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Abstract. This paper introduces anewasymptotic regime for simplifying stochasticmodelshaving
nonstationary effects, such as those that arise in the presence of time-of-day effects. This regime
describes an operating environment within which the arrival process to a service system has an
arrival intensity that isfluctuating rapidly.We show that such a service system iswell approximated
by the corresponding model in which the arrival process is Poisson with a constant arrival rate. In
addition to the basic weak convergence theorem, we also establish a first order correction for the
distributionof the cumulativenumberof arrivals over [0, t], aswell as thenumber-in-systemprocess
for an infinite-server queue fedbyanarrival process havinga rapidly changingarrival rate. This new
asymptotic regime provides a second regime within which nonstationary stochastic models can be
reasonably approximated by a process with stationary dynamics, thereby complementing the
previously studied setting within which rates vary slowly in time.

Keywords: counting processes • Poisson process • weak convergence • total variation convergence • compensator • intensity •
infinite-server queue

1. Introduction
In many operations management settings, the arrival
process to the system exhibits clear nonstationarities.
These nonstationarities may arise as a consequence
of time-of-day effects, day-of-week effects, season-
alities, or stochastic fluctuations in the arrival rate.
One mathematical vehicle for studying such non-
stationary arrival processes is to consider the setting
inwhich the arrival rate changes slowly in time. In this
setting, it is intuitively clear that the nonstationary
system can be viewed as a small perturbation of a
constant arrival rate system. Consequently, it seems
conceptually reasonable that one should be able to
study such slowly changing arrival rate models via an
asymptotic expansion in which each of the terms in
the expansion involves a stationary arrival rate cal-
culation. This intuition has been validated rigorously by
Khasminskii et al. (1996), Massey and Whitt (1998),
and, more recently, Zheng et al. (2018).

In this paper, we show that arrival rate modeling
also can be simplified significantly at the opposite end
of the asymptotic spectrum in which the arrival rates
fluctuate rapidly. Thus, we can view the results of this
paper as complementing the existing literature on
slowly varying arrival rate modeling. In particular,
we study counting processes in which the intensity
at time t is given by λε(t) :� λ(t/ε), where ε is small and

λ � (λ(s) : s ≥ 0) is a fixed process. We also study
stochastic systems that are fed by such counting
processes. The process λ could be a deterministic
periodic function intended to model time-of-day ef-
fects, or it could be a functional of a positive recurrent
Markov process. In either case, we show that when
ε ↓ 0, we may view the system as one fed by a constant
rate Poisson process with rate λ∗ given by the long-run
time average of λ; see Theorem 1 for details. Our
theory applies not only to processes with determin-
istic and doubly stochastic intensities, but also to self-
exciting counting processes like Hawkes processes.
Indeed, there is increasing interest in studying service
systems fed by self-exciting Hawkes processes; see
Gao and Zhu (2016), DawandPender (2018), and Koops
et al. (2018). Thus, this paper provides a second rig-
orously supported asymptotic regime within which the
dynamics of a service system with a nonstationary ar-
rival process can be approximated by a simpler system
with stationary dynamics. We observe that the impor-
tance of such arrival processes has been acknowledged
in the literature, though much of the recent literature
focuses on deterministic time-of-day dependencies (see
the recent survey by Whitt 2018).
Note that in our setting, the number of arrivals per

time period remains bounded as ε → 0, so that the in-
tensityfluctuates rapidlywithina typical interarrival time.

1566

Vol. 69, No. 5, September–October 2021, pp. 1566–1574

http://pubsonline.informs.org/journal/opre
mailto:zyzheng@berkeley.edu
https://orcid.org/0000-0001-5653-152X
https://orcid.org/0000-0001-5653-152X
mailto:honnappa@purdue.edu
https://orcid.org/0000-0002-0834-054X
https://orcid.org/0000-0002-0834-054X
mailto:glynn@stanford.edu
https://orcid.org/0000-0003-1370-6638
https://orcid.org/0000-0003-1370-6638
https://doi.org/10.1287/opre.2020.2031


Thus, our asymptotic regimedescribes systemswherein
the time scale over which the intensity is fluctu-
ating is much smaller than the time scale at which ar-
rivals occur. These high-frequency fluctuations in
the arrival rate may be a consequence of a short
period, stochastic effects, or some combination of high-
frequency periodicity and rapid stochastic fluctua-
tions. As an example of a real-world system in which
such an asymptotic regime may be appropriate,
consider a construction equipment leasing company. If
the leases tend to be of long duration (e.g., on the order
of months), our theory suggests that in the analysis of
a queueing model intended to predict lost sales (due
to all the available equipment having been rented),
one can safely ignore the daily periodicity in the ar-
rival rate describing exogenous demand for the com-
pany’s equipment. As a further example, consider a
motor vehicle company that must handle warranty
claims for repairs. Although warranty-covered fail-
ures likely exhibit daily periodicities because of
customer vehicle usage patterns, the failure time for
vehicles will be large relative to the period of the in-
tensity, so could safely be ignored by the insurance
company (according to the results of this paper). On the
other hand, a towing companywould take the intraday
variations into consideration while making operational
decisions on where to deploy its resources. Power-
related failures of satellites in orbit (Landis et al.
2006) provide another vivid example in the context
of reliability. Satellite failures are rare, but the fact
that low Earth orbit satellites rapidly cycle between
bright light and complete darkness places stress on
the electronics and solar arrays that form the power
systems. Although the intensity of light changes
rapidly (in relation to the lifetime of the satellite),
there are very few points of failure, suggesting that
the number of failures in a time period corresponding
to the typical lifetime of a satellite should be ap-
proximately Poisson.

It is important to observe that there are critical
qualitative differences between the setting in this pa-
per and the substantial literature on “rapid switching”
diffusion and counting processes; see Khasminskii
et al. (2007), Khasminskii (2012), Blom et al. (2014),
Heemskerk et al. (2017), Koops et al. (2017, 2018), and
Spreij and Storm (2018). In particular, in the rapid
switching literature on counting processes, the pro-
cess N itself is accelerated by a factor of 1/ε (rather
than its intensity) so that the arrivals and intensity
are both fluctuating on the same time scale. The
analysis there exploits an averaging effect (due, es-
sentially, to the law of large numbers as applied toN)
to establish weak limits for the rescaled counting
processes. A consequence of the acceleration in the
rapid switching regime is that the scaled counting
processes εN(t/ε) appearing there cannot converge to

a counting process, because it has jumps of size ε, not 1
as for a counting process. On the other hand, the
“rapid fluctuation” in our setting is describing a
rapid change in the intensity process, whereas the
counting process itself is not rescaled, and our anal-
ysis identifies a constant rate Poisson process as the
limit. Our results also depend on an “averaging effect,”
but our averaging arises as a consequence of the fact
that the compensator of a rapidly fluctuating count-
ing process converges to the “constant rate” com-
pensator associated with the Poisson process.
In particular, the averaging in our setting relates to the
compensator rather than the counting process itself.
Our results establish an alternative regime to the
Palm–Khintchine superposition theorem (Cinlar and
Agnew 1968) in which a Poisson process emerges as a
weak limit of a sequence of counting processes.
Crucially, unlike in the Palm–Khintchine setting, there
is no superposition of independent and identically
distributed (i.i.d.) counting processes in this setting.
This paper is organized as follows. Section 2 pro-

vides our main weak convergence theorem, estab-
lishing that counting processes with rapidly fluctu-
ating intensities can be weakly approximated by a
constant rate Poisson process (Theorem 1). In the
remainder of the section, we compute the total vari-
ation (TV) distance between the counting process
and the Poisson process in the Markov-modulated
doubly stochastic setting, and prove that the TV
distance does not tend to zero, thereby showing that
one can expect to use the constant rate Poisson ap-
proximation only for suitably continuous path func-
tionals. In Section 3, we study the distribution of the
total number of arrivals in an interval [0, t] and
obtain a first order refinement to the weak conver-
gence theorem that reflects the first order impact of
the high-frequency fluctuations in the arrival rate;
see Theorem 3. Finally, Section 4 provides a similar
first order refinement in the setting of the number-in-
system process for the infinite-server queue; see
Theorem 4.

2. Weak Convergence to a Constant Rate
Poisson Process

Our goal is to study the counting process Nε having
intensity λε, where λε(t) � λ(t/ε). There are multiple
different ways of constructing the process Nε. For
example, when the process N has a deterministic
intensity or is doubly stochastic, we may generate Nε

from a Poisson process via inversion of the integrated
intensity function; see Asmussen and Glynn (2007, p.
60) for details. Another alternative is to defineNε via a
change-of-measure argument; see Brémaud (1981,
p. 165). However, the approach to constructing Nε

that works most generally (e.g., for Hawkes processes;
see Hawkes 1971) is to construct Nε by “thinning” the
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counting process N. We start with a fixed arrival
counting processN � (N(t) : t ≥ 0). We assume thatN
is simple, in the sense thatN increases by exactly one at
each arrival epoch (and hence no batch arrivals are
possible). We further require that N be adapted to a
filtration F � (F t : t ≥ 0), and that N possess a right-
continuous nondecreasingF -compensatorA � (A(t) :
t ≥ 0), so thatM� (M(t) : t≥ 0) is a martingale adapted
to F , where M(t) � N(t) − A(t).

For 1 ≥ ε > 0, let βε � (βεi ; i ≥ 1) be an i.i.d. sequence
of Bernoulli(ε) random variables (RVs) independent
of N. For t ≥ 0, let Aε(t) � εA(t/ε), and let Gε

t be the
smallest σ-algebra containing F t/ε and the σ-algebra
σ(βεi : 1 ≤ i ≤ N(t/ε)). Let Gε � (Gε

t : t ≥ 0) and
Nε t( ) � ∑N t/ε( )

i�1
βεi .

Then, Nε � (Nε(t) : t ≥ 0) is a simple counting process
for which

E Nε t + s( ) − Aε t + s( )|Gε
t

[ ]
� Nε t( ) + E

∑N t+s( )/ε( )

i�N t/ε( )+1
βεi

⃒⃒⃒
⃒⃒Gε

t

[ ]
− E Aε t + s( )|Gε

t

[ ]
� Nε t( ) + EβεtE N t + s( )/ε( ) −N t/ε( )|Gε

t

([ ]
− εE A t + s( )/ε( )|Gε

t

[ ]
� Nε t( ) + εE N t + s( )/ε( ) − A t + s( )/ε( )|Gε

t

[ ]
− εN t/ε( )

� Nε t( ) + εE N t + s( )/ε( ) − A t + s( )/ε( )|F t/ε
[ ]

− εN t/ε( )
� Nε t( ) + ε N t/ε( ) − A t/ε( )( ) − εN t/ε( )
� Nε t( ) − Aε t( ),

for s, t ≥ 0, so that Aε is the Gε-compensator of Nε.
(Here, we used the independence of βε from N in the
third-to-last equality (see Kallenberg 1997, p. 87) and
the fact that M is an F -adapted martingale in the
second-to-last equality.)

An important special case is when the compen-
sator A can be written in the form A(t) � ∫ t

0 λ(s)ds, in
which case λ � (λ(t) : t ≥ 0) is the F -intensity of N.
Then, Nε has Gε-intensity λε � (λε(t) : t≥ 0), where
λε(t) � λ(t/ε), and compensator Aε(t) �

∫ t
0 λ(s/ε)ds for

t ≥ 0. We can see clearly, in this setting, that Nε has a
rapidly fluctuating intensity as ε ↓ 0, so that this
framework is indeed modeling such an asymp-
totic regime.

We now assume the following.

Assumption 1. There exists a deterministic λ∗ ∈ (0,∞)
such that 1

t A(t) ⇒ λ∗ as t → ∞.

Recall that D[0,∞) is the space of right-continuous
functions on [0,∞) having left limits, endowedwith the
Skorohod J1 topology; see Ethier and Kurtz (1986)
for details.

Theorem 1. Suppose that the compensator A satisfies
Assumption 1. Then, Nε ⇒ N0 in D[0,∞) as ε → 0, where
N0 � (N0(t) : t ≥ 0) is a homogeneous Poisson process with
rate λ∗.

Proof of Theorem1. Fix t ≥ 0. Then, by definition, λ∗t ∈
Gε
0 for every ε > 0. Furthermore, we note that As-

sumption 1 implies that

Aε t( ) � εA t/ε( ) � ε

t

( )
A t/ε( ) · t ⇒ λ∗t,

as ε ↓ 0. It follows that A(t) and Aε(t) satisfy the
conditions (i) and (ii) of theorem 13.4.IV of Daley and
Vere-Jones (1988), yielding the result. □

The following examples illustrate the settings in
which Assumption 1 is satisfied.

Example 1. A nonhomogeneous counting process with
deterministic and periodic intensity function λ(t) that
satisfies T−1 ∫ T

0 λ(t)dt � a, where T is the period, is an
easy (if obvious) example of a stochastic process sat-
isfying this condition.

Example 2. Let N � (N(t) : t ≥ 0) be an exponential
Hawkes process (Laub et al. 2015) with conditional in-
tensity functionλ(t)� ν+∫ t

0 αe
−β(t−s)dN(s).When α/β< 1,

the strong law of large numbers for continuous time
local martingales (Liptser 1980) and Hawkes processes
(Bacry et al. 2013) together imply that A(t)/t ⇒ λ∗ :�
ν/(1 − α/β) as t → ∞.

Of course, arrival processes typically serve as models
describing exogenous inputs to queueing systems or
service systems. Other sources of randomness de-
scribed, say, by a random sequence (such as service
time requirements, abandonment times, etc.) will typi-
cally also be present. If Z is independent of Nε, it
follows from Theorem 1 that

Z,Nε( ) ⇒ Z,N0( ),
in R∞ ×D[0,∞) as ε ↓ 0. It follows that if h : R∞ ×
D[0,∞) → R is continuous in the product topology at
(Z,N0) almost surely, then h(Z,Nε) ⇒ h(Z,N0) as ε ↓ 0
(via the continuousmapping principle; see Billingsley
1968, p. 21).
Consequently, if h is a map that sends (Z,Nε) into

some associatedperformancemeasure (e.g., the number-
in-systemat time t), wemay infer that the performance
measure can be computed as if the counting process
Nε is Poisson with rate λ∗ (when ε is small).
In the remainder of this section, we make clear that

although Nε converges weakly to N0 in D[0,∞) as
ε ↓ 0, no convergence typically takes place in the total
variation norm.More specifically, suppose thatNε is a
doubly stochastic Poisson process with stochastic
intensity λε � (λε(t) : t ≥ 0), where λε(t) � λ(t/ε) for
some fixed intensity λ. Suppose that S is a metric
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space. Recall that an S-valued Markov process X �
(X(t) : t ≥ 0) is said to be v-geometrically ergodic if there
exists a (measurable) function v ≥ 1, a probability π
on S, d < ∞, and α > 0 such that

sup
|g|≤v

Exg X t( )( ) −
∫
S
g y
( )

π dy
( )⃒⃒⃒

⃒
⃒⃒⃒
⃒ ≤ d v x( )e−αt, (1)

for t ≥ 0 and x ∈ S, where Ex(·)≜E( · |X(0) � x); see
Down et al. (1995) for sufficient conditions assuring
such geometric ergodicity. Stable queueing networks
in which the service time RVs have exponential mo-
ments typically are v-geometrically ergodic for some
v; see Kumar andMeyn (1995) andDai andMeyn (1995).

We assume the following.

Assumption 2. λ(t) � f (X(t)) for some bounded continuous
f :S→R+, where X is ϕ-irreducible and v-geometrically
ergodic.

Observe that the v-geometric ergodicity implies
that t−1

∫ t
0 λ(s) ds → λ∗ :� ∫

f (x)π(dx) (see Down et al.
1995; Meyn and Tweedie 2009, chapter 13), where π is
the stationary distribution of X, and Assumption 1 is
satisfied. Therefore, the cumulative intensity processAε

converges to λ∗t in distribution and Nε ⇒ N0 as ε ↓ 0.
To state our next result on the total variation dis-

tance between Nε and N0, we let X1(∞),X2(∞), . . . be
an i.i.d. sequence of S-valued RVs having common
distribution π (independent of N0).

Theorem 2. Suppose Assumption 2 holds and Ef (X1
(∞))> 0. Then,

sup
A

|P Nε s( ) : 0 ≤ s ≤ t( ) ∈ A( )
− P N0 s( ) : 0 ≤ s ≤ t( ) ∈ A( )|

→ 1
2
E
∏N0 t( )

j�1

f Xj ∞( )( )
Ef X1 ∞( )( ) − 1

⃒⃒⃒
⃒⃒

⃒⃒⃒
⃒⃒,

as ε ↓ 0, where the supremum is taken over the Borel
subsets of D[0, t].
Proof of Theorem 2. The change-of-measure formula
for doubly stochastic Poisson processes (see, e.g., equa-
tion (3.2) of Brémaud 1981, p. 241) asserts that

P Nε s( ) : 0 ≤ s ≤ t( ) ∈ A( )
� EI N0 s( ) : 0 ≤ s ≤ t( ) ∈ A( ) exp −

∫ t

0
λ̃ε s( )ds

( )

· ∏N0 t( )

j�1

λε Tj
( )
λ∗

( )
,

where T1,T2, . . . are the consecutive jump times of N0,
λ∗ � Ef (X1(∞)), N0 is a Poisson process with constant

rate λ∗ under P, and λ̃ε(s) � λε(s) − λ∗. It follows that
(see, e.g., Gibbs and Su 2002, p. 7)

sup
A

|P Nε s( ) : 0 ≤ s ≤ t( ) ∈ A( ) −P N0 s( ) : 0 ≤ s ≤ t( ) ∈ A( )|

� 1
2
E|exp −

∫ t

0
λ̃ε s( )ds

( )∏N0 t( )

j�1

λε Tj
( )
λ∗

( )
− 1|.

(2)
Let H be the σ-algebra generated by T1,T2, . . . ,
TN0(t),N0(t). Conditional on H, Assumption 2 im-
plies that

P λε Ti( ) ≤ xi, 1 ≤ i ≤ N0 t( ) |H( )
� E I f X Ti/ε( )( ) ≤ xi, 1 ≤ i ≤ N0 t( ) − 1

( )(
× P f X TN0 t( )/ε

( )( ) ≤ xN0 t( ) |X
(

TN0 t( )−1/ε
( )) |H)

.

Because I( f ( · ) ≤ y) is bounded from above by v, As-
sumption 2 ensures that

pε s, x, y
( )

≜P f X s/ε( )( ) ≤ y |X 0( ) � x
( )

→ P f X ∞( )( ) ≤ y
( )

,

as ε ↓ 0, so that

|P λε Ti( ) ≤ xi, 1 ≤ i ≤ N0 t( ) |H( ) − P

× λε Ti( ) ≤ xi, 1 ≤ i ≤ N0 t( ) − 1( ) |H)P
× f X ∞( )( ) ≤ xN0 t( )
( ) |

� |E I λε Ti( )( ) ≤ xi, 1 ≤ i ≤ N0 t( ) − 1( ) pε(
× TN0 t( ) − TN0 t( )−1,X TN0 t( )−1/ε

( )
, xN0 t( )

( )
− P f X ∞( )( ) ≤ xN0 t( )

( ))|H)|
≤ E| pε TN0 t( ) − TN0 t( )−1,X TN0 t( )−1/ε

( )
, xN0 t( )

( )
− P f X ∞( )( ) ≤ xN0 t( )

( ) | → 0,

as ε ↓ 0. We now repeat this argument N0(t) − 1 ad-
ditional times, thereby yielding

P λε Ti( ) ≤ xi, 1 ≤ i ≤ N0 t( ) |T1,T2, . . . ,TN0 t( ),N0 t( )( )
→ ∏N0 t( )

i�1
P f Xi ∞( )( ) ≤ xi
( )

,

as ε ↓ 0. Hence, conditional on T1, . . . ,TN0(t),N0(t),

λε T1( ), λε T2( ), . . . , λε TN0 t( )
( )( )

⇒ f X1 ∞( )( ), f X2 ∞( )( ), . . . , f XN0 t( ) ∞( )( )( )
, (3)

as ε ↓ 0.
The proof of Theorem 3 establishes that E(∫ t

0 λ̃ε

(s)ds)2 → 0 as ε ↓ 0; see (14). Chebyshev’s inequality
therefore implies that∫ t

0
λ̃ε s( )ds ⇒ 0, (4)
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as ε ↓ 0. Relations (3) and (4) yield the conclusion that

exp −
∫ t

0
λ̃ε s( )ds

( ) ∏N0 t( )

j�1

λε Tj
( )
λ∗

( )
⇒ ∏N0 t( )

j�1

f Xj ∞( )( )
Ef X1 ∞( )( )
( )

,

as ε ↓ 0.
Finally,

exp −
∫ t

0
λ̃ε s( )ds

( ) ∏N0 t( )

j�1

λε Tj
( )
λ∗

( )
− 1

⃒⃒⃒
⃒⃒

⃒⃒⃒
⃒⃒

≤ 1 + exp ‖ f ‖t( ) ‖ f ‖
λ∗

( )N0 t( )
,

where ‖ f ‖≜ max{| f (x) : x ∈ S|}, so that the integrand
of the right-hand side of (2) is bounded uniformly in ε
by an integrable RV. Consequently, the dominated
convergence theorem applies to the right-hand side
of (2), yielding the theorem. □

It is evident thatNε does not converge toN0 in total
variation, because of the rapid fluctuations in the
intensity λε at any ε > 0. However, these rapid fluc-
tuations are “smoothed out” by path functionals that
are suitably continuous, yielding the weak conver-
gence associated with Theorem 1.

Example 3. Let (Nε(t) : t ≥ 0), with 1 ≥ ε > 0, be a
counting process with a periodic intensity function

λ∗ε t + kε( ) � 1 t ∈ 0, ε/2[ ),
0 t ∈ ε/2, ε[ ),

{
(5)

for k ≥ 1. Notice that the corresponding compensator
satisfies Assumption 1. Observe that the intensity
undergoes a “rapid” shift from a positive level to zero
halfway through theperiod.Consequently, this counting
process will not converge to a Poisson process in total
variation, because there are deterministic intervals of
time where there can be no points.

3. An Asymptotic Refinement for the
Distribution of Nε(t)

In this section, we show how the approximation of
Theorem 1 can be improved via a “first order” refine-
ment that reflects the impact of the high-frequency
fluctuations. Recall that o(a(ε)) represents a function
of ε such that o(a(ε))/(a(ε)) → 0 as ε ↓ 0. Also, for a
bounded (measurable) function f on S, note that
v-geometric ergodicity guarantees that if fc(x) � f (x) −
E f (X(∞)), then

|Ex fc X t( )( )| ≤ ‖ f ‖d v x( )e−αt, (6)
and hence the integral defining

g x( )≜
∫ ∞

0
Ex fc X t( )( )dt,

converges absolutely and is bounded by a multiple
of v. In fact, the function g defined above is the so-
lution to Poisson’s equation for the function fc, that

is, −(Ag)(x) � fc(x), in which A is the generator of the
Markov process X (for details, see Glynn and Meyn
1996; Meyn and Tweedie 2009, chapter 17.4). Note
that the solution of Poisson’s equation is funda-
mental to the analysis of the additive functional of∫ t
0 f (X(s))ds, which in our case is the compensator of
the counting process. In particular, the process con-
structed byM(t)≜g(X(t)) + ∫ t

0 fc(X(s))ds is a martingale.

Theorem 3. Suppose Assumption 2 holds with E f (X
(∞)) > 0. If λε(t) � f (X(t/ε)), then

P Nε(t) � k( ) � P N0(t) � k( ) 1 + ε
k
λ∗t − 1
( )

g x( )
[(

+ 1
2
1 − 2k

λ∗t +
k(k − 1)
λ∗t( )2

( )
σ2t

]
+ o ε( )

)
,

as ε ↓ 0, where σ2 � 2Efc(X(∞))g(X(∞)).
Note that the variance term σ2 emerges as the

limiting variance in the martingale central limit the-
orem as applied toM(t). In fact, there are a number of
models where Poisson’s equation can be explicitly
solved and σ2 can be explicitly computed, for example,
birth-and-death stochastic processes; see Whitt (1992)
for details.

Proof of Theorem 3. If we condition on X, we find that

Px Nε t( ) � k( ) � Ex exp −
∫ t

0
λε s( )ds

( ) ∫ t
0 λε s( )ds

( )k
k!

.

Set hk(y) � e−yyk/k!, and note that for y > 0,

h 1( )
k y
( ) � hk y

( ) k
y
− 1

( )
,

h 2( )
k y
( ) � hk y

( )
1 − 2k

y
+ k k − 1( )

y2

( )
,

h 3( )
k y
( ) � hk y

( ) k k − 1( ) k − 2( )
y3

− 3k k − 1( )
y2

+ 3k
y
− 1

)
.

(

Hence, a Taylor expansion of hk about tEf (X(∞))
implies that

hk

∫ t

0
λε s( )ds

( )

� hk ε

∫ t/ε

0
f X s( )( )ds

( )

� hk tEf X ∞( )( )( ) + h 1( )
k tEf X ∞( )( )( )

× ε

∫ t/ε

0
fc X s( )( )ds

( )

+ h 2( )
k tEf X ∞( )( )( )

2
ε

∫ t/ε

0
fc X s( )( )ds

( )2

+ h 3( )
k ξ ε( )( )

6
ε

∫ t/ε

0
fc X s( )( )ds

( )3
, (7)
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where ξ(ε) lies between
∫ t
0 λε(s)ds and tEf (X(∞)).

Note that (6) implies that

Ex

∫ t/ε

0
fc X s( )( )ds �

∫ t/ε

0
Exfc X s( )( )ds � g x( ) + o 1( )v x( ),

(8)
as ε ↓ 0. Also, the Markov property implies that

εEx

∫ t/ε

0
fc X s( )( )ds

( )2

� 2ε
∫ t/ε

0

∫ t/ε

s
Ex fc X s( )( ) fc X u( )( )duds

� 2ε
∫ t/ε

0
Ex fc X s( )( )

∫ ∞

0
Ex fc X s + u( )( )|X s( )[ ]

duds

− 2ε
∫ t/ε

0
Exfc(X(s))

∫ ∞

0
Ex Ex fc X(t/ε + u)( )|[[

× X t/ε( )]|X s( )]duds
� 2ε

∫ t/ε

0
Exfc X s( )( )g X s( )( )ds − 2ε

×
∫ t/ε

0
Exfc X s( )( )g X t/ε( )( )ds.

(9)
Because f and g are each bounded by amultiple of v, it
follows that fg is bounded by amultiple of v, so that (1)
implies that

ε

∫ t/ε

0
Exfc X s( )( )g X s( )( )ds

� tEfc X ∞( )( )g X ∞( )( ) + o 1( ), (10)
as ε ↓ 0. Also,

ε

∫ t/ε

0
Ex fc X s( )( )g X t/ε( )( )ds

� ε

∫ t/ε−ε−1/2

0
Ex fc X s( )( )Ex g X t/ε( )( )|X s( )[ ]

ds

+ εEx

∫ t/ε

t/ε−ε−1/2
fc X s( )( )g X t/ε( )( )ds. (11)

Because Eg(X(∞)) � 0, (1) implies that

|Ex g X t/ε( )( )|X s( )[ ]| ≤ ‖ f ‖d e−α t/ε−s( )v X s( )( ),
so that

ε

∫ t/ε−ε−1/2

0
Exfc X s( )( )Ex g X t/ε( )( )|X s( )[ ]

ds

⃒⃒⃒
⃒⃒

⃒⃒⃒
⃒⃒

≤ ‖ f ‖2d ε e−αε−1/2
∫ t/ε

0
Exv X s( )( )ds

� ‖ f ‖2d t e−αε−1/2Ev X ∞( )( ) + o 1( )v x( )
� o 1( )v x( ), (12)

as ε ↓ 0. Furthermore, (1) and the boundedness of f
ensure that

εEx

∫ t/ε

t/ε−ε−1/2
fc X s( )( )g X t/ε( )( )ds

⃒⃒⃒
⃒

⃒⃒⃒
⃒ ≤ ε

1
2‖ f ‖Exg X t/ε( )( )

� o 1( )v x( ), (13)

as ε ↓ 0, and consequently, (9) through (13) yield

εEx

∫ t/ε

0
fc X s( )( )ds

( )2
� 2tEfc X ∞( )( )g X ∞( )( )+ o 1( )v x( ),

(14)
as ε ↓ 0, because of Assumption 2.
Finally, note that for y ≥ 0,

h 3( )
k y
( )⃒⃒⃒ ⃒⃒⃒

� 1
k!
e−yyk−3

⃒⃒⃒
⃒

⃒⃒⃒
⃒ −y3 + 3ky2 − 3k k − 1( )y + k
[

× k − 1( ) k − 2( )]

≤ y ∨ 1
( )k

k!
(1 + 3k + 3k(k − 1) + k(k − 1)(k − 2))

≤ 8 y ∨ 1
( )k
k − 3( )! I k ≥ 3( ) + 8 y ∨ 1

( )kI k ≤ 2( ),

where y ∨ 1≜ max(y, 1). Because f is bounded, it is
evident that h(3)(ξ(ε)) is a bounded RV. Given (7), our
theorem follows if we prove that

ε2Ex

∫ t/ε

0
fc X s( )( )ds

( )3
� o 1( ), (15)

as ε ↓ 0. But (14) implies that

ε2Ex

∫ t/ε

0
fc X s( )( )ds

( )3

� 6ε2
∫ t/ε−ε−1/2

0
Exfc X s1( )( )

∫ t/ε

s1
fc X s2( )( )

×
∫ t/ε

s2
fc X s3( )( ) ds3ds2ds1

+ ε2Ex

∫ t/ε

t/ε−ε−1/2
fc X s( )( )ds

( )3

� 6ε
∫ t/ε−ε−1/2

0
Exfc X s( )( ) t − εs( )Efc X ∞( )( )g[

× X ∞( )( ) + εo 1( )v X s( )( )]ds
+ ε2Ex

∫ t/ε

t/ε−ε−1/2
fc X s( )( )ds

( )3
, (16)

where the term o(1) holds uniformly over 0 ≤ s ≤
t/ε − ε−1/2. The boundedness of f implies that

ε2Ex

∫ t/ε

t/ε−ε−1/2
fc X s( )( )ds

( )3
≤ ε1/2‖ f ‖3 → 0, (17)
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as ε ↓ 0. On the other hand, because (6) implies that∫ ∞

0
|Exfc X s( )( )| 1 + s( )ds < ∞,

we conclude that

ε

∫ t/ε−ε−1/2

0
|Exfc X s( )( )| t − εs( )ds → 0, (18)

as ε ↓ 0. Also,

ε

∫ t/ε−ε−1/2

0
o 1( )Exv X s( )( )fc X s( )( )ds

⃒⃒⃒
⃒⃒

⃒⃒⃒
⃒⃒

≤ o 1( )‖ f ‖ε
∫ t/ε

0
Exv X s( )( )ds

� o 1( )‖ f ‖tEv X ∞( )( ) 1 + o 1( )( ) → 0,

as ε ↓ 0, proving (15) in view of (16), (17), and (18), and
thereby establishing the theorem. □

A similar (but easier) calculation follows in the
deterministic periodic setting in which λ(·) is deter-
ministic with period 1, say. In this case,

P Nε t( ) � k( ) � P N0 t( ) � k( ) 1 + ε
k
λ∗t − 1
( )(

×
∫ t/ε

t/ε�
λ s( ) − λ∗( )

ds + o ε( )
)
,

as ε ↓ 0, where λ∗ � ∫ 1
0 λ(r)dr, and x� denotes the

greatest integer less than or equal to x.

4. An Asymptotic Refinement for
Infinite-Server Queues

In this section, we study our Poisson approximation
(and its associated first order “error correction”) in
the setting of the infinite-server queue. Assume that
the system starts empty at t � 0 and that the service
times V1,V2, . . . assigned to arriving consecutive cus-
tomers are i.i.d. and independent of Nε. Our goal in
this section is to study the number-in-system process
Qε � (Qε(t) : t ≥ 0)whenQε has arrival processNε and
service time sequence V � (Vn : n ≥ 1) so that

Qε t( ) � ∑Nε t( )

i�0
1

T
ε( )
i +Vi>t{ }, (19)

where t > 0 and T(ε)
1 ,T(ε)

2 , . . . are the arrival epochs for
the arrival process Nε. Let Q0 � (Q0(t) : t ≥ 0) be the
number-in-system process associated with the con-
stant rate Poisson process N0 and the same service
time sequenceV. Our main result in this section is our
next theorem.

Theorem 4. Assume Assumption 2, and suppose that f is
bounded (and measurable) with Ef (X(∞)) > 0. Suppose V1

has a density h � (h(x) : x ≥ 0), and set K̄(x)≜P(V1 > x).
If λε(t) � f (X(t/ε)), then

P Qε t( ) � k( )
� P Q0 t( ) � k( ) 1 + ε

k
EQ0 t( ) − 1
( )

g x( )K̄ t( )
[(

+ 1
2
1 − 2k

EQ0 t( ) +
k k − 1( )
EQ0 t( )( )2

( )
η2
]
+ o ε( )

)
,

where η2 � 2σ2
∫ t
0 K̄(s)h(s)s ds + σ2tK̄(t)2, and σ2 and g are

as in Section 3.

Proof of Theorem 4. The argument closely follows
that of Theorem 3. Because Qε(t) is, conditional on X,
Poisson distributed (see Massey and Whitt 1993), it
follows that

P Qε t( ) � k( ) � Ex exp −
∫ t

0
λε s( )K̄ t − s( )ds

( )

·
∫ t

0
λε s( )K̄ t − s( )ds

( )k 1
k!
.

As in Theorem 3, we now Taylor expand hk(·). In this
setting, we expand about EQ0(t). It follows that the
first order term here is h(1)k (EQ0(t)) multiplied by∫ t

0
λε s( ) − λ∗[ ]

K̄ t − s( )ds

�
∫ t

0
fc X s/ε( )( )

∫ ∞

t−s
h u( )du ds

�
∫ ∞

0

∫ t

0
I s > t − u( ) fc X s/ε( )( )ds h u( )du

�
∫ ∞

0
h u( ) εAc t/ε( ) − εAc t − u( )/ε( )[ ]du,

where Ac(r) � 0 for r ≤ 0 and Ac(r) �
∫ r
0 fc(X(s))ds for

r ≥ 0. We note that

ExA t/ε( ) − ExA t − u( )/ε( ) → 0, 0 ≤ u ≤ t,
g x( ), u > t,

{

as ε ↓ 0, uniformly in u ≤ t. Accordingly,

εEx

∫ t

0
λε s( ) − λ∗[ ]

K̄ t − s( )ds � εg x( )K̄ t( ) 1 + o 1( )( ),

as ε ↓ 0.
As for the second derivative term, we are led to the

consideration of

εEx

∫ ∞

0
h u( ) Ac t/ε( ) − Ac t − u( )/ε( )[ ]du

( )2

� 2ε
∫ ∞

0
h u1( )

∫ ∞

u1
h u2( )Ex Ac t/ε( )([

− Ac t − u1( )/ε( ) Ac t/ε( )( − Ac t − u2( )/ε( )]du2du1.
(20)
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Note that for 0 ≤ u1 ≤ u2 ≤ t,

εEx Ac t/ε( ) − Ac t − u1( )/ε( ) Ac t − u1( )/ε( )((
− Ac t − u2( )/ε( ))
� ε

∫ t−u1( )/ε

t−u2( )/ε

∫ t/ε

t−u1( )/ε
I |s1 − s2| ≤ ε−1/2
( )

Exfc

× X s1( )( ) fc X s2( )( )ds1ds2
+ ε

∫ t−u1( )/ε

t−u2( )/ε

∫ t/ε

t−u1( )/ε
I |s1 − s2| > ε−1/2
( )

Exfc

× X s1( )( ) fc X s2( )( )ds1ds2. (21)

The first term on the right-hand side of (21) can be
upper bounded by

ε‖ f ‖2
∫ t−u1( )/ε

t−u2( )/ε

∫ t/ε

t−u1( )/ε
I |s1 − s2| ≤ ε−1/2
( )

ds1ds2

� O ε1/2
( ) → 0,

as ε ↓ 0. For the second term, we use (6) to obtain the
upper bound

ε

∫ t−u1( )/ε

t−u2( )/ε

∫ t/ε

t−u1( )/ε
I |s1 − s2| > ε−1/2
( )

Exfc X s2( )( )
×O Exv X s2( )( )( )e−α s1−s2( )ds1ds2

≤ εe−αε
−1/2‖ f ‖

∫ t−u1( )/ε

t−u2( )/ε

∫ t/ε

t−u1( )/ε
O Exv X s2( )( )( )

× ds1ds2 → 0,

as ε ↓ 0. Consequently, (20) equals

2 ε
∫ ∞

0
h u1( )

∫ ∞

u1
h u2( )Ex Ac t/ε( ) − Ac(

× t − u1( )/ε( ))2du2du1 + o 1( ),
as ε ↓ 0. But (14) proves that

εEx Ac t/ε( ) − Ac t − u( )/ε( )( )2 → σ2u, 0 ≤ u ≤ t,
σ2t, u > t,

{

uniformly in 0 ≤ u ≤ t. As a consequence, (20) equals
η2 + o(1) as ε ↓ 0.

The third derivative term can be handled as in
Theorem 3, thereby yielding the proof of the result. □
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