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Abstract. Distortion risk measure, defined by an integral of a distorted tail probability, has
been widely used in behavioral economics and risk management as an alternative to
expected utility. The sensitivity of the distortion risk measure is a functional of certain
distribution sensitivities. We propose a new sensitivity estimator for the distortion risk
measure that uses generalized likelihood ratio estimators for distribution sensitivities as
input and establish a central limit theorem for the new estimator. The proposed estimator
can handle discontinuous sample paths and distortion functions.
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1. Introduction
Sensitivity analysis (or stochastic derivative estima-
tion) is an important area in stochastic optimization
(Asmussen and Glynn 2007). The classic problem in
sensitivity analysis is to estimate the derivative of an
expectation of a random performance. Although finite
difference (FD) methods are always implementable,
they require simulation of multiple sample paths and
face a bias-variance tradeoff, whereas direct derivative
estimators are unbiased and only need a single sample
path. Two of the most popular direct derivative esti-
mators are the likelihood ratio (LR) method (Glynn
1990, Rubinstein and Shapiro 1993) and infinitesimal
perturbation analysis (IPA) (Glasserman 1991, Ho and
Cao 1991; see Fu 2015 for recent review).

An important class of risk measures that is widely
used in finance and economics are distortion risk
measures that take the form

ϑ �
∫ ∞

0
w P Z > z( )( )dz, (1)

where the risk Z is described by a nonnegative ran-
dom variable (rv). (When Z is of mixed sign, one can
apply separate distortion risk measures to the posi-
tive and negative parts of Z.) In (1), the function w is
called the distortion function and satisfies w(0) � 0 and
w(1) � 1. The use of distortion risk measures is sup-
ported by cumulative prospect theory and is an al-
ternative to basing decisions on the foundation of

expected utility theory (Kahneman and Tversky 1979,
Tversky and Kahneman 1992).
Suppose θ ∈ Rr is a (continuous) decision variable

and that the decision involves an objective based on
the distortion risk measure (1). If the distribution of Z
depends on θ, we can write the distortion risk mea-
sure as

ϑ θ( ) �
∫ ∞

0
w 1 − F z;θ( )( ) dz, (2)

where F(·;θ) is the cumulative distribution function of
Z under the decision parameter θ. In such a setting,
many numerical optimization algorithms will then
require the efficient computation of the gradient
∇ϑ(θ). Inmany such settings, no closed form for F(·;θ)
will exist. Rather, one may often have only a simu-
lation algorithm capable of generating a sequence (Zi :
1 ≤ i ≤ n) in which the marginal distribution of the Zis
is F(·;θ). In such a setting, we are led naturally to the
consideration of simulation-based estimators for ∇ϑ(θ).
This paper is concerned with simulation-based

computation of ∇ϑ(θ). We note that the risk mea-
sures VaR (value-at-risk) and CVaR (conditional value-
at-risk) are special cases of (1), where w(y) � 1{y> 1−α}
and w(y) � min{y/(1 − α), 1}, respectively. As a result,
this paper can be viewed as a generalization of the
existing literature on computing gradients (often
known as sensitivities) for VaR and CVaR (Hong 2009,
Hong and Liu 2009). Moreover, Artzner et al. (1999)
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and Kusuoka (2001) showed that, in general, a co-
herent risk measure defined by some axioms can be
represented as a distortion risk measure under mild
regularity conditions. Given our interest in devel-
oping a theory that covers VaR and CVaR, the theory
will need to accommodate situations in which the
distortion function need not be continuously differ-
entiable nor even continuous.

An earlier work by Gourieroux and Liu (2006)
studied the sensitivity analysis for distortion risk
measures with respect to the parameters in the dis-
tortion function and established a central limit the-
orem for the estimator. However, their method cannot
estimate the sensitivities with respect to the parameters
in the underlying stochastic models, which is the main
focus of our work. The estimator in Gourieroux and
Liu (2006) can be viewed as a functional of the empirical
distribution function, whereas our estimator is a func-
tional of the distribution sensitivity estimators. The es-
tablishment of the central limit theorem for our method
entails more sophisticated analysis.

Cao and Wan (2014) provided a sensitivity esti-
mator for distortion risk measures, which is a Rie-
mann integral of the IPA-based quantile sensitivity
estimators in Hong (2009). Cao and Wan (2014) as-
sumed continuity in both the distortion function and
sample paths in the underlying stochastic model and
did not study the asymptotic property of the pro-
posed estimator. For many examples of this work, for
example, the payoff of a barrier option, the sample
paths of the underlying stochastic models are dis-
continuous with respect to structural parameters (pa-
rameters directly appearing in an output function of the
stochastic model rather than through the input distri-
butions), for example, the initial price of the underlying
asset. In this case, the pathwise derivative in the IPA-
based quantile sensitivity estimator does not exist. In this
paper, the continuity assumption in both the distortion
function and sample paths in the underlying stochastic
model is relaxed, andweoffer a newestimatorwhich can
be represented by either aRiemann integral or Lebesgue-
Stieltjes integral of the generalized likelihood ratio (GLR)
estimators for distribution sensitivities in Peng et al.
(2020). The GLR method, first studied in Peng et al.
(2018), allows for the existence of structural param-
eters and can handle discontinuous sample paths in
the underlying stochastic model, which cannot be
handled by either IPA or LR.

In estimating the derivative of an expectation, the
theoretical focus is on establishing unbiasedness of
the stochastic derivative estimator by justifying the
interchange between derivative and expectation. A
key challenge has been handing discontinuities in
underlying stochastic models with respect to struc-
tural parameters, which arise in a wide variety of appli-
cations including production/inventory management

and financial engineering. The GLR method recently
proposed in Peng et al. (2018) is capable of handling a
large scope of discontinuities in a general framework.
Furthermore, Peng et al. (2020) provide GLR esti-
mators for any order of distribution sensitivities
(derivatives of the distribution function of the random
performance with respect to both the argument and
parameters in underlying stochasticmodels),which is an
expectation of an indicator of the random performance.
For complex simulation-based stochastic models, dis-
tribution sensitivity estimation plays a central role
in quantile sensitivity estimation pioneered by Hong
(2009), the statistical inference problem studied in Peng
et al. (2020), and sensitivity estimation for distortion
risk measures.
Establishing a central limit theorem for estimators

is central for both theory and practice, because it
provides a basis for hypothesis testing and con-
structing a confidence interval or region. For sto-
chastic derivative estimators for expectations, this
may often be straightforward. However, asymptotic
analysis becomes more challenging for estimating
sensitivities of quantile and CVaR (Hong 2009, Hong
and Liu 2009, Liu and Hong 2009, Fu et al. 2009, Jiang
and Fu 2015, Heidergott and Volk-Makarewicz 2016,
Lei et al. 2018). Asymptotic analysis is simpler for the
batched estimators (Hong 2009, Jiang and Fu 2015,
Heidergott and Volk-Makarewicz 2016), but the con-
vergence rates for these estimators are generally
worse than their nonbatched counterparts (Liu and
Hong 2009, Fu et al. 2009, Lei et al. 2018). Recently,
Peng et al. (2017) and Glynn et al. (2020) provide a
unified treatment for establishing a central limit theorem
for various types of nonbatched quantile sensitivity es-
timators, which can be viewed as a ratio of the estimates
for two distribution sensitivities evaluated at a quan-
tile estimate.
The asymptotic analysis for estimating derivatives

of distortion risk measures, which can be viewed as a
functional of the empirical processes of the distri-
bution function and distribution sensitivities, is even
more complicated than that in quantile sensitivity
estimation. We establish a central limit theorem for
the proposed sensitivity estimators of the distortion
risk measures using a single batch of samples. To the
best of our knowledge, our work is the first to es-
tablish a functional type limit theory in sensitivity
analysis. Our results are established for an integral
with the tail of the distribution or quantile truncated.
Estimation of quantile and the distribution sensitiv-
ities becomes more challenging in the tails of the
distribution, because samples become rare. In gen-
eral, more samples are needed to reach certain ac-
curacy for the proposed sensitivity estimators of the
distortion risk measures as the truncation size of the
integral become smaller. Our results can be extended
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straightforwardly for a distribution with compact
support or w(·) is zero in neighborhoods containing 0
and 1, for example, the distortion function of VaR.
In many practical problems, the distributions of the
random performance indeed have bounded support.
For example, investors may have an exit plan when
the gain or loss reaches certain boundaries, and the
contract of a barrier option would specify a knockout
price to avoid unlimited potential loss in exercising
the option. Derivative estimation for the expected
payoff of barrier options was studied in Wang et al.
(2012) and Peng et al. (2018), whereas in this work, we
apply the proposed estimator to estimate sensitivities
of VaR and CVaR for the payoffs of barrier options.
Because VaR and CVaR provide more information
about the tail of a distribution, our proposed method
offers a new tool for better hedging tail risk of fi-
nancial derivatives.

We adopt the convention that all vectors (and
vector-valued functions) are written as column vec-
tors, with the exception of gradients (which will be
written as row vectors). The rest of the paper is or-
ganized as follows. Section 2 provides the general
theory for the central limit theorems of two types of
estimators. The general theory is applied to gradient
estimation for distortion risk measures in Section 3.
How to construct a confidence region is discussed in
Section 4. Applications are given in Section 5.

2. The General Theory
When the distortion function w is continuously dif-
ferentiable, we expect that

∇ϑ θ( ) � −
∫ ∞

0
w′ 1 − F z;θ( )( )∇θF z;θ( )dz, (3)

assuming that the limit interchange is valid. The in-
terchange of gradient and integration is typically
justified by the condition for applying the dominated
convergence theorem, for example,

∫ ∞
0 supθ∈Θ ‖w′(1 −

F(z;θ)) ∇θF(z;θ)‖dz < ∞. Suppose that we have avail-
able a simulatable random element (Z,Γ), where Z is a
scalar rv and Γ � (Γ(x) : x ≥ 0) is an Rk-valued sto-
chastic process for which

P Z ≤ z( ) � F z;θ( ) (4)
and

E Γ z( )[ ] � ∇θF z;θ( )T (5)
for z ≥ 0. The stochastic process Γ � (Γ(x) : x ≥ 0) can
be obtained by the GLR method for distribution
sensitivities in Peng et al. (2020).Wedefer the detailed
form of the GLR estimators and conditions for jus-
tifying the unbiasedness to Section 3. Note that (5) is
a statement that ∇θF(·;θ) can be estimated consistently

by simulating independent and identically distributed
(iid) copies of Γ(·). In particular, if we simulate iid
copies ((Zn, Γn(·)) : n ≥ 1) of (Z, Γ(·)), we can then con-
sistently estimate F(·, θ) and E[Γ(·)] via

Fn z( ) � 1
n

∑n
i�1

1 Zi ≤ z{ }

and

Γn z( ) � 1
n

∑n
i�1

Γi z( )

for z ≥ 0 (provided that Γ(z) is appropriately inte-
grable), and the gradient ∇ϑ(θ) can be estimated via

δn1 � −
∫ ∞

0
w′ 1 − Fn z( )( )Γn z( )dz. (6)

To study the rate of convergence of δn1 to∇ϑ(θ), and to
develop large-sample confidence regions for ∇ϑ(θ),
we now discuss the central limit theorem (CLT) for
δn1. If we set

X z( ) � 1 Z ≤ z{ },Γ z( )( ),
Xn z( ) � Fn z( ),Γn z( )( )

,

ϕ x1, x2( ) � −w′ 1 − x1( )x2,
and

ν dz( ) � dz,

for z ≥ 0, we note that δn1 can be represented as a
special case of the rv

βn �
∫

a,b[ ]
ϕ Xn z( )( )

ν dz( ), (7)

where a � 0 and b � ∞, and ϕ : Rk+1 → Rk. We now
provide a general CLT for βn, and explore sufficient
conditions specific to the estimator δn1 in Section 3.
Recall that Xn(z) is Rk+1-valued and that ϕ(·) is

Rk-valued, with its ith component given by ϕi(·),
1 ≤ i ≤ k.We assume thatE[X(·)] is continuous on [a, b]
and that ϕ(·) is continuously differentiable, with k ×
(k + 1) Jacobian matrix (Jϕ)(·), on a compact subset Kε

containing {x : ‖x− E[X(z)]‖ < ε for some z ∈ [a,b]} for
some ε > 0. DenoteDR[a, b] as the space comprising of
R-valued functions that are right-continuous and
have left limits on [a, b].
Theorem 1. Assume that −∞ < a < b < ∞, ν is a finite
measure and that (X(z) : z ∈ [a, b]) ∈ DRk+1[a, b], the space
of right-continuous functions with left limits. Suppose that
there exists a continuous path Gaussian process (G(z) : z ∈
[a, b]) for which

n1/2 Xn ·( ) − E X ·( )[ ]( )⇒ G ·( ) (8)
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asn→∞,where⇒ denotesweak convergence (inDRk+1[a, b]).
Then,

n1/2 βn −
∫

a,b[ ]
ϕ E X z( )[ ]( )ν dz( )

( )
⇒
∫

a,b[ ]
Jϕ
( )

E X z( )[ ]( )G z( )ν dz( ) (9)

as n → ∞, where ⇒ denotes weak convergence (in Rk).

Proof. We note that DRk+1[a, b] is a separable metric
space under the (standard) J1 topology (Whitt 2002,
p. 381). We may therefore apply the Skorohod repre-
sentation theorem (Ethier and Kurtz 2009, p. 102).
Accordingly, we may replace the weak convergence
in (8) with almost sure (a.s.) convergence in the J1 metric.
Because the limit G(·) is continuous, convergence in the
J1 metric implies that the a.s. convergence in (8) corre-
sponds to uniform convergence of the left-hand side
to G(·) (Billingsley 1968, p. 112). Consequently, Xn(z)
converges a.s. to E[X(z)] uniformly in z ∈ [a, b]. It
follows that Xn(·) ∈ Kε for n sufficiently large, so that
Taylor’s theorem implies that

n1/2 ϕi Xn z( )( ) − ϕi E X z( )[ ]( )( )
� n1/2∇ϕi ξni z( )( ) Xn z( ) − E X z( )[ ]( )

,

where ξni(z) lies on the line segment connecting Xn(z)
and E[X(z)]. BecauseXn(·) converges uniformly a.s. to
E[X(·)], the same is true of ξni(·). Hence,

n1/2∇ϕi ξni z( )( ) Xn z( ) − E X z( )[ ]( )→ ∇ϕi E X z( )[ ]( )G z( )
uniformly a.s. in z ∈ [a, b], for 1 ≤ i ≤ k. Because ν(·) is a
finite measure, the bounded convergence theorem
implies that∫

a,b[ ]
n1/2∇ϕi ξni z( )( ) Xn z( ) − E X z( )[ ]( )

ν dz( )

→
∫

a,b[ ]
∇ϕi E X z( )[ ]( )G z( )ν dz( )

for 1 ≤ i ≤ k, yielding∫
a,b[ ]

n1/2 ϕ Xn z( )( ) − ϕ E X z( )[ ]( )( )
ν dz( )

→
∫

a,b[ ]
Jϕ
( )

E X z( )[ ]( )G z( )ν dz( )

a.s. as n → ∞. This immediately yields the theorem. □

Noting thatXn(·) is an average of iid copies ofX(·), it
is obvious that if E[‖X(z)‖2] < ∞ for z ∈ [a, b], the CLT
for iid (finite-dimensional) random vectors guar-
antees that the finite-dimensional distributions of
n1/2(Xn(·)−E[X(·)])mustconvergeweakly to thoseofG(·),

so that theGaussian processG(·)of Theorem1must be
such that

E G z1( )[ ] � 0

E G z1( )G z2( )T[ ] � E X z1( )X z2( )T[ ] − E X z1( )[ ]E X z2( )[ ]T

for z1, z2 ∈ [a, b]. As for the limit object in (9), one can
approximate it via a Riemann-Stieltjes approxima-
tion. Such an approximation is clearly Gaussian, so
that by taking limits, we conclude that the right-hand
side of (9) is Gaussian with mean zero and covari-
ance matrix∫

a,b[ ]

∫
a,b[ ]

Jϕ
( )

E X y
( )[ ]( )

E X y
( )

X z( )T[ ][
− E X y

( )[ ]
E X z( )[ ]T] Jϕ( )T E X z( )[ ]( )ν dy

( )
ν dz( ).

We turn next to sufficient conditions ensuring the
validity of (8). In particular, we will now discuss how
to improve the just-discussed finite-dimensional weak
convergence toweak convergence inDRk+1[a, b]. For this
purpose, we can follow two different approaches.

2.1. Approach 1
We can applyCLT’s for averages of iidDR[a, b]-valued
random variables to each component of n1/2(Xn(·) −
E[X(·)]) (see, for example, theorem 1 of Bloznelis and
Paulauskas 1994). We claim that this implies that (8)
holds.
To see this, note that the weak convergence of each

component implies that each component is tight
in DR[a, b]. Consequently, (n1/2(Xn(·) −E[X(·)]) : n≥ 1)
is tight in the product space DR[a, b] × · · · ×DR[a, b]
(k + 1 times) (Whitt 2002, p. 390). Because the finite-
dimensional distributions of n1/2(Xn(·) − E[X(·)]) con-
verge weakly to those ofG(·), it follows that n1/2(Xn(·)−
E[X(·)]) converges weakly to G(·) in the product
topology on the product space.
We now apply the Skorohod representation theo-

rem, so that we can replace the weak convergence by
a.s. convergence in the product topology. BecauseG(·)
is continuous, it follows that each component of
n1/2(Xn(·)−E[X(·)]) converges uniformly a.s. to the cor-
respondingcomponentofG(·). Consequently,n1/2(Xn(·)−
E[X(·)]) converges uniformly a.s. to G(·), thereby
implying (8).

2.2. Approach 2
We can apply empirical process theory to the col-
lection of rvs (Xn(z) : z ∈ [a, b]). In particular, suppose
that G � {Xn(z) : z ∈ [a, b]} is a P-Donsker class (van
der Vaart and Wellner 1996, p. 81). Then,

n1/2 Xn ·( ) − E X ·( )[ ]( )⇒ G ·( )
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in 
∞(G), which is a collection of bounded functions
from G to R, equippedwith the sup (infinity) norm. The
weak convergence in 
∞(G) to a continuous limit clearly
implies weak convergence in the Skorohod J1 metric
because the uniform metric is finer than the J1 metric
(Billingsley 1968, p. 150). We have not assumed thus
far thatG(·) is continuous. IfG(·) is now assumed to be
continuous, then weak convergence in 
∞(G) implies
uniform convergence in z ∈ [a, b] to a DRk[a, b]-valued
random process, so that (8) holds.

With the weak convergence in 
∞(G), there is a
systematic approach to establish CLT for a functional
of a random element, given that the functional is
Hadamard differentiable (Van der Vaart 2000, p. 296).
Estimator (7) can be viewed as a functional F (·) of the
stochastic process Xn(·), where

F η
( ) � ∫

a,b[ ]
ϕ η z( )( )

ν dz( ),

where η(·) is aDRk+1[a, b]-valued function. By applying
the mean value theorem to the integration function, it
is straightforward to show that

F ′
η τ( ) � lim

ε→0

1
ε
F η + ετε
( ) −F η

( )[ ]
� lim

ε→0

1
ε

∫
a,b[ ]

ϕ η z( ) + ετε z( )( )
ν dz( )

[
−
∫

a,b[ ]
ϕ η z( )( )

ν dz( )
]

�
∫

a,b[ ]
Jϕ
( )

η z( )( )
τ z( )ν dz( ),

where τε(·) is a DRk+1[a, b]-valued function converging
to a CRk+1[a, b]-valued function τ(·) in the uniform
norm of 
∞(G) as ε → 0. By the functional delta
method (Van der Vaart 2000, p. 297),

n1/2 F η + 1
n1/2

Gn

( )
−F η

( )[ ]
⇒ F ′

η G( ), (10)

where η(·) �E[X(·)] and Gn(·) � n1/2(Xn(·) −η(·)). More-
over, F ′

η(G) is the same as the right-hand side of (9).
Therefore, the CLT (10) is essentially the result of
Theorem 1.

This theory gives a general framework for the
analysis of gradient estimators inwhich the distortion
function is continuously differentiable. However, as
pointed out in the Introduction, this does not cover
the distortions that arise in the setting of VaR or
CVaR. To handle such distortion functions,we use the
fact that we can rewrite (2) as

−
∫

0,1[ ]
F−1 y;θ

( )
w̃ dy
( )

,

where w̃(y) � w(1 − y), when w(·) is nondecreasing
and left-continuous (Dhaene et al. 2012). Assuming

that F−1(z, ·) is suitably smooth and that the gradi-
ent and integral can be interchanged, we arrive at
the expression

∇ϑ θ( ) � −
∫

0,1[ ]
∇θF−1 y;θ

( )
w̃ dy
( )

.

The implicit function theorem then reveals that if
F(·;θ) has a positive continuous density f (·;θ),

∇θF−1 y;θ
( ) � −∇θF F−1 y;θ

( )
;θ

( )
f F−1 y;θ

( )
;θ

( ) ,

which is the foundation for calculating the IPA esti-
mator (Suri and Zazanis 1988). For input random
variables, the distribution is known, but for output
random variables, the numerator and denominator
usually do not have analytical forms and must be
estimated by simulation, by the two distribution
sensitivity estimates in this work. Assume that we
have a simulatable pair (Z, (χ(z) : z ≥ 0)) and a de-
terministic function κ : Rk+1 → Rk for which

κ E χ z( )[ ]( ) � −∇θF z;θ( )T
f z;θ( )

and P(Z ≤ z) � F(z;θ) for z ≥ 0. Similarly, the sto-
chastic process (χ(z) : z ≥ 0) can be obtained by the
GLR method for distribution sensitivities in Peng
et al. (2020), and the detailed discussion is deferred
to Section 3, where the specific form of κ can also be
found. By generating iid copies ((Zi, (χi(z) : z ≥ 0)) :
i ≥ 1) of (Z, (χ(z) : z ≥ 0)), we can therefore estimate
∇ϑ(θ) via the estimator

δn2 �
∫

0,1[ ]
κ χn F−1n y

( )( )( )
w̃ dy
( )

, (11)

where

χn z( ) � 1
n

∑n
i�1

χi z( )

and Fn(·) is again just the empirical cumulative dis-
tribution function of Z1,Z2, . . . ,Zn given by Fn(z) �
n−1∑n

i�1 1{Zi ≤ z}.
As with the estimator δn1, we will now discuss a

CLT for amore general estimator γn, forwhich δn2 will
be a special case. Suppose that Y is a scalar rv with
cumulative distribution function H(·), and that W �
(W(z) : z ∈ [c, d]) is aDRk+1[c, d]-valued rv. Let ((Yi,Wi) :
i ≥ 1) be a sequence of iid copies of (Y,W), and set

Hn y
( ) � 1

n

∑n
i�1

1 Yi ≤ y
{ }

Wn z( ) � 1
n

∑n
i�1

Wi z( )
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for y ∈ R and z ∈ [c, d]. For 0 < u < 1, put H−1
n (u) �

inf{y : Hn(y) ≥ u}, and for 0 ≤ a < b ≤ 1, set

γn �
∫

a,b[ ]
φ Wn H−1

n u( )( )( )
ν du( ) (12)

for some finite measure ν(·), for some deterministic
φ : Rk+1 → Rk. Clearly, δn2 is a special case of γn.

We assume that ω(·) � E[W(·)] is continuously dif-
ferentiable on [c, d]with derivative ω′(·) and that H(·)
has a continuous positive density h(·) on [a, b].We also
require the existence of ε > 0 for which c ≤ H−1(a) −
ε < H−1(b) + ε ≤ d and that φ(·) is continuously dif-
ferentiable, with k × (k + 1) Jacobian matrix (Jφ)(·), on a
compact set Kε containing {x ∈ Rk+1 : ‖x − ω(z)‖ <
ε for some z ∈ [c, d]}.
Theorem 2. Assume that 0 < a < b < 1 and that there
exists anRk+2-valued continuous path Gaussian process G �
((G1(z),G2(z)) : z ∈ [c, d]) such that

n1/2 Wn ·( ) − ω ·( ),Hn ·( ) −H ·( )( )⇒ G1 ·( ),G2 ·( )( ) (13)
as n→∞,where⇒ denotesweak convergence (inDRk+2[c,d]).
Then,

n1/2 γn −
∫

a,b[ ]
φ ω H−1 u( )( )( )

ν du( )
( )

⇒
∫

a,b[ ]
Jφ
( )

ω H−1 u( )( )( )[
G1 H−1 u( )( )

.

− ω′ H−1 u( )( )G2 H−1 u( )( )
h H−1 u( )( )

]
ν du( ) (14)

as n → ∞, where ⇒ denotes weak convergence (in Rk).

Proof. Because 0 < a < b < 1, we may, without loss of
generality, assume that −∞ < c < d < ∞. As in the
proof of Theorem 1, we apply the Skorohod repre-
sentation theorem to replace weak convergence by a.s.
convergence.

Because n1/2(Hn(·)−H(·)) converges uniformly toG2(·)
on [c, d] and c ≤ H−1(a) − ε < H−1(b) + ε ≤ d, it follows
that H−1

n (·) → H−1(·) uniformly on [a, b]. Furthermore,

n1/2 Hn H−1
n u( )( ) −H H−1

n u( )( )( ) � G2 H−1
n u( )( ) + o 1( ) (15)

uniformly in u ∈ [a, b], where o(bn) is a term for which
o(bn)/bn → 0 as n → ∞. Because G2(·) is continuous,

G2 H−1
n u( )( ) � G2 H−1 u( )( ) + o 1( ), (16)

uniformly in u ∈ [a, b]. Also, because H(·) is a con-
tinuous distribution, the jumps in Hn(·) are all of size
n−1, soHn(H−1

n (u)) � u + o(n−1/2)uniformly in u ∈ [a, b].
Consequently, (15) and (16) imply that

n1/2 H H−1
n u( )( ) − u

( ) � −G2 H−1 u( )( ) + o 1( ), (17)

uniformly in u ∈ [a, b]. However, Taylor’s theorem
implies that

n1/2 H H−1
n u( )( ) − u

( )
� n1/2 H H−1

n u( )( ) −H H−1 u( )( )( )
� h H−1 u( )( )

n1/2 H−1
n u( ) −H−1 u( )( ) + o 1( )

uniformly in u ∈ [a, b], so that (17) yields

n1/2 H−1
n u( ) −H−1 u( )( ) � −G2 H−1 u( )( )

h H−1 u( )( ) + o 1( ) (18)

uniformly in u ∈ [a, b].
As in the proof of Theorem 1, (Wn(H−1

n (u)) : u ∈
[a, b]) ∈ Kε for n sufficiently large, so that

n1/2 φ Wn H−1
n u( )( )( )−φ ω H−1 u( )( )( )( )

� Jφ
( )

ω H−1 u( )( )( )
n1/2 Wn H−1

n u( )( )−ω
[

H−1 u( )( )]+ o 1( )

uniformly in u ∈ [a, b]. However,

n1/2 Wn H−1
n u( )( ) − ω H−1 u( )( )[ ]

� n1/2 Wn H−1
n u( )( ) − ω H−1

n u( )( )[ ] + n1/2

× ω H−1
n u( )( ) − ω H−1 u( )( )[ ]

� G1 H−1
n u( )( ) + ω′ H−1 u( )( )

n1/2 H−1
n u( )[

−H−1 u( )] + o 1( )
� G1 H−1 u( )( ) + ω′ H−1 u( )( )

n1/2 H−1
n u( )[

−H−1 u( )] + o 1( ) (19)

uniformly in u ∈ [a, b], because G1(·) is continuous.
It follows from (18) and (19) that

n1/2 φ Wn H−1
n u( )( )( ) − φ ω H−1 u( )( )( )( )

→ Jφ
( )

ω H−1 u( )( )( )
G1 H−1 u( )( ) − ω′ H−1 u( )( )[

× G2 H−1 u( )( )
h H−1 u( )( )

]
uniformly in u ∈ [a, b]. The bounded convergence
theorem then proves that∫

a,b[ ]
n1/2 φ Wn H−1

n u( )( )( ) − φ ω H−1 u( )( )( )( )
ν du( )

→
∫

a,b[ ]
Jφ
( )

ω H−1 u( )( )( )
G1 H−1 u( )( ) − ω′
[

× H−1 u( )( )G2 H−1 u( )( )
h H−1 u( )( )

]
ν du( )

as n → ∞, establishing the theorem. □
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Aswith Theorem 1, the limit appearing in (14) must
be a mean zero Rk-valued Gaussian rv with covari-
ance matrix∫

a,b[ ]

∫
a,b[ ]

Jφ
( )

ω H−1 u1( )( )( )
E V u1( )V u2( )T[ ][

− E V u1( )[ ]E V u2( )[ ]] Jφ( )T ω H−1 u2( )( )( )
ν du1( )ν du2( ),

where

V u( ) � W H−1 u( )( ) − ω′ H−1 u( )( ) 1 Y ≤ H−1 u( ){ }
h H−1 u( )( ) .

Also, as with Theorem 1, we have two different ap-
proaches to establishing the key hypothesis (13): one
based on existing CLTs for DR[c, d]-valued rvs and an-
other based on application of empirical process theory.

With the weak convergence in 
∞, we can also
potentially establish Theorem 2 via the functional
delta method. The inverse map can be viewed a func-
tional Q(·) of a function. From Van der Vaart 2000
p. 307), the Hadamard derivative is

Q′
H τ2( ) u( ) � − τ2 Q H( ) u( )( )

h Q H( ) u( )( ) , u ∈ a, b[ ], (20)

where τ2(·) is a CR[a, b]-valued function. Estimator (12)
can be viewed as a functional H(·) of Πn(·) � (Wn(·),
Hn(·)), where

H π( ) �
∫

a,b[ ]
φ ω Q H( ) u( )( )( )ν du( ),

where π(·) � (ω(·),H(·)). By applying the mean value
theorem to the integration function,

H′
π ζ( ) � lim

ε→0

1
ε
H π+ εζε( ) −H π( )[ ]

� lim
ε→0

1
ε

[∫
a,b[ ]

φ ω+ ετ1,ε( ) Q H + ετ1,ε( ) u( )( )( ))ν du( )

−
∫

a,b[ ]
φ ω Q H( ) u( )( )( ))ν du( )

]

�
∫

a,b[ ]
Jφ
( )

ω Q H( ) u( )( )( ) τ1 Q H( ) u( )( )
[

−ω′ Q H( ) u( )( )τ2 Q H( ) u( )( )
h Q H( ) u( )( )

]
ν du( ),

where ζε(·) � (τ1,ε(·), τ2,ε(·)) is a DRk+2[a, b]-valued func-
tion converging to a CRk+2[a, b]-valued function ζ(·) �
(τ1(·), τ2(·)) in the uniform norm as ε → 0. By the func-
tional delta method,

n1/2 H π + 1
n1/2

Gn

( )
−H π( )

[ ]
⇒ H′

π G( ), (21)

whereGn(·)�n1/2(Wn(·)−ω(·),Hn(·)−H(·)). TheCLT(21)
implies Theorem 2.

3. Application to Gradient Estimation for
Distortion Risk Measures

We now specialize the general theory of Section 2
to distortion risk measure gradients. Specifically, the
simulatable stochastic processes Γ(·) and χ(·) assumed
in Section 2 will be given by applying GLR estimators
for distribution sensitivities in Peng et al. (2020), and
conditions to justify unbiasedness of the GLR esti-
mators and weak convergence of simulatable sto-
chastic processes (8) and (13) in Theorems 1 and 2 will
be provided. In the setting of δn1, Theorem 1 requires
modifying the estimator (slightly) to

δn1 b( ) � −
∫ b

0
w′ 1 − Fn z( )( )Γn z( )dz (22)

for b < ∞. When the dependence of Z on θ arises
purely through the distribution of an input rv in with
density q(·;θ) known and support independent of θ,
then F(z;θ) � E[1{Z ≤ z}λ(Υ;θ)], where Υ ∈ Rm is a rv
with the density q(·;θ0), for some likelihood ratio

λ υ;θ( ) � q υ;θ( )
q υ;θ0( ) ,

where υ � (υ1, . . . , υm), and Γ(z) � 1{Z ≤ z}∇θλ(Υ;θ)T.
However, in many applications

F z;θ( ) � E 1 g Υ;θ( ) ≤ z
{ }

λ Υ;θ( )[ ] (23)
for some function g : Rm × Rk → R, so that the de-
pendence of Z � g(Υ;θ) on θ is affected not only by θ
in the distribution of input rv, but also the structural
dependence on θ through the function g. In this set-
ting, one can appeal to the GLR gradient estimators.
Suppose that the following technical conditions on q
and g hold:
C.1. Inverse function g−1(·, υ−1;θ) of g with respect

to the first argument exists for all υ−1 � (υ2, . . . , υm).
C.2. There exists ε > 0 such that |(∂g(υ;θ)/∂υ1)−1| > ε.
C.3. Moment condition:

E
∂2g
∂υ21

Υ;θ( )
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒

[ ]
< ∞ .

C.4. Condition on density:

lim
υ1→±∞ q1 υ1;θ( ) � 0, q υ;θ( ) < ∞,

where q1 is themarginal density of the first coordinate
in Υ.
For a simple example g(υ;θ) � υ1 + θυ2, its inverse

function w.r.t. the respect to the first argument is
g−1(·, υ−1;θ) � · − θυ2. Conditions C.1 and C.2 can
justify that g−1 is globally Lipchitz continuous with
respect to the argument. When g is a linear function
of υ, ∂g(υ;θ)/∂υ1 is a constant so condition C.2 holds,
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and ∂2g(υ;θ)/∂υ21 is zero so condition C.3 holds.
Condition C.4 holds for most distributions supported
on the whole space, for example, the exponential
family distributions. In Peng et al. (2020), it is shown
that when conditions (C.1)–(C.4) are in force, we have

Γ z( ) � 1 Z ≤ z{ }A1, . . . , 1 Z ≤ z{ }Ak( )T,
where, for 1 ≤ j ≤ k,

Aj Υ( ) � ∂λ

∂θj
Υ;θ( ) − λ Υ;θ( ) ∂g

∂υ1
Υ;θ( )

( )−1
× ∂g

∂θj
Υ;θ( ) ∂ log q

∂υ1
Υ;θ( ) − ∂2g

∂υ21
Υ;θ( )

([
× ∂g

∂υ1
Υ;θ( )

( )−1)
+ ∂2g
∂θj∂υ1

Υ;θ( )
]
, (24)

in which case E[Γ(z)] � ∇θF(z;θ)T. When applying
Theorem 1, we now take ϕ : Rk+1 → Rk so that ϕ(x0,
x1, . . . , xk) � (w′(1 − x0)x1, . . . ,w′(1 − x0)xk)T and

Γ z( ) � 1 Z ≤ z{ }, 1 Z ≤ z{ }A1, . . . , 1 Z ≤ z{ }Ak( )T.
To validate the hypotheses of Theorem 1, we now
require that w be twice differentiable and E[A2

j ] < ∞
for 1 ≤ j ≤ k, and turn to verification of (8), either via
approach 1 or approach 2.

3.1. Verification via Approach 1
We apply theorem 1 of Bloznelis and Paulauskas (1994)
to the process 1{Z ≤ ·}Aj (whereA0 ≡ 1), and note that
if E[A2

j 1{Z ≤ ·}] is continuously differentiable, then
E[(1{Z ≤ z2}Aj − 1{Z ≤ z1}Aj)2] � E[A2

j 1{Z ≤ z2}]−
E[A2

j 1{Z ≤ z1}] for z1 ≤ z2. The differentiability then
implies this latter quantity is of order z2 − z1 as z2 ↓ z1,
so that (1.5) of their theorem 1 follows. (Hypothesis 1.4
is immediate in this setting.)

3.2. Verification via Approach 2
Put Kl � 1{Z ≤ zl}A1 and note that, without loss of
generality, we may assume A1 ≥ 0 (for otherwise we
can work with the positive and negative parts of A1).
If 0 � z0 < z1 < · · · < zt � ∞, then the Kl’s bracket the
family C1 � {1{Z ≤ z}A1 : z ≥ 0}, in the sense that Kl ≤
1{Z ≤ z}A1 ≤ Kl+1 for z ∈ [zl, zl+1]. By choosing t �
�E[A2

1]/ε2� + 1 and appropriately selecting the zl’s, we
can guarantee that̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E Kl+1 − Kl( )2[ ]√
�

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E A2

11 zl < Z ≤ zl+1{ }[ ]√
≤ ε.

The ε-bracket number N[](ε, C1,L2) is the minimal
number of ε-brackets needed to cover C1, Conse-
quently, N[](ε, C1,L2) ≤ �E[A2

1]/ε2� + 1, so that∫ ∞

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
logN[] ε,C1,L2( )

√
dε < ∞.

It follows that C1 is P-Donsker (van der Vaart and
Wellner 1996, p. 85). Similarly, Cj � {1{Z≤ z}Aj : z≥ 0}
is P-Donsker for 0≤ j≤ k, so that C� {1{Z≤ z}Aj : z≥ 0,
0≤ j≤ k} is P-Donsker (see theorem 2.10.3 of van der
Vaart andWellner 1996). LetΥi, i� 1, . . . ,n, be iid copies
of Υ such that Zi � g(Υi;θ), i� 1, . . . ,n. Hence,

n1/2
1
n

∑n
i�1

1 Zi ≤ ·{ }Aj Υi( ) − E 1 Z ≤ ·{ }Aj
[ ]

:

(

0 ≤ j ≤ k

)T
⇒ G ·( )

in 
∞(C), yielding (8).
We note that the Aj’s defined in (24) involve partial

derivatives of g with respect to the first argument.
Under hypotheses C.1–C.4, similar estimators can be
defined in terms of partial derivatives of g taken with
respect to x2 (or, indeed, any υj, for 1 ≤ j ≤ m). Because
all m such estimators are unbiased for ∇θF(z;θ), any
linear combination of the m estimators for which the
coefficients sum to 1 is also unbiased as an estimator
for∇θF(z;θ). Of course, these more general estimators
also can be analyzed as special cases of Theorem 1.
Summarizing the previous discussion, we have the
following proposition.

Proposition 1. If E[A2
j ] < ∞, j � 1, . . . , j, then assumption

(8) in Theorem 1 holds.

We turn next to the analysis of estimators for ∇ϑ(θ)
when the distortion function w is nonsmooth. As for
the estimator δn1, we (slightly)modify the estimator to
take the form

δn2 ε( ) �
∫

ε,1−ε[ ]
κ χn F−1n y

( )( )( )
w̃ dy
( ) (25)

for ε > 0. In this case, we note that

κ x0, x1, . . . , xk( ) � x1/x0, . . . , xk/x0( )T
and

χ z( ) � 1 Z ≤ z{ }B, 1 Z ≤ z{ }A1, . . . ,( 1 Z ≤ z{ }Ak)T,
where Aj is as before, and

B Υ( ) � λ Υ;θ( ) ∂g
∂υ1

Υ;θ( )
( )−1 ∂ log q

∂υ1
Υ;θ( ) − ∂2g

∂υ21

(
× Υ;θ( ) ∂g

∂υ1
Υ;θ( )

( )−1)
.

Recall that (E[1{Z≤ z}A1], . . . ,E[1{Z≤ z}Ak]) � ∇θF(z;θ).
As shown in Peng et al. (2018, 2020),

E 1 Z ≤ z{ }B[ ] � f z;θ( )
when f (z;θ) is positive and continuously differen-
tiable for z ∈ [c, d], and g is appropriately smooth.
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As for (13), this canbeaddressedvia either approach1or
approach 2, precisely as for Theorem 1, in the presence
of the additional hypothesis E[B2] < ∞. Because the
mappingφ has the differentiability required, Theorem 2
therefore can be applied to δn2(ε). Along the way,
further estimators of ∇ϑ(θ) can be obtained by taking
linear combinations of estimators of ∇θF(z;θ) ob-
tained from (24) by using partial derivatives of g taken
with respect to υ2, υ3, . . . , υm. Summarizing the pre-
vious discussion, we have the following proposition.

Proposition 2. If E[B2] < ∞, then assumption (13) in
Theorem 2 holds.

For a distribution with compact support or w(·) is
zero in neighborhoods containing 0 and 1, for ex-
ample, the distortion function of VaR, central limit
theorems in Theorems 1 and 2 can be established
analogously in these special cases. We conclude this
section with a brief discussion of the technical diffi-
culties associated with rigorous proof of Theorems 1
and 2when b � ∞ in δn1(b)or ε � 0 in δn2(ε). To obtain a
rigorous proof of the CLT for δn1(b)with b � ∞, it is no
longer sufficient to establish weak convergence in
DRk[0,∞). The problem is that the topology of uniform
convergence on compact subintervals of [0,∞) asso-
ciated with a continuous limit processes is not suf-
ficient to guarantee that the integral over [0,∞)
converges to that of the limit process. In particular,
more control over the behavior of ϕ(Xn(z)) as z → ∞
would be needed, so that some version of the dom-
inated convergence theorem could be applied. Simi-
lar issues arise with δn2(ε). In particular, h(H−1(u)) → 0
as u → 1 (and often also as u → 0), so that there
are singularities that need to be controlled as ε ↓ 0
(see (14)).

4. Large-Sample Confidence Regions
CLTs provide a basis for hypothesis testing and
constructing confidence intervals or regions. In this
section, we briefly discuss the construction of large-
sample confidence regions for the estimators de-
scribed in Theorems 1 and 2. For estimator (11), ω′(·)
in (14) involves higher-order distribution sensitiv-
ities. Peng et al. (2020) provided theGLR estimator for
any distribution sensitivity, which is a multiplication
of the indicator and a weight function like χ(z). The
easiest approach is to use the (multivariate)method of
batch means (Munoz and Glynn 2001). This method
avoids the need to compute (Jϕ)(·) or (Jφ)(·) or to
estimate the density h(·) and its derivatives appearing
in the limit distribution for Theorem 2, aswould occur
if one constructs the confidence regions via consistent
estimation of the covariance matrices appearing in the
limit distributions in Theorems 1 and 2.

For p ≥ k + 1, we assume that our total sample size
n � lp for some (large) integer l. In addition to the
estimators βn and γn, we also compute the p batch
means estimators

βni �
∫

a,b[ ]
ϕ Xni z( )( )

ν dz( )

and

γni �
∫

a,b[ ]
φ Wni H−1

ni u( )( )( )
ν du( )

for 1 ≤ i ≤ p, where

Xni z( ) � 1
l

∑li
j�l i−1( )+1

Xj z( ),

Wni z( ) � 1
l

∑li
j�l i−1( )+1

Wj z( ),

and

Hni y
( ) � 1

l

∑li
j�l i−1( )+1

1 Yj ≤ y
{ }

.

We now compute sample covariance matrices for the
βnis and γnis, namely

Sp1 n( ) � 1
p − 1

∑p
i�1

βni − βn
[ ]

βni − βn
[ ]T,

Sp2 n( ) � 1
p − 1

∑p
i�1

γni − γn
[ ]

γni − γn
[ ]T.

Our next theorem provides large-sample confidence
regions for the asymptotic means of βn and γn. Let
F(k,p−k,α) be the (1 − α)-quantile of an F distribution
with (k, p − k) degrees of freedom.

Proposition 3. Assume that the limit rvs appearing in
Theorems 1 and 2 have nonsingular covariance matrices.
a. Under the conditions of Theorems 1,

P
∫

a,b[ ]
ϕ E X z( )[ ]( )ν dz( ) ∈ R1 n( )

( )
→ 1 − α

as n → ∞, where

R1 n( ) � x ∈ Rk : p βn − x
( )TSp1 n( )−1 βn − x

( ){
≤ k p − 1

( )
p − k

F k,p−k,α( )
}
.

b. Under the conditions of Theorem 2,

P
∫

a,b[ ]
φ ω H−1 u( )( )( )

ν du( ) ∈ R2 n( )
( )

→ 1 − α
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as n → ∞, where

R2 n( ) � x ∈ Rk : p γn − x
( )TSp2 n( )−1 γn − x

( ){
≤ k p − 1

( )
p − k

F k,p−k,α( )
}
.

Proof. These results are almost immediate, given the
proofs of Theorems 1 and 2. For example, the proof of
Theorem 1 establishes that

βni −
∫

a,b[ ]
ϕ E X z( )[ ]( )ν dz( )

�
∫

a,b[ ]
Jϕ
( )

E X z( )[ ]( ) Xni z( ) − E X z( )[ ]( )
ν dz( ) + o l−1/2

( )
for 1 ≤ i ≤ p, from which it is evident that

βn −
∫

a,b[ ]
ϕ E X z( )[ ]( )ν dz( )

� 1
p

∑p
i�1

βni −
∫

a,b[ ]
ϕ E X z( )[ ]( )ν dz( )

[ ]
+ o l−1/2
( )

as l → ∞. Consequently,

l1/2 βn1 −
∫

a,b[ ]
ϕ E X z( )[ ]( )ν dz( ), . . . , βnp

(
−
∫

a,b[ ]
ϕ E X z( )[ ]( )ν dz( ), βn −

∫
a,b[ ]

ϕ E X z( )[ ]( )ν dz( )
)

⇒ N1,N2, . . . ,Np,
1
p

∑p
i�1

Ni

( )

as l → ∞, where N1,N2, . . . ,Np are iid mean zero
Gaussian random vectors sharing the covariance ma-
trix of the limit rv appearing in Theorem 1. Part a then
follows as in Munoz and Glynn (2001, p. 416). A
similar argument works for part b. □

5. Applications
We can approximate the Riemann-Stieltjes integral in (7)
or (12) by a Riemann-Stieltjes summation on a par-
tition. For a given partition, the asymptotic analysis
for the corresponding Riemann-Stieltjes summations
of (7) and (12) can be established by the results in Peng
et al. (2017) and Glynn et al. (2020), which are de-
pendent on the partition points, so they are weaker
than the results established in Section 2.

We extend the stochastic model g(Υ;θ) to a more
general setting allowing a discontinuous sample path
as follows:

∑m
j�1

Λj1 Λj ∈ aj, bj
[ ]{ }∏j−1

l�1
1 Λl /∈ al, bl( ){ } + c11

× Λm < am{ }∏m−1

l�1
1 Λl /∈ al, bl( ){ }

+ c21 Λm > bm{ }∏m−1

l�1
1 Λl /∈ al, bl( ){ }, (26)

where

Λj � gj Υ;θ( ), j � 1, . . . ,m.

In the special case a1 � 0 and b1 �∞, stochasticmodel (26)
reduces to the stochastic model in Section 3. The
general formula for the sensitivity estimator of the
distortion risk measure under stochastic model (26)
is given in the online appendix, which basically ap-
plies a general version of the GLR estimator in Peng
et al. (2018). Numerical experiments for testing the
performance of the proposed method can be found in
the online appendix.

5.1. Assets with Exiting Boundaries
We first deal with a relatively simple example:

Z � a1 Λ̄ < a
{ } + Λ̄1 a ≤ Λ̄ ≤ b

{ } + b1 Λ̄ > b
{ }

,

where Λ̄ � exp (Υ(1) + θΥ(2)), and Υ(1) and Υ(2) are
independent standard normal random variables. This
stochastic model can be viewed as the payoff of an
investment on an asset with exiting boundaries a and b.
The distribution function of Z can be given by the
following form: for z< a, F(z;θ) � 0, for z ≥ b, F(z;θ) � 1,
and for a ≤ z < b,

F z;θ( ) � E 1 Z ≤ z{ }[ ] � E 1 Λ ≤ log z
{ }[ ]

,

where Λ � Υ(1) + θΥ(2). After rewriting, the GLR
estimators can be applied to estimate the sensitivities
with respect to θ and z. The weight functions in the
GLR estimators for the sensitivities with respect to θ
and z are

A Υ( ) � Υ 1( )Υ 2( ), B Υ( ) � −Υ 1( )/z.
The stochastic model of Λ is a linear function of Υ(1)
andΥ(2), so it falls into the special case discussed after
conditions C.1–C.4, which can be checked in this
example. Moreover, the second moment conditions
forA and B in Propositions 1 and 2 hold. Therefore, all
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assumptions in Theorems 1 and 2 are satisfied in
this example.

We generalize the simple example to themodel that
can be viewed as the payoff of an investment on two
dependent assets with exiting boundaries:

Z � a1 Λ < a{ } + Λ1 a ≤ Λ ≤ b{ } + b1 Λ > b{ },
where

Λ � eΥ 1( ) + eΥ 2( ),

and (Υ(1),Υ(2)) follows a bivariate normal distribu-
tion with the joint density

1

2πσ1σ2
̅̅̅̅̅̅̅̅̅
1 − θ2

√ exp − 1
2 1 − θ2
( ) y1 − μ1

( )2
σ21

[(

+ y2 − μ2
( )2

σ22
− 2θ y1 − μ1

( )
y2 − μ2
( )

σ1σ2

])
.

The weight functions in the GLR estimators for the
sensitivities with respect to θ and z are

A Υ( ) � 1
1 − θ2

[
θ − θ

1 − θ2
( ) Υ 1( ) − μ1

( )2
σ21

(
.

+ Υ(2) − μ2
( )2

σ22
− 2θ Υ(1) −μ1

( )
Υ(2) − μ2
( )

σ1σ2

)

+ Υ 1( ) − μ1
( )

Υ(2) − μ2
( )

σ1σ2

]
,

B Υ( ) � − 1
1 − θ2

Υ(1) − μ1

σ21
− θ Υ 2( ) − μ2

( )
σ1σ2

( )
+ 1

[ ]
e−Υ 1( ).

5.2. Barrier Option
We consider financial options that give the owner a
right to buy or sell a particular underlying asset at
strike price K. There are various types of options in-
cluding vanilla option whose payoff only depends on
the underlying asset price at expiration and exotic
options whose payoffs are path dependent. A knockout
barrier option is worthless if the path of the underlying
asset exceeds a barrier L. The event when the barrier
option stays alive is {maxj�1,...,m Stj < L}, where St ∈ R

is the underlying asset price at time t. For a European
barrier option, the payoff is

Z � Λ̄m
∏m−1

j�1
1 Λ̄j ≤ b
{ }

1 0 < Λ̄m < b
{ }

,

where b� e−rmΔ(L−K), Δ is the step size of the discrete
monitoring points tj � jΔ. Suppose St � S0 exp{(r −
σ2/2)t + σBt + ∑Nt

j�1 Jj} follows a geometric jump-

diffusion process, where {Nt} is a counting process,
and Ji, i ∈ Z+, are the jump sizes. Then we have

Λ̄j � e−rmΔ S0 exp j r − σ2

2

( )
Δ + σ

̅̅̅
Δ

√ ∑j
l�1

Υ l( )
({

+ ∑N j( )
i�1

Jj,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ − K
⎫⎪⎪⎪⎬⎪⎪⎪⎭, j � 1, . . . ,m,

where S0 is the initial underlying asset price, r is the in-
terest rate, σ is the implied volatility, and Υ( j) � (BjΔ −
B( j−1)Δ)/

̅̅̅
Δ

√
, j � 1, . . . ,m, which are i.i.d. with standard

normal distribution,N( j) � NjΔ −Nj(Δ−1), and Jj,i is the
ith jump in the jth period.A vanilla European option is
the special casewhen L � ∞, andwe can substitute Λ̄m
with (∑m

j�1 Λ̄j)/m in a vanilla European option to ob-
tain the payoff of an Asian option. American option
allows the owner to exercise before the expiration. For
an American option exercisable at the specified dis-
crete monitoring points, the payoff is given by

Z �∑m
j�1

Λ̄j
∏j−1
l�1

1 Λ̄l < bl
{ }

1 Λ̄j ≥ bj
{ }

,

where bj � e−rjΔ(Lj − K), and Lj is the exercise threshold
at time tj. Obviously, the payoffs of the options de-
scribed previously are special cases of stochastic
model (26). The sample paths of the payoffs of the
barrier option and American option are discontinu-
ouswith respect to parameters S0,L, r, σ,Lj, j � 1, . . . ,m,
because the sample path of the underlying asset price
could pass the barrier or exercise boundary before
expiration with the parameters perturbed.
We show the analytical form of the GLR estimator

for the distribution sensitivity of the barrier option
with respect to θ � S0. The distribution function of Z
can be given by the following form: for z > b, F(z;θ) � 1,
and for 0 ≤ z ≤ b,

F z;θ( ) � E
∏m−1

l�1
1 Λ̄l ≤ b
{ }

1 Λ̄m ≤ z
{ }[ ]

+∑m
j�1

E
∏j−1
l�1

1 Λ̄l ≤ b
{ }

1 Λ̄j > b
{ }[ ]

.

We can also represent the distribution function by

F z;θ( ) � E
∏m−1

l�1
1 Λl ≤ log L
{ }

1 Λm ≤ log
{[

ermΔz + K
( )}]

+∑m
j�1

E
∏j−1
l�1

1

[
Λl ≤ log L
{ }

1 Λj > logL
{ }]

,
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where

Λj � logθ + j r − σ2

2

( )
Δ + σ

̅̅̅
Δ

√ ∑j
l�1

Υ l( )

+ ∑N j( )
i�1

Jj,i, j � 1, . . . ,m.

Using the formulas in the online appendix, the esti-
mators for ∂F(z;θ)/∂θ and f (z;θ) are given, respec-
tively, by

∏m−1

j�1
1 Λj ≤ logL
{ }

1 Λm ≤ log ermΔz + K
( ){ }{

+∑m
i�1

∏i−1
j�1

1 Λj ≤ logL
{ }

1 Λi > logL
{ }} Υ 1( )

θσ
̅̅̅
Δ

√ ,

∏m−1

j�1
1 Λj ≤ logL
{ }

1 Λm ≤ log ermΔz + K
( ){ }

× −Υ m( )
σ
̅̅̅
Δ

√
ermΔz + K( ) .

6. Conclusion
This paper proposes a new sensitivity estimator of the
distortion risk measure. The stochastic model in our
paper covers the case where the sample path is dis-
continuous with respect to the parameter, which IPA
cannot handle, and by using the quantile represen-
tation, the new method can deal with the nonsmooth
distortion functions that cover some important risk
measures such as VaR and CVaR, which have been
studied separately in literature. In addition, the new
estimator is proved to be asymptotically normal,
using the functional limit theory. The stochastic uniform
convergence offered by the empirical process technique
could be a powerful tool to address the asymptotic
analyses for various types of problems in stochastic
optimization (Lim and Glynn 2012).

A technical difficulty in this work is to find a more
general condition for establishing central limit theo-
rems of Theorem 1 and 2without truncating the tail of
the distribution or quantile. In general, to obtain such
results requires imposing additional conditions on
the distortion function and the distribution of the
output performance because of the nature of a diffi-
culty that the estimations of quantile and the distri-
bution sensitivities become poorly behaved as they
get closer to the tail, because samples rarely appear
around the tail. A potential way to achieve the results
could be proving that the variances of estimators (22)
and (25) are bounded uniformly for b and ε under
certain extra conditions. We leave for future work
proofs of Theorems 1 and 2 that cover δn1(∞) or δn2(0)
in more general scenarios.

In this work, we do not take into consideration the
computational effort on evaluating the estimation at
the partition points of the integral. The proposed
estimator in this paper would have a subcanonical
convergence rate in terms of the total computational
budget that could be quantified as a product of the
sample size and the number of partition points. Other
numerical integration techniques such as Simpson’s
rule can be applied to achieve the canonical conver-
gence rate under appropriate regularity conditions
(Andradóttir and Glynn 2016). Furthermore, asymp-
totic analysis for the setting where the input rvs are not
iid can be considered.
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