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Abstract. We provide a simple proof of the central limit theorem (CLT) for estimated
functions at estimated points. Such estimators arise in a number of different simulation-
based computational settings. We illustrate the methodology via applications to quantile
estimation and related sensitivity analysis, as well as to computation of conditional value-
at-risk.
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1. Introduction
In a number of simulation-based numerical schemes,
the key computational challenge involves the esti-
mation of a quantity of the form α � E[Y(x∗)] where
Y � (Y(x) : x ∈ R) is a real-valued, square-integrable
stochastic process with sample paths that are right-
continuous and have left limits everywhere. When x∗

is known to the simulator, the solution is straight-
forward: generate independent and identically dis-
tributed (iid) copies Y1,Y2, . . . of the process, evaluate
them at x∗, and estimate α via the sample average
n−1 ∑n

i�1 Yi(x∗). When x∗ must be simultaneously esti-
mated via the simulation, by the estimator X̂n say, the
natural estimator for α is again obvious; namely,
estimate α via the “plug-in” estimator n−1 ∑n

i�1 Yi(X̂n).
Note that the estimator involves the estimated func-
tion n−1 ∑n

i�1 Yi(·) evaluated at the estimated point X̂n.
A theoretical challenge in this computational set-

ting is the derivation of a large-sample central limit
theorem (CLT) for n−1 ∑n

i�1 Yi(X̂n) as an estimator for
α. Such a CLT is essential to the development of
large-sample confidence intervals for α, which are
used by simulators to assess the accuracy of their com-
putational procedures.

In this note, we provide simple conditions for such
CLTs. There are related results, for example, in the
context of sample-average approximation in stochas-
tic programming (Shapiro et al. 2009), which require
that the stochastic processes involved have Lipschitz
continuous sample paths. However, the literature
does not explicitly appear to address the case inwhich
the stochastic process Y is stochastically continuous,
but not sample path continuous. (Y is stochastically
continuous at x∗ if Y(x) −Y(x∗)⇒ 0 as x → x∗, where⇒
denotes weak convergence.) The Poisson process is
an important example of such a stochastic process,
and moreover, many discrete-event processes en-
countered in operations research are stochastically
continuous in an underlying parameter, but not sam-
ple path continuous. While empirical process theory
together with an infinite-dimensional Delta Theorem
(Shapiro et al. 2009) can be used to deal with the case
in which Y is not sample path continuous, here we
provide an alternative approach from first principles
with conditions that are simple to verify. Our results
apply to quantiles, conditional value-at-risk, quantile
sensitivities, and other computational contexts as well.
Section 2 describes our theoretical results,while Section 3
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provides applications that illustrate the ease-of-use of
our theory.

2. Main Results and Proofs
Set Yn(·) � n−1 ∑n

i�1 Yi(·) and α(·) � E[Y(·)]. We start
with a heuristic discussion that will later be made
rigorous; see Theorems 1 and 2. Suppose the sample
path of Y(·) is differentiable, and its derivative Y′(·) is
an unbiased estimator of α′(·), the derivative of α(·).
One natural approach to developing a CLT for Yn(X̂n)
would be to approximate Yn(X̂n) as

Yn X̂n

( )
≈ Yn x∗( ) + Y′

n x∗( ) X̂n − x∗
( )

,

where ≈ means “is approximately equal to,” and
Y′
n(x∗) is the derivative of Yn(·) evaluated at x∗. The

law of large numbers (LLN) then suggests that Y′
n(x∗)

converges (either in probability or almost surely) to
α′(x∗) as n → ∞, so that we can write

Yn X̂n

( )
≈ Yn x∗( ) + α′ x∗( ) X̂n − x∗

( )
.

Hence, if there exist jointly Gaussian random vari-
ables (rv’s) 11 and 12 such that the CLT

n1/2 Yn x∗( ) − α, X̂n − x∗
( )

⇒ 11,12( ) (1)
as n → ∞ holds, then it should follow that the CLT

n1/2 Yn X̂n

( )
− α

( )
⇒ 11 + α′ x∗( )12 (2)

holds, as n → ∞. The main theoretical issue with this
approach is that in many computational settings, the
sample paths ofY(·)may not be differentiable (or even
continuous, as discussed in Section 1), even if α(·) is.
Therefore, we seek an argument in which only α(·) is
assumed differentiable, and the sample paths of Y(·)
are not necessarily differentiable or continuous.

Example: Conditional Value-at-Risk. For concreteness,
we motivate the theoretical development in this sec-
tion using the estimation of conditional value-at-
risk (CVaR) as a running example. For an rv X and
0 < p < 1, suppose we wish to estimate the CVaR
α ≡ E[X|X > q] � E X1{X > q}[ ]

/(1 − p), where q (the x∗
in this case) is the quantile defined by P(X ≤ q) � p, and
1{·} denotes the indicator function. We assume that q is
unknown and must be estimated from the data, and
that q is uniquely defined as the root of P(X ≤ q) � p. In
this case, we setY(x) ≡ X1{X > x}/(1 − p), and given an
iid sample X1, . . . ,Xn with the same distribution as X,
we take the estimator X̂n � inf x : n−1∑n

i�1 1{Xi ≤ x}≥ p
{ }

,
the sample quantile. Then, Yn(X̂n) ≡ n−1 ∑n

i�1 Xi1{Xi >
X̂n}/(1 − p) is the natural “plug-in” estimator of α. Here,
the sample paths of Y are not even continuous, but
under mild regularity conditions on X, α(·) is differ-
entiable at q.

So, we seek an argument that does not rely on the
assumption that the sample paths of Y(·) are differ-
entiable or continuous. The approach we will follow
in this paper is to set ξn(x) � Yn(x) − α(x) and to write

Yn X̂n

( )
− α � ξn X̂n

( )
+ α X̂n

( )
− α.

Suppose we can prove that

n1/2 ξn X̂n

( )
− ξn x∗( )

( )
⇒ 0 (3)

as n → ∞. Then, if α(·) is differentiable at x∗,

n1/2 Yn X̂n

( )
− α

( )
� n1/2ξn x∗( ) + n1/2 α X̂n

( )
− α

( )
+ oP(1)

� n1/2 Yn x∗( ) − α
( )+ α′ x∗( ) + oP(1)( )n1/2 X̂n− x∗

( )
+ oP(1)

� n1/2 Yn x∗( ) − α
( )+ α′ x∗( )n1/2 X̂n − x∗

( )
+ oP(1), (4)

where, for a real sequence an, oP(an) denotes a sequence
of rv’s for which oP(an)/an ⇒ 0 as n → ∞, andwe used
that (1) implies X̂n − x∗ ⇒ 0 as n → ∞. The CLT (2)
then follows immediately from (1). Consequently,
proving (3) is the key remaining step needed to es-
tablish the CLT (2).
Not surprisingly, some sample path regularity of

Y(·), short of continuity, is needed to establish (3).
Here is what we shall require:

Assumption 1. In some closed neighborhoodO of x∗, α(·) is
continuously differentiable, and there exist nonnegative, non-
decreasing functions f and g such that
i. E[(Y(x1)−Y(x2))2]≤ f (x2−x1), x1<x2, x1, x2 ∈ 2;
ii. E[min((Y(x1) − Y(x2))2, (Y(x2) − Y(x3))2)] ≤

g(x3 − x1), x1 < x2 < x3, x1, x2, x3 ∈ 2;
iii.

∫ 1
0 f 1/2(u)u−5/4du < ∞;

iv.
∫ 1
0 g1/2(u)u−3/2du < ∞.

We note that (iii) implies that limu↓0 f (u) � 0, and
then (i) and Markov’s inequality imply that Y is
stochastically continuous at x∗. We also note that be-
cause α(·) is continuously differentiable in 2, |α(x) −
α(y)| ≤ c|x − y|, x, y ∈ 2 for some finite c. It is then easily
argued that (i)–(iv) also hold with Yc(·) ≡ Y(·) − α(·)
replacing Y(·).
Theorem1. If there exist random variables (rv’s)11 and12
such that

n1/2 Yn x∗( ) − α, X̂n − x∗
( )

⇒ (11,12)

as n → ∞ and Assumption 1 holds, then

n1/2 Yn X̂n

( )
− α

( )
⇒ 11 + α′ x∗( )12

as n → ∞.
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Proof. It remains only to prove (3). From Bloznelis and
Paulauskas (1994), it is known that under Assumption 1,
there exists a continuous sample path Gaussian pro-
cess ξ such that

n1/2ξn(·) ⇒ ξ(·)
as n → ∞ inD[a, b] (the space of real-valued functions
on [a, b] with sample paths that are right-continuous
and have left limits, endowed with the Skorohod
topology; see Billingsley 1999 for details), where a <
x∗ < b and [a, b] ⊂ 2. When the limit ξ(·) has contin-
uous sample paths, this implies that h(ξn) ⇒ h(ξ) for
any mapping h : D[a, b] → R for which h(wn) → h(w)
whenever wn converges uniformly to w as n → ∞.
The mapping h(w) � min(sup|x−x∗|≤δ |w(x) − w(x∗)|, 1)
clearly has this property. Furthermore, since this h is
bounded, it follows by the portmanteau theorem
(Billingsley 1999) that for any δ > 0,

E min sup
|x−x∗|≤δ

n1/2|ξn(x) − ξn x∗( )|, 1
( )[ ]

→ E min sup
|x−x∗ |≤δ

|ξ(x) − ξ x∗( )|, 1
( )[ ]

(5)

as n → ∞. For 1 > ε, γ > 0, we can now use the sam-
ple path continuity of the limit ξ(·) to deduce the ex-
istence of δ > 0 for which

E min sup
|x−x∗|≤δ

|ξ(x) − ξ x∗( )|, 1
( )[ ]

≤ εγ. (6)

Hence, for this selection of δ, we find that

P n1/2|ξn X̂n

( )
− ξ x∗( )| > ε

( )
≤ P |X̂n − x∗| > δ

( )
+ E 1 sup

|x−x∗ |≤δ
n1/2|ξn(x) − ξn x∗( )| > ε

{ }[ ]
≤ P X̂n − x∗

⃒⃒⃒ ⃒⃒⃒
> δ

( )
+ E min sup

|x−x∗ |≤δ
n1/2|ξn(x) − ξn x∗( )| 1

ε
, 1

( )[ ]
≤ P X̂n − x∗

⃒⃒⃒ ⃒⃒⃒
> δ

( )
+ 1
ε
E min sup

|x−x∗ |≤δ
n1/2|ξn(x) − ξn x∗( )|, 1

( )[ ]
,

where the last inequality holds due to ε < 1. We now
send n → ∞ and apply (5) and (6) to conclude that

lim sup
n→∞

P n1/2 ξn X̂n

( )
− ξ x∗( )

⃒⃒⃒ ⃒⃒⃒
> ε

( )
≤ γ.

Sending γ ↓ 0, we find that

lim sup
n→∞

P n1/2 ξn X̂n

( )
− ξ(x∗)

⃒⃒⃒ ⃒⃒⃒
> ε

( )
� 0,

thereby proving (2.3). □

We now provide simple sufficient conditions for
Assumption 1.

Proposition 1. The conditions of Assumption 1 (i)–(iv) are
satisfied if either of the following conditions hold:
a. There exist γ > 1/2 and an rv Γwith E[Γ2] < ∞ such

that
|Y(x1) − Y(x2)| ≤ Γ|x1 − x2|γ

for x1, x2 ∈ 2. (The sample paths of Y(·) are almost surely
continuous in this special case, but not necessarily
differentiable.)
b. There exist b ∈ R, c > 0, β > 1/2, and rv’s 0 and χ

such that Y(x) � 01{χ ≤ x} − b, with E 021{x1 <[
χ ≤

x2}] ≤ c|x2 − x1|β for x1, x2 ∈ 2.

Proof. For (a), choose f (u) � g(u) � E[Γ2]u2γ, and note
that (i), (iii), and (iv) are easily satisfied. For (ii),

min Y(x2( ) − Y x1( )( )2, Y(x3) − Y(x2))2( )
≤ (Y(x2) − Y(x1))2 + (Y(x3) − Y(x2))2
≤ Γ2 |x2 − x1|2γ + |x3 − x2|2γ( )
≤ Γ2|x3 − x1|2γ.

Turning to (b), note that χ lies in either (x1, x2] or
(x2, x3], but not in both, so one of 021{x1 < χ ≤ x2}
or 021{x2 < χ ≤ x3} is zero. Hence, (ii) and (iv) are
trivially satisfied. As for (i) and (iii), they hold for
f (u) � c|u|β. □

Later, case (a) of Proposition 1 will be used in the
quantile and quantile sensitivity examples, whereas
case (b) will be used in the CVaR example. In the
remainder of this section, we investigate a particu-
lar setting, in which our goal is to estimate E[Y(x∗)],
where x∗ satisfies E[Z(x∗)] � 0. More precisely, let Z �
(Z(x) : x ∈ R) be a square-integrable nondecreas-
ing process with right-continuous sample paths,
and suppose (Y1,Z1), (Y2,Z2), . . . is an iid sequence of
copies of (Y,Z)with Y also square-integrable. (Such a
setting arises, for example, when estimating CVaR of
an rv X, where we set Y(x) ≡ X1{X > x}/(1 − p) and
Z(x) ≡ 1{X ≤ x} − p.) Set φ(x) � E[Z(x)] and assume
that φ(·) is continuously differentiable with positive
derivative in some neighborhood of x∗. We suppose
that X̂n is an estimator for x∗ minimizing |Zn(·)| (since
Zn(·) may not have a root for a particular sample
size n) and satisfying X̂n ⇒ x∗ and

Zn X̂n

( )
� oP n−1/2

( ) (7)
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as n → ∞, where oP(1/an) is a sequence of rv’s for
which anoP(1/an) ⇒ 0 as n → ∞. The assumption (7) is,
for example, immediate when Zn(·) has continuous
sample paths. (Since φ′(·) is positive and continuous
at x∗, there exist ε > 0 and x1, x2 such that x1 < x∗ < x2,
φ(x1) < −ε and φ(x2) > ε. Then the strong LLN yields
Zn(x1) < −ε/2 and Zn(x2) > ε/2 almost surely for
n sufficiently large, and the desired conclusion
follows by the intermediate value theorem.) It is also
obvious when Z(x) � V1{τ ≤ x}, with E[V2] < ∞, and
τ is a continuous rv, since n−1 ∑n

i�1 1{τi ≤ ·} then
jumps by 1/n, and |Zn(X̂n)| ≤ n−1 max1≤i≤n |Vi|. (Then,
n−1/2 max1≤i≤n |Vi| � oP(1) by noticing that for any ε > 0,

P max
1≤i≤n |Vi| > n1/2ε

( )
≤ nP |V| > n1/2ε

( )
� E n1 V2 > nε2

{ }[ ]
≤ E V2/ε2

( )
1{V2/ε2 > n

}[ ]
↓ 0

as n → ∞.)

Example: Conditional Value-at-Risk. The above dis-
cussion applies to the running example of CVaR esti-
mation, which requires quantile estimation. Suppose
that there exists a unique value q for which P(X ≤ q) � p.
We then set φ(x) ≡ P(X ≤ x) − p and Z(x) ≡ 1{X ≤
x} − p, so that with x∗ taken to be the quantile q, we
clearly have φ(x∗) � 0. Taking X̂n to be the sample
quantile, we then have |Zn(X̂n)| ≤ n−1 almost surely
from the above discussion, and so (7) holds.

Continuing the theoretical discussion, set νn(x) �
Zn(x) − φ(x) and write

Zn X̂n

( )
� νn X̂n

( )
+ φ X̂n

( )
− φ x∗( ).

The square-integrability and iid structure of the (Yi,Zi)’s
guarantee the CLT

n1/2 Yn(x∗) − α,Zn(x∗)( ) ⇒ 1′
1,1

′
2

( ) (8)
as n → ∞, where Var(1′

1) � Var(Y(x∗)), Var(1′
2) �

Var(Z(x∗)) and Cov(1′
1,1

′
2) � Cov(Y(x∗),Z(x∗)). Then,

the proof of Theorem 1 establishes the analogue
of (2.3) with νn(·) playing the role of ξn(·), so that

n1/2Zn X̂n

( )
� n1/2νn(x∗) + n1/2 φ X̂n

( )
− φ(x∗)

( )
+ oP(1)

� n1/2Zn(x∗) + φ′(x∗) + oP(1)( )
n1/2 X̂n − x∗

( )
+ oP(1)

� n1/2Zn(x∗) + φ′(x∗)n1/2 X̂n − x∗
( )

+ oP(1)

as n → ∞. And in view of (7), we see that

n1/2Zn(x∗) + φ′(x∗)n1/2 X̂n − x∗
( )

� oP(1).

as n → ∞. Hence, if Assumption 1 also holds for Y(·)
at x∗, then using (4),

n1/2 Yn X̂n

( )
− α

( )
� n1/2 Yn(x∗) − α

( ) + α′(x∗)n1/2 X̂n − x∗
( )

+ oP(1)

� n1/2 Yn(x∗) − α
( ) − α′(x∗)

φ′(x∗) n
1/2Zn(x∗) + oP(1) (9)

as n → ∞. In view of (8), we have therefore proved the
following theorem.

Theorem 2. Assume Assumption 1 holds at x∗ for Y and
also for Z (playing the role of Y). If X̂n satisfies (7), then

n1/2 Yn X̂n

( )
− α

( )
⇒ 1′

1 −
α′(x∗)
φ′(x∗)1

′
2 (10)

as n → ∞.

3. Illustrative Applications

Example 1 (Quantiles). For 0 < p < 1, suppose that we
wish to compute the quantile q such that P(X ≤ q) � p.
As in the running example from Section 2, we estimate
q via any estimator satisfying (7), such as the sample
quantile defined previously. We assume that there
exists a neighborhood 2 of q within which X has a
positive and continuous density fX(·). Such an assump-
tion is standard in the literature on quantile CLTs;
see, for example, p. 77 of Serfling 1980.

In this case, we set Y(x) ≡ x (here, Y(·) is actually
nonrandom and differentiable), and as we have dis-
cussed previously, Z(x) ≡ 1{X ≤ x} − p for x ∈ R. We
need to verify Assumption 1 (i)–(iv) forY(·) andZ(·) in
a neighborhood of q. Application of Proposition 1(a)
to Y (with γ � 1) and 1(b) to Z (with χ � X,0 � 1, and
β � 1) then proves that Theorem 2 holds, yielding

n1/2 X̂n − q
( )

⇒ σ1(0, 1)

as n → ∞, where σ2 �Var(−Z(q)/fX(q)) � p(1−p)/f 2X(q).
Example 2 (Conditional Value-at-Risk). Continuing the
running example from Section 2, our goal is to
compute α � E[X |X > q] � E[X1{X > q}]/(1 − p). Like
before, we set Y(x) ≡ X1{X > x}/(1 − p) and Z(x) ≡
1{X ≤ x} − p, and let X̂n be any estimator of q satis-
fying (7). It is easily seen using Proposition 1 that both
Y and Z satisfy Assumption 1 (i)–(iv) at q whenever
E[X2] < ∞ and X has a positive and continuous
density in a neighborhood of q. In that case, Theorem 2
guarantees that

n1/2
1
n

∑n
i�1

Xi1 Xi> X̂n

{ }
1 − p

− E[X | X > q]
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⇒ σ1(0, 1)
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as n → ∞, where σ2 � Var((X − q)1{X > q}/(1 − p)). It
should be noted that our continuous density as-
sumption is weaker than that found in Hong et al.
(2014), where X is assumed to have a continuously
differentiable density. On the other hand, Pflug and
Wozabal (2010) require only that the quantile function
(defined by q(y) � inf{x : P(X ≤ x) ≥ y}, for 0 < y < 1)
be continuous at p, but require slightly stronger mo-
ment hypotheses on X than we do.

Example 3 (Quantile Sensitivity). Suppose that the rv X
depends on a parameter θ, so that X � X(θ). Then, the
quantile q also depends on θ, and q � q(θ) satisfies
P(X(θ) ≤ q(θ)) � p. In many settings, we can write
P(X(θ) ≤ x) � F(θ; x) � E[R(θ; x)] for someR(·; ·), where
R is smooth in θ and x. (For example, such repre-
sentations can often be obtained by conditioning on
some rv S, chosen so that X(θ) has a computable
smooth density; see Fu et al. 2009 for details.) Let θ0
be the parameter value at which we wish to compute
the derivative of q(·). Suppose that F is twice continu-
ously differentiable in a neighborhood 2 of (θ0, q(θ0))
with ∂xF(θ0; q(θ0)) > 0, where ∂xF(θ; x) �. ∂F(θ; x)/∂x,
and that R(·; ·) is almost surely differentiable in that
neighborhood and satisfies

∂θF(θ; x) � E[∂θR(θ; x)],
∂xF(θ; x) � E[∂xR(θ; x)],

where ∂θF(θ; x) �. ∂F(θ; x)/∂θ, ∂θR(θ; x) �. ∂R(θ; x)/∂θ,
and ∂xR(θ; x) �. ∂R(θ; x)/∂x. Finally, assume that
E[(∂θR(θ0;q(θ0)))2+(∂xR(θ0;q(θ0)))2]<∞ andthat there
exist γ > 1/2 and a square-integrable rv Γ such that

|∂θR(θ0; x1) − ∂θR(θ0; x2)| ≤ Γ|x1 − x2|γ,
|∂xR(θ0; x1) − ∂xR(θ0; x2)| ≤ Γ|x1 − x2|γ

for (θ0, xi) ∈ 2, i � 1, 2.

The implicit function theorem guarantees that the
quantile sensitivity is given by q′(θ0) � −∂θF(θ0; q(θ0))/
∂xF(θ0; q(θ0)). Furthermore, part (a) of Proposition 1
and (9) then establish that

1
n

∑n
i�1

∂θRi θ0; X̂n

( )
� ∂θF(θ0;q(θ0)) + 1

n

∑n
i�1

∂θRi(θ0;q(θ0)) − ∂θF(θ0;q(θ0)){ }
− ∂2θ,xF(θ0;q(θ0))

∂xF(θ0;q(θ0))
1
n

∑n
i�1

1{Xi≤q(θ0)} − p
{ }+ oP n−1/2

( )
,

where ∂2θ,xF(θ; x) �. ∂2F(θ; x)/∂θ∂x, and (via a Taylor
series expansion),

1
n

∑n
i�1

∂xRi θ0; X̂n

( )( )−1
� ∂xF(θ0; q(θ0))( )−1 − ∂xF(θ0; q(θ0))( )−2
· 1
n

∑n
i�1

∂xRi(θ0; q(θ0)) − ∂xF(θ0; q(θ0)){ }
+ ∂2x,xF θ0; q(θ0)( )

∂xF(θ0; q(θ0))( )−3
· 1
n

∑n
i�1

1{Xi ≤ q(θ0)} − p
{ } + oP n−1/2

( )
,

where X̂n is any estimator of q satisfying (7) and
∂2x,xF(θ; x) �. ∂2F(θ; x)/∂x2. It follows that

n1/2 −
∑n

i�1 ∂θRi θ0; X̂n

( )
∑n

i�1 ∂xRi θ0; X̂n

( ) − q′(θ0)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⇒ σ1(0, 1)

as n → ∞, where σ2 � Var(M), and
M � ∂θR(θ0; q(θ0))

∂xF(θ0; q(θ0)) −
∂θF(θ0; q(θ0))

(∂xF(θ0; q(θ0)))2 ∂xR(θ0; q(θ0))

+ ∂θF(θ0; q(θ0))∂2x,xF(θ0; q(θ0))
(∂xF(θ0; q(θ0)))3

{

− ∂2θ,xF(θ0; q(θ0))
(∂xF(θ0; q(θ0)))2

}
1 X ≤ q(θ0){ }

,

providing the CLT for the quantile sensitivity esti-
mator, which in turn, justifies the square-root con-
vergence rate. The convergence rate in Fu et al. (2009)
is established by the square-root convergence of the
second moment. Without a central limit theorem,
there is no theoretical justification for constructing a
confidence interval and performing hypothesis test-
ing. An alternative quantile sensitivity estimator can
be derived using the generalized likelihood ratio
(GLR) method in Peng et al. (2018), which can deal
with a large scope of discontinuities in the sample
performance. The CLT for the quantile sensitivity
estimator using GLR can also be proved by the theory
established in this note, and an alternative proof using
an empirical process approach can be found in Peng
et al. (2017).

4. Confidence Intervals
An important use of results such as (10) in Theorem 2 is
in the construction of large-sample confidence in-
tervals, which quantify the estimation accuracy of
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Monte Carlo–based computational procedures. To
construct a confidence interval for α in (10), a natural
approach is to estimate the variance of the limit rv
on the right-hand side of (10). However, such an
approach will require the estimation of α′(x∗) and
φ′(x∗), which is nontrivial since the respective esti-
mators, Yn(·) and Zn(·), of α(·) and φ(·), may be non-
differentiable (and even discontinuous) in a neigh-
borhood of the point of interest x∗. One approach to
deal with the sample path discontinuity of Yn(·) and
Zn(·) is the previously mentioned GLR method (Peng
et al. 2018). When φ′(·) is the density of an rv X (as
occurs in the quantile setting), an alternative is to use a
density estimator for φ′(x∗) (see Silverman 1986).

To avoid the implementation complications asso-
ciated with variance estimation, we now present an
easily implemented alternative procedure based on
batching or sectioning (Asmussen and Glynn 2007).
These confidence interval procedures bypass the need
to estimate the variance of the limit rv’s appearing on
right-hand side of (10). First, set m to be the (fixed)
number of batches (or sections) so that there are �n/m�
samples per batch, with the samples being iid both
within and across batches. We then let Y(i)

�n/m�(X̂(i)
�n/m�)

denote the statistic constructed using the samples in
batch i, with i � 1, . . . ,m. Since the limit rv on the right-
hand side of (10) is normal with mean zero, setting

μ̂n ≡ 1
m

∑m
i�1

Y(i)
�n/m� X̂

(i)
�n/m�

( )
and

ŝ2n ≡ 1
m − 1

∑m
i�1

Y(i)
�n/m� X̂

(i)
�n/m�

( )
− μ̂n

( )2
,

we have m1/2(μ̂n − α)/ŝn ⇒ tm−1 as n → ∞, with m
fixed, where tm−1 is the Student’s t-distribution with
m − 1 degrees of freedom. If we now choose z so that
P(−z ≤ tm−1 ≤ z) � 1 − δ, then it follows that [μ̂n −
zŝnm−1/2, μ̂n + zŝnm−1/2] is an asymptotic 100(1 − δ)%
confidence interval for α. An alternative confidence
interval recognizes that Yn(X̂n) � μ̂n + oP(n−1/2) (by
virtue of the linear approximation (9)), so that
we may replace μ̂n by Yn(X̂n) in a confidence interval.
In particular, we can alternatively use the large-
sample confidence interval [Yn(X̂n)−zŝnm−1/2,Yn(X̂n) +
zŝnm−1/2]. The estimator Yn(X̂n) has a large-sample
bias that is a factor m−1 of the bias associated with
μ̂n, so the latter interval may be preferred on that basis
(see Munoz and Glynn 1997).
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