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Abstract. We propose and study an asymptotically optimal Monte Carlo estimator for
steady-state expectations of a d-dimensional reflected Brownian motion (RBM). Our esti-
mator is asymptotically optimal in the sense that it requires Õ(d) (up to logarithmic factors
in d) independent and identically distributed scalar Gaussian random variables in order to
output an estimate with a controlled error. Our construction is based on the analysis of a
suitable multilevel Monte Carlo strategy which, we believe, can be applied widely. This is
the first algorithm with linear complexity (under suitable regularity conditions) for a
steady-state estimation of RBM as the dimension increases.
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1. Introduction
Many complex stochastic systems can be modeled by a high-dimensional stochastic network, where applications
include communication networks (Kushner 2013), cloud computing cluster (Maguluri et al. 2012), and patient
flow in hospitals (Armony et al. 2015). Furthermore, the steady-state analysis of these systems is of interest be-
cause operators often focus on long-term average rewards/costs per unit of time. This motivates our focus in this
paper, namely, the study of efficient Monte Carlo methods for computing steady-state performance measures for
high-dimensional stochastic networks.

We consider a family of multidimensional reflected Brownian motions (RBMs) living on the positive orthant.
We propose a steady-state simulation algorithm that is optimal under natural uniformity conditions (as the di-
mension increases), in the sense of requiring almost a linear number of independent and identically distributed
(i.i.d.) Gaussian random variables to compute the steady-state expectation of the underlying RBM to given accu-
racy. We will provide an explicit description of the assumptions that we impose in Section 2. These conditions
correspond basically to uniform stability and uniformly bounded variances. As far as we are aware, this paper
provides the first class of optimal steady-state estimators for a reasonably general class of stochastic networks
having a linear complexity in the dimension d.

RBM can be used to approximate the workload process for a wide range of stochastic networks in heavy traf-
fic. In addition, RBM can be succinctly parameterized in terms of means, variances, and the routing architecture
of the network. These properties make it an ideal vehicle for the study of Monte Carlo estimators for stochastic
networks indexed by a set of parameters growing in the number of dimensions. In other words, RBM is a parsi-
monious, yet powerful, stylized model capturing the features that make steady-state analysis of stochastic net-
works challenging. We note that direct computation of the steady-state distribution for RBM is a very challeng-
ing problem, even in low dimensions. There is no closed-form expression for steady-state expectation in general,
and even numerical methods are difficult to apply. These difficulties arise from the fact that RBM is defined in
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terms of a system of constrained stochastic differential equations determined by the Skorokhod problem, which
involves delicate local-time-like dynamics.

The steady-state distribution of RBM satisfies a partial differential equation (PDE) known as the basic adjoint
relationship. Using this relationship, one can apply numerical methods such as finite differences to approximate
the associated stationary distribution. These types of approaches are documented in, for instance, Dai and Harri-
son (1992) and Shen et al. (2002). Finite differences typically suffer from the curse of dimensionality. Moreover,
in order to approximate the steady-state distribution, the methods in Dai and Harrison (1992) assume a certain
degree of regularity that has not been established rigorously. Monte Carlo methods for steady-state analysis
have also been studied, including those in Blanchet and Chen (2015), which apply coupling from the past tech-
nique to sample from the steady-state distribution of RBM with a controlled approximation error. However, the
procedure in Blanchet and Chen (2015) exhibits exponential complexity in the dimension d.

Our analysis builds on recent work by Banerjee and Budhiraja (2020) and Blanchet and Chen (2020). The first
results showing a polynomial rate in the dimension d of convergence to steady state for a high-dimensional RBM
is given in Blanchet and Chen (2020). The proof technique used in Blanchet and Chen (2020) involves the follow-
ing three ingredients: (a) the use of a coupling between a steady-state version of the RBM and one starting from
a given initial condition driven by the same Brownian motion; (b) the application of results from Kella and Ram-
asubramanian (2012), which leads to a contraction factor as the product of certain random matrices when the
process hits the constraint boundaries at a certain epochs; (c) a Lyapunov bound that estimates the return times
of the contraction epochs—basically the return time to the constraint boundaries. By combining (a) through (c),
Blanchet and Chen (2020) provided an estimate of the form O d4log2 d( )

( )
for the relaxation time (measured in

terms of the Wasserstein distance) between an RBM starting from the origin and its steady-state distribution. The
work of Banerjee and Budhiraja (2020) introduced a weighted Lyapunov function (i.e., modifying step (c)), great-
ly improving these estimates and obtaining a relaxation time of O log2 d( )

( )
. This suggests simulating the RBM of

interest for a time O log2 d( )
( )

to control the size of the initial transient bias.
In addition to dealing with the initial transient bias, numerical simulation also involves discretization bias. In

particular, discretizing a one-dimensional Brownian motion with a grid of size ε induces an error Õ ε1=2( ) in the
uniform norm on compact intervals. (The tilde notation here means that we are ignoring poly-logarithmic factors
in 1=ε.) To control the simulation error, it is crucial to understand how the discretization error impacts the d-di-
mensional RBM as d grows. It is known, owing to the seminal work of Harrison and Reiman (1981), that RBM is
a Lipschitz continuous functional of Brownian motion in the uniform metric. We show that under the uniform
stability and uniform bounded variances assumptions, the Lipschitz constant is uniformly bounded in d. As a
consequence, the discretization error is Õ(1) in d. On the other hand, any simulation algorithms need to sample
from each dimension, resulting in an Ω(d) computational cost lower bound measured by the number of i.i.d.
standard Gaussian random variables simulated. Our algorithm in this paper shows that the estimation can actu-
ally achieve this linear lower bound (up to logarithmic factors in d).

We summarize the main contributions of this paper as follows:
I. First, we theoretically show that our simulation estimator approximates the steady-state distribution of the un-

derlying RBM in Õ(d) time (i.e., almost linear time), measured in terms of i.i.d. Gaussian random variables generat-
ed. Further, we show an Ω(d) lower bound for the computational cost, which demonstrates that our algorithm is
optimal in terms of the dimension dependence (up to logarithmic factors).

II. Second, we provide an alternative method to deriving the contraction estimates for the initial transient bias,
which is based on the derivative of the underlying RBMwith respect to the initial condition; see Lemma 5 and Remark
4. The intuition is that the rate of convergence to stationarity is dictated by how fast the process forgets its initial condi-
tion, that is, how fast the derivative with respect to the initial condition converges to zero. Although the methods in
Banerjee and Budhiraja (2020) and Blanchet and Chen (2020) could also lead to the estimates in the RBM case, we be-
lieve that our high-level approach could be applicable to broader settings, as we discuss in our conclusion section.

A key idea behind our first contribution is that for numerical simulation of a d-dimension RBM on finite time
intervals, we analyze the contribution of discretization bias of the d Brownian motions altogether instead of sepa-
rately, in order to obtain a finer bound on the simulation bias.

A crucial aspect in the development of contribution II is the use of derivative estimates of RBM with respect to
the initial condition, using tools developed in Mandelbaum and Ramanan (2010). These derivatives, as it turns
out, can be computed as the product of random matrices precisely arising in item (b) mentioned earlier in the
analysis of Blanchet and Chen (2020). This is both reassuring and convenient because we can simply take advan-
tage of the analysis both in Blanchet and Chen (2020) and Banerjee and Budhiraja (2020). However, studying the
derivative process with respect to the initial condition is a type of strategy that can be applied in a wide range of
settings of interest. So, we believe that the strategy deployed in this paper can be used as a blueprint for the
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development of efficient Monte Carlo methods for high-dimensional steady-state analysis in many other settings.
These developments will be studied in future research.

Our estimators are built using the multilevel Monte Carlo (MLMC) method (see Giles 2008) in conjunction
with the key idea discussed earlier and also the contraction-estimating method mentioned in II). For a review of
multilevel Monte Carlo, the reader is referred to Giles (2015). The MLMC method and its randomized variant,
which can be used to remove bias under certain conditions (see Rhee and Glynn 2015), have been investigated
both in the discretization of stochastic differential equations and, more recently, in the context of steady-state ex-
pectations; see Giles et al. (2020) and Glynn and Rhee (2014).

As in Giles et al. (2020), we are concerned both with the error in the numerical discretization of the underlying
stochastic differential equation (SDE) and the time horizon contraction property. We use a synchronous coupling
which, in our case, is motivated by the analysis in Blanchet and Chen (2020). A key difference, however, is that
our goal is to study the complexity of the method as the dimension d increases to infinity and show that our esti-
mator has essentially linear complexity in the dimension, as measured by the total number of generated random
seeds. Indeed, we believe that this is also a key difference between our work and virtually every work to the date
that uses multilevel Monte Carlo methods or steady-state Monte Carlo estimation in generic stochastic networks.

The rest of the paper is organized as follows. In Section 2, we review the definition of RBM and discuss the uni-
formity conditions we use to test the asymptotic optimality of our algorithm. The simulation algorithm is given
in Section 3, together with the main result of this paper, Theorem 1. A numerical experiment that validates the
theoretical performance of the algorithm, tested in the setting of networks of increasing size, is given in Section 4.
Finally, the proofs of Theorems 1 and 2 are given in Section 5.

1.1. Notation
The boldface denotes multidimensional variables. All vector inequalities are assumed to be operated component-
wise. We use |x| for x ∈ R

d to denote the absolute value componentwise.

2. Model and Assumptions
2.1. Skorokhod Problem and RBM
A multidimensional RBM can be defined as the solution to a Skorokhod problem with Brownian input. In partic-
ular, let X(·) be a multidimensional Brownian motion with drift vector μ, covariance matrix Σ :� CCT, and initial
value X(0) � 0. Let Q be a substochastic matrix, that is, Q ≥ 0 and all its row sums ≤ 1, and define R � (I−Q)T.
We assume R is anM-matrix, that is,

R−1 exists and it has nonnegative entries: (1)

The seminal paper by Harrison and Reiman (1981) shows that the following Skorokhod problem (2) is well
posed, (i.e., it has a unique strong solution) in the case where the input X ·( ) is continuous and R is anM-matrix.

Skorokhod Problem. Given a process X ·( ) and a matrix R, we say that the pair (Y,L) solves the associated Skoro-
khod problem if

0 ≤ Y t( ) � Y 0( ) +X t( ) +RL t( ), L(0) � 0, (2)

where the ith entry of L ·( ) is nondecreasing and
∫
0

t
Yi s( )dLi s( ) � 0.

When the input process X is a multidimensional Brownian motion with parameter (μ,Σ), we call the process
Y(·) solved from (2) a (μ,Σ,R)-RBM.

Remark 1. From the perspective that RBM Y(·) is an approximation to the workload process of a stochastic net-
work, the assumption that R is an M-matrix is equivalent to Qn → 0, that is, the network is open in the sense that
all jobs will eventually leave the network.

For general Skorokhod problems, under the M-condition and some mild conditions on X ·( ), the assumption
that

R−1EX 1( ) � R−1μ < 0, (3)

implies that Y t( ) ⇒ Y ∞( ) as t→∞, where Y ∞( ) is a random variable with the (unique) stationary distribution of
Y ·( ). (We use ⇒ to denote weak convergence.) In particular, according to Harrison and Williams (1987), condi-
tion (3) is necessary and sufficient for stability of the μ,Σ,R

( )
-RBM (i.e., a unique stationary distribution exists)

under the M-condition (1) (see also Kella and Ramasubramanian 2012, which studies necessary and sufficient
conditions for more general types of input processes).
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2.2. Assumptions
The goal of our simulation algorithm is to estimate the steady-state expectation of certain functions of a multidi-
mension RBM. In particular, let μ,Σ,R

( )
be the parameters of the RBM and f ·( ) be the function to be evaluated.

To study the complexity of the algorithm as the dimension grows, we shall consider a family of μ,Σ,R
( )

-RBMs
under certain uniformity assumptions for arbitrary dimension d, as in Blanchet and Chen (2020). Implicitly, R, μ,
and Σ are indexed by their dimension. Now we state the uniformity conditions imposed throughout the paper.

A1. Uniform contraction: We let R � I −QT, where Q is substochastic and assume that there exists β0 ∈ 0, 1( )
and κ0 ∈ 0,∞( ) independent of d such that

‖ 1TQn ‖∞ ≤ κ0(1− β0)n, n ≥ 1: (4)

Under (4), we observe that

‖ R−11 ‖∞ ≤ b1 :� κ0=β0 < ∞:

A2. Uniform stability: We write X t( ) � μt+CB t( ), where B t( ) � (B1 t( ), : : : ,Bd t( ))T and the Bi ·( )’s are standard
Brownian motions, and the matrix C satisfies Σ � CCT. We assume that there exists δ0 > 0 independent of d such that

R−1μ < −δ01:
A3. Uniform marginal variability: Define σ2i � Σi, i (i.e., the variance of the ith coordinate of X). We assume that

there exists b0 ∈ 0,∞( ), independent of d ≥ 1, such that

b−10 ≤ σ2i ≤ b0:

A4. Lipschitz functions: Throughout the rest of the paper, we assume that the function f : Rd
+ → R, for which

we shall estimate E f (Y(∞))[ ]
, is Lipschitz continuous in l∞ norm, that is, there exists a constant L > 0 indepen-

dent with d such that

| f (y) − f (y′)| ≤ L‖y− y′‖∞, for all y,y′ ∈ R
d
+:

Remark 2. A detailed discussion of Assumptions A1 to A3 is given in section 2.2 of Blanchet and Chen (2020).
Assumption A4 holds if f is chosen to quantify the performance of a finite number of servers in the network, or
when the performance measure of the system is scaled by d, for instance, the average workload at the servers.

3. Two-Parameter Multilevel Monte Carlo Algorithm
Any simulation estimator for stationary expectations of RBM is bound to contain two types of sources of bias.
The first one is the discretization error, due to the fact that we can only simulate discrete approximation of con-
tinuous Brownian paths. The second source of bias is the initial transient bias or nonstationary error, due to the
fact that we can only simulate the RBM during a finite time horizon. We call our simulation method a two-pa-
rameter MLMC algorithm because when constructing the MLMC estimator, we use two parameters, γ ∈ (0, 1)
and T > 0, to control the discretization and nonstationary errors, respectively.

As in the classic MLMC algorithm (Giles 2008), the precision of the MLMC estimator is controlled by the total
number of levels L. Besides, we need to specify the initial state y0 to simulate the RBM paths. Given the parame-
ter set (γ, T, L, y0), plus the parameters (μ, Σ, R) for the RBM and the function f to be evaluated, we now describe
how to construct the two-parameter MLMC estimator for E[f (Y(∞))] and we will summarize the whole proce-
dure at the end of this section.

Let B t( ) � B1 t( ), :::,Bd t( )( )T ∈ R
d be a standard Brownian with drift 0 and covariance matrix I. Given parameter

γ ∈ 0, 1( ), we denote Dm � {0,γm, 2γm, :::} for any integer m ≥ 0. For every t ≥ 0, we define t+m � inf{r ∈ Dm : r > t}
and t−m � sup{r ∈ Dm : r ≤ t}. Note that, following the definition, t−m � t for t ∈ Dm. Define a discretization of the
standard Brownian motion of level m as Bm(t) � Bm

1 t( ), :::,Bm
d t( )

( )T
such that

Bm
i t( ) � Bi t−m( ) + t− t−m( )Bi t+m

( )−Bi t−m( )
t+m − t−m

, for all t ≥ 0 and i � 1, 2, : : : , d:

It is easy to see that Bm(·) is continuous and piecewise linear, and Bm t( ) � B t( ) for all t ∈ Dm. The corresponding
discretization of the Brownian motion X(·) driving the RBM (2) is defined as

Xm t( ) � μt+CBm t( ):
For any 0 ≤ s ≤ t <∞, we write Xs:t (respectively, Xm

s:t) to denote the increment of X(·) over [s, t], that is,
Xs:t � {X s+ u( ) −X(s) : 0 ≤ u ≤ t− s}, (respectively, Xm

s:t � {Xm s+ u( ) −Xm(s) : 0 ≤ u ≤ t− s}). We use Y t− s;y,Xs:t
( )
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(respectively, Ym t− s;y,Xm
s:t

( )
) to denote the value of RBM driven by Xs:t (respectively, Xm

s:t) at time point t – s given
initial value Y 0( ) � y (respectively, Ym 0( ) � y). Following this notation, we have

Y t+ s; y,X0:s+t
( ) � Y t;Y s;y,X0:s

( )
,Xs:s+t

( )
,

Ym t+ s; y,Xm
0:s+t

( ) � Ym t;Ym s;y,Xm
0:s

( )
,Xm

s:s+t
( )

:
(5)

To construct the multilevel estimator, we introduce an integer-valued random variable M ∈ {0, 1, 2, : : : ,L− 1},
where L is the total number of levels. The random variable M is independent of the process X ·( ) and follows
probability distribution

P(M �m) � p m( ) � γm 1− γ
( )

=(1− γL)¢K(γ)γm, for 0 ≤m < L:

In the multilevel Monte Carlo method, to reduce the computational cost of estimating the target expected val-
ue, people use different levels of approximations Z0,Z1, : : : ,ZL with increasing accuracy, but also increasing cost,
which converges to the target random variable as L→∞. The basis of the multilevel method can thus be

E[ZL] � E[Z0] +
∑L−1
l�0

E[Zl+1 −Zl] � E[Z0] + 1
p(M)E[ZM+1 −ZM]:

In the RBM setting, by choosing

Zl � f YM MT;y0,X
M
T:(M+1)T

( )( )
,

we give the formal definition of the two-parameter MLMC estimator Z for E[f (Y(∞))] with input parameter set
(γ,T,L,y0) as

Z � 1
p(M) f YM+1 MT; YM+1 T; y0,X

M+1
0:T

( )
,XM+1

T:(M+1)T
( )( )

− f YM MT; y0,X
M
T:(M+1)T

( )( ){ }
+ f y0( ): (6)

To see that Z is indeed a good estimator for E[f (Y(∞))], we compute

E[Z] � E E Z|M[ ][ ]
� ∑L−1

m�0
E f Ym+1 mT;Ym+1

(
T;y0,X

m+1
0:T

)
,Xm+1

T:(m+1)T

( )( )[ ]
−E

[
f
(
Ym

(
mT;y0,X

m
T:(m+1)T

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠)])
+ f y0( ) �

∑L−1
m�0

(
E f Ym+1

((
m+ 1

)
T;y0,X

m+1
0:(m+1)T

( )[ )]
−E[f Ym mT;y0,X

m
0:mT

( )( )])+ f
(
y0

)
� E

[
f YL TL;y0,X

L
0:LT

( )( )]
:

The last equality holds because Ym mT;y0,X
m
0:mT

( ) � y0 for m � 0. Consequently, we can split the estimation bias
into two parts:

E f YL TL;y0,X
L
0:LT

( )( )[ ]
−E f (Y(∞))[ ]

� E f YL TL;y0,X
L
0:LT

( )( )[ ]
−E f Y TL;y0,X0:LT

( )( )[ ]( )
+ E f Y TL;y0,X0:LT

( )( )[ ]−E f (Y(∞))[ ]( )
� discretization error+ nonstationarity error:

(7)

Intuitively, as L→∞, the two errors will both go to 0, and as a consequence, we can obtain an accurate esti-
mate of E[f (Y(∞))] by taking L sufficiently large. In Sections 5.1 and 5.2, we shall provide theoretical upper
bounds for those two errors in terms of L, and also analyze their dependence on the number of dimensions d.
Then, we apply these theoretical error bounds to control the mean square error (MSE) of the simulation estima-
tor, and obtain the main complexity analysis result for our simulation algorithm in Section 5.3.

The previous description of the two-parameter multilevel Monte Carlo method is summarized in Algorithm 1.
The main result of the paper is as follows. We show that, under the proper choice of algorithm hyperparameters,
as described in Algorithm 1, the computational cost for obtaining an estimator of a fixed accuracy level is almost
linear in the dimension d. Here, we interchangeably use computational complexity and the total expected cost,
which is measured by the number of scalar Gaussian random variable generated in the algorithm. Specifically,
we generate one Gaussian random variable for each dimension, discretization point, and simulation path. The
proof relies on an analysis at the dimension dependence of the discretization and the nonstationarity error in the
simulation procedures, and will be given in Section 5.
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Theorem 1. Suppose Y is a d-dimensional RBM satisfying Assumptions A1 to A4. By setting parameters as step size
0 < γ < 1,1 path length T �O(log(d)2), the number of levels L � � log(log(d)) + 2log(1=ε) + k1

( )
=log(1=γ)�, for a numeri-

cal constant k1, the initial point y0 � 0, and the number of sample paths N � �(1− γ)−1(1− γL)γ−LL�, the total expected
cost, in terms of the number of scalar Gaussian random variables, for the two-parameter MLMC Algorithm 1 to produce an
estimator Z̄ �N−1∑N

i�1Zi (defined in (6)) of E[f (Y(∞))] with mean square error (MSE) ε2 is

O ε−2dlog(d)3(log(log(d)) + log(1=ε))3
( )

:

In fact, the following theorem shows that the linear dependence on the dimension d of the total expected cost
is optimal (up to logarithmic factors in d). Before stating the theorem, we first define some useful notions.

Definition 1. Let Ψ(κ0,β0,δ0,b0) be the set of all possible RBMs (X;Y) that satisfy Assumptions A1 to A3, and let
LipsL be the set of all L-Lipschitz functions in l∞ norm satisfying Assumption A4. Let Πε be the class of all algo-
rithms π satisfying the following four requirements:

• can access the reflection matrix R;
• is agnostic to the model parameters μ and Σ, but is able to sample from any given discrete skeleton of the pro-

cess X;
• is agnostic to the function f ∈ LipsL, but is able to query the function; and
• can achieve the target mean square error ε2 when applied to each RBM (X,Y) ∈Ψ(κ0,β0,δ0,b0) and the target

function f ∈ LipsL.

Further, Let TC(π; (X,Y), f ) be the total expected cost of the algorithm π ∈Πε, associated with the RBM (X,Y) ∈
Ψ(κ0,β0,δ0,b0) and the target function f ∈ LipsL.

Theorem 2. Algorithm 1 is inside the algorithm class Πε, and for any algorithm π ∈Πε, we have a minimax lower bound
for the total expected cost when ε < L=(16δ0),

inf
π∈Πε

sup
(X,Y)∈Ψ(κ0,β0,δ0,b0), f∈LipsL

TC(π; (X,Y), f ) ≥ d:

4. Numerical Experiments
We test the theoretical performance guarantee (i.e., Theorem 1) of our algorithm using so-called symmetric
RBMs. In this case, the true value of E[Y1(∞)] has a closed-form expression, so that we can check the dimension
dependence of the simulation MSE and complexity. To do this, we consider a sequence of symmetric RBMs of
different dimensions from five up to 200. More precisely, for each d ∈ {5, 6, : : : , 200}, μ � −[1,1, : : : , 1]T, the covari-
ance matrix takes the form

Σ �
1 ρσ : : : ρσ

ρσ 1 : : : ρσ

⋮ 1 ⋮
ρσ : : : ρσ 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

and the reflection matrix takes the form

R �
1 −r : : : −r
−r 1 : : : −r
⋮ 1 ⋮
−r : : : −r 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦:

Algorithm 1 (Two-Parameter MultilevelMonte Carlo for RBM)
Input:
The parameters of the RBM: (μ,Σ,R);
The function to evaluate: f : Rd

+ → R;
The target error level ε;
Output:
An estimator for E[Y(∞)], Z̄;
Algorithm procedure:
1: for i � 1 to N do
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2: GenerateMwith P(M �m) � p(m) � K(γ)γm;
3: Simulate a discrete Brownian path BM+1(t) with step size γM+1 on [0, (M+ 1)T];
4: Compute BM(t) as a discrete Brownian path such that BM(t) � BM+1(t) for all t ∈ DM;
5: Solve the Skorokhod problem (Algorithm A.1 in the appendix) to compute

XM(t) � μt + CBM(t) and XM+1(t) � μt + CBM+1(t),
6: Compute

Zi � 1
p(M) f (YM+1((M + 1)T,y0,X0:(M+1)T)) − f (YM(MT, y0,XT:(M+1)T))

( )
+ f (y0);

return Z̄ � 1
N

∑N
i�1Zi.

To be consistent with Assumptions A1 to A3, we pick

ρσ � − 1 − β

d − 1
and r � 1 − β

d − 1
,

for given 0 < β < 1. According to Dai and Harrison (1992), the steady-state expectation of workload at each sta-
tion equals to

E[Y1(∞)] � 1− (d− 2)r+ (d− 1)rρσ

2(1+ r) � β

2
:

For β � 0:8, the true value of E[Y1(∞)] � 0:4.
In the first group of numerical experiments, we compare the algorithm performance for different choices of pa-

rameter γ ∈ {0:01, 0:05,0:1} at a target error level ε � 0:01. The other parameters are as follows:
T � log(d)2=2,L � � log(log(d)) + 2log(1=ε) − 2

( )
=log(1=γ)�, and N � �K(γ)−1γ−LL�, where K(γ) � (1− γ)=(1− γL).

Figure 1 shows the estimated mean and total complexity across dimensions from d � 5 to d � 200 for different
choices of γ. It shows that most of the absolute error fluctuates around 0.01 and the total number of generated
scalar Gaussian random variables (total complexity) grows approximately linearly in the number of dimension
for all three values of γ. The simulation error is not sensitive to the choice of γ. Besides, the complexity is best
when γ � 0:05, as indicated by our theoretical analysis (Lemma 7).

In our second group of numerical experiments, we aim to show that our choice of parameters achieves the tar-
get precision level tightly in the sense that, as the dimension increases, the estimation error remains stable
around a value that is smaller than the target precision level. In particular, we estimate the MSE of the estimators
for γ � 0:05 and target error level ε � 0:05 with the other parameters fixed. For each dimension in
{10,20,30, : : : , 200}, we generate 250 estimators to estimate the MSE as well as the 95% confidence band of the
MSE, and the results are reported in Figure 2. We see the MSE is stable around 5 × 10−4 across different dimen-
sions, which is smaller than the target level ε2 � 0:0025.

5. Proof of Theorems 1 and 2
In this section, we develop theoretical computational complexity bounds for the two-parameter MLMC estimator
in terms of the number of dimensions d using the hyperparameters (γ,T,L,y0) specified in Algorithm 1. As in (7),
the estimation bias of the two-parameter MLMC estimator Z can be split into two parts corresponding to the dis-
cretization error and nonstationarity error. The sketch of the proof is as follows:

1: In Section 5.1, we derive an upper bound for the discretization error in Lemma 4, which is based on the discre-
tization error for Brownian motion (Lemma 2) and an explicit upper bound for the Lipschitz constant of the Skoro-
khodmapping (Lemma 3).

2: In Section 5.2, we provide a bound for the nonstationarity error in Lemma 6 by analyzing the derivative of
RBMwith respect to its initial value (Lemma 5).

3: In Section 5.3, we derive an upper bound for the algorithm complexity based on the error bounds.
4: Finally, in Section 5.4, we derive a lower bound for the algorithm complexity based on the error bounds to

prove Theorem 2.

5.1. Discretization Error Bounds
To bound the discretization error, we first bound the discretization error for multidimensional Brownian motion.

Lemma 1. Suppose Z1,Z2, : : : ,Zn are Gaussian variables (not necessarily independent) with mean μ and variance 1. Then,
we have E[max1≤i≤n(Zi −μ)2]≤ 4 logn+ 1=2log(2)( )

:
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Figure 1. Simulation Results for Symmetric RBMs at Target Error Level ε � 0:01
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Proof of Lemma 1. For λ ∈ (0, 1=2), we have

E max
1≤ i≤n

(Zi −μ)2[ ] � 1
λ
E log exp λ max

1≤ i≤n
(Zi −μ)2( )( )[ ]

≤ 1
λ
logE exp λ max

1≤ i≤n
(Zi −μ)2( )[ ]

≤ 1
λ
logE

∑n
i�1

exp λ(Zi −μ)2
( )[ ]

� 1
λ

logn− 1=2log(1− 2λ
( )):

We can pick λ � 1=4 and then

E max
1≤ i≤n

(Zi −μ)2[ ] ≤ 4 logn+ 1=2log(2)( )
: w

Lemma 2. For 0 < γ < 1 and m ≥ 1, let Xm(·) be a discretized d-dimension Brownian path with step size γm. Then, there
exists a positive constant C0, such that for any d ≥ 2, m ≥ 1, t > γ,

E[max
1≤ i≤d

max
0≤ s≤ t

(Xm
i (s) −Xi(s))2] ≤ C0γ

m(log(t) + log(d) +mlog(1=γ)):

Proof of Lemma 2. Let X̃ t( ) � X t( ) −μt and X̃
m
t( ) � Xm t( ) −μt. Note that

max
1≤ i≤d

max
0≤ s≤ t

Xm
i s( ) −Xi(s)( )2

≤ max
1≤ i≤d

max
0≤ s≤γm�t=γm�

Xm
i s( ) −Xi(s)( )2

� max
1≤ i≤d

max
0≤k≤t=γm�

max
0≤ s≤γm

X̃i γ
mk+ s

( )−X̃
m
i γmk+ s
( )( )2

:

Figure 2. Mean Square Error of the Estimators at Target Error Level ε � 0:05 for γ � 0:05
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For 0 ≤ s < γm and 0 ≤ k ≤ t=γm�, we have

X̃i γ
mk+ s

( )− X̃
m
i γmk+ s
( )( )2

≤max X̃i γ
mk+ s

( )− X̃i γ
mk

( )( )2
, X̃i γmk+ γm( )− X̃i γ

mk+ s
( )( )2 ≤ X̃i γmk+ s

( )− X̃i γmk
( )( )2 + X̃i γmk+ γm( )− X̃i γ

mk+ s
( )( )2

:

{{
By time-reversibility of the Brownian process, we have

X̃i γmk + s
( ) − X̃i γmk

( )( )2 �d X̃i γ
mk + γm( ) − X̃i γmk + (γm − s)( )( )2

,

where �d indicates the two processes indexed by s follow the same probability law on the space of continuous
functions. Then, using Brownian motion’s independent increments and scaling properties, we have

max
1≤ i≤ d

max
0≤ k≤ t=γm�

max
0≤ s≤γm

X̃i γmk + s
( ) − X̃i γmk

( )( )2
�d γm max

1≤ i≤ d
max

0≤ k≤ t=γm�
max
0≤ s≤ 1

X̃
(k)
i s( )

( )2
,

where X̃
(0)
, X̃

(1)
: : : are i.i.d. copies of X̃ and X̃

(k) � {X̃(k)
1 , X̃

(k)
2 , : : : X̃

(k)
d :{ Recall that (e.g., Karlin and Taylor 1981,

p. 346)

max
0≤ s≤1

X̃
(k)
i s( )

( )2
�d X̃

(k)
i 1( )

( )2
:

Then, by Lemma 1, we have for d ≥ 2,

E max
1≤ i≤d

max
0≤ s≤γm�t=γm�

Xm
i s( ) −Xi(s)( )2[ ]

≤ 2γmE max
1≤ i≤d

max
0≤k≤t=γm�

X̃
(k)
i 1( )

( )2[ ]
≤ 2b0γm 4log d�t=γm�( )+ 2log(2)( )
≤ 12b0γm(log(t) + log(d) +mlog(1=γ)):

The last inequality is due to �t=γm� <� 2t=γm when t > γ,m ≥ 1 and log(d) ≥ log(2). w

Lemma 3 shows that the Skorokhod mapping, from X to Y, is Lipschitz continuous and provides a uniform up-
per bound for the Lipschitz constant, which is independent of the dimension d, the time s, and the input process
X. As a result, the discretization error sup0≤ s≤T |Y(s) −Ym(s)| ||∞ can be bounded by sup0≤ s≤T |X(s) −Xm(s)|.
Lemma 3. Suppose Y(t) and Y′(t) ∈ R

d are the solutions to two Skorokhod problems (2) with the same reflection matrix R
satisfying Assumption A1, and input processes X(t) and X′(t), respectively, for t ∈ [0,T]. Then,

sup
0≤ s≤T

Y(s) −Y′(s)| | ≤ 2R−1 sup
0≤ s≤T

|X(s) −X′(s)|,

where | · | and the inequality are assumed to be applied entry by entry. As a direct consequence, under Assumptions A1 to
A3, we have

‖Y(T) −Y′(T)‖∞ ≤ 2κ0

β
sup

0≤ s≤T
‖X(s) −X′(s)‖∞:

Proof of Lemma 3. The proof uses the fixed-point representation of the Skorokhod mapping as constructed in
the proof of theorem 1 in Harrison and Reiman (1981). In detail, we first need to transform the space R

d using a
diagonal matrix Θ with positive diagonal elements, which depends only on R, such that (ΘY,ΘL) ((ΘY′,ΘL′)) is
the solution to a new Skorokhod problem of the form (2) with input process ΘX (ΘX′) and reflection matrix
R∗ � I − (Θ−1QΘ)T.(Note that in our notation, all vectors are column vectors, whereas in Harrison and Reiman
(1981) they are treated as row vectors.)

Let Q∗ �Θ−1QΘ. Then, according to Harrison and Reiman (1981), the amount of reflection ΘL and ΘL′ solves
the following fixed-point problem:
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ΘL(t) � sup
0≤ s≤ t

Q∗TΘL(s) −ΘX
( )+

ΘL′(t) � sup
0≤ s≤ t

Q∗TΘL′(s) −ΘX′( )+
for all 0 ≤ t ≤ T:

Here the supremum is taken coordinate by coordinate. Since the elements of Q∗T are nonnegative, we have

Θ(L(t) −L′(t)) ≤ Q∗TΘ sup
0≤ s≤ t

|L(s) −L′(s)| + sup
0≤ s≤ t

Θ|X(s) −X′(s)|:

The inequality here also holds coordinate by coordinate. As Θ is a diagonal matrix with positive diagonal ele-
ments, we have

L(t) − L′(t)( ) ≤ Θ−1Q∗TΘ sup
0≤ s≤ t

|L(s) − L′(s)| + sup
0≤ s≤ t

|X(s) − X′(s)|
� QT sup

0≤ s≤ t
|L(s) − L′(s)| + sup

0≤ s≤ t
|X(s) − X′(s)|:

As a result,

sup
0≤ s≤T

|L(s) − L′(s)| ≤ QT sup
0≤ s≤T

|L(s) − L′(s)| + sup
0≤ s≤T

|X(s) − X′(s)|:

Since (I−QT)−1 � R−1 has nonnegative elements, we have

sup
0≤ s≤T

|L(s) −L′(s)| ≤ R−1 sup
0≤ s≤T

|X(s) −X′(s)|:

In the end, we have

sup
0≤ s≤T

|Y(s) − Y′(s)| ≤ sup
0≤ s≤T

|X(s) − X′(s)| + |R| sup
0≤ s≤T

|L(s) − L′(s)|
≤ sup

0≤ s≤T
|X(s) − X′(s)| + |R|R−1 sup

0≤ s≤T
|X(s) − X′(s)|:

Let us denote R−1 by S, then Sij ≥ 0 for all 1 ≤ i, j ≤ d. Based on the fact that Rii � 1, Rij ≤ 0 for all 1 ≤ i≠ j ≤ d
and

∑
kRikSki � 1 for all 1 ≤ i ≤ d, we have

(|R|S)ii �
∑d
k�1

|Rik|Ski � RiiSii −
∑
k≠i

RikSki � RiiSii + (−1+RiiSii) � 2Sii − 1:

Note that 2Sii − 1 > 0 as the diagonal elements of R−1 are greater or equal to 1. Similarly, as
∑

kRikSkj � 0 for all
1 ≤ i≠ j ≤ d, we have

(|R|S)ij �
∑d
k�1

|Rik|Skj � RiiSij −
∑
k≠i

RikSkj � RiiSij +RiiSij � 2Sij:

Therefore, |R|R−1 � 2R−1 − I where I is the identity matrix of dimension d, and we conclude

sup
0≤ s≤T

|Y(s) −Y′(s)| ≤ sup
0≤ s≤T

|X(s) −X′(s)| + |R|R−1 sup
0≤ s≤T

|X(s) −X′(s)|
� 2R−1 sup

0≤ s≤T
|X(s) −X′(s)|:

Recalling Assumption A1,
∣∣R−11
∣∣ ∣∣∣∣∞ ≤ κ0=β0, the desired result follows. w

Given Lemma 2 and Lemma 3, we now are ready to provide an upper bound for the discretization error.

Lemma 4. For fixed γ ∈ (0, 1), t > 0 and the number of dimensions d, there exists a positive constant C1 such that

E[(Ym(t) −Y(t)(2∞] ≤ C1γ
m log(t) + log(d) +mlog(1=γ)( )

:
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Proof of Lemma 4. By Lemma 3, we have

E[(Ym(t) − Y(t)‖2∞] ≤
4κ2

0

β2
E sup

0≤ s≤ t
(Xm(s) − X(s)‖2∞

[ ]
� 4κ2

0

β2
E max

1≤ i≤ d
max
0≤ s≤ t

|Xm
i (s) − Xi(s)|2

[ ] ≤ C1γ
m log(t) + log(d) +mlog(1=γ)( )

,

the last inequality following from Lemma 2 with C1 � C0 · 4κ
2
0

β2
. w

5.2. Nonstationary Error Bound
The convergence rate to stationarity of RBM has been analyzed in Banerjee and Budhiraja (2020) and Blanchet
and Chen (2020) based on the synchronous coupling technique. Here we provide an alternative method based on
the derivative of RBM with respect to the initial condition. Intuitively, the nonstationary error should have the
same order as this derivative, as it reflects the impact of the initial condition on the RBM.

To do this, we first introduce the directional derivative of RBM as defined in Mandelbaum and Ramanan
(2010). For every continuous input X0:t, initial condition y and h ∈ R

d, Mandelbaum and Ramanan (2010) show
that there exists a processDh t;y,X0:t

( ) ∈ R
d such that

Dh t;y,X0:t
( ) � lim

ε↓0
Y t;y+ εh,X0:t
( )−Y t;y,X0:t

( )
ε

,

where the limit is taken componentwise. We first show that the derivative process can be bounded by |h| and the
product of a series of matrices. Following the notation introduced in section 3 of Blanchet and Chen (2020), for
the RBM Y ·;y,X( )

starting from position y at time 0, we define a series of stopping times: η0i (y) � 0, and for integer
k ≥ 1,

ηki y( ) � inf{t > ηk−1 y( ) + 1 : Yi t;y( ) � 0},
ηk y( ) � sup{ηki y( ) : 1 ≤ i ≤ d}, (8)

and set-valued functions

Γi t,y( ) � {ηki (y) : ηki (y) ≤ t}, and Γ t,y( ) � ⋃d
i�1 Γi t,y( ):

For any time point t ≥ 0, define

C t( ) � {1 ≤ i ≤ d : Yi t( ) � 0} and C̄ t( )�{1 ≤ j ≤ d : j ∉ C t( )}:
Then, we introduce an auxiliary Markov chain W n( ) : n ≥ 0( ) living on the state-space {0, 1, :::,d} so that

P W n+ 1( ) � j|W n( ) � i
( ) �Qi,j with Qi,0 � 1−∑d

j�1Qi,j for 1 ≤ i ≤ d, and Q0,0 � 1. We use Pi to refer to the probabili-
ty law of {W(n);n ≥ 0} given thatW(0) � i. For any subset S of {1, 2, :::,d}, we write

τ S( ) � inf{n ≥ 0 :W n( ) ∈ S}, and
τ {0}( ) � inf{n ≥ 0 :W n( ) � 0},

and define the d × dmatrix Λ S( ) as
Λi,j S( ) � Pi τ S( ) < τ {0}( ),W τ S( )( ) � j

( )
for i, j ∈ {1, :::,d}:

The following result provides an explicit bound for the derivative matrix in terms of the product of Λ
matrices.

Lemma 5. For any h ∈ R
d
+, the derivative process

Dh t;y,X0:t
( ) ≤ R−1 ∏

s∈Γ(t,y)
ΛT C̄ s( )

( )
·h,

where the inequality holds componentwise.

Remark 3. Under the uniformity assumptions, (R−11( ≤ b1. As a result, for any h ∈ R
d
+,

‖Dh t;y,Z0:t( )‖1 ≤ b1‖
∏

s∈Γ(t,y)
ΛT C̄ s( )

( )
‖∞‖h‖1:
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Proof of Lemma 5. For simplicity of notation, we shall write Dh(t;y,X0:t) �Dh(t) and define γ(t) � R−1(Dh(t) − I),
that is, γ(t) is the directional derivative of L(t) with respect to initial value y in the direction h (see Mandelbaum
and Ramanan 2010).

According to theorem 1.1 of Kella and Ramasubramanian (2012), the process R−1(Y(t,y1,X0:t) −Y(t,y2,X0:t)) is
nonincreasing in t, for any y1 ≥ y2. As a direct consequence, we can conclude that γ(t) is nonincreasing in t com-
ponent by component.

Suppose Γ(t,y) � {τ1,τ2, :::}with τ1 < τ2 < ::: in order. We define

Dn �
∏
k≤n

ΛT(C(τk)), and γn � R−1(Dn − I) ·h:

In particular, D0 � I and γ0 � 0. We shall prove by induction that for any τn < t ≤ τn+1,

γ(t) ≤ γn and hence R−1Dh(t) ≤ R−1 ∏
k≤N(t)

ΛT(C(τk)) ·h, (9)

where N(t) � sup{k : τk < t}. First, when t < τ1, by definition γ(t) � γ0 � 0. Now suppose (9) holds for all n ≤m− 1
and we consider a fixed time τm < t ≤ τm+1. According to Mandelbaum and Ramanan (2010), the derivative pro-
cesses γ(t) is the unique solution to the following system of equations:

γi(t) � sup
s∈Φi(t)

−hi + (Pγ(s))i
[ ]

,

where Φi(t) � {s ≤ t : Li(s) � Li(t)} and P � I−R ≥ 0. For any i ∈ C(τm), Li(t) > Li(τm) with probability 1. By the fact
that γ(t) is nonincreasing in t and P ≥ 0, we have

γi(t) ≤ −hi + (Pγ(τm))i ≤ −hi + (Pγm−1)i,
where the last inequality holds by the induction assumption. For any i ∈ C(τm), we have γi(t) ≤ γi(τm) ≤ γm−1,i,
where γm−1,i denotes the ith element of γm−1. Suppose γ̄ is the solution to the following systems of linear equa-
tions:

γ̄i �
−hi + (Pγm−1)i if i ∈ C(τm),
γm−1,i if i ∈ C(τm):

{
Then, γ(t) ≤ γ̄ component by component. For the simplicity of notation, we write C � C(τm). Then, γ̄i can be

solved explicitly as

γ̄C � γm−1, C ; γ̄C � R−1
CC (−hC +PCC̄γm−1, C̄ ):

More precisely, we write

γ̄ � −R−1
CC IC
0

( )
h + 0 R−1

CCPCC̄ 0IC̄ C̄
( )

γm−1:

One can check that

ΛT
m¢ΛT(C(τm)) � I + R −R−1

CC IC
0

( )
,

and

R−1ΛT
mR � R−1 I + R −R−1

CC IC
0

( )[ ]
R � I + −R−1

CC ICC 0
0 0

( )
RCC RCC̄

RC̄ CRC̄ C̄

( )
� I + −ICC −R−1

CCRCC̄

0 0

( ) � 0 R−1
CCPCC̄

0 IC̄ C̄

( )
:
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Therefore, we have

γ̄ � R−1(ΛT
m − I)h + R−1ΛT

mRγm−1
� R−1(ΛT

m − I)h + R−1ΛT
mR · R−1 ∏

k≤m−1
ΛT

k − I
( )

h

� R−1 ∏
k≤m

ΛT
k − I

( )
h � γm:

As a result, (9) holds by induction and we have

R−1Dh(t) ≤ R−1 ∏
k≤N(t)

ΛT(C(τk)) · h:

Since all the components of R−1 are nonnegative and all its diagonal entries are greater or equal to 1, we can
conclude that, component by component

Dh(t) ≤ R−1 ∏
k≤N(t)

ΛT(C(τk)) ·h: w

Remark 4. During the revision of the paper, we learned that Lipshutz and Ramanan (2021, lemma 7.5) produce a
similar result that the derivative with respect to the initial condition contracts when the RBM hits all the faces.
Although the result in Lipshutz and Ramanan (2021) holds in a more general setting, that is, RBM in a convex
polyhedral cone, a quantitative bound on the contraction size is not directly provided in Lipshutz and Ramanan
(2021). In contrast, Lemma 5 provides an explicit expression of the contraction whenever RBM hits a face, and
this is necessary for high-dimensional analysis.

Now, we are ready to derive the upper bound for the error due to nonstationarity.

Lemma 6. There exist constants C2 and ξ1 > 0 such that

E[‖Y(t;Y(∞),X0:t) −Y(t;0,X0:t)‖2∞] ≤ C2d3exp −ξ1 t
log(d)

( )
:

Proof of Lemma 6. By the definition of directional derivative of RBM, for any y ∈ R
d
+,

Y t;y,X0:t
( )−Y t;0,X0:t( ) �

∫ 1

0
Dy t;u · y,X0:t

( )
du:

Then, following Lemma 5,

‖Y(t;y,X0:t) − Y(t; 0,X0:t)‖∞ ≤ b1
∫ 1

0
‖ ∏
s∈Γ(t,u·y)

ΛT C̄ s( )
( )

‖∞du · ‖y‖1:

Let’s denote ‖ ∏
s∈Γ(t,u·y)

ΛT C̄ s( )
( )

‖∞ �Θ(u). Then we have

‖Y(t;y,X0:t) −Y(t;0,X0:t)‖2∞ ≤ b21‖y‖21
∫ 1

0
Θ(u)du

( )2
≤ b21‖y‖21

∫ 1

0
Θ(u)du:

The last equality holds as Θ(u) ≤ 1 for all 0 ≤ u ≤ 1.
The rest of proof follows the same argument as in Banerjee and Budhiraja (2020). By lemma 2 and lemma 3 of

Blanchet and Chen (2020), all 0 ≤ u ≤ 1,

Θ(u) ≤ ‖QN (t,u·y)1‖∞,
whereN (t,y) � sup{k ≥ 0 : ηk(y) ≤ t}. Then, we have

E[‖Y(t;Y(∞),X0:t) −Y(t;0,X0:t)‖2∞] ≤ b21E ‖Y(∞)‖21‖QN (t,Y(∞))1‖∞
[ ]

≤ b21E[‖Y(∞)‖41]1=2E[‖QN (t,Y(∞))1‖2∞]1=2 ≤ b21E[‖Y(∞)‖41]1=2E[‖QN (t,Y(∞))1‖∞]1=2:
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The proof of theorem 1 of Banerjee and Budhiraja (2020, p. 20) shows that, under Assumptions A1 to A3,

E[‖Y(∞)‖41]1=2 ≤
4b20
δ20

d2,

E ‖QN (t,Y(∞))1‖∞
[ ]1=2 ≤ C0d exp −ξ1 t

log(d)
( )( )

:

Therefore, letting C2 � 4b20b
2
1

δ20
C0, we get

E[‖Y(t;Y(∞),X0:t) −Y(t;0,X0:t)‖2∞] ≤ C2d3exp −ξ1 t
log(d)

( )
: w

5.3. Complexity Analysis
Given the error bounds Lemma 4 and Lemma 6, we are ready to show that, for the two-parameter multilevel
Monte Carlo Algorithm 1, the computational budget to obtain an estimator at a fixed accuracy level is almost lin-
ear in dimension d.

Proof of Theorem 1. Recall that for a given sequence of RBMs and a given function f to be evaluated, the algo-
rithm has five input parameters, (γ,T,L,y0,N). In the following analysis, we choose y0 � 0.

For fixed d and ε, the mean square error of the estimator Z̄ can be expressed as

E[(Z̄ −E[f (Y(∞))])2 ] � Var[Z̄] + (E[Z̄] −E[f (Y(∞))])2

≤ 1
N
E[(Z− f (y0))2] + (E[Z] −E[f (Y(∞))])2

� 1
N

∑L−1
m�0

p(m)−1E
[(
f
(
Ym+1

(
(m+ 1)T;y0,Xm+1

0:(m+1)T
))
− f

(
Ym

(
mT;y0,X

m
T:(m+1)T

)))2]
+ (E[Z] −E[f (Y(∞))])2

¢
1
N

∑L−1
m�0

K(γ)−1γ−mVm +Bias2:

(10)

We first analyze the variance terms Vm for each m � 0, 1, :::,L− 1. Following Assumption A4,

f Ym+1 (m+ 1)T;y0,Xm+1
0:(m+1)T

( )( )
− f Ym mT;y0,X

m
T:(m+1)T

( )( )
≤ L||Ym+1 (m+ 1)T;y0,Xm+1

0:(m+1)T
( )

−Ym mT;y0,X
m
T:(m+1)T

( )
||∞,

and

||Ym+1 (m+ 1)T;y0,Xm+1
0:(m+1)T

( )
−Ym mT;y0,X

m
T:(m+1)T

( )
||∞

≤ ||Ym+1 (m+ 1)T;y0,Xm+1
0:(m+1)T

( )
−Y (m+ 1)T;y0,X0:(m+1)T

( )||∞ (11)

+ ||Ym mT;y0,X
m
T:(m+1)T

( )
−Y mT;y0,XT:(m+1)T

( )||∞ (12)

+ || Y (m+ 1)T;y0,X0:(m+1)T
( )−Y mT;y0,XT:(m+1)T

( )||∞: (13)

For (11) and (12), by following Lemma 4, we have

E[||Ym+1 (m + 1)T; y0,Xm+1
0:(m+1)T

( )
− Y (m + 1)T;y0,X0:(m+1)T

( )||2∞)]
≤ C1γ

m+1 log( m + 1( )T) + log(d) + m + 1( )log(1=γ)( )
,

and

E[||Ym mT; y0,X
m
T:(m+1)T

( )
− Y mT;y0,XT:(m+1)T

( )||2∞]
≤ C1γ

m log(mT) + log(d) +mlog(1=γ)( )
:
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For (13), by Kella and Ramasubramanian (2012, theorem 1.1), we have

Y(T;Y(∞),X0:T) ≥ Y(T; 0,X0:T) ≥ 0,

and by using Kella and Ramasubramanian (2012, theorem 1.1) again, we have

Y mT;Y(T;Y(∞),X0:T),XT:(m+1)T
( ) ≥ Y mT;Y(T; 0,X0:T),XT:(m+1)T

( )
≥ Y mT; 0,XT:(m+1)T

( )
Therefore, by following Lemma 6 and y0 � 0, we have

E ||Y (m+ 1)T;y0,X0:(m+1)T
( )−Y mT;y0,XT:(m+1)T

( )||2∞[ ]
� E[||Y mT;Y(T;0,X0:T),XT:(m+1)T

( )−Y mT;0,XT:(m+1)T
( )||2∞]

≤ E[||Y mT;Y mT;Y(T;Y(∞),X0:T( ),XT:(m+1)T
( )−Y mT;0,XT:(m+1)T

( )||2∞]
� E[||Y mT;Y(∞),XT:(m+1)T

( )−Y mT;0,XT:(m+1)T
( )||2∞]

≤ C2 · d3exp −ξ1 mT
logd

( )
:

Recalling that (a+ b+ c)2 ≤ 3 a2 + b2 + c2( ), we therefore have that

Vm ≤ 3L2 2C1γ
m(log((m+ 1)T) + log(d) + (m+ 1)log(1=γ)) +C2 · d3exp −ξ1 mT

logd

( )( )
:

Let T � � 3log(d)2 + log(1=γ)log(d)
( )

=ξ1� and C3 � 3L2(2C1 +C2). We have

Vm ≤ 3L2 2C1γ
m(log((m+ 1)T) + log(d) + (m+ 1)log(1=γ)) +C2γ

m( )
≤ C3γ

m(log((m+ 1)T) + log(d) + (m+ 1)log(1=γ)):
Therefore, the total variance of our estimator is

Vtotal � 1
N

∑L−1
m�0

K(γ)−1γ−mVm

≤ 1
N
K(γ)−1∑L−1

m�0
C3(log((m + 1)T) + log(d) + (m + 1)log(1=γ)))

≤ 1
N
C3K(γ)−1L log(LT) + log(d) + Llog(1=γ)( )

:

(14)

Now we turn to the term of bias in (10). Following Assumption A4, we have

Bias2

� (E[Z] − E[f (Y(∞))])2 � (E[f (YL(TL;y0,XL
0:LT)) − f (Y(∞))])2

≤ 2 (E[f (YL(TL; y0,XL
0:LT)) − f (Y(TL;y0,X0:LT))])2 + (E[f (Y(TL; y0,X0:LT)) − f (Y(∞))])2

( )
≤ 2 E f (YL(TL;y0,XL

0:LT)) − f (Y(TL; y0,X0:LT))
( )2[ ]

+ E f (Y(TL; y0,X0:LT)) − f (Y(TL;Y(∞),X0:LT))( )2[ ]( )
≤ 2L2 E[||YL(TL;y0,XL

0:LT) − Y(TL;y0,X0:LT)|| + E[||Y(TL;y0,X0:LT) − Y(TL;Y(∞),X0:LT))||2∞]
( )

:

Following Lemma 4, we have

E[||YL(TL;y0,X0:LT) − Y(TL;y0,X0:LT)||2∞] ≤ C1 γL(log(LT) + log(d) + Llog(1=γ))
( )

:

Following Lemma 6, we have

E[||Y(TL;y0,X0:LT) − Y(TL;Y(∞),X0:LT))||2∞] ≤ C2 · d3exp −ξ1 LT
log(d)

( )
≤ C2 · γL,

for T � � 3log(d)2 + log(1=γ)log(d)
( )

=ξ1�:
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Therefore, we have

Bias2 ≤ C3 γL(log(LT) + log(d) + Llog(1=γ))
( )

≤ ε2=2, for

T � � 3log(d)2 + log(1=γ)log(d)
( )

=ξ1�, and

L � � log(log(d)) + 2log(1=ε) + k1
( )

=log(1=γ)�,
where k1 is a numerical constant.

To equalize the variance and bias of our estimator, we enforce

C3 γL(log(LT) + log(d) + Llog(1=γ))
( )

� 1
N
C3K(γ)−1L log(LT) + log(d) + Llog(1=γ)( )

: (15)

Hence, N � �K(γ)−1L=γL� �O ε−2K(γ)−1Llog(d)
( )

: Then, by plugging the choice of T, L, N in (14), we have
Vtotal ≤ ε2=2.

Note that the complexity, in terms of expected number of scalar Gaussian random variables generated to simu-
late one sample of Z, should be

C � ∑L−1
m�0

p(m)γ−(m+1)T(m + 1)d � 1
2
K(γ)γ−1dTL(L + 1):

Then, the total complexity to compute Z̄ by N numbers of samples, with our choice of (γ,T,L,N), is

N × C �O ε−2K(γ)−1Llog(d)
( )

× 1
2
K(γ)γ−1dTL(L+ 1)

( )
� O ε−2dTlog(d)L3

( )
� O ε−2dlog(d)3(log(log(d)) + log(1=ε))3

( )
: w

(16)

Lemma 7. The optimal γ∗ � 0:05.

Proof of Lemma 7. According to (16), we have the dependence of the total complexity on γ is approximately
γ−1 log(1=γ)( )−3

: Optimizing γ to obtain the optimal complexity, we find that the optimal γ is

γ∗ � arg min
0<γ<1

γ−1 log(1=γ)( )−3 � 0:05: w

5.4. Proof of the Lower Bound in Theorem 2

Proof of Theorem 2. The fact that Algorithm 1 belongs to the specified class is direct from its construction. Now,
let π be any algorithm in the class. It suffices to show that each dimension must be sampled in the algorithm. If
this is not the case, without loss of generality, we may assume that the algorithm does not sample any observa-
tion in the first coordinate. Consider the case R � Σ � I and f (y) � Ly1. We consider two different specifications
of μ: μ(1) � −[2δ0,1,: : : ,1]T for RBM1 and μ(2) � −[4δ0,1,: : : ,1]T for RBM2. Then, since the dimensions are mutually
independent, computing the steady-state distribution of the RBM reduces to studying one-dimensional RBMs. It
is well known (see, for example, Harrison 1985) that the stationary distribution is exponential distribution with
mean −1=(2μi). Specifically, E[f (Y(1)(∞))] � L=(4δ0) and E[f (Y(2)(∞))] � L=(8δ0).

Since the algorithm never observes the first coordinate, the algorithm should give an identical output for
RBM1 and RBM2. Suppose the output is the random variable Z̃. The sum of MSEs of RBM1 and RBM2 becomes

E
L

4δ0
− Z̃

( )2[ ]
+E

L

8δ0
− Z̃

( )2[ ]
≥ L2

128δ20
:

Therefore, the target error of order MSE ε2 < (L=(16δ0))2 cannot be achieved simultaneously for both
RBMs. w

6. Conclusion
We have presented and analyzed a Monte Carlo algorithm that constructs asymptotically optimal estimators for
steady-state expectations of high-dimensional RBM. We believe that the strategy that we present can be applied
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to more general networks. A key idea is to consider the so-called synchronous coupling in combination with
multilevel Monte Carlo. Although this idea is not new (see, for example, Glynn and Rhee 2014), the analysis,
which is based on the rate of decay to zero of the product of substochastic random matrices is, we believe, appli-
cable to other settings. In particular, the sensitivity to the initial condition in every stochastic flow naturally leads
to the study of products of random matrices and the analysis of the so-called top Lyapunov exponent. In this pa-
per, we are able to use implicit estimates for this product from Banerjee and Budhiraja (2020) and Blanchet and
Chen (2020). This, we expect, will provide a blueprint that can be used in other settings, as we expect to report in
future research.
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Appendix A. Routine to Solve Skorokhod Problem in Algorithm 1
In step 5 of Algorithm 1, once the piecewise linear approximation is obtained for the underlying Brownian motion, we
obtain the solution to the Skorokhod problem by solving, at each time step, a static linear complementarity problem (see,
for example, Cottle et al. 2009). Since R is an M-matrix, we here provide a simple yet numerical stable algorithm to solve
the linear complementarity problem in Algorithm A.1.

Algorithm A.1 (Algorithm for the Linear Complementarity Problem)
Input:
The reflection matrix: R;
The initial vector: x;
Output:
The solution of the linear complementarity problem: y ≥ 0, where y � x+RL for L ≥ 0.
1: Set ε � 10−8;
2: y � x;
3: while Exists yi < −ε do
4: Compute the set B � {i : yi < ε};
5: Compute LB � −R−1

B,BxB;
6: Compute y � x+R:,B × LB;

return y.

Appendix B. Lower Bound on Constant ξ1
We also provide a lower bound for the constant ξ1, which is not given explicitly in either Banerjee and Budhiraja (2020)
or Blanchet and Chen (2020). The lower bound is computed based on a worst-case analysis in Banerjee and Budhiraja
(2020). We believe that it is far from tight, as shown in the numerical experiments in Section 4. We provide this, never-
theless, for completeness.

Lemma A.1. The constant ξ1 satisfies

ξ1 ≥ D1
log(2)

log(1 − β0)−1
+ 1

( )−1
2 + κ2

0b0
β20δ

2
0

( )−1
withD1 � 1=557065.

Proof of Lemma A.1. Our ξ1 is equivalent to E2 as defined in theorem 3 in Banerjee and Budhiraja (2020), that is,

E2 � D1
log(2)

log(1 − β0)−1
+ 1

( )−1
2 + κ2

0b0
β20δ

2
0

( )−1
,

with D1 � δ′=128, δ′ � (64C1)−1 and C1 � C0 � A0 � 68 according to lemmas 7 and 8 in Banerjee and Budhiraja
(2020). w

Endnote
1 We recommend choosing step size γ around 0.05 (please check Lemma 7 for the reason), but our algorithm is not sensitive to the specific
choice of γ.
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