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ABSTRACT

We establish the asymptotic validity of a class of sequential stopping rules when applying standardized time
series (STS) to construct fixed-width confidence intervals (CI). The STS CI construction avoids requiring
a consistent variance estimator, which is attractive to a class of steady-state simulation problems in which
variance estimation is difficult. We quantify the asymptotic distribution of STS at stopping times as the
prescribed half-width of the CI approaches zero. This provides us with the appropriate scaling parameter
for the CI in the sequential stopping setting.

1 INTRODUCTION

In this paper, we study sequential stopping rules for steady-state simulation problems. In particular, we
are interested in using simulation to estimate α =

∫
h(x)dπ(x), where π is the stationary distribution of

the stochastic process X = {X(t) : t ≥ 0} and h is a real-valued function defined on the state space of X(t).
(Discrete processes can be handled in the usual way, by setting X(t) = X(btc).) One natural candidate
estimator for α is the time average:

α(t) :=
1
t

∫ t

0
h(X(s))ds

for t large enough. The goal is to have a procedure to choose t so that one can control both the reliability
(confidence level or coverage probability of the confidence interval (CI) ) and the precision (half-width of
the CI) of the estimator.

Under certain regularity conditions, α(t) satisfies a Central Limit Theorem, i.e. there exists σ > 0,

such that for t large, α(t)
D
≈ α +σ/

√
tN(0,1), where N(0,1) is a normal random variable (rv) with mean

0 and variance 1 and
D≈ denote “approximately distributed as”. Then the asymptotic 100(1−δ )% CI for

α takes the form
[
α(t)− zδ/2σ/

√
t,α(t)+ zδ/2σ/

√
t
]
, where zδ/2 is the δ/2-th upper quantile of N(0,1),

i.e. P(N(0,1)> zδ/2) = δ/2. If we know the value of σ , then to obtain a CI with prescribed half-width
ε , we would need t = dz2

δ/2σ2/ε2e. However, in steady-state simulation problems, σ is never known and
is in general very difficult to estimate. In particular, σ2 is known as the time-average variance constant
(TAVC), and it reflects the complicated auto-correlation structure of the underlying stochastic process. In
fact, the problem of consistently estimating the TAVC continues to be an active research area; see, for
example, Alexopoulos et al. (2007), Wu (2009), Meterelliyoz et al. (2012).

Standardized time series methods are an alternative class of asymptotically valid CI procedures for
steady-state simulation problems (Schruben 1983; Glynn and Iglehart 1990). The key idea is to cancel out
the unknown variance parameter, which appears as a common factor in the numerator and the denominator
of the constructed statistics. One commonly used standardized time series method is the batch means
method. We next explain the basic idea of STS in the context of the batch means method.
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For batch means with m batches, we divide a single simulation run, [0, t], into m equally sized
non-overlapping batches, and define the batch mean of the k-th batch, k = 1,2, . . . ,m, as

α̂k(t) :=
m
t

∫ kt/m

(k−1)t/m
h(X(s))ds

Then α(t) = 1
m ∑

m
k=1 α̂k(t). We also write

Sm(t) :=

√
1

m(m−1)

m

∑
k=1

(α̂k(t)−α(t))2

For large values of t,
√

t/m(α̂k(t)−α)
D
≈ σN(0,1), k = 1,2, . . . ,m and

√
tSm(t)

D
≈ σ

√
χ2

m−1/(m−1),

where χ2
m−1 denotes a chi-squared rv with m− 1 degrees of freedom. Here, the N(0,1)’s and the χ2

m−1

rv are independent. Thus, (α(t)−α)/Sm(t)
D≈ tm−1, where tm−1 denote a Student t-distribution with

m− 1 degrees of freedom. For a fixed value of t, the asymptotic 100(1− δ )% CI for α takes the form[
α(t)− z̃δ/2Sm(t),α(t)+ z̃δ/2Sm(t)

]
, where z̃δ/2 is the δ/2-th upper quantile of tm−1. If we want to achieve

a prescribed precision level ε , we may naively apply a sequential stopping scheme where we keep sampling
until z̃δ/2Sm(t) < ε . However, such a sequential stopping scheme is not appropriate in the sense that
limε→0P(α ∈ [α(T (ε))− ε,α(T (ε))+ ε]) < 1− δ where T (ε) is the (random) time at which z̃δ/2Sm(t)
is first less than ε . Empirical evidence of the under-coverage failure for such sequential procedures was
observed a number of years ago (Adam 1983).

One remedy to the under-coverage problem is to construct strongly consistent estimators of σ (Glynn
and Whitt 1992). Damerdji (1994) proves that if the number of batches m increases with t (sample size)
at a suitably slower rate than the batch size, then Sm(t) is a strongly consistent estimator of the TVAC.
This suggests that one way to construct a sequential stopping procedure for batch means is to increase
the number of batches as the run length increases. There are subsequent works that build on this idea,
including the LBATCH procedure (Fishman 1996), the ABATCH procedure (Fishman and Yarberry 1997),
ASAP3 (Steiger et al. 2005), and more recently developed SKART (Tafazzoli and Wilson 2011) and
SPSTS (Alexopoulos et al. 2016). The basic idea for this class of procedures is the following. At each
iteration, a statistical test is performed to check for correlation between batches. If significant correlation
is detected, then we increase the batch size in the next iteration. Otherwise (if no significant correlation
is detected), we increase the number of batches in the next iteration. These procedures also adjust for the
finite sample bias by properly inflate the scaling parameter, see also Singham and Shruben (2012) for a
recent development on finite sample adjustment. However, it is in general difficult to establish validity,
even asymptotically, of these procedures in general steady-state simulation problems, and the performance
can vary across problem instances.

More generally, there is a trade-off between the coverage probability and the expected width of the
CI when choosing the number of batches with a finite sample size (Schmeiser 1982). Specifically, on
the one hand, the smaller the number of batches, the larger the batch size and the closer we are to the
independence and normality required by batch means, which leads to more accurate coverage probabilities.
On the other hand, the smaller the number of batches, the larger the expected width of the CI. Schmeiser
(1982) conducted a detailed study on the tradeoff between the number of batches and the batch size. The
main message is that the effects of too few batches may be large but additional batches have diminishing
effect and it doesn’t add much benefit to go beyond 30 batches.

In this paper, we propose a simple remedy to the naive sequential stopping scheme. As we shall explain,
if we replace the scaling parameter, z̃δ/2, with a new scaling parameter uδ/2 (see Table 1), then we can
achieve the asymptotically accurate coverage probability. More generally, in this paper, we introduce a
framework to construct asymptotically valid sequential stopping procedures for standardized time series
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where we do not require a strongly consistent variance estimator. Similar asymptotically valid sequential
stopping procedure has been developed for the sectioning (replication) method with a fixed number of
sections in Dong and Glynn (2019). Standardized time series methods lead to more complicated asymptotic
behavior than the sectioning method.

2 STANDARDIZED TIME SERIES

Denote
Y (t) =

∫ t

0
h(X(s))ds,

i.e. Y (t) = tα(t). We also write C[0,∞) as the space of all continuous functions from [0,∞) to R. The
basis of STS is the introduction of a class of measurable functions g : R+×C[0,∞)→ R, satisfying the
following properties:

(i) For fixed t > 0, g(t,x) can be written as a function of {x(s) : 0≤ s≤ t} and is Lipschitz continuous.
(ii) For fixed x ∈C[0,∞), g(t,x) is continuous in t.

(iii) g(t,x) = 1
h g
( t

h ,xh
)

for any t > 0, x ∈C[0,∞), where xh(s) = x(hs) for s≥ 0.
(iv) g(t,ax) = ag(t,x) for any t > 0, a > 0, x ∈C[0,∞)
(v) g(t,x−bI) = g(t,x) for any t > 0, b ∈ R and x ∈C[0,∞), where I(t) = t is the identity function.

(vi) P(g(t,B)> 0) = 1 for any t > 0, where B denotes a standard Brownian motion.
(vii) P(B ∈ D(g)) = 0, where D(g) denote the discontinuities of g.

We denote this class of functions as M . The definition of M follows from that used in Glynn and Iglehart
(1990). We add some extra properties, (i)-(iii), to accommodate the sequential stopping setting. Property
(i) allows one to write g(t,x) as g(t,{x(s) : 0 ≤ s ≤ t}). Thus, for a fixed value of t, g(t, ·) : C[0, t]→ R.
Property (iii) allows one to apply time scaling to g.

We next introduce a specific feature of g ∈M , which leads to an alternative definition of M in Glynn
and Iglehart (1990). Let Ψt : C[0, t]→C[0, t] be defined as (Ψtx)(s) := x(s)− s

t x(t). Then by Property (i)
and (v),

g(t,x) = g
(

t,{x(s) : 0≤ s≤ t}− x(t)
t

I
)
= g(t,Ψt({x(s) : 0≤ s≤ t})).

As B(t) is independent of B(s)− s
t B(t), it is easy to see from this alternative representation that for fixed

value of t, B(t) is independent of g(t,B).
In the special case of batch means, Sm(t) can be written in the form of

gb(t,Y ;m) =

√
m
t2

1
m−1

m

∑
k=1

((
Y
(

k
m

t
)
− k

m
Y (t)

)
−
(

Y
(

k−1
m

t
)
− k−1

m
Y (t)

))2

.

It is straightforward to see that gb(·;m)∈M . Other examples of STS include the standardized sum process
and the standardized maximum interval process (Schruben 1983; Glynn and Iglehart 1990).

To establish the asymptotic validity of the sequential stopping procedure, we impose the following
strong approximation assumption on the process {X(t) : t ≥ 0}.
Assumption 1 There exist constants σ ∈ (0,∞) and γ > 1/2, and probability space supporting both
{X(t) : t ≥ 0} and a standard Brownian motion B = {B(t) : t ≥ 0}, such that∫ t

0
h(X(s))ds = αt +σB(t)+O(t1−γ) almost surely (a.s.),

i.e. |
∫ t

0 h(X(s))ds−αt−σB(t)| ≤Ct1−γ where C is a finite-valued random variable.
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Note that under Assumption 1, α(t)⇒α and
√

t(α(t)−α)⇒N(0,1) as t→∞, where⇒ denotes weak
convergence or convergence in distribution. Moreover, by continuous mapping theorem,

√
ng(nt,Y )⇒

σg(t,B) and
√

tg(t,Y )⇒ σg(1,B) as t→ ∞.
Remark 1 It has been noted in Dong and Glynn (2019) that Harris recurrent chains with appropriate
moment conditions satisfy Assumption 1 (see Theorem 3 to 5 in Dong and Glynn (2019)); see also Csaki
and Csorgo (1995) and Merlevede and Rio (2015). Merlevede and Rio (2012) obtained strong approximation
results (Assumption 1) for partial sums of strictly stationary strongly mixing sequences of random variables.
See also Berkes et al. (2014) for strong approximation results for stationary processes that are functions
of independent and identically distributed innovations.

2.1 Sequential Stopping for STS

For the sequential stopping procedure to achieve an absolute precision level, ε , we consider a sequence of
stopping times indexed by ε as follows. Let β ∈ (1/2,γ) be a fixed constant, and set

τg(ε,u) := inf
{

t > ε
−1/β : ug(t,Y )< ε

}
,

where t > ε−1/β is required to avoid early stopping.
Our goal is to characterize the limiting distribution of (α(τg(ε,u))−α)/g(τg(ε,u),Y ) as ε→ 0. This will

provide us with the appropriate scaling parameter, uδ/2, such that limε→0P(|α(τg(ε,uδ/2))−α| ≤ ε)= 1−δ .
We start by analyzing the asymptotic behavior of τg(ε,u). Define

Tg(a) := inf{t > 0 : ag(t,B)< 1}.

for Brownian motion B = {B(t) : t ≥ 0}.
Proposition 1 Under Assumption 1, and for g ∈M , ε2τg(ε,u)⇒ Tg(uσ) as ε → 0.

Proof of Proposition 1. Let r(t) = g(t,Y )−σg(t,B) where Y and B are constructed under a suitably
enlarged probability space as in Assumption 1. Then under Assumption 1, r(t) = O(t−γ). We first notice
that

ε
2
τg(ε,u) = ε

2 inf
{

t > ε
−1/β : ug(t,Y )< ε

}
= inf

{
ε

2t > ε
−1/β+2 :

1
ε
(uσg(t,B)+ r(t))< 1

}
= inf

{
t > ε

−1/β+2 : uσ
1
ε

g
( t

ε2 ,B
)
+

1
ε

r
( t

ε2

)
< 1
}

= inf
{

t > ε
−1/β+2 : uσg

(
t,

1
ε

Bε−2

)
+

1
ε

r
( t

ε2

)
< 1
}

by Property (iii) and (iv)

D
= inf

{
t > ε

−1/β+2 : uσg(t,B)+
1
ε

r
( t

ε2

)
< 1
}

where D
= denotes equal in distribution

⇒ inf{t > 0 : uσg(t,B)< 1} as ε ↓ 0,

The equality in distribution is due to the fact that (1
c B(c2t) : t ≥ 0) D

= (B(t) : t ≥ 0). The last convergence
follows as for t > ε−1/β+2, 1

ε
r
( t

ε2

)
→ 0 a.s. as ε ↓ 0.

Proposition 1 indicates that τg(ε,u) scales as ε−2. We also notice that Tg(uσ)
D
= u2σ2Tg(1), as

Tg(a)
a2 = inf

{
t > 0 : ag(a2t,B)< 1

}
= inf

{
t > 0 : g

(
t,

1
a

Ba2

)
< 1
}

by (iii)

D
= inf{t > 0 : g(t,B)< 1}= Tg(1).
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The following theorem is the main result of the paper. It establishes the asymptotic validity of the
sequential stopping procedure by characterizing the limiting distribution of the STS estimator at stopping
times as the half-width of the CI (error size), ε , goes to zero.
Theorem 1 Under Assumption 1, and for g ∈M , if Tg(1)> 0 with probability 1, then

α(τg(ε,u))−α

g(τg(ε,u),Y )
⇒ N(0,1)√

Tg(1)
as ε ↓ 0,

where N(0,1) is independent of Tg(1). Furthermore, if we set uδ/2 as the δ/2-th upper quantile of
N(0,1)/

√
Tg(1), then

P(α ∈ [α(τg(ε,uδ/2))− ε,α(τg(ε,uδ/2))+ ε])→ 1−δ as ε ↓ 0.

Before we prove Theorem 1, we comment that the condition that Tg(1)> 0 with probability 1 is very
hard to check. Indeed, we currently can not check this condition analytically. We leave this as a future
task. In Section 3 and 4, we talk about special examples of g. There, we conduct extensive simulation
experiments to check whether Tg(1)> 0, and summarize the observations as two conjectures, see Conjecture
1 and 2

Proof of Theorem 1. Let Ȳn(t) := 1
nY (nt). We first notice that

Y (τg(ε,u))/τg(ε,u)−α

g(τg(ε,u),Y )
=

Ȳε−2(ε2τg(ε,u))−αε2τg(ε,u)
ε2τg(ε,u)g(ε2τg(ε,u),Ȳε−2)

=

(
Ȳε−2(ε2τg(ε,u))−αε2τg(ε,u)

)
/ε

ε2τg(ε,u)g(ε2τg(ε,u),(Ȳε−2−αI)/ε)
.

We also note that under Assumption 1, 1
ε
(Ȳε−2(t)−αt)⇒ σB(t) in (D(0,∞),J1) as t→ ∞. Let h(t,x) =

x(t)/(tg(t,x)) for g(t,x) 6= 0. As t
ε
(Ȳε−α)⇒ σB and P(σB∈D(h)) = 0, by continuous mapping theorem,

we have
1
ε
(Ȳε−2(t)−αt)

tg(t,(Ȳε−2−αI)/ε)
⇒ B(t)

tg(t,B)
in (D(0,∞),J1) as t→ ∞,

where (D(0,∞),J1) is the space of right continuous functions with left limit endowed with Skorokhod J1
topology. Then, applying continuous mapping theorem (the composition map is continuous (Whitt 1980)),
we have(

Ȳε−2(ε2τg(ε,u))−αε2τg(ε,u)
)
/ε

ε2τg(ε,u)g(ε2τg(ε,u),(Ȳε−2−αI)/ε)
⇒

B(Tg(uσ))

Tg(uσ)g(Tg(uσ),B)
=

B(Tg(uσ))

Tg(uσ)/(uσ)
=

B(Tg(uσ))/
√

Tg(uσ)√
Tg(uσ)/(uσ)2

.

The first equality follows as g(Tg(uσ),B) = (uσ)−1.

We next show that B(Tg(a))/
√

Tg(a) is independent of Tg(a), and B(Tg(a))/
√

Tg(a)
D
= N(0,1). We

first define a sequence of discretized approximations of Tg(a). Let ∆n = 10−n and define Tn(a) := min{k∆n :
k∆n > Tg(a)}. Then Tn(a) ↓ Tg(a) almost surely as n→ ∞ (Revuz and Yor 1999 page 45). For Tn(a), we
have for any z ∈ R,

P
(

B(Tn(a))/
√

Tn(a)≤ z,Tn(a) = k∆n

)
= P

(
B(Tn(a))/

√
Tn(a)≤ z|Tn(a) = k∆n

)
P(Tn(a) = k∆n)

= P
(

B(k∆n)/
√

k∆n ≤ z| inf
0<t<(k−1)∆n

σg(t,B)≥ 1, inf
(k−1)∆n≤t<k∆n

σg(t,B)< 1
)
P(Tn(a) = k∆n). (1)

336



Dong and Glynn

As B(k∆n) is independent of g(t,B) for t ≤ k∆n,

(1) = P
(

B(k∆n)/
√

k∆n ≤ z
)
P(Tn(a) = k∆n) = P(N(0,1)≤ z)P(Tn(a) = k∆n).

Thus, B(Tn(a))/
√

Tn(a)
D
= N(0,1) and is independent of T n

g (a). As B(t)/
√

t is continuous in t,(
Tn(a),B(Tn(a))/

√
Tn(a)

)
⇒
(

Tg(a),B(Tg(a))/
√

Tg(a)
)

as n→ ∞.

Then B(Tg(a))/
√

Tg(a) is distributed as N(0,1), and for any z ∈ R, t ∈ R+,

P

(
B(Tg(a))√

Tg(a)
≤ z,Tg(a)≤ t

)
= lim

n→∞
P

(
B(Tn(a))√

Tn(a)
≤ z,Tn(a)≤ t

)
= lim

n→∞
P(N(0,1)≤ z)P(Tn(a)≤ t) = P(N(0,1)≤ z)P(Tg(a)≤ t).

Therefore, B(Tg(a))/
√

Tg(a) is independent of Tg(a).

Lastly, as Tg(a)/a2 D
= Tg(1),

B(Tg(uσ))/
√

Tg(uσ)√
Tg(uσ)/(uσ)2

D
=

N(0,1)√
Tg(1)

.

Now if we select uδ/2 such that P(|N(0,1)/
√

Tg(1)| ≤ uδ/2) = 1−δ , then

P
(∣∣α(τg(ε,uδ/2))−α

∣∣≤ ε
)
= P

(∣∣∣∣α(τg(ε,uδ/2))−α

ε/uδ/2

∣∣∣∣< uδ/2

)
→ P

(∣∣∣∣σB(Tg(σ))

Tg(σ)

∣∣∣∣< uδ/2

)
as ε ↓ 0

= P

(∣∣∣∣∣ N(0,1)√
Tg(1)

∣∣∣∣∣< uδ/2

)
= 1−δ .

2.2 Relative Error

In the previous subsection, we analyzed the sequential stopping rule to achieve an absolute precision ε .
There is another commonly used precision criteria called relative error (Asmussen and Glynn 2007 page
158), where we want to achieve a precision level relative to the size of |α|. For the case of relative error, we
define a new sequence of stopping times, indexed by ε , as τ̃g(ε,u) := inf{t > ε−1/β : ug(t,Y )< ε|α(t)|}.

Following the same line of analysis as in the absolute precision case, we can show that if we choose
the scaling parameter uδ/2 as the δ/2-th upper quantile of N(0,1)/

√
Tg(1), then

P(α ∈ [α(τ̃g(ε,uδ/2))(1− ε),α(τ̃g(ε,uδ/2))(1+ ε)])→ 1−δ as ε ↓ 0.

3 THE BATCH MEANS METHOD

The batch means method with a fixed number of batches is the most commonly used class of STS methods.
In this section, we analyze the sequential stopping procedure for batch means with m batches.

One important assumption in Theorem 1 is the assumption that Tg(1) > 0 a.s. This is very hard to
verify in practice, and we in general cannot rule out the possibility that Tg(1) = 0. In fact, for batch means,
when m = 2, Tg(1) = 0 as shown in the following lemma.
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Lemma 1 When m = 2, Tg(1) = 0 with probability 1.

Proof of Lemma 1. By the reversibility of Brownian motion,

Tg(1)
D
= inf

{
t > 0 :

√
m

∑
k=1

(
B
(

k
m

t
)
−B

(
k−1

m
t
)
− 1

m
B(t)

)2

<

√
(m−1)

m
t

}
D
= inf

{
t > 0 :

√
m

∑
k=1

(
k
m

B
(m

kt

)
− k−1

m
B
(

m
(k−1)t

)
− 1

m
B
(

1
t

))2

<

√
(m−1)

m

}
D
=

1

sup
{

t > 0 :
√

∑
m
k=1
( k

m B
(m

k t
)
− k−1

m B
( m

k−1 t
)
− 1

m B(t)
)2

<
√

(m−1)
m

} .

When m = 2,
m

∑
k=1

(
k
m

B
(m

k
t
)
− k−1

m
B
(

m
k−1

t
)
− 1

m
B(t)

)2

=
1
2
(B(2t)−B(t))2 .

Let tn = 2n, and Hn = {B(2tn)−B(tn)> 0}, Ln = {B(2tn)−B(tn)< 0}. As {Hn : n≥ 0} is a sequence of
independent events and ∑

∞
n=0P(Hn) = ∑

∞
n=0P(B(2tn)−B(tn)> 0) = ∞, the event Hn occurs infinitely often

(i.o.) by Borel-Cantelli Lemma. Similarly, we can show that Ln occurs i.o.. The intermediate value theorem
then ensures that there are infinitely many times at which B(2t)−B(t) = 0. Therefore, Tg(1) = 0.

For other values of m, we conducted an extensive numerical analysis (see Figure 1), and put forth the
following conjecture.
Conjecture 1 For batch means, when m = 3, Tg(1) = 0 a.s.; When m≥ 4, Tg(1)> 0 a.s.
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Figure 1: Comparison of the distribution of Tg(1) for different values of m. (The normalized histogram
are constructed based on 104 i.i.d. samples with a step-size 10−5.)

Remark 2 When conducting the numerical experiments, we cannot check Tg(1) continuously. Instead,
we use the following discretization scheme. For ∆n = 10−n, n ∈ Z+, we set T̃n = min{k∆n : g(k∆n,B)< 1}
We notice that T̃n is monotonically decreasing in n and T̃n→ Tg(1) as n→∞ path by path (Revuz and Yor
1999 page 46). We refer to ∆n as the step-size in our numerical experiments.
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Under the conjecture, we would require m≥ 4 when applying sequential stopping to the batch means
method. Note that for the batch means method with a fixed sample size t, we only require m ≥ 2. We
believe that the extra constraint on m for the sequential stopping procedure has to do with the transience
of the limiting functional of Brownian motion in dimensions 3 or greater (see Dong and Glynn (2019) for
similar results for the sectioning method).

The actual sequential stopping algorithm goes as follows.
Algorithm 1
Input: the number of batches m, the confidence level 1− δ , the error bound ε , the scaling parameter u
(See Table 1 for some of the commonly used scaling parameters), the step size ∆, and β .
Output: a 100(1−δ )% CI with half width ε .

(i) Sample X(t) for 0≤ t ≤ ε−1/β . Initialize T = ε−1/β +∆.
(ii) Sample X(t) between T −∆ and T . Calculate α(T ) and Sm(T ).

(iii) If u×Sm(T )≥ ε , set T = T +∆, go back to step (ii);
otherwise, output [α(T )− ε,α(T )+ ε].

The Distribution of Z/
√

Tg(1)

As discussed in Section 1, for fixed sample-size procedure, we would use tm−1 to calibrate the scaling
parameter for the CI when applying batch means with m batches. To understand the failure of the naive
implementation of the sequential stopping procedure discussed in Section 1, we shall first compare the
distribution of Z/

√
Tg(1) to tm−1. Figure 2 compares the normalized histogram of Z/

√
Tg(1) and the pdf

of tm−1 for m = 10 and 20. We observe that Z/
√

Tg(1) has a heavier tail than the corresponding tm−1. We
also notice that, as m increase (form 10 to 20), the tail of Z/

√
Tg(1) becomes lighter.
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Figure 2: Comparison of the two limiting distributions for different values of m. (The normalized histograms
are based on 104 i.i.d. samples with a step-size 10−5.)

Table 1: Sample percentile of Z/
√

Tg(1) (106 i.i.d. samples with step size m×10−5).

0.9 0.925 0.95 0.975 0.995
m = 5 4.351±0.005 5.198±0.006 6.323±0.006 8.897±0.007 15.996±0.062

m = 10 2.048±0.005 2.342±0.005 2.748±0.006 3.447±0.007 5.070±0.025
m = 15 1.772±0.004 2.009±0.005 2.327±0.005 2.850±0.006 3.998±0.021
m = 20 1.662±0.004 1.882±0.005 2.165±0.005 2.623±0.005 3.603±0.019
m = 25 1.598±0.004 1.807±0.004 2.080±0.004 2.509±0.005 3.395±0.016
m = 30 1.556±0.004 1.757±0.004 2.021±0.004 2.436±0.005 3.278±0.014
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Table 1 lists the some useful sample quantiles of Z/
√

Tg(1) (with its corresponding 95% CI) for the
batch means method with m batches.

4 COMPARISON AMONG DIFFERENT STS METHODS

The batch means (STSb) method is the mostly commonly used STS method. Other popular STS methods
include the standardized sum process (STSs) and the standardized maximum interval process (STSm) (see
Glynn and Iglehart (1990) for details).

For STSs with m batches, let

Ik(t,Y ) :=
∫ t

0

{(
Y
(
(k−1)t + s

m

)
−Y

(
(k−1)t

m

))
− s

t

(
Y
(

kt
m

)
−Y

(
(k−1)t

m

))}
ds,

for k = 1,2, . . . ,m, and

gs(t,Y ;m) :=

√
12

m

∑
k=1

(
1
t2 Ik(t,Y )

)2

.

For STSm with m batches, let

Mk(t,Y ) = max
{(

Y
(
(k−1)t + s

m

)
−Y

(
(k−1)t

m

))
− s

t

(
Y
(

kt
m

)
−Y

(
(k−1)t

m

))
: 0≤ s≤ t

}
,

γk(t,Y ) = inf
{

s≥ 0 :
(

Y
(
(k−1)t + s

m

)
−Y

(
(k−1)t

m

))
− s

t

(
Y
(

kt
m

)
−Y

(
(i−1)t

m

))
= Mk(t,Y )

}
,

for k = 1,2, . . .m, and

gm(t,Y ;m) =

√
1
3

m

∑
k=1

Mk(t,Y )2

γk(t,Y )(t− γk(t,Y ))
.

For these two cases, we conduct extensive numerical analysis on Tg(1) and put forth the following
conjecture.
Conjecture 2 For STSs, when m≥ 3, Tg(1)> 0 a.s. For STSm, when m≥ 2. Tg(1)> 0 a.s.

The three methods have different requirements on m because their corresponding
√

tg(t,Y ) converges
to functions of chi-squared distributions with different degrees of freedom. Table 2 provides u0.025 (to
construct 95% CI) for the three methods with different values of m.

Table 2: Sample percentile of Z/
√

Tg(1) (104 i.i.d. samples with step size m×10−5 for m = 10,20,30).

STSb STSs STSm
m = 10 3.45±0.01 3.47±0.09 2.60±0.05
m = 20 2.62±0.01 2.77±0.09 2.31±0.05
m = 30 2.44±0.01 2.53±0.03 2.25±0.04

From the analysis in Section 2, we have ε2τg(ε,u)⇒ u2σ2Tg(1) as ε ↓ 0. In Figure 3, we compare
Cg := u2

δ/2E[Tg(1)] for the three different methods (STSb, STSs, and STSm). The quantity Cg roughly
measures the required number of samples for the procedures. We observe that for fixed value of m and δ

(p = 1−δ ), STSb requires more samples on average than STSs, which requires more samples than STSm.
As m increases, the three costs are getting closer (Figure 3 (a) v.s. 3 (b)). We also comment that in actual
implementations, STSs and STSm takes much more time and storage space to calculate g(t,Y ) at each
iteration than STSb.

340



Dong and Glynn

0.9 0.95 1
p

0

5

10

15

C
os

t

(a) m = 10

0.9 0.95 1
p

0

2

4

6

8

10

C
os

t

(b) m = 20

Figure 3: Comparison of u2
δ/2E[Tg(1)] among STSb (solid), STSs (dashed) and STSm (dotted) for different

values of p = 1−δ . (Estimated values are based on 104 i.i.d. samples.)

5 SIMULATION EXPERIMENTS

In this section, we demonstrate the performance of our sequential stopping procedures through some
simulation experiments.

We consider an M/M/1 queue, which has a Poisson arrival process with rate λ and independent identically
distributed (i.i.d.) exponential service times with rate µ . Let X(t) denote the number of customers in the
system at time t. We are interested in estimating α = limT→∞

1
T

∫ T
0 X(t)dt = ρ/(1−ρ) (the steady-state

average number of people in the system), where ρ = λ/µ , is the traffic intensity. All estimations for
expectations and coverage probabilities reported in this section are based on 103 independent replications
of the sequential stopping algorithm. We also report the corresponding 95% CI for the estimates.

5.1 Batch Means Method with Absolute Precision

We first fix λ = 0.8, µ = 1 and apply the sequential batch means method to different values of m and ε to
construct the 95% CIs. The results are summarized in Table 3. When m = 10, we set the scaling parameter
u = 3.45, which is the 0.975 quantile of Z/

√
Tg(1) (see Table 1), whereas the 0.975-quantile of t9 is 2.26.

When m = 20, we set u = 2.62, whereas the 0.975-quantile of t19 is 2.09. We observe that the algorithm on
average achieves the correct coverage probability (95%) for small values of ε (ε ≤ 0.1) if we use the right
scaling parameters (see the “Coverage probability” column). Plugging in the wrong scaling parameters
suggested by the corresponding Student t-distribution will lead to under-coverage (see the “Coverage for
tm−1” column). For a fixed value of m, ε2E[τg(ε,u)] is of about the same value when ε is small enough.
This confirms the results of Proposition 1. We also observed that ε2E[τg(ε,u)] is decreasing in the number
of batches, m.

We also check for different traffic intensities, ρ . Table 4 summarizes the results with m = 10 and
ε = 0.1 for the 95% CIs. We make two observations here. The first one is that the estimated coverage
probabilities are around 95% for all values of ρ tested. The second observation is that as ρ increases,
E[τg(ε,u)] increases. This is expected, as Proposition 1 suggests that E[τg(ε,u)] is increasing in σ .

5.2 Batch Means Method with Relative Error

In this section, we apply the sequential batch means method to construct 95% relative CIs. For λ = 0.8
and µ = 1, Table 5 summarizes the results for different values of m and ε . Similar to Table 3, we observe
that our algorithm achieves the correct coverage probability for small values of ε . Plugging in the wrong
scaling parameter suggested by the corresponding Student t-distribution will lead to under-coverage.
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Table 3: Performance of the sequential batch means procedure with different values of m and ε: M/M/1
queue (λ = 0.8, µ = 1). ∆ = 10, β = 2.9/4.

ε Coverage probability E[τg(ε,u0.025)] ε2E[τg(ε,u0.025)] Coverage for tm−1

m = 10

0.5 0.904±0.018 (3.96±0.17)×104 9.90×103 0.715±0.028
0.1 0.961±0.012 (1.05±0.05)×106 1.05×104 0.838±0.023
0.05 0.950±0.014 (4.06±0.15)×106 1.02×104 0.852±0.022
0.01 0.952±0.013 (1.02±0.04)×108 1.02×104 0.836±0.023

m = 20

0.5 0.851±0.022 (2.73±0.11)×104 6.83×103 0.705±0.028
0.1 0.953±0.013 (7.72±0.18)×105 7.72×103 0.897±0.019
0.05 0.952±0.013 (3.14±0.07)×106 7.85×103 0.878±0.020
0.01 0.949±0.014 (7.89±0.18)×107 7.89×103 0.887±0.020

Table 4: Performance of the sequential batch means procedure with m = 10 and different values of ρ:
M/M/1 queue (µ = 1, λ = ρ). ∆ = 10, β = 2.9/4.

Coverage probability E[τg(ε,u0.025)] Coverage for tm−1

ρ = 0.85 0.948±0.014 (3.73±0.13)×106 0.842±0.023
ρ = 0.9 0.949±0.014 (2.00±0.07)×107 0.843±0.023

ρ = 0.95 0.946±0.014 (3.44±0.13)×108 0.818±0.024

Table 5: Performance of the sequential batch means procedure with m = 10 and different values of ε

(relative error): M/M/1 queue (λ = 0.8, µ = 1). ∆ = 10, β = 2.9/4.

ε Coverage probability E[τg(ε,u0.025)] ε2E[τg(ε,u0.025)] Coverage for tm−1

0.5 0.794±0.025 (1.39±0.11)×103 3.48×102 0.587±0.031
0.1 0.951±0.013 (7.07±0.25)×104 7.07×102 0.847±0.022
0.05 0.956±0.013 (2.73±0.09)×105 6.83×102 0.836±0.023
0.01 0.959±0.012 (6.54±0.23)×106 6.54×102 0.828±0.023

5.3 Comparison between Different STS Methods

We also compare the performance of the three STS methods: STSb, STSs, and STSm. We set m = 10 for
all three methods. Our goal is to achieve a 95% confidence level. For STSb, we set the scaling parameter
u0.025 = 3.45, for STSs, we set u0.025 = 3.56, for STSm, we set u0.025 = 2.65 (For STSs and STSm, we pick
the upper confidence bound in Table 2 as there is more estimation error when simulating these quantiles).
The results are summarized in Table 6. We observe that both STSs and STSm requires a smaller expected
number of samples than STSb, with STSm being the smallest. However, in our actual implementations,
calculating g(t,Y ) for STSs and STSm takes much more time than STSb.

Table 6: Performance of different sequential STS procedures with m = 10 and ε = 0.1: M/M/1 queue
(λ = 0.8, µ = 1)

Method Coverage probability E[τg(ε,u0.025)]

STSb 0.961±0.012 (1.05±0.05)×106

STSs 0.947±0.014 (7.43±0.21)×105

STSm 0.941±0.015 (5.95±0.12)×105
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