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Abstract. We study statistical inference and distributionally robust solution methods for
stochastic optimization problems, focusing on confidence intervals for optimal values and
solutions that achieve exact coverage asymptotically. We develop a generalized empiri-
cal likelihood framework—based on distributional uncertainty sets constructed from
nonparametric f-divergence balls—for Hadamard differentiable functionals, and in par-
ticular, stochastic optimization problems. As consequences of this theory, we provide a
principled method for choosing the size of distributional uncertainty regions to provide
one- and two-sided confidence intervals that achieve exact coverage. We also give an
asymptotic expansion for our distributionally robust formulation, showing how robus-
tification regularizes problems by their variance. Finally, we show that optimizers of the
distributionally robust formulations we study enjoy (essentially) the same consistency
properties as those in classical sample average approximations. Our general approach
applies to quickly mixing stationary sequences, including geometrically ergodic Harris
recurrent Markov chains.
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1. Introduction
We study statistical properties of distributionally robust solution methods for the stochastic optimiza-
tion problem

minimize
x∈X EP0 �(x; ξ)[ ] �

∫
Ξ

�(x;ξ)dP0 ξ( ). (1)

In the formulation (1), the feasible region X ⊂ Rd is a nonempty closed set, ξ is a random vector on the
probability space (Ξ,A,P0), where the domain Ξ is a (subset of) a separable metric space, and the function
� : X × Ξ → R is a lower-semicontinuous (loss) function. In most data-based decision-making scenarios, the
underlying distribution P0 is unknown, and even in scenarios such as simulation optimization, where P0 is
known, the integral EP0[�(x;ξ)] may be high-dimensional and intractable to compute. Consequently, one
typically (Shapiro et al. [94]) approximates the population objective (1) using the sample average approxi-
mation (SAA) based on a sample ξ1, . . . , ξn

iid∼ P0,

minimize
x∈X EP̂n

�(x;ξ)[ ] � 1
n

∑n
i�1

�(x;ξi), (2)

where P̂n denotes the usual empirical measure over the sample {ξi}ni�1.
We study approaches to constructing confidence intervals for problem (1) and demonstrating consistency of

its approximate solutions. We develop a family of convex optimization programs, based on the distributionally
robust optimization framework (Ben-Tal et al. [7, 9], Bertsimas et al. [14], Delage and Ye [33]), which allow us
to provide confidence intervals with asymptotically exact coverage for optimal values of the problem (1).
Our approach further yields approximate solutions x̂n that achieve an asymptotically guaranteed level of
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performance, as measured by the population objective EP0[�(x;ξ)]. More concretely, define the optimal value
functional Topt that acts on probability distributions on Ξ by

Topt P( ):� inf
x∈X EP �(x; ξ)[ ].

For a fixed confidence level α, we show how to construct an interval [ln,un] based on the sample ξ1, . . . , ξn
with (asymptotically) exact coverage:

lim
n→∞P Topt P0( ) ∈ ln, un[ ]( ) � 1 − α. (3)

This exact coverage indicates that the interval [ln,un] has correct size as the sample size n tends to infinity. We
also give sharper statements than the asymptotic guarantee (3), providing expansions for ln and un and giving
rates at which un − ln → 0.

Before summarizing our main contributions, we describe our approach and discuss related methods. We
begin by recalling divergence measures for probability distributions (Ali and Silvey [1], Csiszár [30]). For
a lower-semicontinuous convex function f : R+ → R ∪ {+∞} satisfying f (1) � 0, the f -divergence between
probability distributions P and Q on Ξ is

Df (P‖Q) �
∫

f
dP
dQ

( )
dQ �

∫
Ξ
f
p ξ( )
q ξ( )

( )
q ξ( )dμ ξ( ),

where μ is a σ-finite measure such that P and Q are absolutely continuous with respect to μ (P,Q 
 μ), and
p:�dP/dμ and q:�dQ/dμ. With this definition, we will show that, for f ∈ C3 near 1 with f ′′(1) � 2, the upper
and lower confidence bounds

un:� inf
x∈X sup

P
P̂n

EP � x; ξ( )[ ] : Df P‖P̂n
( ) ≤ ρ

n

{ }
, (4a)

ln:� inf
x∈X inf

P
P̂n

EP � x;ξ( )[ ] : Df P‖P̂n
( ) ≤ ρ

n

{ }
(4b)

yield the asymptotically exact coverage (3). In the formulation (4), the parameter ρ � χ2
1,1−α is chosen as the

(1 − α)-quantile of the χ2
1 distribution.

The upper endpoint (4a) is a natural distributionally robust formulation for the sample average approx-
imation (2) proposed by Ben-Tal et al. [9] for distributions P with finite support. The approach in the current
paper applies to arbitrary distributions, and we are therefore able to explicitly link (typically dichotomous;
Ben-Tal et al. [7]) robust optimization formulations with stochastic optimization. We show how a robust
optimization approach for dealing with parameter uncertainy yields solutions with a number of desirable
statistical properties, even in situations with dependent sequences {ξi}. The exact coverage guarantees in (3)
give a principled method for choosing the size ρ of distributional uncertainty regions to provide one- and two-
sided confidence intervals.

We now summarize our contributions, unifying the approach to uncertainty based on robust optimization
with classical statistical goals.

i. We develop an empirical likelihood framework for general smooth functionals T(P), applying it in
particular to the optimization functional Topt(P) � infx∈X EP[�(x; ξ)]. We show how the construction (4a)–(4b) of
[ln,un] gives a confidence interval with exact coverage (3) for Topt(P0) when the minimizer of EP0[�(x; ξ)] is
unique. To do so, we extend Owen’s empirical likelihood theory (Owen [78, 79]) to suitably smooth
(Hadamard-differentiable) nonparametric functionals T(P) with general f -divergence measures (the most
general that we know in the literature); our proof is different from Owen’s classical result, even when
T(P) � EP[X], and extends to stationary sequences {ξi}.

ii. We show that the upper confidence set (−∞,un] is a one-sided confidence interval with exact coverage
when ρ � χ2

1,1−2α � inf{ρ′ : P(Z2 ≤ ρ′) ≥ 1 − 2α,Z ∼ N(0, 1)}. That is, under suitable conditions on � and P0,

lim
n→∞P inf

x∈X EP0 �(x; ξ)[ ] ∈ −∞,un( ]
( )

� 1 − α.

This shows that the robust optimization problem (4a), which is efficiently computable when � is convex,
provides an upper confidence bound for the optimal population objective (1).
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iii. We show that the robust formulation (4a) has the (almost sure) asymptotic expansion

sup
P
P̂n

EP �(x;ξ)[ ] : Df P‖P̂n
( ) ≤ ρ

n

{ }
� EP̂n

�(x; ξ)[ ] + 1 + o 1( )( )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρ

n
VarP �(x;ξ)( )

√
, (5)

and that this expansion is uniform in x under mild restrictions. Viewing the second term in the expansion as a
regularizer for the SAA problem (2) makes concrete the intuition that robust optimization provides regu-
larization; the regularizer accounts for the variance of the objective function (which is generally nonconvex
in x, even if � is convex), reducing uncertainty. We give weak conditions under which the expansion is uniform
in x, showing that the regularization interpretation is valid when we choose x̂n to minimize the robust
formulation (4a).

iv. Lastly, we prove consistency of estimators x̂n attaining the infimum in the problem (4a) under essentially
the same conditions for consistency of SAA (see Assumption 5). More precisely, for the sets of optima de-
fined by

S�P0
:� argmin

x∈X
EP0 �(x; ξ)[ ] and S�P̂n

:� argmin
x∈X

sup
P
P̂n

EP � x;ξ( )[ ] : Df P‖P̂n
( ) ≤ ρ

n

{ }
,

the distance from any point in S�
P̂n

to S�P0
tends to zero so long as � has more than one moment under P0 and is

lower semicontinuous.
As we show in Section 3.1, the generalized empirical likelihood confidence interval [ln,un] is tighter than the

confidence interval generated from the central limit approximation based on the SAA [see inequality (12) and
its discussion]. This tightening comes at the cost of undercoverage in small samples, as we observe our
simulation experiments (Section 6). To address poor coverage in small-sample or high-dimensional scenarios,
two of the authors have extended the results of this paper (see Duchi and Namkoong [40]) to provide fi-
nite sample guarantees for the upper bound un. Letting un(x) � supP
P̂n

{EP[�(x; ξ)] : Df P‖P̂n
( ) ≤ ρ/n}, we have

for problem-dependent constants C1,C2, with probability at least 1 − exp(−C1ρ),
EP0 �(x; ξ)[ ] ≤ un x( ) + C2ρ

n
simultaneously for all x ∈ X .

The uniformity in these guarantees (Duchi and Namkoong [40, theorem 3]) means that the constants C1,C2
must grow with some notion of the complexity of � and X , such as localized Rademacher complexities (Bartlett
et al. [5]); these finite sample bounds thus lack the asymptotically exact coverage (i.e. pivotal, problem-
independent behavior) that we develop for un. Although developing a deeper understanding of finite sample
behavior of robust estimators is important, such results are complementary to our asymptotic guarantees.

1.1. Background and Prior Work
The nonparametric inference framework for stochastic optimization that we develop in this paper is the
empirical likelihood counterpart of the normality theory that Shapiro develops in [90] and [92]. Although an
extensive literature exists on statistical inference for stochastic optimization problems (see, e.g., the line of
work of Dupacová and Wets [42], King [56], King and Wets [58], King and Rockafellar [57], Shapiro [90, 91, 92, 93],
Shapiro et al. [94]), Owen’s empirical likelihood framework in [80] has received little attention in the sto-
chastic optimization literature, save for notable recent exceptions (Lam [62], Lam and Zhou [63]). In its
classical form, empirical likelihood provides a confidence set for a d-dimensional mean EP0[Y] (with a full-rank
covariance) by using the set Cρ,n:�{EP[Y] : Df P‖P̂n

( ) ≤ ρ
n}, where f (t) � −2 log t. Empirical likelihood theory

shows that if we set ρ � χ2
d,1−α:� inf{ρ′ : P(‖Z‖22 ≤ ρ′) ≥ 1 − α for Z ∼ N(0, Id×d)}, then Cρ,n is an asymptotically

exact (1 − α)-confidence region; that is, P(EP0[Y] ∈ Cρ,n) → 1 − α. Through a self-normalization property,
empirical likelihood requires no knowledge or estimation of unknown quantities, such as variance. We show
that such asymptotically pivotal results also apply for the robust optimization formulation (4). The empirical
likelihood confidence interval [ln,un] has the desirable characteristic that when �(x;ξ) ≥ 0, ln ≥ 0 (and similarly
for un), which is not necessarily true for confidence intervals based on the normal distribution.

Using confidence sets to robustify optimization problems involving randomness is common (see Ben-Tal
et al. [7, chapter 2]). A number of researchers extend such techniques to situations in which one observes a
sample ξ1, . . . , ξn and constructs an uncertainty set over the data directly, including the papers by Ben-Tal
et al. [9], Bertsimas et al. [13, 14], Delage and Ye [33], Gupta [47], and Wang et al. [99]. The duality of
confidence regions and hypothesis tests (Lehmann and Romano [65]) gives a natural connection between
robust optimization, uncertainty sets, and statistical tests. Delage and Ye [33] made initial progress in this
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direction by constructing confidence regions based on mean and covariance matrices from the data, and Jiang
and Guan [54] expanded this line of research to other moment constraints. Bertsimas et al. [14, 13] developed
uncertainty sets based on various linear and higher-order moment conditions. They also propose a robust SAA
formulation based on goodness of fit tests, showing tractability as well as some consistency results based on
Scarsini’s linear convex orderings in [87], so long as the underlying distribution is bounded; they further give
confidence regions that do not have exact coverage. Gupta [47] provided a Bayesian perspective for choosing
uncertainty sets for stochastic constraints, proposing a particular notion of (Bayesian) asymptotic optimality
and tractable approximations. The formulation (4) has similar motivation to the preceding works, as the
uncertainty set

EP �(x;ξ)[ ] : Df P‖P̂n
( ) ≤ ρ

n

{ }
is a confidence region for EP0[�(x;ξ)] for each fixed x ∈ X (as we show in the sequel). Our results extend this by
showing that, under mild conditions, the values (4a) and (4b) provide upper and lower confidence bounds for
T(P) � infx∈X EP[�(x;ξ)] with (asymptotically) exact coverage.

Ben-Tal et al. [9] explored a similar scenario to ours, focusing on the robust formulation (4a), and they
showed that, when P0 is finitely supported, the robust program (4a) gives a one-sided confidence interval
with (asymptotically) inexact coverage (i.e., they only give a bound on the coverage probability). In the
unconstrained setting X � Rd, Lam and Zhou [63] used estimating equations to show that standard empirical
likelihood theory gives confidence bounds for stochastic optimization problems. Their confidence bounds
have asymptotically inexact confidence regions, although they do not require unique solutions of the opti-
mization problem, as our results sometimes do. The result (i) generalizes these works, as we show how the
robust formulation (4) yields asymptotically exact confidence intervals for general distributions P0, and
general constrained (X ⊂ Rd) stochastic optimization problems.

Ben-Tal et al.’s robust sample approximation in [9] and Bertsimas et al.’s goodness of fit testing-based
procedures in [13] provide natural motivation for formulations similar to ours in (4). However, by considering
completely nonparametric measures of fit, we can depart from assumptions on the structure of Ξ (i.e., that it is
finite or a compact subset of Rm). The f -divergence formulation (4) allows for a more nuanced understanding
of the underlying structure of the population problem (1), and it also allows the precise confidence statements,
expansions, and consistency guarantees outlined in (i)–(iii). Concurrent with the initial arXiv version of this
work, Lam [61, 62] developed variance expansions similar to ours in (5), focusing on the Kullback–Leibler (KL)
divergence and empirical likelihood cases (i.e., f (t) � −2 log t with independent and identically distributed
[i.i.d.] data). Our methods of proof are different, and our expansions hold almost-surely (as opposed to in
probability), apply to general f -divergences, and generalize to dependent sequences under standard ergo-
dicity conditions.

The recent line of work on distributionally robust optimization using Wasserstein distances (Blanchet and
Murthy [17], Esfahani and Kuhn [43], Pflug and Wozabal [81], Shafieezadeh-Abadeh et al. [88], Sinha et al.
[95], Wozabal [100]) is similar in spirit to the formulation considered here. Unlike f -divergences, uncertainty
regions formed by Wasserstein distances contain distributions that have support different to that of the
empirical distribution. Using concentration results for Wasserstein distances with light-tailed random vari-
ables (Fournier and Guillin [45]), Esfahani and Kuhn [43] gave finite sample guarantees with nonparametric
rates O(n−1/d), in particular, showing consistency guarantees for Wasserstein-based robust formulations. The
f -divergence formulation that we consider yields different statistical guarantees; for random variables with
only second moments, we give confidence bounds that achieve (asymptotically) exact coverage at the
parametric rate O(n−1/2). Further, the robustification approach via Wasserstein distances is often computa-
tionally challenging (with current techology), as tractable convex formulations are available (Esfahani and
Kuhn [43], Shafieezadeh-Abadeh [88]) only under stringent conditions on the functional ξ �→ �(x;ξ). On the
other hand, efficient solution methods (Ben-Tal et al. [9], Namkoong and Duchi [72]) for the robust problem (4a)
are obtainable without restriction on the objective function �(x;ξ) other than convexity in x.

A literature somewhat orthogonal to the distributionally robust approach that we take considers confidence
regions for either the optimal population value or its solution. In the first vein, Lan et al. [64] and Mak et al. [67]
provided upper and lower bounds on the optimal value (1) using finite sample concentration results; both
results are conservative, thus allowing strong finite sample coverage guarantees but necessarily failing to
achieve asymptotically exact coverage. In the second vein of providing confidence regions for the solution x�

itself, several researchers propose using the iterates of a stochastic approximation algorithm (Bubeck et al. [22],
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Chen et al. [25], Li et al. [66], Mandt et al. [68]). These results apply both in Bayesian (Bubeck et al. [22], Mandt
et al. [68]) and frequentist inference (Chen et al. [25], Li et al. [66]).

1.2. Notation
We collect our mostly standard notation here. For a sequence of random variables X1,X2, . . . in a metric space
X , we say that Xn ⇒ X if E[f (Xn)] → E[f (X)] for all bounded continuous functions f . We write Xn−→P

∗
X for

random variables Xn converging to a random variable X in outer probability (van der Vaart and Wellner [98,
section 1.2]). Given a set A ⊂ Rd, norm ‖·‖, and point x, the distance dist(x,A) � infy{‖x − y‖ : y ∈ A}. The
inclusion distance, or the deviation, from a set A to B is

d⊂ A,B( ):� sup
x∈A

dist x,B( ) � inf ε ≥ 0 : A ⊂ y : dist y,B
( ) ≤ ε

{ }{ }
. (6)

For a measure μ on a measurable space (Ξ,A) and p ≥ 1, we let Lp(μ) be the usual Lp space; that is,
Lp(μ):�{ f : Ξ → R | ∫ | f |pdμ < ∞}. For a deterministic or random sequence an ∈ R, we say that a sequence of
random variables Xn is OP(an) if limc→∞ lim supn P(|Xn| ≥ c · an) � 0. Similarly, we say that Xn � oP(an) if
lim supP(|Xn| ≥ c · an) � 0 for all c > 0. For α ∈ [0, 1], we define χ2

d,α to be the α-quantile of a χ2
d random variable,

that is, the value such that P(‖Z‖22 ≤ χ2
d,α) � α for Z ∼ N(0, Id×d). The Fenchel conjugate of a function f is

f ∗(y) � supx{yTx − f (x)}. For a convex function f : R → R, we define the right derivative f ′+(x) � limδ↓0
f (x+δ)−f (x)

δ ,
which must exist (Hiriart-Urruty and Lemaréchal [50]). We let IA(x) be the {0,∞}-valued membership function,
so IA(x) � ∞ if x �∈ A, and 0 otherwise. To address measurability issues, we use outer measures and corre-
sponding convergence notions (van der Vaart and Wellner [98, section 1.2–1.5]). Throughout the paper, the
sequence {ξi} is i.i.d. unless explicitly stated.

1.3. Outline
In order to highlight applications of our general results to stochastic optimization problems, we first present
results for the optimal value functional Topt(P):� infx∈X EP[�(x; ξ)], before presenting their most general forms.
In Section 2, we first describe the necessary background on generalized empirical likelihood and establish our
basic variance expansions. We apply these results in Section 3 to stochastic optimization problems, including
those involving dependent data, and give computationally tractable procedures for solving the robust for-
mulation (4a). In Section 4, we develop the connections between distributional robustness and principled
choices of the size ρ in the uncertainty sets {P : Df (P‖P̂n) ≤ ρ/n}, choosing ρ to obtain asymptotically exact
bounds on the population optimal value (1). To understand that the cost of the types of robustness we consider
is reasonably small, in Section 5 we show consistency of the empirical robust optimizers under (essentially) the
same conditions guaranteeing consistency of SAA. We conclude the “applications” of the paper to optimi-
zation and modeling with numerical investigation in Section 6, demonstrating benefits and drawbacks of the
robustness approach over classical stochastic approximations. To conclude the paper, we present the full
generalization of empirical likelihood theory to f -divergences, Hadamard differentiable functionals, and
uniform (Donsker) classes of random variables in Section 7.

2. Generalized Empirical Likelihood and Asymptotic Expansions
We begin by briefly reviewing generalized empirical likelihood theory (Imbens [53], Newey and Smith [75],
Owen [80]), showing classical results in Section 2.1 and then turning to our new expansions in Section 2.2. Let
Z1, . . . ,Zn be independent random vectors—formally, measurable functions Z : Ξ → B for some Banach space
B—with common distribution P0. Let P be the set of probability distributions on Ξ, and let T : P → R be the
statistical quantity of interest. We typically consider Topt(P) � infx∈X EP[�(x;ξ)] with Z(ξ):��(·;ξ), although our
theory applies in more generality (see Section 7). The generalized empirical likelihood confidence region for T(P0) is

Cn,ρ:� T P( ) : Df (P‖P̂n) ≤ ρ

n

{ }
,

where P̂n is the empirical distribution of Z1, . . . ,Zn. The set Cn,ρ is the image of T on an f -divergence
neighborhood of the empirical distribution P̂n. We may define a dual quantity, the profile divergence Rn :
R → R+ (called the profile likelihood in Owen [80] when f (t) � −2 log t), by

Rn θ( ):� inf
P
P̂n

Df P‖P̂n
( )

: T P( ) � θ
{ }

.
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Then, for any P ∈ P, we have T(P) ∈ Cn,ρ if and only if Rn(T(P)) ≤ ρ
n. Classical empirical likelihood

(Owen [78, 79, 80]) considers f (t) � −2 log t so that Df (P‖P̂n) � 2Dkl(P̂n‖P), in which case the divergence is the
nonparametric log-likelihood ratio. To show that Cn,ρ is actually a meaningful confidence set, the goal is then
to demonstrate that (for appropriately smooth functionals T)

P T P0( ) ∈ Cn,ρ
( ) � P Rn T P0( )( ) ≤ ρ

n

( )
→ 1 − α ρ

( )
as n → ∞,

where α(ρ) is a desired confidence level (based on ρ) for the inclusion T(P0) ∈ Cn,ρ.

2.1. Generalized Empirical Likelihood for Means
In the classical case in which the vectors Zi ∈ Rd and are i.i.d., Owen [78] showed that empirical likelihood
applied to the mean T(P0):�EP0[Z] guarantees elegant asymptotic properties: when Cov(Z) has rank d0 ≤ d,
as n → ∞ one has Rn(EP0[Z]) ⇒ χ2

d0 , where χ2
d0 denotes the χ2-distribution with d0 degrees of freedom.

Then Cn,ρ(α) is an asymptotically exact (1 − α)-confidence interval for T(P0) � EP0[Z] if we set ρ(α) �
inf{ρ′ : P(χ2

d0 ≤ ρ′) ≥ 1 − α}. We extend these results to more general functions T and to a variety of f -di-
vergences satisfying the following condition, which we henceforth assume without mention (each of our
theorems requires this assumption).

Assumption 1 (Smoothness of f-Divergence). The function f : R+ → R is convex, three times differentiable in a neigh-
borhood of 1, and satisfies f (1) � f ′(1) � 0 and f ′′(1) � 2.

The assumption that f (1) � f ′(1) � 0 is no loss of generality, as the function t �→ f (t) + c(t − 1) yields identical
divergence measures to f , and the assumption that f ′′(1) � 2 is a normalization for easier calculation. We make
no restrictions on the behavior of f at 0, as a number of divergence measures, such as KL with f (t) �
−2 log t + 2t − 2, approach infinity as t ↓ 0.

The following proposition is a generalization of Owen’s results in [78] to smooth f -divergences. Whereas the
result is essentially known (Baggerly [4], Bertail et al. [11], Corcoran [28]), it is also an immediate consequence
of our uniform variance expansions to come.

Proposition 1. Let Assumption 1 hold. Let Zi ∈ Rd be drawn i.i.d. P0 with finite covariance of rank d0 ≤ d. Then,

lim
n→∞P EP0 Z[ ] ∈ EP Z[ ] : Df P‖P̂n

( ) ≤ ρ

n

{ }( )
� P χ2

d0 ≤ ρ
( )

. (7)

When d � 1, the proposition is a direct consequence of Lemma 1 to come; for more general dimensions d, we
present the proof in Online Appendix B.5. If we consider the random variable Zx(ξ):��(x;ξ), defined for each
x ∈ X , then Proposition 1 allows us to construct pointwise confidence intervals for the distributionally robust
problems (4).

2.2. Asymptotic Expansions
To obtain inferential guarantees on T(P) � infx∈X EP[�(x; ξ)], we require stronger results than the pointwise
guarantee (7). We now develop an asymptotic expansion that essentially gives all of the major distributional
convergence results in this paper. Our results on convergence and exact coverage build on two asymptotic
expansions, which we now present. In the statement of the lemma, we recall that a sequence {Zi} of random
variables is ergodic and stationary if, for all bounded functions f : Rk → R and g : Rm → R, we have

lim
n→∞E f Zt, . . . ,Zt+k−1( )g Zt+n, . . . ,Zt+n+m−1( )[ ] � E f Z1, . . . ,Zk( )[ ]

E g Z1, . . . ,Zm( )[ ]
.

We then have the following lemma.

Lemma 1. Let Z1,Z2, . . . be a strictly stationary ergodic sequence of random variables with E[Z2
1] < ∞, and let Assumption 1

hold. Let s2n � EP̂n
[Z2] − EP̂n

[Z]2 denote the sample variance of Z. Then,

sup
P:Df P‖P̂n( )≤ρ

n

EP Z[ ] − EP̂n
Z[ ] −

̅̅̅̅̅
ρ

n
s2n

√⃒⃒⃒⃒
⃒⃒

⃒⃒⃒⃒
⃒⃒ ≤ εn̅̅

n
√ , (8)

where εn−→a.s. 0.
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See Online Appendix A for the proof. For intuition, we may rewrite the expansion (8) as

sup
P :Df P‖P̂n( )≤ρ

n

EP Z[ ] � EP̂n
Z[ ] +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρ

n
VarP̂n

Z( )
√

+ ε+n̅
n̅

√ , (9a)

inf
P :Df P‖P̂n( )≤ρ

n

EP Z[ ] � EP̂n
Z[ ] −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρ

n
VarP̂n

Z( )
√

+ ε−n̅
n̅

√ , (9b)

with ε±n −→
a.s.

0, where the second equality follows from symmetry. Applying the classical central limit theorem
and Slutsky’s lemma, we then obtain

P
̅̅
n

√
EP0 Z[ ] − EP̂n

Z[ ]
⃒⃒⃒ ⃒⃒⃒

≤
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρVarP̂n

Z( )
√( )

→
n↑∞

P |N 0, 1( )| ≤ ̅̅
ρ

√( ) � P χ2
1 ≤ ρ

( )
,

yielding Proposition 1 in the case that d � 1. Concurrently with the original version of this paper, Lam [62]
gave an in-probability version of the result (9) (rather than almost sure) for the case f (t) � −2 log t, corre-
sponding to empirical likelihood. Our proof is new, gives a probability 1 result, and generalizes to ergodic
stationary sequences.

Next, we show a uniform variant of the asymptotic expansion (9) that relies on the local Lipschitzness of our
loss. Although our results apply in significantly more generality (see Section 7), the following assumption
covers many practical instances of stochastic optimization problems.

Assumption 2. The set X ⊂ Rd is compact, and there exists a measurable function M : Ξ → R+ such that, for all ξ ∈ Ξ,
�(·; ξ) is M(ξ)-Lipschitz with respect to some norm ‖·‖ on X .

Theorem 2. Let Assumption 2 hold with EP0[M(ξ)2] < ∞, and assume that EP0[|�(x0; ξ)|2] < ∞ for some x0 ∈ X . If
ξi

iid∼ P0, then

sup
P :Df P‖P̂n( )≤ρ

n

EP � x, ξ( )[ ] � EP̂n
� x, ξ( )[ ] +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρ

n
VarP̂n

� x, ξ( )( )
√

+ εn x( ), (10)

where supx∈X
̅̅
n

√ |εn(x)|−→P
∗
0.

This theorem is a consequence of the more general uniform expansions that we develop in Section 7, in
particular Theorem 9. In addition to generalizing classical empirical likelihood theory, these results also
allow a novel proof of the classical empirical likelihood result for means (Proposition 1).

3. Statistical Inference for Stochastic Optimization
With our asymptotic expansion and convergence results in place, we now consider the application of our
results to stochastic optimimization problems and study the mapping

Topt : P → R, P �→ Topt P( ):� inf
x∈X EP �(x;ξ)[ ].

Although the functional Topt(P) is nonlinear, we can provide regularity conditions guaranteeing its smoothness
(Hadamard differentiability), so that the generalized empirical likelihood approach provides asymptotically
exact confidence bounds on Topt(P). Throughout this section, we make a standard assumption guaranteeing
existence of minimizers (e.g., Rockafellar and Wets [85, theorem 1.9]).

Assumption 3. The function �(·; ξ) is proper and lower-semicontinuous for P0-almost all ξ ∈ Ξ. Either X is compact or
x �→ EP0[�(x; ξ)] is coercive, meaning that EP0[�(x;ξ)] → ∞ as ‖x‖ → ∞.

In the remainder of this section, we explore the generalized empirical likelihood approach to confidence
intervals on the optimal value for both i.i.d. data and dependent sequences (Sections 3.1 and 3.2, respectively),
returning in Section 3.3 to discuss a few computational issues, examples, and generalizations.

3.1. Generalized Empirical Likelihood for Stochastic Optimization
The first result we present applies in the case that the data are i.i.d.
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Theorem 3. Let Assumptions 1 and 2 hold with EP0[M(ξ)2] < ∞ and EP0[|�(x0; ξ)|2] < ∞ for some x0 ∈ X . If ξi iid∼ P0 and
the optimizer x�:�argminx∈XEP0[�(x;ξ)] is unique, then

lim
n→∞P Topt P0( ) ∈ Topt P( ) : Df (P‖P̂n) ≤ ρ

n

{ }( )
� P χ2

1 ≤ ρ
( )

.

This result follows from a combination of two steps: the generalized empirical likelihood theory for smooth
functionals we give in Section 7, and a proof that the conditions of the theorem are sufficient to guarantee
smoothness of Topt. See Online Appendix C for the full derivation.

There are of course many results on confidence sets for optimal values in stochastic programming. Shapiro
[90, 92] developed a number of normal approximations and asymptotic normality theory for stochastic
optimization problems. The normal analogue of Theorem 2 is that̅̅

n
√

inf
x∈X EP̂n

�(x;ξ)[ ] − inf
x∈X EP0 �(x;ξ)[ ]

( )
⇒ N 0,VarP0 � x�;ξ

( )( )( )
, (11)

which holds under the conditions of Theorem 2. The normal approximation (11) requires estimation of the
unknown parameter VarP0(�(x�;ξ)); the plug-in estimator VarP̂n

(�(x̂n; ξ)) is a frequent choice, where x̂n
minimizes the sample average (2). The generalized empirical likelihood approach in Theorem 2 is asymp-
totically pivotal, so there are no hidden quantities that we must estimate.

In an approach more directly using empirical likelihood, Lam and Zhou [63] gave a result related to
Theorem 2 for the special case that f (t) � −2 log t when the domain X � Rd (so the problem is unconstrained)
and the loss x �→ �(x;ξ) is differentiable for all ξ ∈ Ξ. They used first-order optimality conditions as an es-
timating equation and applied standard empirical likelihood theory (Owen [80]). This approach gives a
nonpivotal asymptotic distribution; the limiting law is a χ2

r -distribution with r � rank(CovP0(∇�(x�; ξ)) degrees
of freedom, though x� need not be unique in this approach. The resulting confidence intervals are too
conservative and fail to have (asymptotically) exact coverage. The estimating equations approach also requires
the loss �(·;ξ) to be differentiable and the covariance matrix of (�(x�;ξ),∇x�(x�;ξ)) to be positive definite for
some x� ∈ argminx∈XEP0[�(x;ξ)]. In contrast, Theorem 2 applies to problems with general constraints, as well
as more general objective functions � and f -divergences, by leveraging smoothness properties (over the space
of probability measures) of the functional Topt(P):� infx∈X EP[�(x;ξ)]. A consequence of the more general losses,
divergences, and exact coverage is that Theorem 2 requires the minimizer of EP0[�(x;ξ)] to be unique.

We now argue that the generalized empirical likelihood confidence interval [ln,un] is typically tighter than
its normal approximation counterpart (11). Let x̂n be the solution to the sample average approximation (2).
From the definition (4a) and the asymptotic expansion (10),

un ≤ sup
P
P̂n

EP � x̂n;ξ( )[ ] : Df P‖P̂n
( ) ≤ ρ

n

{ }
� EP̂n

� x̂n, ξ( )[ ] +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρ

n
VarP̂n

� x̂n, ξ( )( )
√

+ εn x̂n( ), (12)

where
̅̅
n

√
εn(x̂n) −→P

∗
0 under the conditions of Theorem 1. The term EP̂n

[�(x̂n, ξ)] +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρ
nVarP̂n

(�(x̂n, ξ))
√

is the
normal upper confidence bound (11)—with the same confidence level as un—with the plug-in estimator
VarP̂n

(�(x̂n;ξ)) for the asymptotic variance. As un minimizes over all x, it is tighter than its normal ap-
proximation counterpart when the inequality (12) is looser: εn(x̂n) � op(n−1/2).

When the optimum is not unique, we can still provide an exact asymptotic characterization of the limiting
probabilities that ln ≤ Topt(P0) ≤ un, where we recall the definitions (4) of ln � infP{Topt(P) : Df (P‖P̂n) ≤ ρ/n}
and un � supP{Topt(P) : Df (P‖P̂n) ≤ ρ/n}, which also shows a useful symmetry between the upper and lower
bounds. The characterization depends on the excursions of a noncentered Gaussian process when x� is
nonunique, which unfortunately makes it hard to evaluate. To state the result, we require the definition of a
few additional processes. Let G be the mean-zero Gaussian process with covariance

Cov x1, x2( ) � E G x1( )G x2( )[ ] � Cov � x1;ξ( ), � x2;ξ( )( )
for x1, x2 ∈ X , and define the noncentered processes H+ and H− by

H+ x( ) :� G x( ) + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρVarP0 � x;ξ( )( )√

and H− x( ) :� G x( ) − ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρVarP0 � x;ξ( )( )√

. (13)
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Letting SP0
�:� argminx∈X EP0[�(x;ξ)] be the set of optimal solutions for the population problem (1), we obtain

the following theorem. (It is possible to extend this result to mixing sequences, but we focus for simplicity on
the i.i.d. case.)

Theorem2. Let Assumptions 1, 2, and 3 hold, where the Lipschitz constantM satisfiesEP0[M(ξ)2] < ∞.Assume there exists
x0 ∈ X such that EP0[|�(x0;ξ)|2] < ∞. If ξi iid∼ P0, then

lim
n→∞P inf

x∈X EP0 �(x; ξ)[ ] ≤ un

( )
� P inf

x∈S�P0
H+ x( ) ≥ 0

( )

and

lim
n→∞P inf

x∈X EP0 �(x;ξ)[ ] ≥ ln

( )
� P inf

x∈S�P0
H− x( ) ≤ 0

( )
.

If S�P0
is a singleton, then both limits are equal to 1 − 1

2P(χ2
1 ≥ ρ).

We defer the proof of the theorem to Online Appendix C.3, noting that it is essentially an immediate
consequence of the uniform results in Section 7 (in particular, the uniform variance expansion of Theorem 7
and the Hadamard differentiability result of Theorem 8).

Theorem 3 provides us with a few benefits. First, if all one requires is a one-sided confidence interval (say,
an upper interval),then we may shorten the confidence set via a simple correction to the threshold ρ. Indeed,
for a given desired confidence level 1 − α, setting ρ � χ2

1,1−2α (which is smaller than χ2
1,1−α) gives a one-sided

confidence interval (−∞,un] with asymptotic coverage 1 − α.

3.2. Extensions to Dependent Sequences
We now give an extension of Theorem 3 to dependent sequences, including Harris-recurrent Markov chains
mixing suitably quickly. To present our results, we first recall β-mixing sequences (Bradley [19], Ethier and
Kurtz [44, sections 7.2–7.3]; also called absolute regularity in the literature).

Definition 1. The β-mixing coefficient between two sigma algbras B1 and B2 on Ξ is

β B1,B2( ) � 1
2
sup

∑
I×J

P Ai ∩ Bj
( ) − P Ai( )P Bj

( )⃒⃒ ⃒⃒
,

where the supremum is over finite partitions {Ai}i∈I , {Bj}j∈J of Ξ such that Ai ∈ B1 and Bj ∈ B2.

Let {ξ}i∈Z be a sequence of strictly stationary random vectors. Given the σ-algebras

G0:�σ ξi : i ≤ 0( ) and Gn:�σ ξi : i ≥ n( ) for n ∈ N,

the β-mixing coefficients of {ξi}i∈Z are defined via Definition 1 by

βn:�β G0,Gn( ). (14)
A stationary sequence {ξi}i∈Z is β-mixing if βn → 0 as n → ∞. For Markov chains, β-mixing has a particularly
nice interpretation: a strictly stationary Markov chain is β-mixing if and only if it is Harris-recurrent and
aperiodic (Bradley [19, theorem 3.5]).

With these preliminaries, we may state our asymptotic convergence result, which is based on a uniform
central limit theorem that requires fast enough mixing (Doukhan [38]).

Theorem 4. Let {ξn}∞n�0 be an aperiodic, positive Harris-recurrent Markov chain taking values on Ξ with stationary
distribution π. Let Assumptions 1 and 2 hold, and assume that there exists r > 1 and x0 ∈ X satisfying

∑∞
n�1 n

1
r−1βn < ∞, the

Lipschitz moment bound Eπ[|M(ξ)|2r] < ∞, and Eπ[|�(x0; ξ)|2r] < ∞. If the optimizer x�:�argminx∈XEπ[�(x; ξ)] is unique,
then, for any ξ0 ∼ ν,

lim
n→∞Pν Topt π( ) ∈ Topt P( ) : Df (P‖P̂n) ≤ ρ

n

{ }( )
� P χ2

1 ≤
ρVarπ� x�; ξ( )

σ2π x�( )
( )

, (15)

where σ2π(x�) � Varπ�(x�;ξ) + 2
∑∞

n�1 Covπ(�(x�;ξ0), �(x�;ξn)).
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Theorem 4 is more or less a consequence of the general results that we prove in Section 7.3 on ergodic
sequences, and we show how it follows from these results in Online Appendix D.3.

We give a few examples of Markov chains satisfying the mixing condition
∑∞

n�1 n
1

r−1βn < ∞ for some r > 1.

Example 1 (Uniform Ergodicity). If an aperiodic, positive Harris recurrent Markov chain is uniformly ergodic, then it
is geometrically β-mixing (Meyn and Tweedie [70, theorem 16.0.2]), meaning that βn � O(cn) for some constant
c ∈ (0, 1) In this case, the Lipschitzian assumption in Theorem 4 holds whenever Eπ[M(ξ)2 log+ M(ξ)] < ∞.

As our next example, we consider geometrically β-mixing processses that are not necessarily uniformly
mixing. The following result is due to Mokkadem [71].

Example 2 (Geometric β-Mixing). Let Ξ � Rp, and consider the affine auto-regressive process

ξn+1 � A εn+1( )ξn + b εn+1( ),
where A is a polynomial p × p matrix-valued function and b is a Rp-valued polynomial function. We assume
that the noise sequence {εn}n≥1 iid∼ F, where F has a density with respect to the Lebesgue measure. If (i) ei-
genvalues of A(0) are inside the open unit disk and (ii) there exists a > 0 such that E‖A(εn)‖a + E‖b(εn)‖a < ∞,
then {ξn}n≥0 is geometrically β-mixing. That is, there exists c ∈ (0, 1) such that βn � O(sn).

See Doukhan [37, section 2.4.1] for more examples of β-mixing processes.
Using the equivalence of geometric β-mixing and geometric ergodicity for Markov chains (Nummelin and

Tweedie [77], Meyn and Tweedie [70, chapter 15]), we can give a Lyapunov criterion.

Example 3 (Lyapunov Criterion) Let {ξn}n≥0 be an aperiodic Markov chain. For shorthand, denote the regular
conditional distribution of ξm given ξ0 � z by Pm(z, ·) :�Pz(ξm ∈ ·) � P(ξm ∈ ·|ξ0 � z). Assume that there exists a
measurable set C ∈ A, a probability measure ν on (Ξ,A), a potential function w : Ξ → [1,∞), and constants m ≥
1, λ > 0, γ ∈ (0, 1) such that (i) Pm(z,B) ≥ λν(B) for all z ∈ C,B ∈ A, (ii) Ezw(ξ1) ≤ γw(z) for all z ∈ Cc, and
(iii) supz∈C Ezw(ξ1) < ∞. (The set C is a small set; Meyn and Tweedie [70, section 5.2].) Then, {ξn}n≥0 is aperiodic,
positive Harris-recurrent, and geometrically ergodic (Meyn and Tweedie [70, theorem 15.0.1]). Further, we can
show that {ξn}n≥0 is geometrically β-mixing: there exists c ∈ (0, 1) with βn � O(cn). For completeness, we include a
proof of this in Online Appendix D.1.

For dependent sequences, the asymptotic distribution in the limit (15) contains unknown terms such as σ2π
and Varπ(�(x�;ξ)); such quantities need to be estimated to obtain exact coverage. This loss of a pivotal limit
occurs because

̅̅
n

√ (P̂n − P0) converges to a Gaussian process G on X with covariance function

Cov x1, x2( ):�Cov G x1( ),G x2( )( ) � ∑
n≥1

Covπ � x1;ξ0( ), � x2;ξn( )( ),

whereas empirical likelihood self-normalizes based on Covπ(�(x1; ξ0), �(x2;ξ0)). (These covariances are identical
if ξi are i.i.d.) As a result, in Theorem 5, we no longer have the self-normalizing behavior of Theorem 3 for i.i.d.
sequences. To remedy this, we now give a sectioning method that yields pivotal asymptotics, even for
dependent sequences.

Let m ∈ N be a fixed integer. Letting b :� �n/m�, partition the n samples into m sections,

ξ1, . . . , ξb{ }, ξb+1, . . . , ξ2b{ }, · · · , ξ m−1( )b+1, . . . , ξmb
{ }

,

and denote by P̂j
b the empirical distribution on each of the blocks for j � 1, . . . ,m. Let

Ui
b:� sup

P
P̂j
b

Topt P( ) : Df (P‖P̂j
b) ≤

ρ

n

{ }
,

and define

Ub:� 1
m

∑m
j�1

Uj
b and s2m Ub( ) :� 1

m

∑m
j�1

Uj
b −Ub

( )2
.

Letting x̂∗n ∈ argminx∈XEP̂n
[�(x;ξ)], we obtain the following result.
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Proposition 2. Under the conditions of Theorem 4, for any initial distribution ξ0 ∼ ν,

lim
n→∞Pν Topt π( ) ≤ Ub −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρ

b
VarP̂n

� x̂∗n; ξ
( )√

+ sm Ub( )t
( )

� P Tm−1 ≥ −t( ),

where Tm−1 is the Student’s t-distribution with (m − 1)-degress of freedom.

See Online Appendix D.4 for the proof of Proposition 2. Thus, we recover an estimable quantity
guaranteeing an exact confidence limit.

3.3. Computing the Confidence Interval and Its Properties
For convex objectives, we can provide efficient procedures for computing our desired confidence intervals on
the optimal value Topt(P0). We begin by making the following assumption.

Assumption 4. The set X ⊂ Rd is convex and �(·;ξ) : X → R is a proper closed convex function for P0-almost all ξ ∈ Ξ.

For P finitely supported on n points, the functional P �→ Topt(P) � infx∈X EP[�(x; ξ)] is continuous (on Rn)
because it is concave and finite-valued; as a consequence, the set

Topt P( ) : Df P‖P̂n
( ) ≤ ρ/n

{ } � inf
x∈X

∑n
i�1

pi� x;ξi( ) : p�1 � 1, p ≥ 0,
∑n
i�1

f npi
( ) ≤ ρ

{ }
, (16)

is an interval, and, in this section, we discuss a few methods for computing it. To compute the interval (16), we
solve for the two endpoints un and ln of expressions (4a)–(4b).

The upper bound is computable using convex optimization methods under Assumption 4, which follows
from the coming results. The first is a minimax theorem (Hiriart-Urruty and Lemaréchal [49, theo-
rem VII.4.3.1]).

Lemma 2. Let Assumptions 3 and 4 hold. Then,

un � inf
x∈X sup

p∈Rn

∑n
i�1

pi� x;ξi( ) : p�1 � 1, p ≥ 0,
∑n
i�1

f npi
( ) ≤ ρ

{ }
. (17)

By strong duality, we can write the minimax problem (17) as a joint minimization problem. Recall that f ∗
denotes the Fenchel conjugate of f f ∗(s):� supt{st − f (t)}.
Lemma 3 (Ben-Tal et al. [9]). The following duality holds:

sup
P
P̂n

EP � x;ξ( )[ ] : Df (P‖P̂n) ≤ ρ

n

{ }
� inf

λ≥0,η∈R EP̂n
λf ∗ � x; ξ( ) − η

λ

( )[ ]
+ ρ

n
λ + η

{ }
. (18)

When x �→ �(x;ξ) is convex in x, the minimization (17) is a convex problem because it is the supremum of
convex functions. The reformulation (18) shows that we can compute un by solving a problem jointly convex in
η, λ, and x.

Finding the lower confidence bound (4b) is in general not a convex problem, even when the loss �(·;ξ) is
convex in its first argument. With that said, the conditions of Theorem 3, coupled with convexity, allow us to
give an efficient two-step minimization procedure that yields an estimated lower confidence bound l̂n that
achieves the asymptotic pivotal behavior of ln whenever the population optimizer for problem (1) is unique.
Indeed, let us assume the conditions of Theorem 3 and Assumption 4, additionally assuming that the set SP0

�

is a singleton. Then, standard consistency results (Shapiro et al. [94, chapter 5]) guarantee that, under our
conditions, the empirical minimizer x̂n � argminx∈XEP̂n

[�(x;ξ)] satisfies x̂n−→a.s. x�, where x� � argminx∈XEP0[�(x;ξ)].
Now, consider the one-step estimator

l̂n:� inf
P :Df P‖P̂n( )≤ρ/nEP � x̂n;ξ( )[ ]. (19)

Then, by Theorem 1, we have

l̂n � 1
n

∑n
i�1

� x̂n;ξi( ) −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρ

n
VarP̂n

� x̂n; ξ( )( )
√

+ oP0 n−
1
2

( )
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because x̂n is eventually in any open set (or set open relative to X ) containing x�. Standard limit results (van
der Vaart and Wellner [98]) guarantee that VarP̂n

(�(x̂n; ξ))−→a.s. VarP0(�(x�;ξ)), because x �→ �(x; ξ) is Lipschitzian
by Assumption 2. Noting that EP̂n

[�(x̂n;ξ)] ≤ EP̂n
[�(x�;ξ)], we thus obtain

inf
P :Df P‖P̂n( )≤ρ/nEP � x̂n; ξ( )[ ] ≤ EP̂n

� x�;ξ
( )[ ] − ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ

n
VarP0 � x�;ξ( )( )

√
+ oP0 n−

1
2

( )
.

Defining σ2(x�) � VarP0(�(x�;ξ)) for notational convenience and rescaling by
̅̅
n

√
, we have

̅̅
n

√
EP̂n

� x�; ξ
( )[ ] − EP0 � x�;ξ

( )[ ] − ̅̅̅̅̅̅̅̅̅̅̅
ρ

n
σ2 x�( )

√
+ oP0 n−

1
2

( )( )
⇒ N −

̅̅̅̅̅̅̅̅̅̅̅
ρσ2 x�( )

√
, σ2 x�

( )( )
.

Combining these results, we have that
̅̅
n

√ (ln − EP0[�(x�; ξ)]) ⇒ N(− ̅̅̅̅̅̅̅̅̅̅̅
ρσ2(x�)√

, σ2(x�)) (looking forward to
Theorem 7 and using Theorem 2), and

ln ≤ l̂n ≤ EP̂n
� x�; ξ
( )[ ] − ̅̅̅̅̅̅̅̅̅̅̅

ρ

n
σ2 x�( )

√
+ oP0 n−

1
2

( )
.

Summarizing, the one-step estimator (19) is upper- and lower-bounded by quantities that, when shifted by
−EP0[�(x�;ξ)] and rescaled by

̅̅
n

√
, are asymptotically N(− ̅̅̅̅̅̅̅̅̅̅̅

ρσ2(x�)√
, σ2(x�)). Thus, under the conditions of

Theorem 2 and Assumption 2, the one-step estimator l̂n defined by expression (19) guarantees that

lim
n→∞P l̂n ≤ EP0 � x�;ξ

( )[ ] ≤ un
( )

� P χ2
1 ≤ ρ

( )
,

giving a computationally feasible and asymptotically pivotal statistic. We remark in passing that alternating
by minimizing over P : Df (P‖P̂n) ≤ ρ/n and x (i.e., more than the single-step minimizer) simply gives a lower
bound l̃n satisfying ln ≤ l̃n ≤ l̂n, which will evidently have the same convergence properties.

4. Connections to Robust Optimization and Examples
To this point, we have studied the statistical properties of generalized empirical likelihood estimators, with
particular application to estimating the population objective infx∈X EP0[�(x;ξ)]. We now make connections
between our approach of minimizing worst-case risk over f -divergence balls and approaches from the ro-
bust optimization and risk minimization literatures. We first relate our approach to classical work on coherent
risk measures for optimization problems, after which we briefly discuss regularization properties of the
formulation.

4.1. Upper Confidence Bounds as a Risk Measure
Sample average approximation is optimistic (Mak et al. [67], Shapiro et al. [94]), because infx∈X E[�(x;ξ)] ≥
E[infx∈X 1

n
∑n

i�1 �(x;ξi)]. The robust formulation (4a) addresses this optimism by looking at a worst-case ob-
jective based on the confidence region {P : Df (P‖P̂n) ≤ ρ/n}. It is clear that the robust formulation (4a) is a
coherent risk measure (Shapiro et al. [94, section 6.3]) of �(x;ξ): it is convex, monotonic in the loss �,
equivariant to translations � �→ � + a, and positively homogeneous in �. A number of authors have studied
coherent risk measures (Artzner et al. [3], Krokhmal [60], Rockafellar and Uryasev [84], Shapiro et al. [94]), and
we next study their connections to statistical confidence regions for the optimal population objective (1).

As a concrete example, we consider Krokhmal’s higher-order generalizations in [60] of conditional value at
risk, where, for k∗ ≥ 1 and a constant c > 0, the risk functional has the form

Rk∗ x;P( ):� inf
η∈R 1 + c( )EP � x;ξ( ) − η

( )
+
k∗

[ ] 1
k∗+η

{ }
.

The risk Rk∗ penalizes upward deviations of the objective �(x; ξ) from a fixed value η, where the parameter
k∗ ≥ 1 determines the degree of penalization (so k∗ ↑ ∞ implies substantial penalties for upward deviations).
These risk measures capture a natural type of risk aversion (Krokhmal [60]).

We can recover such formulations, thus providing asymptotic guarantees for their empirical minimizers, via
the robust formulation (4a). To see this, we consider the classical Cressie–Read [29] family of f -divergences.
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Recalling that f ∗ denotes the Fenchel conjugate f ∗(s):� supt{st − f (t)}, for k ∈ (−∞,∞) with k /∈ {0, 1}, one defines

fk t( ) � 2 tk − kt + k − 1
( )

k k − 1( ) so f ∗k s( ) � 2
k

k − 1
2

s + 1
( )

+

k∗
− 1

[ ]
, (20)

where we define fk(t) � +∞ for t < 0, and k∗ is given by 1/k + 1/k∗ � 1. We define f1 and f0 as their respective
limits as k → 0, 1. (We provide the dual calculation f ∗k in the proof of Lemma 4.) The family (20) includes
divergences such as the χ2-divergence (k � 2), empirical likelihood f0(t) � −2 log t + 2t − 2, and KL-divergence
f1(t) � 2t log t − 2t + 2. All such fk satisfy Assumption 1.

For the Cressie–Read family, we may compute the dual (18) more carefully by infimizing over λ ≥ 0, which
yields the following duality result. As the lemma is a straightforward consequence of Lemma 3, we defer its
proof to Online Appendix C.4.

Lemma 4. Let k ∈ (1,∞), and define Pn:�{P : Dfk (P‖P̂n) ≤ ρ/n}. Then,

sup
P∈Pn

EP �(x;ξ)[ ] � inf
η∈R 1 + 2k k − 1( )ρ

n

( )1
k

EP̂n
� x;ξ( ) − η

( )
+
k∗

[ ] 1
k∗+η

{ }
. (21)

The lemma shows that we indeed recover a variant of the risk Rk∗ , where taking ρ ↑ ∞ and k ↓ 1 (so that k∗ ↑ ∞)
increases robustness—penalties for upward deviations of the loss �(x;ξ)—in a natural way. The confidence
guarantees of Theorem 3, on the other hand, show how (to within first order) the asymptotic behavior of the
risk (21) depends only on ρ, as each value of k allows upper confidence bounds on the optimal population
objective (1) with asymptotically exact coverage.

4.2. Variance Regularization
We now consider the asymptotic variance expansions of Theorem 1, which is that

sup
P :Df (P‖Pn)≤ρ

n

EP � x;ξ( )[ ] � EPn � x;ξ( )[ ] +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρ

n
VarPn � x;ξ( )( )

√
+ εn x( ), (22)

where
̅̅
n

√
supx∈X |εn(x)|−→P

∗
0. In a companion to this paper, Duchi and Namkoong [39, 73] explore the ex-

pansion (22) in substantial depth for the special case f (t) � 1
2 (t − 1)2. Equation (22) shows that, in an asymptotic

sense, we expect similar results to theirs to extend to general f -divergences, and we discuss this idea briefly.
The expansion (22) shows that the robust formulation (4a) ameliorates the optimism bias of standard sample

average approximation by penalizing the variance of the loss. Researchers have investigated connections
between regularization and robustness, including Xu et al. [101] for standard supervised machine learning
tasks (see also Ben-Tal et al. [7, chapter 12]), though these results consider uncertainty on the data vectors ξ
themselves, rather than the distribution. Our approach yields a qualitatively different type of (approximate)
regularization by variance. In our follow-up work (Duchi and Namkoong [39, 73]), we analyze finite sample
performance of the robust solutions. The naive variance-regularized objective

EP̂n
�(x; ξ)[ ] +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρ

n
VarP̂n

�(x;ξ)
√

(23)

is neither convex (in general) nor coherent, so that the expansion (22) allows us to solve a convex optimization
problem that approximately regularizes variance.

In some restricted situations, the variance-penalized objective (23) is convex—namely, when �(x;ξ) is linear
in x. A classical example of this is the sample version of the Markowitz portfolio problem in [69].

Example 4 (Portfolio Optimization). Let x ∈ Rd denote investment allocations and ξ ∈ Rd returns on investiment, and
consider the optimization problem

maximize
x∈Rd

EP0 ξ
�x

[ ]
subject to x�1 � 1, x ∈ a, b[ ]d.
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Given a sample {ξ1, . . . , ξn} of returns, we define μn:�EP̂n
[ξ] and Σn:�CovP̂n

(ξ) to be the sample mean and
covariance. Then, the Lagrangian form of the Markowitz problem is to solve

maximize
x∈Rd

μ�
n x −

̅̅̅̅̅̅̅̅̅̅̅
ρ

n
x�Σnx

√
subject to x�1 � 1, x ∈ a, b[ ]d.

The robust approximation of Theorem 7 [and Equation (22)] shows that

inf EP ξ�x
[ ]

: Df P‖P̂n
( ) ≤ ρ

n

{ }
� μ�

n x −
̅̅̅̅̅̅̅̅̅̅̅
ρ

n
x�Σnx

√
+ op n−

1
2

( )
,

so that distributionally robust formulation approximates the Markowitz objective to op(n−1
2). There are minor

differences, however, in that the Markowitz problem penalizes both upward deviations (via the variance) as
well as the downside counterpart. The robust formulation, on the other hand, penalizes downside risk only
and is a coherent risk measure.

5. Consistency
In addition to the inferential guarantees—confidence intervals and variance expansions—that we have dis-
cussed thus far, we can also give a number of guarantees on the asymptotic consistency of minimizers of the
robust upper bound (4a). We show that robust solutions are consistent under (essentially) the same conditions
required for that of sample average approximation, which are more general than that required for the uniform
variance expansions of Theorem 2. We show this in two ways: first, by considering uniform convergence of the
robust objective (4a) to the population risk EP0[�(x; ξ)] over compacta (Section 5.1), and, second, by leveraging
epigraphical convergence (Rockafellar and Wets [85]) to allow unbounded feasible region X when �(·;ξ) is
convex (Section 5.2). In the latter case, we require no assumptions on the magnitude of the noise in estimating
EP0[�(x; ξ)] as a function of x ∈ X ; convexity forces the objective to be large far from the minimizers, so the
noise cannot create minimizers far from the solution set.

Bertsimas et al. [13] also provided consistency results for robust variants of sample average approximation
based on goodness-of-fit tests, though they required a number of conditions on the domain Ξ of the random
variables for their results (in addition to certain continuity conditions on �). In our context, we abstract away
from this by parameterizing our problems by the n-vectors {P : Df P‖P̂n

( ) ≤ ρ/n} and give more direct con-
sistency results that generalize to mixing sequences.

5.1. Uniform Convergence
For our first set of consistency results, we focus on uniform convergence of the robust objective to the
population (1). We begin by recapitulating a few standard statistical results abstractly. Let H be a collection of
functions h : Ξ → R. We have the following definition on uniform strong laws of large numbers.

Definition 2. A collection of functions H, h : Ξ → R for h ∈ H, is Glivenko–Cantelli if

sup
h∈H

EP̂n
h[ ] − EP0 h[ ]

⃒⃒⃒ ⃒⃒⃒
−→a.s.∗ 0.

There are many conditions sufficient to guarantee Glivenko–Cantelli properties. Typical approaches include
covering number bounds on H (van der Vaart and Wellner [98, section 2.4]); for example, Lipschitz functions
form a Glivenko–Cantelli class, as do continuous functions that are uniformly dominated by an integrable
function in the next example.

Example 5 (Pointwise Compact Class; [97, example 19.8]). Let X be compact, and let �(·;ξ) be continuous in x for
P0-almost all ξ ∈ Ξ. Then H � {�(x; ·) : x ∈ X} is Glivenko–Cantelli if there exists a measurable envelope function
Z : Ξ → R+ such that |�(x;ξ)| ≤ Z(ξ) for all x ∈ X and EP0[Z] < ∞.

If H is Glivenko–Cantelli for ξ iid∼ P0, then it is Glivenko–Cantelli for β-mixing sequences (Nobel and Dembo
[76]) [those with coefficients (14) βn → 0]. Our subsequent results thus apply to β-mixing sequences {ξi}.

If there is an envelope function for objective �(x;ξ) that has more than one moment under P0, then we can
show that the robust risk converges uniformly to the population risk (compared with just the first moment
for SAA).

Assumption 5. There exists Z : Ξ → R+ with |�(x;ξ)| ≤ Z(ξ) for all x ∈ X and ε > 0 such that EP0[Z(ξ)1+ε] < ∞.

Under this assumption, we have the following theorem.
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Theorem 5. Let Assumptions 1 and 5 hold, and assume that the class {�(x; ·) : x ∈ X} is Glivenko–Cantelli. Then,

sup
x∈X

sup
P
P̂n

EP � x;ξ( )[ ] − EP0 � x;ξ( )[ ]⃒⃒ ⃒⃒
: Df (P‖P̂n) ≤ ρ

n

{ }
−→a.s.∗ 0.

See Online Appendix E.1 for a proof of the result.
When uniform convergence holds, the consistency of robust solutions follows. As in the previous section, we

define the sets of optima:

SP0
� :� argmin

x∈X
EP0 �(x;ξ)[ ] and SP̂n

�:� argmin
x∈X

sup
P
P̂n

EP � x;ξ( )[ ] : Df P‖P̂n
( ) ≤ ρ

n

{ }
. (24)

Then we immediately attain the following corollary to Theorem 5. In the corollary, we recall the definition of
the inclusion distance, or deviation, between sets (6).

Corollary 1. Let Assumptions 1 and 5 hold, let X be compact, and assume that �(·; ξ) is continuous on X . Then,

inf
x∈X sup

P
P̂n

EP � x;ξ( )[ ] : Df P‖P̂n
( ) ≤ ρ

n

{ }
− inf

x∈X EP0 � x;ξ( )[ ]−→P
∗
0

and d⊂(S�P̂n
,S�P0

)−→P∗
0.

Proof. The first conclusion is immediate by Theorem 5 and Example 5. To show convergence of the optimal sets, we
denote by Aε � {x : dist(x,A) ≤ ε} the ε-enlargement of A. By the uniform convergence given in Theorem 5 and
continuous mapping theorem (van der Vaart and Wellner [98, theorem 1.3.6]), for all ε > 0,

lim sup
n→∞

P∗ d⊂ S�P̂n
,S�P0

( )
≥ ε

( )
≤ lim sup

n→∞
P∗ inf

x∈S�εP0
F̂n x( ) > inf

x∈X F̂n x( )
( )

� P∗ inf
x∈S�εP0

F x( ) > inf
x∈X F x( )

( )
� 0,

where F̂n(x):� supP
P̂n
{EP[�(x;ξ)] : Df P‖P̂n

( ) ≤ ρ
n} and F(x) :� EP0[�(x;ξ)].

5.2. Consistency for Convex Problems
When the function �(·; ξ) is convex, we can give consistency guarantees for minimizers of the robust upper
bound (4a) by leveraging epigraphical convergence theory (King and Wets [58], Rockafellar and Wets [85]),
bypassing the aforementioned uniform convergence and compactness conditions. Analogous results hold for
sample average approximation (Shapiro et al. [94, section 5.1.1]).

In the theorem, we let S�P0
and S�

P̂n
be the solution sets (24) as before. We require a much weaker variant of

Assumption 5: we assume that, for some ε > 0, we have E[|�(x;ξ)|1+ε] < ∞ for all x ∈ X . We also assume that
there exists a function g : X × Ξ → R such that, for each x ∈ X , there is a neighborhood U of x with
infz∈U �(z; ξ) ≥ g(x, ξ) and E[|g(x, ξ)|] < ∞. Then we have the following result, whose proof we provide in
Online Appendix E.2.

Theorem 6. In addition to the conditions of the previous paragraph, let Assumptions 1, 3, and 4 hold. Assume that
EP̂n

[|�(x;ξ)|1+ε]−→a.s. EP0[|�(x;ξ)|1+ε] for x ∈ X . Then,

inf
x∈X sup

P
P̂n

EP �(x; ξ)[ ] : Df P‖P̂n
( ) ≤ ρ

n

{ }
−→P∗

inf
x∈X EP0 � x; ξ( )[ ]

and d⊂(S�P̂n
,S�P0

)−→P∗
0.

By comparison with Theorem 5 and Corollary 1, we see that Theorem 6 requires weaker conditions on the
boundedness of the domain X , instead relying on the compactness of the solution set S�P0

and the growth of
EP0[�(x; ξ)] off of this set, which means that, eventually, S�

P̂n
is nearly contained in S�P0

. When the {ξi} are
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not i.i.d., the pointwise strong law for |�(x;ξ)|1+ε holds if the {ξi} are strongly mixing (α-mixing; Ibragimov
[52]), and so the theorem immediately generalizes to dependent sequences.

6. Simulations
We present three simulation experiments in this section: portfolio optimization, conditional value-at-risk
optimization, and optimization in the multi-item newsvendor model. In each of our three simulations, we
compute and compare the following approaches to estimation and inference:

i. We compute the generalized empirical likelihood confidence interval [ln,un] as in expression (4), but we
use the (computable) estimate l̂n of Equation (19) in Section 3.3. With these, we simulate the true coverage
probability P(infx∈X EP0[�(x; ξ)] ∈ [l̂n, un]) (because we control the distribution P0 and �(x;ξ)) of our confi-
dence intervals, and we compare it to the nominal χ2-confidence level P(χ2

1 ≤ ρ) that our asymptotic theory in
Section 3 suggests.

ii. We compute the coverage rates of the normal confidence intervals (11) at the same level as our χ2

confidence level.
Throughout our simulations (and for both the normal and generalized empirical likelihood/robust ap-

proximations), we use the nominal 95% confidence level, setting ρ � χ2
1,0.95, so that we attain the asymptotic

coverage P(χ2
1 ≤ ρ) � 0.95. We focus on i.i.d. sequences and assume that ξi iid∼ P0 in the rest of the section.

To solve the convex optimization problems (18) and (19) to compute un and l̂n, respectively, we use the Julia
package convex.jl (Udell et al. [96]). Each experiment consists of 1,250 independent replications for each of the
sample sizes n that we report, and we vary the sample size n to explore its effects on coverage probabilities.
In all of our experiments, because of its computational advantages, we use the χ2-squared divergence
f2(t) � 1

2 (t − 1)2. We summarize our numerical results in Table 1, where we simulate runs of sample size up to
n � 10, 000 for light-tailed distributions, and n � 100, 000 for heavy-tailed distributions; in both cases, we see
that actual coverage very closely approximates the nominal coverage 95% at the largest value of sample size
(n) reported. In Figure 1, we plot upper/lower confidence bounds and mean estimates, all of which are
averaged over the 1,250 independent runs. We observed undercoverage in small sample regimes, and
enumerate possible approaches to this issue in Section 8.

6.1. Portfolio Optimization
Our first simulation investigates the standard portfolio optimization problem (recall Example 4, though we
minimize to be consistent with our development). We consider problems in dimension d � 20 (i.e., there are 20
assets). For this problem, the objective is �(x; ξ) � x�ξ, we set X � {x ∈ Rd | 1�x � 1,−10 ≤ x ≤ 10} as our
feasible region (allowing leveraged investments), and we simulate returns ξ iid∼ N(μ,Σ). Within each simulation,

Table 1. Coverage rates (nominal = 95%).

% Sample size

Portfolio Newsvendor CVaR Normal CVaR tail a = 3 CVaR tail a = 5

EL Normal EL Normal EL Normal EL Normal EL Normal

20 75.16 89.2 30.1 91.38 91.78 95.02 29 100 35.4 100
40 86.96 93.02 55.24 90.32 93.3 94.62 48.4 100 59.73 100
60 89.4 93.58 69.5 88.26 93.8 94.56 42.67 100 51.13 100
80 90.46 93.38 74.44 86.74 93.48 93.94 47.73 100 57.73 100
100 91 93.8 77.74 85.64 94.22 94.38 46.33 100 55.67 99.87
200 92.96 93.68 86.73 95.27 94.64 95.26 48.4 99.8 56.73 98.93
400 94.28 94.52 91 94.49 94.92 95.06 48.67 98.93 55.27 97.93
600 94.48 94.7 92.73 94.29 94.8 94.78 51.13 98.53 56.73 97.67
800 94.36 94.36 93.02 93.73 94.64 94.64 51.67 97.93 57.47 97.6
1,000 95.25 95.15 92.84 94.31 94.62 94.7 53.07 98.47 58.6 97.33
2,000 95.48 95.25 93.73 95.25 94.92 95.04 54.07 96.8 59.07 96.53
4,000 96.36 95.81 95.1 95.78 95.3 95.3 58.6 96 62.07 96.6
6,000 96.33 95.87 94.61 95 94.43 94.51 61.8 95.8 66.07 95.73
8,000 96.46 95.9 94.56 94.71 94.85 94.85 64.67 95.67 69 95.33
10,000 96.43 95.51 94.71 94.85 94.43 94.43 66.87 94.73 69.4 96.13
20,000 74.27 95.8 76.8 96.13
40,000 81.8 94.2 84.87 94.87
60,000 86.87 93.93 89.47 94.47
80,000 91.4 93.67 92.33 95
100,000 94.2 94.33 95.07 95.2
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the vector μ and covariance Σ are chosen as μ ∼ N(0, Id) and Σ is standard Wishart distributed with d degrees
of freedom. The population optimal value is infx∈X μ�x. As μ ∈ Rd has distinct entries, the conditions of
Theorem 2 are satisfied because the population optimizer is unique. We also consider the (negative) Mar-
kowitz problem

minimize
x∈X EP̂n

x�ξ
[ ] + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ

n
VarP̂n

x�ξ( )
√

,

as the variance-regularized expression is efficiently minimizable (it is convex) in the special case of linear
objectives. In Figure 1(a), we plot the results of our simulations. The vertical axis is the estimated confidence
interval for the optimal solution value for each of the methods, shifted so that 0 � μ�x�, whereas the horizontal
axis is the sample size n. We also plot the estimated value of the objective returned by the Markowitz
optimization (which is somewhat conservative) and the estimated value given by sample average ap-
proximation (which is optimistic), averaging the confidence intervals over 1,250 independent simulations.
Concretely, we see that the robust/empirical likelihood-based confidence interval at n � 20 is approxi-
mately [−150, 40], and the Markowitz portfolio is the line slightly above 0, but below each of the other

Figure 1. (Color online) Average confidence sets for infx∈X EP0 [�(x;ξ)] for normal approximations (11) (“Normal”) and the
generalized empirical likelihood confidence set (4) (“EL”). The true value being approximated in each plot is centered at zero.
The optimal objective computed from the sample average approximation (“SAA”) has a negative bias.
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estimates of expected returns. In Table 1, we give the actual coverage rates—the fraction of time the estimated
confidence interval contains the true value μ�x�. In comparison with the normal confidence interval, gen-
eralized empirical likelihood (EL) undercovers in small sample settings, which is consistent with previous
observations for empirical likelihood (e.g., Owen [80, section 2.8]).

6.2. Conditional Value-at-Risk
For a real-valued random variable ξ, the conditional value-at-risk α (CVaR) is the expectation of ξ conditional on
it taking values above its 1 − α quantile (Rockafellar and Uryasev [84]). More concisely, the CVaR (at α) is

E ξ | ξ ≥ q1−α
[ ] (i)� inf

x

1
1 − α

E ξ − x( )+
[ ] + x

{ }
where q1−α � inf q ∈ R : 1 − α ≤ P ξ ≤ q

( ){ }
.

Conditional value-at-risk is of interest in many financial applications (Rockafellar and Uryasev [84], Shapiro
et al. [94]).

For our second simulation experiment, we investigate three different distributions: a mixture of normal
distributions and two different mixtures of heavy-tailed distributions. For our normal experiments, we draw ξ
from an equal-weight mixture of normal distributions with means μ ∈ {−6,−4,−2, 0, 2, 4, 6} and variances
σ2 ∈ {2, 4, 6, 8, 10, 12, 14}, respectively. In keeping with our financial motivation, we interpret μ as negative
returns, where σ2 increases as μ increases, reminiscent of the oft-observed tendency in bear markets
(the leverage effect) (Black [16], Christie [26]). For the heavy-tailed experiments, we take ξ � μ + Z for Z
symmetric with P(|Z| ≥ t) ∝ min{1, t−a}, and we take an equal weight mixture of distributions centered
at μ ∈ {−6,−4,−2, 0, 2, 4, 6}.

Our optimization problem is thus to minimize the loss �(x; ξ) � 1
1−α ξ − x( )+ + x, and we compare the per-

formance of the generalized empirical likelihood confidence regions that we describe and normal approxi-
mations. For all three mixture distributions, the cumulative distribution function is increasing, so there is a
unique population minimizer. To approximate the population optimal value, we take n � 1, 000, 000 to obtain a
close sample-based approximation to the CVaR EP0[ξ | ξ ≥ q1−α]. Although the feasible region X � R is not
compact, we compute the generalized empirical likelihood interval (4) and compare coverage rates for
confidence regions that asymptotically have the nominal level 95%. In Table 1, we see that the empirical
likelihood coverage rates are generally smaller than the normal coverage rates, which is evidently [see
Figure 1(b)] a consequence of still-remaining negative bias (optimism) in the robust estimator (4a). In addition,
the true coverage rate converges to the nominal level (95%) more slowly for heavy-tailed data (with β ∈ {3, 5}).

6.3. Multi-Item Newsvendor
Our final simulation investigates the performance of the generalized empirical likelihood integral (4) for the
multi-item newsvendor problem. In this problem, the random variables ξ ∈ Rd denote demands for items
j � 1, . . . , d, and, for each item j, there is a backorder cost bj per unit and inventory cost hj per unit. For a given
allocation x ∈ Rd of items, then, the loss upon receiving demand ξ is �(x; ξ) � b� x − ξ( )+ + h� ξ − x( )+, where ·( )+
denotes the elementwise positive part of its argument.

For this experiment, we take d � 20 and set X � {x ∈ Rd : ‖x‖1 ≤ 10}, letting ξ iid∼ N(0,Σ) (there may be
negative demand), where Σ is again standard Wishart distributed with d degrees of freedom. We choose b, h to
have i.i.d. entries distributed as Exp( 110). For each individual simulation, we approximate the population
optimum using a sample average approximation based on a sample of size n � 105. As Table 1 shows, the
proportion of simulations in which [l̂n,un] covers the true optimal value is still lower than the nominal 95%,
though it is less pronounced than other cases. Figure 1(c) shows average confidence intervals for the optimal
value for both generalized empirical likelihood-based and normal-based confidence sets.

7. General Results
In this section, we abstract away from the stochastic optimization setting that motivates us. By leveraging
empirical process theory, we give general results that apply to suitably smooth functionals (Hadamard-
differentiable) and classes of functions {�(x; ·) : x ∈ X} for which a uniform central limit theorem holds
(P0-Donsker). Our subsequent development implies the results presented in previous sections as corollaries.
We begin by showing results for i.i.d. sequences and defer extensions to dependent sequences to Section 7.3.
Let Z1, . . . ,Zn be independent random vectors with common distribution P0. Let P be the set of probability
distributions on Ξ, and let T : P → R be a functional of interest.
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First, we show a general version of the uniform asymptotic expansion (10) that applies to P0-Donsker classes
in Section 7.1. In Section 7.2, we give a generalized empirical likelihood theory for Hadamard differentiable
functionals T(P), which, in particular, applies to Topt(P) � infx∈X EP[�(x;ξ)] (cf. Theorem 2). As Shapiro [92]
noted, the general treatment for Hadamard differentiable functionals is necessary as Frechét differentiability is
too stringent for studying constrained stochastic optimization. Finally, we present extensions of the above
results to (quickly mixing) dependent sequences in Section 7.3.

7.1. Uniform Asymptotic Expansion
A more general story requires some background on empirical processes, which we now briefly summarize (see
van der Vaart and Wellner [98] for a full treatment). Let P0 be a fixed probability distribution on the
measurable space (Ξ,A), and recall the space L2(P0) of functions square-integrable with respect to P0, where
we equip functions with the L2(P0) norm ‖h‖L2(P0) � EP0[h(ξ)2]12. For any signed measure μ on Ξ and h : Ξ → R,
we use the functional shorthand μh:� ∫

h(ξ)dμ(ξ) so that, for any probability measure, we have Ph � EP[h(ξ)].
Now, for a set H ⊂ L2(P0), let L∞(H) be the space of bounded linear functionals on H equipped with the
uniform norm ‖L1 − L2‖H � suph∈H |L1h − L2h| for L1, L2 ∈ L∞(H). To avoid measurability issues, we use outer
probability and expectation with the corresponding convergence notions as necessary (e.g., van der Vaart and
Wellner [98, section 1.2]). We then have the following definition (van der Vaart and Wellner [98, equation
(2.1.1)]) that describes sets of functions on which the central limit theorem holds uniformly.

Definition 3. A class of functions H is P0-Donsker if
̅̅
n

√ (P̂n − P0) ⇒ G in the space L∞(H), where G is a tight Borel-
measurable element of L∞(H), and P̂n is the empirical distribution of ξi iid∼ P0.

In Definition 3, the measures P̂n, P0 are considered as elements in L∞(H)with P̂n f � EP̂n
f , P0 f � EP0 f for f ∈ H.

With these preliminaries in place, we can state a general form of Theorem 1. We letH be a P0-Donsker collection
of functions h : Ξ → R with L2-integrable envelope; that is, M2 : Ξ → R+ with h(ξ) ≤ M2(ξ) for all h ∈ H with
EP0[M2(ξ)2] < ∞. Assume the data ξi

iid∼ P0. Then we have the following result.

Theorem 7. Let the conditions of the preceding paragraph hold. Then,

sup
P :Df P‖P̂n( )≤ρ

n

EP h ξ( )[ ] � EP̂n
h ξ( )[ ] +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρ

n
VarP̂n

h ξ( )( )
√

+ εn h( ),

where suph∈H
̅̅
n

√ |εn(h)|−→P
∗
0.

See Online Appendix B, in particular, Online Appendix B.3, for the proof.
Theorem 7 is useful, and, in particular, we can derive Theorem 1 as a corollary:

Example 6 (Functions Lipschitz in x). Suppose that, for each ξ ∈ Ξ, the function x �→ �(x;ξ) is L(ξ)-Lipschitz,
where E[L(ξ)2] < ∞. If in addition the set X is compact, then functions H:�{�(x; ·)}x∈X satisfy all the conditions of
Theorem 7. (See also van der Vaart and Wellner [98, sections 2.7.4 and 3.2].)

7.2. Hadamard Differentiable Functionals
In this section, we present an analogue of the asymptotic calibration in Proposition 1 for smooth functionals of
probability distributions, which when specialized to the optimization context yield the results in Section 3. Let
(Ξ,A) be a measurable space, and let H be a collection of functions h : Ξ → R, where we assume that H is
P0-Donsker with envelope M2 ∈ L2(P0) (Definition 3). Let P be the space of probability measures on (Ξ,A)
bounded with respect to the supremum norm ‖·‖H, where we view measures as functionals on H. Then, for
T : P → R, the following definition captures a form of differentiability sufficient for applying the delta method
to show that T is asymptotically normal (van der Vaart and Wellner [98, section 3.9]). In the definition, we let
M denote the space of signed measures on Ξ bounded with respect to ‖·‖H, noting that M ⊂ L∞(H) via the
mapping μh � ∫

h(ξ)dμ(ξ).
Definition 4. The functional T : P → R is Hadamard directionally differentiable at P ∈ P tangentially to B ⊂ M if, for
all H ∈ B, there exists dTP(H) ∈ R such that for all convergent sequences tn → 0 and Hn → H in L∞(H)
(i.e., ‖Hn −H‖H → 0) for which P + tnHn ∈ P, and

T P + tnHn( ) − T P( )
tn

→ dTP H( ) as n → ∞.
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Equivalently, T is Hadamard directionally differentiable at P ∈ P tangentially to B ⊂ M if, for every compact K ⊂ B,

lim
t→0

sup
H∈K,P+tH∈P

T P + tH( ) − T P( )
t

− dTP H( )
⃒⃒⃒⃒ ⃒⃒⃒⃒

� 0. (25)

Moreover, T : P → R is Hadamard-differentiable at P ∈ P tangentially to B ⊂ L∞(H) if dTP : B → R is linear and
continuous on B.

By restricting ourselves very slightly to a nicer class of Hadamard-differentiable functionals, we may
present a result on asymptotically pivotal confidence sets provided by f -divergences. To that end, we say that
T : P → R has influence function T[(1)] : Ξ ×P → R if

dTP Q − P( ) �
∫
Ξ
T 1( ) ξ;P( )d Q − P( ) ξ( ) (26)

and T(1) satisfies EP[T(1)(ξ;P)] � 0.1 If we let B � B(H,P) ⊂ L∞(H) be the set of linear functionals on H that
are ‖·‖L2(P)-uniformly continuous and bounded, then this is sufficient for the existence of the canonical de-
rivative T(1), by the Riesz representation theorem for L2 spaces (see van der Vaart [97, section 25.5] or [59]).

We now extend Proposition 1 to Hadamard-differentiable functionals T : P → R. Owen [79] showed a
similar result for empirical likelihood (i.e., with f (t) � −2 log t + 2t − 2) for the smaller class of Frechét-
differentiable functionals. Bertail et al. [10, 11] also claim a similar result under certain uniform entropy
conditions, but their proofs are incomplete.2 Recall that M is the (vector) space of signed measures in L∞(H).
Theorem 8. Let Assumption 1 hold, and letH be a P0-Donsker class of functions with an L2-envelope M. Let ξi iid∼ P0, and let
B ⊂ M be such that G takes values in B, where G is the limit

̅̅
n

√ (P̂n − P0) ⇒ G inL∞(H) given in Definition 3. Assume that
T : P ⊂ M → R is Hadamard-differentiable at P0 tangentially to B with infludence function T(1)(·;P0) and that dTP is
defined and continuous on the whole of M. If 0 < Var(T(1)(ξ;P0)) < ∞, then

lim
n→∞P T P0( ) ∈ T P( ) : Df (P‖Pn) ≤ ρ

n

{ }( )
� P χ2

1 ≤ ρ
( )

. (27)

We use Theorem 7 to show the result in Online Appendix B.4.

7.3. Extensions to Dependent Sequences
In this subsection, we show an extension of the empirical likelihood theory for smooth functionals (Theorem 8)
to a β-mixing sequence of random variables. Let {ξ}i∈Z be a sequence of strictly stationary random variables
taking values in the Polish space Ξ. We follow the approach of Doukhan et al. [38] to prove our results, giving
bracketing number conditions sufficient for our convergence guarantees (alternative approaches are possible;
see Arcones and Yu [2], Nobel and Dembo [76], Rio [83], Yu [102]).

We first define bracketing numbers.

Definition 5. Let ‖·‖ be a (semi)norm on H. For functions l,u : Ξ → R with l ≤ u, the bracket [l,u] is the set of
functions h : Ξ → R such that l ≤ h ≤ u, and [l, u] is an ε-bracket if ‖l − u‖ ≤ ε. Brackets {[li,ui]}mi�1 cover H if, for all
h ∈ H, there exists i such that h ∈ [li,ui]. The bracketing number N[](ε,H, ‖·‖) is the minimum number of ε-brackets
needed to cover H.

For i.i.d. sequences, if the bracketing integral is finite,∫ ∞

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
logN[] ε,H, ‖·‖L2(P0)

( )√
dε < ∞,

then H is P0-Donsker (van der Vaart and Wellner [98, theorem 2.5.6]). For β-mixing sequences, a modification
of the L2(P0)-norm yields a similar result. To state the required bracketing condition in full, we first provide the
requisite notation. For any h ∈ L1(P0), we let

Qh u( ) � inf t : P |h ξ0( )| > t( ) ≤ u{ }
be the quantile function of |h(ξ0)|. Define β(t):�β�t�, where βn are the mixing coefficients (14), and define
the norm

‖h‖L2,β P0( ) �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫ 1

0
β−1 u( )Qh u( )2du

√
, (28)
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where β−1(u) � inf{t : β(t) ≤ u}. When {ξi}i∈Z are i.i.d., the (2, β)-norm ‖·‖L2,β(P0) is the L2(P0)-norm as β−1(u) � 1
for u > 0. Lastly, we let Γ be the covariance function

Γ h1, h2( ):�∑
i∈Z

Cov h1 ξ0( ), h2 ξi( )( ). (29)

We then have the following result, which extends bracketing entropy conditions to β-mixing sequences.

Lemma 5 (Doukhan et al. [38, theorem 1]). Let {ξ}i∈Z be a strictly stationary sequence of random vectors taking values in the
Polish space Ξ with common distribution P0 satisfying

∑∞
n�1 βn < ∞. Let H be a class of functions h : Ξ → R with envelope

M(·) such that ‖M‖L2,β(P0) < ∞. If ∫ 1

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
logN[] ε,H, ‖·‖L2,β P0( )

( )√
dε < ∞,

then the series
∑

i Cov(h(ξ0), h(ξi)) is absolutely convergent to Γ(h, h) < ∞ uniformly in h, and̅̅
n

√
P̂n − P0

( ) ⇒ G in L∞(H),
where G is a Gaussian process with covariance function Γ and almost surely uniformly continuous sample paths.

The discussion following Doukhan et al. [38, theorem 1] provides connections between ‖·‖L2,β(P0) and other
norms, as well as sufficient conditions for Lemma 5 to hold. For example, if the bracketing integral with
respect to the norm ‖·‖L2r(P0) is finite with

∑
n≥1 n

1
r−1βn < ∞, then the conditions of Lemma 5 are satisfied.

We now give an extension of Theorem 8 for dependent sequences. Recall that M is the (vector) space of
signed measures in L∞(H). Let B ⊂ M be such that G takes values in B.

Theorem 9. Let Assumption 1 and the hypotheses of Lemma 5 hold. Let B ⊂ M be such that G takes values in B, where̅̅
n

√ (P̂n − P0) ⇒ G in L∞(H) as in Lemma 5. Assume that T : P ⊂ M → R is Hadamard-differentiable at P0 tangentially to
B with influence function T(1)(·;P0) as [Equation (26)] and that dTP is defined and continuous on the whole of M. If
0 < Var(T(1)(ξ;P0)) < ∞, then

lim
n→∞P T P0( ) ∈ T P( ) : Df (P‖Pn) ≤ ρ

n

{ }( )
� P χ2

1 ≤
ρVarPξT

1( ) ξ;P0( )
Γ T 1( ),T 1( )( )

( )
. (30)

See Online Appendix D.2 for the proof. We show in Online Appendix D.3 that Theorem 4 follows from
Theorem 9.

8. Conclusion
We have extended generalized empirical likelihood theory in a number of directions, showing how it provides
inferential guarantees for stochastic optimization problems. The upper confidence bound (4a) is a natural
robust optimization problem (Ben-Tal et al. [7, 9]), and our results show that this robust formulation gives
exact asymptotic coverage. The robust formulation implements a type of regularization by variance, while
maintaining convexity and risk coherence (Theorem 7). This variance expansion explains the coverage properties
of (generalized) empirical likelihood, and we believe it is likely to be effective in a number of optimization
problems (Duchi and Namkoong [39]).

There are a number of interesting topics for further research, and we list a few of them. On the statistical and
inferential side, the uniqueness conditions imposed in Theorem 2 are stringent, so it is of interest to develop
procedures that are (asymptotically) adaptive to the size of the solution set S�P0

without being too conservative;
this is likely to be challenging, as we no longer have normality of the asymptotic distribution of solutions. On
the computational side, interior point algorithms are often too expensive for large-scale optimization problems
(i.e., when n is very large)—just evaluating the objective or its gradient requires time at least linear in the
sample size. Whereas there is a substantial and developed literature on efficient methods for sample average
approximation and stochastic gradient methods (Defazio et al. [32], Duchi et al. [41], Hazan [48], Johnson and
Zhang [55], Nemirovski et al. [74], Polyak and Juditsky[82]), there are fewer established and computationally
efficient solution methods for minimax problems of the form (4a) (though see the papers Ben-Tal et al. [8],
Clarkson et al. [27], Namkoong and Duchi [72], Nemirovski et al. [74], and Shalev-Shwartz and Wexler [89],
for work in this direction). Efficient solution methods need to be developed to scale up robust optimization.

As our results in Section 6 show, the confidence interval [ln,un] undercovers in small sample settings. We
may use finite sample bounds to address this (Duchi and Namkoong [40]), but these are too conservative and
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fail to achieve correct asymptotic coverage. Designing small sample corrections to the confidence interval
[ln,un] to improve coverage—while maintaining asymptotical exactness—is an important open direction of
research. We highlight a few possibilities here. One idea is to use Bartlett corrections; see DiCiccio et al. [34, 35]
for Bartlett-correctability of empirical likelihood confidence intervals for smooth functions of means; Bartlett
correctability of general Hadamard differentiable functionals remains open. Alternatively, it may be possible
to generalize results on high-dimensional M-estimation, where the dimension d scales with the sample size n
(e.g., Bean et al. [6], Candès and Sur [23], Donoho and Montanari [36]) to generalized empirical likelihood. In
this context, extending the works by Chen et al. [24] and Hjort et al. [51,], which give limit theorems for high-
dimensional estimating equations (with d � o( ̅̅

n
√ )) to Hadamard-differentiable functionals may yield fruit;

current analyses where d/n → c appear to require somewhat specialized data-generating distributions (Candès
and Sur [23], Donoho and Montanari [36]). Approaches based on Wasserstein distances (Blanchet et al. [18])
may also address this issue, as the associated uncertainty sets need not contain the support only of the
empirical distribution.

There are two ways of injecting robustness in the formulation (4a): increasing ρ and choosing a function f
defining the f -divergence Df (·‖·) that grows slowly in a neighborhood of 1 [recall the Cressie–Read family (20)
and associated dual problems]. We characterize a statistically principled way of choosing ρ to obtain cali-
brated confidence bounds, and we show that all smooth f -divergences have the same asymptotic (n → ∞)
behavior to first order. We do not know, however, the extent to which different choices of the divergence
measure f impact higher-order or finite sample behavior of the estimators that we study. Whereas the lit-
erature on higher-order corrections for empirical likelihood offers some answers for inference problems
regarding the mean of a distribution (Baggerly [4], Bravo [20, 21], Corcoran [28], DiCiccio et al. [35]), the more
complex settings arising in large-scale optimization problems leave a number of open questions.

Endnotes
1A sufficient condition for T(1)(·;P) to exist is that T be Hadamard-differentiable at P tangentially to any set B including the measures 1ξ − P
for each ξ ∈ P: indeed, let Hξ:�1ξ − P; then the

∫
HξdP(ξ) � 0, and the linearity of dTP : B → R guarantees that

∫
dTP(Hξ)dP(ξ) �∫

dTP(1ξ − P)dP(ξ) � dTP(P − P) � 0, and we define T(1)(ξ;P) � dTP(1ξ − P).
2Their proofs (Bertail [10, p. 308]) show that confidence sets converge to one another in Hausdorff distance, which is not sufficient for their claim.
The sets An:�{v/n : v ∈ Zd} and B � Rd have Hausdorff distance 1

2n, but, for any random variable Z with Lebesgue density, we certainly have
P(Z ∈ An) � 0, whereas P(Z ∈ B) � 1.

References
[1] Ali SM, Silvey SD (1966) A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. B. 28:131–142.
[2] Arcones MA, Yu B (1994) Central limit theorems for empirical and U-processes of stationary mixing sequences. J. Theoret. Probab.

7(1):47–71.
[3] Artzner P, Delbaen F, Eber J-M, Heath D (1999) Coherent measures of risk. Math. Finance 9(3):203–228.
[4] Baggerly KA (1998) Empirical likelihood as a goodness-of-fit measure. Biometrika 85(3):535–547.
[5] Bartlett PL, Bousquet O, Mendelson S (2005) Local Rademacher complexities. Ann. Statist. 33(4):1497–1537.
[6] Bean D, Bickel P, El Karoui N, Yu B (2013) Optimal M-estimation in high-dimensional regression. Proc. Natl. Acad. Sci. USA

110(36):14563–14568.
[7] Ben-Tal A, Ghaoui LE, Nemirovski A (2009) Robust Optimization (Princeton University Press, Princeton, NJ).
[8] Ben-Tal A, Hazan E, Koren T, Mannor S (2015) Oracle-based robust optimization via online learning. Oper. Res. 63(3):628–638.
[9] Ben-Tal A, denHertogD,WaegenaereAD,Melenberg B, RennenG (2013) Robust solutions of optimization problems affected by uncertain

probabilities. Management Sci. 59(2):341–357.
[10] Bertail P (2006) Empirical likelihood in some semiparametric models. Bernoulli 12(2):299–331.
[11] Bertail P, Gautherat E, Harari-Kermadec H (2014) Empirical φ* p-divergence minimizers for hadamard differentiable functionals.

Akritas MG, Lahiri SN, Politis DN, eds. Topics in Nonparametric Statistics (Springer, New York), 21–32.
[12] Bertsekas DP (1973) Stochastic optimization problems with nondifferentiable cost functionals. J. Optim. Theory Appl. 12(2):218–231.
[13] Bertsimas D, Gupta V, Kallus N (2014) Robust sample average approximation. Preprint, submitted August 19, https://arxiv.org/

abs/1408.4445.
[14] Bertsimas D, Gupta V, Kallus N (2018) Data-driven robust optimization. Math. Programming 167(2):235–292.
[15] Billingsley P (1986) Probability and Measure, 2nd ed. (Wiley, New York).
[16] Black F (1976) Studies of stock price volatility changes. Proc. 1976 Meetings Amer. Statist. Assoc. (American Statistical Association,

Washington, DC), 177–181.
[17] Blanchet J, Murthy K (2019) Quantifying distributional model risk via optimal transport. Math. Oper. Res. 44(2):565–600.
[18] Blanchet J, Kang Y, Murthy K (2019) Robust Wasserstein profile inference and applications to machine learning. J. Appl. Probab.

56(3):830–857.
[19] Bradley RC (2005) Basic properties of strong mixing conditions. a survey and some open questions. Probab. Surveys 2:107–144.
[20] Bravo F (2003) Second-order power comparisons for a class of nonparametric likelihood-based tests. Biometrika 90(4):881–890.
[21] Bravo F (2006) Bartlett-type adjustments for empirical discrepancy test statistics. J. Statist. Planning Inference 136(3):537–554.

967
Duchi et al.: Statistics of Robust Optimization
Mathematics of Operations Research, 2021, vol. 46, no. 3, pp. 946–969, © 2021 INFORMS

https://arxiv.org/abs/1408.4445
https://arxiv.org/abs/1408.4445


[22] Bubeck S, Eldan R, Lehec J (2015) Finite-time analysis of projected Langevin Monte Carlo. Cortes C, Lawrence ND, Lee DD, SugiyamaM,
Garnett R, eds. Advances in Neural Information Processing Systems, vol. 28 (Neural Information Processing Systems Foundation, San
Diego), 1243–1251.

[23] Candès E, Sur P (2020) The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression.
Ann. Statist. 48(1):27–42.

[24] Chen SX, Peng L, Qin YL (2009) Effects of data dimension on empirical likelihood. Biometrika 96(3):711–722.
[25] Chen X, Lee JD, Tong XT, Zhang Y (2020) Statistical inference for model parameters in stochastic gradient descent. Ann. Statist.

48(1):251–273.
[26] Christie AA (1982) The stochastic behavior of common stock variances: Value, leverage and interest rate effects. J. Financial Econom.

10(4):407–432.
[27] Clarkson K, Hazan E, Woodruff D (2012) Sublinear optimization for machine learning. J. ACM 59(5):23.
[28] Corcoran SA (1998) Bartlett adjustment of empirical discrepancy statistics. Biometrika 85(4):967–972.
[29] Cressie N, Read TR (1984) Multinomial goodness-of-fit tests. J. Roy. Statist. Soc. B 46(3):440–464.
[30] Csiszár I (1967) Information-typemeasures of difference of probability distributions and indirect observation. Studia ScientificaMathematica

Hungary 2:299–318.
[31] Danskin JM (1967) The Theory of Max-Min and Its Application to Weapons Allocation Problems (Springer, Berlin).
[32] Defazio A, Bach F, Lacoste-Julien S (2014) SAGA: A fast incremental gradient method with support for non-strongly convex composite

objectives. Ghahramani Z,WellingM, Cortes C, Lawrence ND,Weinberger KQ, eds.Advances in Neural Information Processing Systems, vol.
27 (Neural Information Processing Systems Foundation, San Diego), 1646–1654.

[33] Delage E, Ye Y (2010) Distributionally robust optimization undermoment uncertaintywith application to data-driven problems.Oper. Res.
58(3):595–612.

[34] DiCiccio T, Hall P, Romano J (1988) Bartlett adjustment for empirical likelihood. Technical Report 298. Department of Statistics, Stanford
University, Stanford, CA.

[35] DiCiccio T, Hall P, Romano J (1991) Empirical likelihood is Bartlett-correctable. Ann. Statist. 19(2):1053–1061.
[36] Donoho D, Montanari A (2016) High dimensional robust M-estimation: asymptotic variance via approximate message passing. Probab.

Theory Related Fields 166(3–4):935–969.
[37] Doukhan P (1994) Mixing, Properties and Examples (Springer, New York).
[38] Doukhan P, Massart P, Rio E (1995) Invariance principles for absolutely regular empirical processes. Annales de l’IHP probabilités et

statistiques 31(2):393–427.
[39] Duchi JC, Namkoong H (2016) Variance-based regularization with convex objectives. Preprint, submitted October 8, https://arxiv.org/

abs/1610.02581.
[40] Duchi JC, Namkoong H (2019) Variance-based regularization with convex objectives. J. Machine Learn. Res. 20(68):1–55.
[41] Duchi JC, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J. Machine Learn. Res.

12(61):2121–2159.
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