires in performing
each update. Consequently, for a new algorithm to be
practically useful, an economic representation that in-
corporates all such information from the past in a way
compact way is needed.

Here we propose a robust power control algorithm
that satisfies those two constraints. The proposed
algorithm has two variants, which we subsequently
label as Variant A and Variant B. For each variant,
the past information is represented and stored in
the most economic form possible: it takes only con-
stant amount of memory independent of time steps.
For space concerns, we will directly consider the
stochastic channel case (specializing the result into
the deterministic channel case is straightforward).
Before stating the algorithm, we first present the
model of the stochastic channel within which the
algorithm operates, which is the same model as in
Zhou et al. (2016c):

Assumption 1. (Gt, ηt) is drawn iid from an arbitrary
(discrete or continuous, bounded or unbounded) support on
RN×N+ × RN+ , satisfying the following assumptions:

1. Finite mean: ∀i, j,∀t,E[Gt
ij] < ∞,E[ηti] < ∞.

2. Finite variance:∀i, j,∀t,Var[Gt
ij] < ∞,Var[ηti] < ∞.

Note that under this model, (Gt
ij, η

t
k) can be arbi-

trarily correlated with (Gt
i′j′ , η

t
k′ ) and Gt can be cor-

related with ηt. Algorithm 2 gives the description of
Variant A in the stochastic and time-varying channel
case. Here we use the upper case for gradient and
power to highlight the fact that all the quantities are
now random variables.

Algorithm 2 (Robust Power Control in Stochastic Channels)
1: Initialize γ0 > 0.
2: Each link i chooses an initial P1

i ∈ Pi.
3: for t � 1, 2, . . . do
4: for each link i do
5: VariantA: P̃t+1

i � Pt
i − γ0

t (Gt
iiP

t
i − γ0

t (Gt
iiP

t
i −

r∗i (∑j��i Gt
ijP

t
j + ηti))

6: Variant B: P̃t+1
i � Pt

i − γ0
t (Pt

i − r∗i
∑

j ��i G
t
ijP

t
j+ηti

Gt
ii

)
7: Pt+1

i � ΠPi (P̃t+1
i )

8: end for
9: end for

Remark 2. First, note that P̃t
i ’s serve to fulfill the role of

keeping a compact representation that aggregates all
the past information at any given time t, thereby
eliminating the need to keep track of the past Pt

i ’s.
Second, as we shall make precise later, each P̃t

i is the
weighted average of the gradients of a certain cost
function. Consequently, P̃t (the vector of all individual
P̃t
i ’s) resides in the dual space of the space P of feasible

joint transmission power. In fact, line 7 shows that the
projection transforms a point in this dual space to a
point in the action space (i.e., P). Third, to perform
the update in line 5 (Variant A) does not require
transmitter i to know the transmission powers used by
others: it need only know the interference and noise as a
whole as well the SINR. For Variant B, only the SINR∑

j��i G
t
ijP

t
j+ηi

Gt
iiP

t
i

is needed, because from this SINR and Pt
i , the

ratio
∑

j ��i G
t
ijP

t
j+ηi

Gt
ii

can be recovered. Consequently, the
requirement to implement Variant B is even less
stringent than that of Variant A. However, as we shall
see, Variant B needs a slightly stronger assumption on
the channel gains for convergence and optimality.

Remark 3. Even thoughwemake the stochastic channel
environment as stated in Assumption 1, Algorithm 2
also applies in an arbitrary time-varying environment:
an environment where the channel gains Gt

ij and the
noise ηt do not follow from a stationary stochastic
process and can arbitrarily change. It turns out even
in that case, the designed algorithm has the inherited
the no-regret guarantee with respect to a particular
cost function. Although the arbitrary time-varying en-
vironment is not the focus of this paper, this guarantee is
still desirable and will become clear once we have made
the connection to online learning on games.
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4. Eager Gradient Descent Learning in
Weighted Strongly Monotone Games

We present the framework of EGD learning on the
class of WSM games. The results in this section serve
as the foundation for the game-design approach of
power control and enable us to subsequently establish
the theoretical guarantees of the proposed power
control algorithm in Algorithm 2. Wherever possible,
we shall use the notation that matches the power
control setting to make explicit the connection between
EGD learning on WSM games and power control.

4.1. Weighted Strongly Monotone Games
We start with the definition that will set the stage for
both the theoretical study in this section and the practical
design and application for the subsequent sections.

Definition 4. A (λ, β)-weighted stronglymonotone game
(hereafter referred to as (λ, β)-WSM for short) G is a tuple
G � (N ,X � ∏N

i�1 X i, {ui}Ni�1), where N is the set of N
players {1, 2, . . . ,N}, X is the joint action space with X i
being the action space for player i and ui : X → R is the
utility function for player i, such that

1. Each X i is a compact and convex subset of Rdi

and each ui is continuous in x and continuously dif-
ferentiable in xi, with ∂ui(x)

∂xi
continuous in x.

2. There exists some λ ∈ RN++ such that
∑N

i�1 λi〈vi(x)
−vi(y),xi − yi〉 ≤ − β

2
∑N

i�1 λi‖xi − yi‖22,∀x,y ∈ X , where vi
(x)≜ ∂ui(x)

∂xi
.

Remark 4. The class of WSM games is a proper sub-
class of diagonal strict concave games, first introduced
in Rosen (1965). G is a diagonal strict concave game
if, instead of the second requirement in Definition 4,
the weaker assumption

∑N
i�1 λi〈vi(x) − vi(y), xi − yi〉 ≤ 0

(with equality if and only if x � y) is imposed. Note that
even this weaker condition implies that each ui is
concave in xi. Next, a few words on notation. x−i de-
notes the joint action of all players but player i. Con-
sequently, the joint action x will frequently be written
as (xi, x−i). Further, we denote v(x) � (v1(x), . . . , vN(x)).
Note that, per the definition, the joint partial gradient
v(x) always exists and is a continuous function on
the joint action space X . Finally, recall that x∗ ∈ X is a
Nash equilibrium if for each i ∈ N , ui(x∗i ,x∗−i) ≥ ui(xi,
x∗−i), ∀xi ∈X i. The celebrated result by Rosen (1965) is
that there is always a unique Nash equilibrium for
every diagonally strict concave (DSC) game. Conse-
quently, every (λ, β)-WSM game admits a unique Nash
equilibrium.

We conclude this subsection with a simple suffi-
cient condition ensuring that a game is (λ, β)-WSM. In
Rosen (1965), a simple sufficient condition is given to
ascertain whether a game is DSC. By an adaptation of

that sufficient condition, we have a sufficient condi-
tion to check whether a given game is a WSM game.

Lemma 1. Given G� (N ,X �∏N
i�1X i,{ui}Ni�1),where each

ui is twice continuously differentiable. For each x ∈ X , define
the λ-weighted Hessian matrix Hλ(x) as follows:

Hλ
ij x( ) � 1

2
λi

∂vi x( )
∂xj

+ 1
2
λj

∂vj x( )
∂xi

. (6)

If there exists some β > 0 such that λmax(Hλ(x)) ≤ −β,
∀x∈X , then G is (λ, β)-WSM.

Remark 5. Note that by definition, the λ-weighted
Hessian matrix is always symmetric and hence all of its
eigenvalues are real. Using the same notation as in the
preceding power control section, λmax(Hλ(x)) refers to
its maximum eigenvalue.

4.2. Multiagent EGD Learning with Noisy Gradient
When players repeatedly interact with one another
where the reward is given by a fixed (but possibly
unknown) stage game, it is an important question as
to what learning dynamics the players would adopt.
One answer provided by the online learning literature
is EGD, which enjoys the no-regret property (Shalev-
Shwartz 2012) when the utility function is concave:
each agent, when interacting with the environment
(consisting of other agents), will achieve comparable
performance to the best fixed action in hindsight,
irrespectively of what the other agents do.When each
agent adopts EGD, we obtain the multiagent learning
dynamics as given in Algorithm 3.

Algorithm 3 (Multiagent Eager Gradient Descent)
1: Each player i chooses an initial x1i ∈ X i.
2: for t � 1, 2, . . . do
3: for i � 1, . . . ,N do
4: x̃t+1i � xti + αtvi(Xt)
5: xt+1i � argminxi∈§i‖x̃t+1i − xi‖2
6: end for
7: end for

Note that X̃t
i takes a gradient step (with respect to

i-th player’s partial gradient only) from the previous
action and is then immediately projected back to the
feasible action space. This is called eager projection
as the intermediate X̃t

i is immediate thrown away
after the projection. This type of projection stands in
contrast with lazy projection (Nemirovski et al. 2009),
where X̃t

i (that can potentially be out of the feasi-
ble action space) is always kept and projected only
when needed.

Remark 6. The convergence of multiagent EGD to
Nash equilibria (and the corresponding convergence
rate) in weighted strongly monotone games fol-
lows straightforwardly from the literature. Following a
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classical result in variational inequality (Facchinei and
Pang 2007), we have a geometric convergence rate: let
x∗ be the unique Nash equilibrium of a (λ, β)-WSM
game and let xt be the iterates generated from
Algorithm 3. Then ‖x − x∗‖22 ≤ ε after O(log 1

ε) itera-
tions if 0 < inft αt < 2β

L2, where L is the Lipschitz con-
stant of the gradient v(x). This linear rate means that
convergence to Nash is exponentially fast. When v(x)
is not Lipschitz, convergence is still guaranteed,
provided a diminishing step-size is chosen (note that
in the Lipschitz case, the step-size αt cannot decrease
to zero: this is necessary in order for contraction to
kick in, which ensures the geometric convergence
rate). However, in the absence of Lipschitz gradient,
exponential convergence is not achievable. Never-
theless, O(1T) is still achievable, which in fact follows
as a special case of our subsequent result for the
stochastic case in Theorem 3.

Next, we consider the case where gradient is im-
perfect and noisy.

Algorithm 4 (Multiagent Noisy Eager Gradient Descent)
1: Initialize γ0 > 0.
2: Each player i chooses an initial X1

i ∈ X i.
3: for t � 1, 2, . . . do
4: for i � 1, . . . ,N do
5: X̃t+1

i � Xt
i + γ0

t ṽi(Xt)
6: Xt+1

i � argminxi∈X i
‖X̃t+1

i − xi‖2
7: end for
8: end for

In Algorithm 4, we have used the capital letters Xt
i

and X̃t
i because these iterates are now random vari-

ables as a result of the noisy gradients ṽi. Of course,
in order for convergence to be guaranteed, ṽi(Xt)
cannot be just any noisy perturbation of the gradient.
Here we make a rather standard assumption on the
noisy gradient:

Assumption 2. Let F t be the canonical filtration induced
by the (random) iterates up to time t: X0,X1, . . . ,Xt. We
assume the noisy gradients are

1. conditionally unbiased: ∀i∈N ,∀t� 0,1, . . . ,E[ṽi(Xt) |
F t] � vi(Xt),a.s.,

2. bounded in mean square: ∀i ∈ N ,∀t � 0,1, . . . ,E[‖ṽi
(Xt)‖2 | F t] ≤ Ξi, a.s., for some constant V > 0, where ‖ · ‖
is some finite dimensional norm (note that all finite di-
mensional norms are equivalently up to a multiplica-
tive constant).

Remark 7. An equivalent and useful characterization
of Assumption 2 is that the noisy gradient can be
decomposed as ṽi(Xt) � vi(Xt) + ξt+1i , where the noise
(ξti)Ni�1 satisfies (for each i):

1. ∀t � 0, 1, . . . ,E[ξt+1i | F t] � 0 (a.s.),
2. ∀t � 0, 1, . . . ,E[‖ξt+1i ‖2 | F t] ≤ Vi (a.s.).

Note that here we only need the noise to be mar-
tingale noise, rather than iid noise.

4.3. Convergence of Multiagent Noisy EGD to
Nash Equilibrium

We tackle the convergence issue for multiagent EGD
with noisy gradient and characterize the convergence
rate explicitly. Our main result is that, in a WSM
game, multiagent eager EGD given in Algorithm 4
converges in last-iterate to the unique Nash equilib-
rium in mean square at a O(1T) rate. To that end, we
start by recalling two preliminary results in the lit-
erature: the first is a fact of sequences first established
in Chung (1954) (although it does not appear to be
widely known); the second is a simple and well-known
variational characterization of a Nash equilibrium.

Lemma 2 (Chung 1954). Let at be a nonnegative sequence
such that at+1 ≤ at(1− P

tp)+ Q
tp+q, where P> q> 0,0< p≤ 1,

Q> 0. Then,

at ≤
Q
P

1
tq if 0 < p < 1

Q
P−q

1
tq if p � 1.

{
(7)

Lemma 3 (Facchinei and Pang 2003). Let G � (N ,X �∏N
i�1 X i, {ui}Ni�1) be a continuous game that has x∗ as a Nash

equilibrium. Then 〈vi(x∗),xi−x∗i 〉 ≤ 0 for each i� 1, ,2 . . . ,N.

Remark 8. Lemma 3 follows directly from Facchinei
and Pang (2003) and is a consequence of the defini-
tion of a Nash equilibrium: when no player has any
incentive to unilaterally deviate at x∗, then if any
player i deviates to xi, the angle formed by the gra-
dient and its deviation is nonnegative, thereby indi-
cating that his or her individual deviation could not
have done better.

Before stating the final convergence result, we
make note of a few constants. First, because each vi(·)
is a continuous function over the convex and compact
set X , vi(x) is bounded and denotes G≜

∑N
i�1λi supx∈X‖vi(x)‖22. Next, per Assumption 2 and Remark 7, we

denote V≜
∑N

i�1 λiVi, which is an upper bound for
the (weighted) sum of all the variances of the noises.
We are now ready to state and prove the conver-
gence result.

Theorem 3. Let G be a (λ, β)-WSM game with x∗ being the
unique Nash equilibrium. Let Xt’s be the sequence of iterates
generated frommultiagent noisy EGD as given in Algorithm 4.
If γ0 > 1

β, then Xt converges to x∗ in mean square at O(1T)
rate: for any T, E[‖Xt − x∗‖22] ≤ (G+V)γ2

0(minλi)(βγ0−1)
1
T.

Proof. The proof is not long, so we present it here.
Consider the energy function Et � 1

2
∑N

i�1 λi‖Xt
i − x∗i ‖22.
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Note that it is a random variable and we will look at
how Et+1 relates to Et. By definition, we have

Et+1 � 1
2

∑N
i�1

λi‖Xt+1
i − x∗i ‖22

� 1
2

∑N
i�1

λi‖ProjX i
X̃t+1

i

( )
− x∗i ‖22

� 1
2

∑N
i�1

λi‖ProjX i
X̃t+1

i

( )
− ProjX i

x∗i
( )‖22, (8)

≤ 1
2

∑N
i�1

λi‖X̃t+1
i −x∗i ‖

2
2 �

1
2

∑N
i�1

λi‖Xt
i

+ γ0

t
ṽi Xt( )−x∗i ‖22, (9)

� 1
2

∑N
i�1

λi ‖Xt
i − x∗i ‖22 + ‖γ0

t
ṽi Xt( )‖22

(

+ 2
γ0

t
ṽi Xt( )

,Xt
i − x∗i

〈 〉)
, (10)

� Et + 1
2
γ2
0

t2
∑N
i�1

λi‖ṽi Xt( )‖22 + γ0

t

∑N
i�1

λi

× ṽi Xt( )
,Xt

i − x∗i
〈 〉

.

(11)

Taking the expectation of both sides (by first condi-
tioning on Xt and then averaging over Xt) yields

E Et+1[ ] ≤E Et[ ]+1
2
γ2
0

t2
∑N
i�1

λiE ‖ṽi Xt( )‖22[ ]

+ γ0

t

∑N
i�1

λi E ṽi Xt( )[ ]
,Xt

i −x∗i
〈 〉

, (12)

� E Et[ ] + 1
2
γ2
0

t2
∑N
i�1

λiE ‖ṽi Xt( )‖22[ ]

+ γ0

t

∑N
i�1

λiE E ṽi Xt( ) | Xt[ ]
,Xt

i − x∗i
〈 〉[ ]

, (13)

� E Et[ ] + 1
2
γ2
0

t2
∑N
i�1

λiE ‖vi Xt( ) + ξt+1i ‖22
[ ]

+ γ0

t
E

∑N
i�1

λi〈vi Xt( )
,Xt

i − x∗i 〉
[ ]

, (14)

≤E Et[ ]+γ2
0

t2
∑N
i�1

λi E ‖vi Xt( )‖22[ ]
+E ‖ξt+1i ‖22

[ ]( )

+ γ0

t
E

∑N
i�1

λi〈vi Xt( )
,Xt

i −x∗i 〉
[ ]

, (15)

≤E Et[ ]+Cγ2
0

t2
+γ0

t
E

∑N
i�1

λi〈vi Xt( )
,Xt

i −x∗i 〉
[ ]

, (16)

where the first equality follows from Assumption 2
and the last inequality follows from the fact that both
E[‖vi(Xt)‖22] and E[‖ξt+1i ‖22] are bounded: the former

is bounded as a result of X being bounded and v(·)
is continuous; the latter is bounded as a result of
Assumption 2. Consequently, we use a constant C to
denote the total upper bound. Note that it can be
easily checked that C ≤ G + V.
Next, because the game G is (λ, β)-WSM, we have∑N
i�1λi〈vi(x)−vi(y),xi−yi〉≤−β

2
∑N

i�1λi‖xi−yi‖22, ∀x,y∈X .
This immediately implies that

∑N
i�1

λi vi x( ) − vi x∗( )
, xi − x∗i

〈 〉

� ∑N
i�1

λi vi x( ), xi − x∗i
〈 〉 −∑N

i�1
λi vi x∗( )

, xi − x∗i
〈 〉

≤ − β

2

∑N
i�1

λi‖xi − x∗i ‖22,∀x ∈ X . (17)

Consequently, plugging Xt into the Equation (17)
yields

∑N
i�1

λi vi Xt( )
,Xt

i − x∗i
〈 〉 ≤ ∑N

i�1
λi vi x∗( )

,Xt
i − x∗i

〈 〉

− β

2

∑N
i�1

λi‖Xt
i − x∗i ‖22,∀x ∈ X .

Because x∗ is a Nash equilibrium, it follows from
Lemma 3 that

∑N
i�1 λi〈vi(x∗),Xt

i − x∗i 〉 ≤ 0 and hence∑N
i�1λi〈vi(Xt),Xt

i −x∗i 〉≤−β
2
∑N

i�1λi‖Xt
i−x∗i ‖22,∀x∈X . Note

that even though Xt is random, the inequality holds
surely. Consequently, it follows that

E Et+1[ ] ≤ E Et[ ] + Cγ2
0

t2
+ γ0

t
E

× ∑N
i�1

λi vi Xt( )
,Xt

i − x∗i
〈 〉[ ]

≤ E Et[ ]

− β

2
γ0

t
E

∑N
i�1

λi‖Xt
i − x∗i ‖22

[ ]
+ Cγ2

0

t2
, (18)

� E Et[ ] − βγ0

t
E Et[ ] + Cγ2

0

t2
� 1 − βγ0

t

( )
E Et[ ]

+ Cγ2
0

t2
. (19)

Consequently, applying Lemma 2 with p � q � 1
and P � βγ0,Q � Cγ2

0 (noting that γ0 > 1
β) immedi-

ately yields

E ET[ ] ≤ Cγ2
0

βγ0 − 1
1
T
. (20)

As a result, it follows thatET � ‖Xt−x∗‖22 ≤ 1
minλi

E[ET] ≤
1

minλi

Cγ2
0

βγ0−1
1
T. ∎
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5. Theoretical Guarantees of Robust
Power Control

In this section, we establish the theoretical guarantees
of theproposedpower control algorithms.Our approach
lies in designing two weighted strongly monotone
games such that each variant of the algorithm can be
interpreted as a special instance of themultiagent EGD
learning dynamics for the corresponding game. We
emphasize that it is not the case that the transmitters
are playing a repeated game where their utilities are
prescribed by the designed function. Instead, this is
merely used as an analytical framework to study the
proposed algorithms. In fact, this is the analytical
framework we use to design and derive the proposed
power control algorithms in the first place.

5.1. Designed WSM Games
Under the notation introduced in Section 2, we con-
sider the following two games G1,G2 as given below,
where the set N of players is the set of links in the
power control contexts.

1. G1 � (N ,P, {ui}Ni�1), where ui(p) � − 1
2Gii

(Giipi −
r∗i (∑j��i Gijpj + ηi))2.
2. G2 � (N ,P, {ũi}Ni�1), where ũi(p) � − 1

2G2
ii
(Giipi −

r∗i (∑j��i Gijpj + ηi))2.
When the channel is feasible, per Fact 1, a (neces-

sarily unique) optimal joint transmission power p∗
exists. Because the optimal joint transmission power
matches the quality-of-service constraints exactly,
every player’s utility will be zero if they transmit
according to p∗. This implies that p∗ must be a Nash
equilibrium, because zero is the highest utility that
can be possibly achieved for any given player (link).
In fact, at p∗, not only will any player fail to obtain
better utility by unilaterally deviating from p∗, the
players cannot achieve better utility through collu-
sion of any type. Furthermore, p∗ is the unique Nash
equilibrium, because if p were any other Nash equi-
librium, then necessarily one player’s utility is below
zero. For this player, he or she will have the incentive
to transmit at a higher power compared with the
current prescribed transmission power so as to achieve
better utility.

The preceding discussion essentially establishes
that when the channel is feasible, both of these games
admit a unique Nash equilibrium p∗, which is the
optimal joint transmission power. However, it still
remains a question as to whether they are WSM. The
following lemma presents a rather intriguing result:
the feasibility of the channel not only guarantees the
existence of a unique Nash equilibrium but also, more
importantly, implies that both games are WSM.

Lemma 4. Fix λ � ( 1
G11

, 1
G22

, . . . , 1
GNN

). Assume that the
channel (G, η) is feasible and thereby let p∗ ∈ P be the

optimal joint transmission power as defined in Definition 3.
The we have
1. β≜ − λmax(12 (W − I) + 1

2 (WT − I)) > 0, where W is
the reweighted matrix in Equation (3).
2. The designed game G1 � (N ,P, {ui}Ni�1) is (λ, β)-

WSM with the unique Nash equilibrium p∗.
3. The designed game G2 � (N ,P, {ũi}Ni�1) is (1, β)-

WSM with the unique Nash equilibrium p∗.
Proof. We first establish the first statement. For each i,

vi p( ) � ∂ui p( )
∂pi

� − Giipi − r∗i
∑
j��i

Gijpj + ηi

( )( )
, (21)

which can be easily seen as affine in pi and hence
concave, with all the smoothness assumptions satis-
fied. For each i, j, ∂vi(p)∂pi

� −Gii,
∂vi(p)
∂pj

� r∗i Gij. Computing
the λ-weighted Hessian matrix of the designed game,
we obtain Hλ

ij (p) � 1
2Gii

∂vi(p)
∂pj

+ 1
2Gjj

∂vj(p)
∂pi

.

If i � j, then Hλ
ii (p) � 2 × 1

2Gii

∂vi(p)
∂pi

� −1.
If i �� j, then Hλ

ij (p)� 1
2Gii

r∗i Gij+ 1
2Gjj

r∗j Gji� 1
2(r∗i Gij

Gii
+r∗j Gji

Gjj
).

Let W be the reweighted gain matrix as defined in
Equation (3) and I ∈ RN×N be the identity matrix. From
the previous calculations, it follows that

Hλ � 1
2

W − I( ) + 1
2

WT − I
( )

.

Because the channel (G, η) is feasible, per Theorem 1,
λmax(W) < 1. Consequently, (W − I) is negative definite
(although not necessarily symmetric, i.e., may have
complex eigenvalues): ∀p ∈ RN ,

p W − I( )p � pWp − ‖p‖2 ≤ λmax W( ) − 1( )‖p‖2 < 0.

Similarly, (WT − I) is negative definite, thereby im-
plying Hij(p) is negative definite. Because Hij(p) is
negative definite for every p (because it is indepen-
dent of p), Lemma 1 establishes that the game is
λ-DSC. Because p∗ results the maximum utility for
every player: ui(p∗) � 0, p∗ must be a Nash equilib-
rium and hence the unique Nash equilibrium. Note
that Hλ(p) does not depend on p and is hence uni-
formly negative definite and has a uniform upper
bound β on the largest eigenvalue.
Statement 2 follows by a similar argument by noting

that in this case,

vi p( ) � ∂ũi p( )
∂pi

� − pi − r∗i
∑

j��i Gijpj + ηi
Gii

( )
. (22)

Computing the λ̃-weighted Hessian for λ̃ � (1,
1, . . . , 1) yields

Hλ̃ � 1
2

W − I( ) + 1
2

WT − I
( )

,

thereby establishing the conclusion. ∎
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With the above two designed games, we can connect
the proposedpower control algorithms to themultiagent
EGD learning dynamics and immediately derive fast
convergence results in the deterministic channel envi-
ronments. We start with some notation. Let M1 and M2

be two matrices such thatM1
ii � Gii,M1

ij � −r∗i Gij when
i �� j and M2

ii � 1,M2
ij � −r∗i Gij

Gii
when i �� j. Denote

ρ1 ≜
−2λmax(12(W−I)+1

2(WT−I))
λ2
max(M1) , ρ2 ≜

−2λmax(12(W−I)+1
2(WT−I))

λ2
max(M2) (note

that both ρ1 and ρ2 are positive). One thing to note
here is that in order to achieve a geometric conver-
gence rate, instead of using diminishing step-size as
in Algorithm 2, we need a small constant step-size.

Corollary 1. Let pt be the iterates generated fromAlgorithm 2
under a deterministic channel environment (i.e., Gt � G,
ηt � η) and a constant step-size αt � α. Then,

1. If 0 < α < ρ1, then ‖p − p∗‖22 � O(κ−T) under Var-
iant A, for some κ > 1.

2. If 0 < α < ρ2, then ‖p − p∗‖22 � O(κ−T) under Var-
iant B for some κ > 1.

Remark 9. With some algebra, Corollary 1 follows as a
consequence of the framework we have presented so
far. In particular, Variant A and Variant B are multi-
agent EGD for the designed games (N ,P, {ui}Ni�1) and(N ,P, {ũi}Ni�1), respectively, where αt � α. To see this,
note that ∂ui(p)

∂pi
� −(Giipi − r∗i (∑j ��i Gijpj + ηi)) and ∂ũi(p)

∂pi
�

−(pi − r∗i
∑

j ��i Gijpj+ηi
Gii

). Further, from Equation (21), it is
clear that v(·) is ρ1-Lipschitz because ‖v(p)−v(p̃)‖2 �‖M1p−M1p̃‖2 ≤λmax(M1)‖p− p̃‖2. Similarly, per Equa-
tion (22),v(·) is ρ2-Lipschitz. Consequently, per Lemma 4
and Remark 6, we have the convergence results.

5.2. Channel Feasibility in Stochastic Environments
Beforewemoveon toestablish the theoretical guarantees
in the stochastic channel environments,weneed a notion
that characterizes channel feasibility in such cases. Be-
cause the channel isfluctuating, itwould be too strong to
require that each channel realization on any given time
step is feasible. Instead, here we only impose the mild
requirement that a channel is feasible on average (and
hence can be feasible sometimes and infeasible some
other times). The next definition formalizes it:

Definition 5. A channel (G, η) (or equivalently (W, γ)) is
1. Type-I mean-feasible if (E[G],E[η]) is feasible,

where expectation is taken component-wise;
2. Type-II mean-feasible if (E[W],E[γ]) is feasible,

where expectation is taken component-wise.

The two types of mean-feasible channels are closely
related: although in general neither implies the other, in
the important and commonly occurring case thatGij’s are
independent of Gii, Type-I mean-feasible is weaker than
Type-IImean-feasible,as formalizedbythefollowinglemma:

Lemma 5. If for each i ∈ {1, 2, . . . ,N}, Gij and Gii are
pairwise independent for each j �� i, then a channel that is
Type-II mean-feasible is Type-I mean-feasible.

Proof. Let a channel (G, η) be Type-II mean-feasible.
Defined the matrix W̃ to be

W̃ij :�
0, i � j

r∗i E Gij[ ]
E Gii[ ] , i �� j.

{
(23)

We have

E
Gij

Gii

[ ]
� E Gij

[ ]
E

1
Gii

[ ]
≥ E Gij

[ ]
E Gii[ ] , (24)

where the equality follows from independence and
the inequality follows from Jensen’s inequality and
the fact that f (x) � 1

x is convex when x is positive. This
immediately implies

E W[ ] ≥ W̃,

where inequality holds component-wise. Because each
entry in both matrices is nonnegative, we have

λmax E W[ ]( ) � max
u∈RN :‖u‖2�1

uE W[ ]u � max
u∈RN+ :‖u‖2�1

uE W[ ]u,

λmax W̃
( ) � max

u∈RN+ :‖u‖2�1
uW̃u � max

u∈RN+ :‖u‖2�1
uW̃u.

Further, for eachu ∈ RN+ , Equation (24) implies uE[W]u≥
uW̃u, which then leads to

λmax E W[ ]( ) � max
u∈RN+ :‖u‖2�1

uE W[ ]u

≥ max
u∈RN+ :‖u‖2�1

uW̃u � λmax W̃
( )

.

By Theorem 1, λmax(W̃) < 1 and hence the channel
must be Type-I mean-feasible. ∎

Remark 10. These two types of mean-feasible envi-
ronments correspond to the respective environment
under which Variant A and Variant B of the proposed
algorithm admit theoretical performance guarantees.
As it turns out, Type-I mean-feasible is required for
Variant A and Type-II mean-feasible is required for
Variant B. Per the previous lemma, Type-II mean-
feasible is a slightly stronger condition than Type-I
mean-feasible: this is to be expected because Variant
B of the algorithm requires less information in choosing
the power iterates than that of Variant A.

5.3. Convergence of Robust Power Control:
Stability and Optimality

We are now ready to state the main result. We ob-
tain this result by casting the proposed power con-
trol algorithms in the multiagent noisy EGD learn-
ing framework.
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Theorem 4. Given a stochastic channel (G, η) (or equiva-
lently (W, γ)) according to Assumption 1: let γ0 in Algo-
rithm 2 be chosen such that γ0 > 1

−λmax(12(W−I)+1
2(WT−I)).

1. If the channel is Type-I mean-feasible, with p∗ ∈ P
being the optimal joint transmission power for (E[G],
E[η]), then E[‖Pt → p∗‖22] � O(1T), where Pt is given by
Variant A in Algorithm 2.

2. If the channel is Type-II mean-feasible, with p∗ ∈ P
being the optimal joint transmission power for (E[W],
E[γ]) and for each i, there exists some g

i
> 0 such that

Gii ≥ g
i
a.s., then E[‖Pt → p∗‖22] � O(1T),where Pt is given

by Variant B in Algorithm 2.

Remark 11. Two things to note here. First, the mean-
square convergence to a constant joint transmission
power in the presence of persistent stochastic channel
fluctuations is a manifestation of the stability of the
proposed algorithms. The intuition behind this stability
is that as past powers are incorporated into the current
power via a weighted sum, the random environments
have less and less impact on the current power iter-
ate because the step-sizes are decreasing. Second, Gii ≥
g
i
a.s. is a rather mild assumption as it means that

power gain between each transmitter and its intended
receiver is lower bounded by some positive constant.

Proof. Because (G, η) (or (W, γ)) is random, we con-
sider the following two games G1,G2 as given below,
where the set N of players is again the set of wireless
links in the power control contexts:

1. G1 � (N ,P, {ui}Ni�1) ui(p) � E[− 1
2Gii

(Giipi − r∗i (∑j ��i,
Gijpj + ηi))2].

2. G2 � (N ,P, {ũi}Ni�1) ũi(p) � E[− 1
2G2

ii
(Giipi − r∗i (∑j ��i,

Gijpj + ηi))2].
Under the above two designed games, it is straight-

forward to verify that

∂ui p( )
∂pi

� −E Giipi − r∗i
∑
j��i

Gijpj + ηi

( )( )[ ]

� − E Gii[ ]pi − r∗i
∑
j��i

E Gij
[ ]

pj + E ηi
[ ]( )( )

, (25)

∂ũi p( )
∂pi

� −E pi − r∗i
∑

j��i Gijpj + ηi
Gii

( )[ ]

� − pi − r∗i
∑
j��i

E
Gij

Gii

[ ]
pj + E

ηi
Gii

[ ]( )( )

� − pi −
∑
j��i

E Wij
[ ]

pj + E γi
[ ]( )( )

. (26)

For the first claim, per Assumption 1, we can write
Gt

ij � E[Gij] + G̃t
ij, η

t
i � E[Gij] + η̃ti , where G̃t

ij and η̃ti are
both sequences of iid, zero-mean and finite-variance

random variables. Consequently, the gradient update
(line 5) in Algorithm 2 can be equivalently written as

X̃t+1
i � Xt

i −
γ0

t
E Gii[ ] + G̃t

ii

( )
Pt
i − r∗i

{

× ∑
j��i

E Gij
[ ] + G̃t

ij

( )
Pt
j + E ηi

[ ] + η̃ti

( )}
, (27)

� Xt
i −

γ0

t
E Gii[ ]Pt

i − r∗i
∑
j ��i

E Gij
[ ]

Pt
j

( )
+ E ηi

[ ]{

+ G̃t
iiP

t
i − r∗i

∑
j��i

G̃t
ijP

t
j + η̃ti

{ }}
. (28)

Denoting ξt+1i � G̃t
iiP

t
i − r∗i ∑j ��i G̃t

ijP
t
j + η̃ti , it follows that

E[ξt+1i |P0, . . . ,Pt] � 0,a.s. and Var[ξt+1i | P0, . . . ,Pt] < ∞,
a.s. BecauseP is bounded, there exists a constantB > 0
such thatVar[ξt+1i |P0, . . . ,Pt] ≤B,a.s.,∀t. Consequently,
the martingale noise ξt satisfies Assumption 2 per
Remark 7. This implies that Algorithm 2 is a special
case of Algorithm 4. Further, because the channel is
Type-I mean-feasible, Lemma 4 implies that G1 is a
WSM game with p∗ being the unique Nash equilib-
rium. The result therefore follows by directly ap-
plying Theorem 3.
The second claim follows from a similar line of

reasoning: the only thing to note here is that the
bounded second moments assumption holds because
Gii ≥ g

i
a.s.. ∎

6. Conclusion
We close with a few remarks. First, although we have
focused on stochastic iid environments in this paper,
the designed algorithm given in Algorithm 2 can still
operate in an arbitrary time-varying environment.We
believe our convergence results would generalize to
the stationary and ergodic environment case, al-
thoughmaking that fully rigorous is beyond the scope
of the paper and requires new analysis techniques; we
hence leave that for future work. Further, the recent
empirical work (Ward et al. 2018) indicates that
variants of the dual averaging power control algo-
rithm can be made robust to delayed feedback, broad-
ening its applicability even further. Second, our the-
oretical investigation on multiagent EGD learning
with imperfect first-order feedback falls within the
broader inquiry of game-theoretic learning, an area
that stands at the intersection of learning and game
theory and that seeks to answer the following question:
what is the evolution of play when every player
adopts a no-regret learning algorithm? In particular, if
all players of a repeated game employ an updating rule that
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leads to no regret, do their actions converge to a Nash
equilibrium of the one-shot game? We aim to obtain
quantitative convergence results for other no-regret
learning algorithms in different classes of games in
future work, with a particular goal in understanding
when would the rate O(1T) be achievable. Another
interesting theoretical direction to take is to obtain
convergence resultswhen only zeroth-order feedback
is obtained. Flaxman et al. (2005) characterized regret
guarantees for online gradient descent in such cases.
Studying the convergence issue in the multiagent
setup would be interesting.

Finally, as mentioned in the introduction, the land-
scape of power management is vast and includes many
other objectives. We believe that this game-design ap-
proach will be fruitful in those other problems: in order
to design distributed algorithms that converge to some
optimal/desired action, one can design a WSM game
whose unique Nash equilibrium corresponds to the
optimal action and thereby deriving an algorithm im-
mediately via the online learning algorithm. Conse-
quently, in this approach, EGD, and more broadly any
no-regret online learning algorithm, can be viewed as a
meta-algorithm that canbe instantiatedvia thedesignof
specific games.
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Endnotes
1The literature on power control is too broad to review here; for a
comprehensive survey, we refer the reader to Chiang et al. (2008).
2Motivated by the random nature of network feasibility in realistic
wireless environments, we frame all of the above in a bona fide
stochastic setting where exact gradient information is not available,
either because the players’ payoffs are themselves stochastic in nature
or because the players’ feedback is contaminated by noise, obser-
vation errors, and/or other exogenous stochastic effects. To model all
this, we consider a noisy feedback model where players only have
access to a first-order oracle providing unbiased, bounded-variance
estimates of their payoff gradients at each step. Apart from this,
players are assumed to operate in a “black box” setting, without any
knowledge of the game’s structure or their payoff functions (or even
that they are playing a game).
3 In practice, only access to some aggregated statistics of the power
used by all the other transmitters is feasible. The statistics typically
take the form of some function of all the powers used by the
transmitters, such as the one given in Algorithm 2.
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Altman E, Başar T, De Pellegrini F (2010) Optimal monotone for-
warding policies in delay tolerant mobile ad-hoc networks.
Performance Evaluation 67(4):299–317.

Antipin A (2002) Gradient approach of computing fixed points of
equilibrium problems. J. Global Optim. 24(3):285–309.

Arrow KJ, Hurwicz L (1960) Stability of the gradient process in
n-person games. J. Soc. Indust. Appl. Math. 8(2):280–294.

Au-Yeung KY, Robertson T, Hafezi H, Moon G, DiCarlo L,
Zdeblick M, Savage G (2010) A networked system for self-
management of drug therapy and wellness. Wireless Health
(ACM, New York), 1–9.

Balandat M, Krichene W, Tomlin C, Bayen A (2016) Minimizing
regret on reflexive Banach spaces and learningNash equilibria in
continuous zero-sum games. Preprint, submitted June 3, https://
arxiv.org/abs/1606.01261.

Bradley J, Barbier J, Handler D (2013) Embracing the internet of
everything to capture your share of $14.4 trillion. White Paper,
Cisco Systems, Inc., San Jose, CA.

Byrne C, Lim CL (2007) The ingestible telemetric body core tem-
perature sensor: a review of validity and exercise applications.
British. J. Sports Medicine 41(3):126–133.

Candogan UO, Menache I, Ozdaglar A, Parrilo PA (2010) Near-
optimal power control in wireless networks: A potential game
approach. Proc. 29th IEEE Conf. Comput. Comm. (IEEE, Piscat-
away, NJ), 1–9.

Cesa-Bianchi N, Lugosi G (2006) Prediction, Learning, and Games
(Cambridge University Press, Cambridge, UK).

Chiang M, Hande P, Lan T, Tan CW (2008) Power control in wireless
cellular networks. Foundations Trends® Networking 2(4):381–533.

Chung KL (1954) On a stochastic approximation method. Ann. Math.
Statist. 25(3):463–483.

Cui T, Chen L, Low SH (2008) A game-theoretic framework for
medium access control. IEEE J. Selected Areas Comm. 26(7):
1116–1127.

Deakin M (2013) Smart Cities: Governing, Modelling and Analysing
the Transition (Taylor & Francis, London).

El Gamal A, Mammen J, Prabhakar B, Shah D (2006a) Optimal
throughput-delay scaling in wireless networks-part i: The fluid
model. Information Theory IEEE Trans. Inform. Theory 52(6):
2568–2592.

El Gamal A, Mammen J, Prabhakar B, Shah D (2006b) Optimal
throughput-delay scaling in wireless networks-part i: The fluid
model. Information Theory IEEE Trans. Inform. Theory 52(6):
2568–2592.

Eryilmaz A, Modiano E, Ozdaglar A (2006) Randomized algorithms
for throughput-optimality and fairness in wireless networks.
Proc. 45th IEEE Conf. Decision Control (IEEE, Piscataway, NJ),
1936–1941.

Eryilmaz A, Ozdaglar A, Médard M, Ahmed E (2008) On the delay
and throughput gains of coding in unreliable networks. IEEE
Trans. Inform. Theory 54(12):5511–5524.

Facchinei F, Pang J-S (2007) Finite-Dimensional Variational Inequal-
ities and Complementarity Problems (Springer Science & Busi-
ness Media).

Fan X, Alpcan T, Arcak M, Wen TJ, Başar T (2006) A passivity ap-
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