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Abstract. Based on a dynamic model of the stochastic repayment behavior exhibited by
delinquent credit-card accounts in the form of a self-exciting point process, a bank can
control the arrival intensity of repayments using costly account-treatment actions. A semi-
analytic solution to the corresponding stochastic optimal control problem is obtained
using a recursive approach. For a linear cost of treatment effort, the optimal policy in
the two-dimensional (intensity,balance) space is described by the frontier of a convex
action region. The unique optimal policy significantly reduces a bank’s loss given default
and concentrates the collection effort onto the best possible actions at the best possible
times so as to minimize the sum of the expected discounted outstanding balance and
the discounted cost of the collection effort, thus maximizing the net value of any given
delinquent credit-card account.
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Creditors have better memories than debtors.
—Benjamin Franklin

1. Introduction
The performance of numerous financial institutions
critically depends on the efficient collection of out-
standing unsecured consumer debt, a leading example
of which is given by defaulted credit-card accounts.
By the end of 2017, the aggregate revolving consumer
credit in the United States well exceeded $1 trillion
(Federal Reserve Bank G.19, January 2018). At an aver-
age delinquency rate of 2.2% (FRB 2018), the resulting
size of the delinquent debt pool of more than $20 bil-
lion means that the issuing banks’ exposure to nonper-
forming loans and their outstanding capital are highly
sensitive to collection yields.
Based on the dynamic repaymentmodel by Chehrazi

and Weber (2015), we determine optimal collection
strategies for overdue, so-called “delinquent” credit-
card accounts. The repayment process, which for a
given account specifies the timingandmagnitudeof the
random repayments, is represented as a self-exciting
point process in continuous time. The conditional
arrival rate of future repayments (intensity) depends on

the information revealed by past repayments and can
be controlled by costly account-treatment actions. Both
themagnitude and the timing of the account-treatment
actions are subject to optimization. The cost of taking
a given action is assumed to be a linear function of
its impact on the point-process intensity. The bank’s
credit-collection problem is to determine a dynamic
collection policy that maximizes the net present value
of an account.

In an infinite-horizon setting, which for a bank and
its affiliates amounts to a “going concern” for the ac-
count, the collection strategy becomes a time-invari-
ant mapping from the action and holding subsets of
the state space, characterized by the complement and
the boundary of the two-dimensional inaction region,
respectively, to the collection action set. Using the
Bellman equation as a sufficient condition for optimal-
ity, we characterize the bank’s optimal collection pol-
icy as a function of the “state” of an account in terms
of its current repayment intensity and the remaining
outstanding balance. The solution, which is obtained
in quasi-closed form, exhibits a recursive structure in
terms of the (maximal) number of repayments i(w) for
the outstanding balance w to drop below a balance
threshold belowwhich active collections no longer add
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value. The maximal number of iterations i(w) can be
precomputed for any account state as a function of the
marginal account-treatment cost and the (empirically
observed) account sensitivity with respect to collection
actions.
The results have broad implications for collections

management. First, given an identified model, a collec-
tions manager can use the optimal policy to determine
the nature and timing of value-maximizing account-
treatment actions. Second, the optimized (dynamic)
net present value of an account implies at any point
in time a threshold for early account settlement at less
than 100% of the outstanding balance. Third, using the
expected value of treated accounts in defaults, the bank
can provide more precise estimates for the expected
loss given default (LGD), which, in turn, enhances the
bank’s compliance with capital-reserve requirements
as introduced in the Basel II accords. Moreover, the
dependence of theminimum expected LGDon account
attributes (and holder characteristics) may be used at
the underwriting stage to curb excess exposure to risky
clients and enhance the quality of the bank’s loan port-
folio. Finally, the results suggest new experiments for
banks to better identify and test particular collection
actions that show promise in improving the account
workout.

1.1. Literature
1.1.1. Credit Management. The management of con-
sumer credit addresses the three main phases in the
life of an account: underwriting, treatment, and recov-
ery (Rosenberg and Gleit 1994). Underwriting deci-
sions concerning how much credit to grant (including
no credit) usually depend on discriminant analysis and
associated scoring methods (Bierman and Hausman
1970, Thomas 2000, Thomas et al. 2005). Treatment
of an account in the absence of default on pay-
ments includes decisions about charge authorization,
promotions, annual percentage rates, and credit-line
extensions—be they positive or negative (Trench et al.
2003). In particular, credit risk can be reassessed repeat-
edly over the lifetime of an account (Crook et al. 2007).
Finally, after a consumer defaults on a loanwith respect
to a specified repayment schedule, the credit-issuing
bank enters recovery mode by putting the account in
credit collections. The optimization of the associated
account-treatment actions is the subject of this paper.
1.1.2. Credit Collections. In a seminal contribution,
Mitchner and Peterson (1957) examine the optimal pur-
suit duration of credit collections as a stopping prob-
lem in continuous time. Based on historical data, they
assume that the probability of repayment is decreasing
in the pursuit time and find that it is optimal to stop col-
lections when the expected repayment amount upon
“conversion” of the account (from nonpayer to payer)
equals the cost of pursuit measured in dollars per time

unit. The authors realized that information is being
revealed by the history of the repayment behavior:

The problem of the collection of charged-off loans bears
an interesting analogy to games such as certain types of
poker in which betting takes place several times prior to
the completion of a hand. In order to stay in the game
it is necessary to continue betting. After each round of
cards has been dealt, the player has additional infor-
mation on which to base his decision as to whether to
throw in his hand or to continue paying in order to stay
in the game. (pp. 525–526)

Based on linear pursuit costs, Mitchner and Peterson
(1957) estimated a gain of 33% in account repayment
net of collection costs from applying their strategy.
They further noted that in

a fully rigorous treatment, the entire sequence of inter-
vals betweenpayments, aswell as the payment amounts,
should be taken into account as part of the over-all
stochastic process. However, such a procedure would
complicate the problem enormously. (pp. 537–538)

With the aid of recent advances in the theory of
stochastic control, we formulate and solve the credit-
collection problem in continuous time while allowing
both the repayment amounts and inter-arrival times to
be random and to influence each other.

After a 15-year hiatus of results, Liebman (1972) con-
siders a discrete-time Markov decision problem based
on transition probabilities conditional on characteris-
tics such as account age, volume class (binary), and
experience class (binary), which can be solved numer-
ically using value iteration. With finer resolution of
account characteristics, this approach suffers from the
curse of dimensionality, thus diverting attention to
numerical analysis and resulting in a lack of struc-
tural insights. Since the 1970s, the credit-collection
problem remained again dormant in the literature
until the Basel Committee on Banking Supervision
(2004) introduced capital-reserve requirements based
on LGD, which for delinquent credit-card debt cor-
responds to the expected discounted remaining out-
standing balance plus the expected cost of collec-
tions. In a discrete-time Markov decision framework,
Almeida Filho et al. (2010) examine the optimal tim-
ing of a given sequence of account-treatment actions,
but their analysis does not condition the actions on
account-specific repayment behavior. Our model is
based on Chehrazi and Weber (2015), who propose a
repayment model in terms of self-exciting point pro-
cesses, which can be identified using the full variety of
data sources available to the issuing bank. While their
study focuses on the prediction of repayment behavior
conditional on a sequence of account treatment actions,
we are concerned here with the problem of determin-
ing an optimal sequence of treatment actions, includ-
ing the timing of these interventions. To the best of our
knowledge this is the first continuous-time treatment
of the dynamic credit-collection problem.



Chehrazi, Glynn, and Weber: Dynamic Credit-Collections Optimization
Management Science, 2019, vol. 65, no. 6, pp. 2737–2769, ©2019 The Author(s) 2739

From a behavioral viewpoint, consumers may be
more impatient with respect to payoff delays in the
short run than in the long run, which may lead to
dynamically inconsistent preferences and a certain
“present bias” (Laibson 1997, Bertaut et al. 2009).1
Although the self-excitation feature in the assumed
repayment process might at first sight suggest the
contrary, our model makes no explicit assumption
about debtors’ preferences. Indeed, we show that a
self-exciting point process is qualitatively consistent
with a Bayesian variant of our model (examined in
Appendix C). Our model does not explicitly consider
the debtor’s dynamic choice problem, involving the
trade-off between consumption, debt repayment, and
the possibility of personal bankruptcy, which might
drive the debtor’s repayment decisions. There is in
fact at best weak evidence on consumers’ strategizing
personal bankruptcy decisions (Bertaut and Haliassos
2006). Moreover, the lack of debtors’ bargaining power
and banks’ reputational cost of engaging in systematic
debt renegotiations (decreasing its power to commit to
future collections) both tend to reduce the salience of
a strategic approach to the collection problem unlike
situations of sovereign debt (Fernandez and Rosenthal
1990) or corporate debt (Roberts and Sufi 2009). Nev-
ertheless, explicit strategic considerations may provide
for interesting future extensions of this research.
1.1.3. Control of Jump Processes. The repayment
process, which is described by the dynamics of the
account state in the (intensity,balance) space, is a
marked point process. In the intensity dimension, these
dynamics are a self-exciting (Hawkes) jump process
(see Hawkes 1971) with an additional predictable pro-
cess that models account-treatment actions. The opti-
mal schedule of treatment actions is a deterministic
state-feedback law, but the implemented policy is ex
ante stochastic as the account-state evolution (corre-
sponding to the holder’s repayment behavior) is ran-
dom. Applications of self-exciting point processes in
a financial setting originated with the description of
counterparty risk (Jarrow and Yu 2001). More recently,
they includemodels of financial contagion (Aït-Sahalia
et al. 2015) and nonfinancial phenomena, such as ter-
rorism (Porter and White 2012) or consumer response
to online advertising (Xu et al. 2014). Our description of
the evolution of self-exciting point processes is based
on the transform analysis by Duffie et al. (2000) and
Chehrazi and Weber (2015).
The optimal control of Markov jump processes for

general (finite-dimensional) action and state spaces
is examined by Pliska (1975) under the assumption
that transition times are exponentially distributed
and the corresponding state-dependent transition
rates (“intensities” in our terminology) can be influ-
enced by actions. While in that setting any tran-
sition rate remains constant between transitions, in
our formulation the repayment intensity continues to

evolve and can be actively controlled at any time. As
a result, consistent with collections practice, account-
treatment actions are effectively decoupled from wait-
ing for repayments: they may be chosen so as to aug-
ment transition rates between state transitions. From
this perspective, the collection problem is about the
control of piecewise deterministic Markov processes
(PDPs); the latter were introduced by Davis (1984)
as a class of nondiffusion processes with applica-
tions in queueing (Dai 1995), R&D investment (Posner
and Zuckerman 1990), and change-time detection
(Bayraktar and Ludkovski 2009). Sufficient optimality
conditions for systems with piecewise deterministic
state dynamics can be obtained by exploiting martin-
gale/submartingale properties of the value function.2
Optimality conditions can often be cast in terms of
quasi-variational inequalities (QVIs), a technique pio-
neered by Bensoussan and Lions (1982); these types of
sufficient optimality conditions may be solved numer-
ically (see Feng and Muthuraman 2010 for an example
with diffusion).3 An operator-based approach by Costa
and Davis (1989) avoids the meticulous care needed
when establishing existence and regularity of the value
function as a viscosity solution of the QVIs.

The nature of solutions to optimal control problems,
with and without diffusion, generally depends on the
cost of control. With a fixed cost of taking an action,
infrequent impulse-control interventions become opti-
mal. Scarf (1960) shows that an (s , S) policy solves a
firm’s inventory-control problem: it is optimal to do
nothing until the current stock drops below a trig-
ger level s, at which point it is best to replenish the
inventory to the level S. This type of policy, which
features an inaction region in the state space, is opti-
mal under a variety of assumptions on the stochas-
ticity of demand (Harrison et al. 1983, Bensoussan
et al. 2005). The same type of solution obtains in the
context of holding an optimal amount of cash versus
interest-bearing financial instruments (Bar-Ilan 1990)
and optimal technology-investment decisions (Bar-Ilan
and Maimon 1993). In the absence of fixed costs
for taking an action, the solutions to stochastic opti-
mization problems for diffusion processes (with or
without jumps) usually feature instantaneous or bar-
rier controls, where it is optimal to move the state
continuously or hold it at the boundary (“barrier”)
of the action region (Dixit 1991). The implied three
regions in the state space (inaction, action, and hold-
ing/transient) appear naturally in the control of sys-
tems with regime shifts (Guo et al. 2005). Henderson
and Hobson (2008) find an analytical solution to an
asset-selling/consumption problem that involves a dif-
fusion without jumps, where it may be optimal to
use both instantaneous controls and discrete impulse
controls. Yang and Zhang (2005) consider a portfolio
investment problem for an insurance company with a
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cash flow that is governed by a jump-diffusion process
resulting from the uncertain arrival of claims. In their
setting, the problem terminates when the insurance
company is ruined; by contrast, the credit-collection
problem ends once the outstanding balance has been
repaid in full. The solution to the credit-collection
problem presented here is exact and can in principle be
obtained in closed form although the resulting expres-
sions involve hypergeometric functions (as in Davis
and Zervos 1998), which do not provide good intuition
and are, therefore, omitted.
This work is closest to Bayraktar and Ludkovski

(2009) who track the state of an unobservable Markov
jump process by observing a compound Poisson pro-
cess whose local characteristics (i.e., its intensity and
mark distributions) depend on the state of the unob-
servable Markov jump process. Specifically, given a
prior belief over the initial state of the unobservable
Markov jump process, they obtain piecewise determin-
istic dynamics for the updated beliefs via Bayes’ rule
and, based on this, determine a tracking policy that
maximizes an agent’s expected net benefit. In princi-
ple, our problem may be cast into this formulation by
viewing the repayment process as an observable com-
pound Poisson process whose intensity is the unob-
servable Markov jump process. Our intensity can then
be viewed as a Bayesian estimate of the true (unobserv-
able) repayment intensity. Although the dynamics of
our intensity are not exactly the same as in Bayraktar
and Ludkovski (2009), it does have a similar structure
for it features a positive jump when a repayment is
received (exhibiting self-excitation) and declines expo-
nentially during periods of inactivity. Our problem dif-
fers because our objective is to influence and not to
track the state of an unobservable Markov jump pro-
cess (corresponding to the repayment intensity), and
therefore, our control variable is different. However,
the solution technique is similar in that (exact) restric-
tions of the value function are obtained iteratively,
indexed by the number of remaining potential inter-
ventions, which, in turn, are determined by the num-
ber of possible future contacts with the frontier of the
action region conditional on minimum-size repayment
events.

1.2. Outline
The remainder of this paper is organized as follows.
In Section 2, we introduce the model for the repay-
ment process and formulate the collection problem as a
stochastic optimal control problem. Section 3 provides
a sufficient optimality condition and then proceeds to
the construction of a unique analytical solution to the
collection problem for arbitrary initial data. In Sec-
tion 4, we examine properties and practical aspects of
the optimal collection strategy. Section 5 concludes. A
summary of notation is provided in Table B.1 in the
appendix.

2. Model
A credit-card account that misses the repayment dead-
line on its outstanding balance bymore than a prespec-
ified time period (e.g., 30 days) is called “delinquent”
and placed in collections. To optimize the collection-
treatment actions, consider such a delinquent account
with outstanding balance w that enters the collection
process at time t � 0 to remain there for t ≥ 0 until full
repayment is received by the bank.4

2.1. Repayment Process
The holder of a delinquent account makes random re-
payments Zi ≥ 0 at random timesTi > 0 for i in {1, 2, . . .}
until the balance is paid in full, at which point the
account exits the collection process. As in Chehrazi
and Weber (2015), the holder’s repayment behavior
is viewed as a self-exciting marked point process
(Ti ,Zi : i ≥ 1) with piecewise-deterministic conditional
arrival rate λ(t) for t ≥ 0 termed repayment inten-
sity. This formulation is consistent with the Bayesian
dynamics obtained by Bayraktar and Ludkovski (2009),
where λ(t) corresponds to the best estimate of the
actual (unobserved) repayment intensity when the
bank dynamically updates its belief on the holder’s
intentions to repay the debt (see Appendix C for ana-
lytical details).

Specifically, in the absence of any collection attempt
(“account-treatment action”), the account holder’s con-
ditional repayment rate λ(t + s) for s ≥ 0 is given by the
flow λ(t + s)� ϕ(s , λ(t)) , λ∞ + (λ(t) − λ∞)e−κs as long
as there is no repayment in the time interval (t , t + s].
The mean reversion rate κ determines the speed with
which the repayment intensity approaches its long-
run steady state λ∞; the latter generally depends on
the macroeconomic environment.5 In particular, when
starting at λ(t) > λ∞, the arrival rate ϕ(s , λ(t)) is
exponentially decreasing, dissipating the memory of
past repayment behavior or account-treatment actions.
Thus, if N (t) denotes the number of repayments
on [0, t], the conditional probability of the next repay-
ment time TN (t)+1 to exceed t + s is

P(TN (t)+1 > t + s | ¦ t)� exp
(
−

∫ s

0
ϕ(ς, λ(t)) dς

)
, (1)

where ¦ t , as an element of the standard information
filtration �,6 contains all available information at time t.
These dynamics are illustrated in Figure 2(b); they are
consistent with Bayes’ rule—a period of inactivity low-
ers the bank’s estimate of the unobserved repayment
intensity.

At any repayment time Ti , the holder’s outstand-
ing balance W(Ti) diminishes by the received repay-
ment amount Zi , so W(Ti) � W(T−i ) − Zi . In line with
institutional practice, we assume that, over the course
of the collection process, the issuer does not accrue
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interest on the remaining outstanding balance. As
a result, W(t) remains constant between consecutive
repayment events. The repayment sequence (Zi : i ≥ 1)
is obtained from a [0, 1]-valued, independent and iden-
tically distributed (i.i.d.) sequence (Ri : i ≥ 1) via Zi �

W(T−i )Ri � W(Ti−1)Ri . Each Ri follows the distribu-
tion FR: [0, 1] → [0, 1] and corresponds to the per-
centage of the remaining outstanding balance (i.e.,
W(Ti−1)), received with the repayment Zi ; the expected
relative repayment is

r̄ , Ɛ[Ri]�
∫ 1

0
r dFR(r). (2)

At any repayment event i, the holder’s repayment
intensity increases by δ10 + δ11Ri , so λ(Ti) � λ(T−i ) +
δ10 + δ11Ri . As detailed in Chehrazi and Weber (2015),
the parameters δ10 and δ11 measure the holder’s will-
ingness to repay (i.e., the sensitivity of λ(t)with respect
to N (t) ,∑

i 1{Ti≤t}) and ability to repay (i.e., the sensi-
tivity of λ(t)with respect toR(t),∑

i Ri1{Ti≤t}), respec-
tively. For a given account, these two dimensions of the
repayment process pertain to the number of observed
repayments and the relative magnitude of these repay-
ments: while frequent repayments tend to indicate a
high willingness to repay, the account holder’s abil-
ity to repay might still be quite low, for example, in
the case where the holder’s checks are bouncing or
the repayments do not add up to a significant portion
of the outstanding balance. Again, the positive jump
introduced by a repayment is consistent with Bayes’
rule: observing an event increases the bank’s estimate
of the repayment intensity (see Figure 2(b)).

Remark 1. In the absence of any account-treatment
action, the “autonomous” repayment dynamics fol-
low an affine, self-exciting point process (Hawkes pro-
cess). In that case, the repayment intensity satisfies the
stochastic differential equation (SDE)

dλ(t)� κ(λ∞ − λ(t))dt + δ>1 dJ(t), (3)

where J(t) , [N (t),R(t)]> denotes the repayment pro-
cess with N (t) a counting process for the number of
repayments and R(t) a process describing the rela-
tive magnitude of repayments. The parameter vector
δ1 , [δ10 , δ11]> captures the account holder’s willing-
ness and ability to repay. The model parameters can
be identified using estimation techniques developed by
Chehrazi and Weber (2015), who also show the empir-
ical significance of the self-excitation term for predict-
ing consumers’ repayment behavior based on a data
set from the credit-card industry (see Appendix D for
details).

2.2. Collection Problem
At any time in the collection process, the card issuer
(bank) or a designated party (collection agency) can

take account-treatment actions, usually in the form
of attempts to collect all or part of the outstanding
debt. These actions, in the form of establishing con-
tact, negotiating a repayment plan, or filing a law-
suit, often do not lead to an immediate repayment but
merely increase the likelihood of receiving a (partial)
repayment in the future. The process A � (A(t): t ≥ 0)
with A(0) � 0 encapsulates the bank’s collection strat-
egy; it is nondecreasing, left-continuous (predictable),
and adapted to �. Taking a collection action pro-
duces a thrust in the dynamics of the repayment
intensity,

dλ(t)� κ(λ∞ − λ(t))dt + δ>1 dJ(t)+ δ2dA(t), (4)

where the sensitivity δ2 describes the responsiveness
of the account to its treatment. The change of A is
viewed as a proxy for the collection effort, dA(t), neces-
sary to carry out the corresponding account-treatment
action.7 The cost of collection is assumed to be linear
with constant marginal cost c > 0, consistent with a col-
lection effort measured in hours spent on an account’s
workout. The bank’s collection problem is to find an
admissible collection strategy A∗ � (A∗(t): t ≥ 0) ∈A that
solves

v∗(λ,w)� min
A∈A

Ɛ

[∫ ∞

0
e−ρs dW(s)

+ c
∫ ∞

0
e−ρs dA(s)

���� λ(0)� λ,W(0)� w
]
,

(P)

where A is the set of left-continuous, nondecreasing,
adapted processes. An optimal collection strategy pro-
duces the minimum net expected loss w + v∗(λ,w), con-
sisting of the unrecovered outstanding balance plus
collection cost given the initial intensity λ and initial
balance w. Conversely, V̄ ∗(λ,w) , −v∗(λ,w) represents
the (optimized) expected economic value of the out-
standing loan, net of collection costs.

Although the bank’s collection problem is formu-
lated over an infinite horizon for a “collectable” ac-
count of positive value, the optimal pursuit time is
endogenously bounded; see Section 3.2.2. Whether the
pursuit time should be exogenously bounded or not
depends on the specifics of a country’s statute of limi-
tations8 for unsecured consumer debt or else on bank-
internal guidelines. An infinite horizon reflects a going
concern for an account and naturally accommodates
optimal stopping problems, for example, by including
considerations of early settlement.

3. Optimal Account Treatment
The optimal solution to the collection problem (P) con-
sists of a sequence of account-treatment actions. Treat-
ment actions are taken when the account’s repayment
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intensity falls below an intensity threshold determined
by the account’s current outstanding balance and
its characteristics. The intensity threshold reflects a
minimal arrival likelihood for repayments that needs to
be maintained throughout an active collection process.
All else equal, it increases in an account’s outstanding
balance: when more money is owed, the bank needs
to ensure a greater likelihood of repayment and is,
therefore, more willing to invest in an active treatment
of the account. In addition, for high-balance accounts,
more forceful treatment actions (e.g., threatening with
a lawsuit) are warranted. In our formulation, imple-
menting an account-treatment action (such as estab-
lishing first-party contact, entering negotiations for a
payment plan, or filing a lawsuit) can increase the
repayment intensity to a certain level (by introduc-
ing an intensity jump) and maintain the intensity at
this level (by providing a positive intensity thrust) as
long as the action remains in effect. In cases where
the initial repayment intensity, at the start of the col-
lection process, is below the intensity threshold, an
optimal account-treatment action leads to an intensity
jump. The impact of the first action includes the con-
comitant status change of an account when entering
the collection process, reflecting also the fact that the
account holder’s attention has been captured. Subse-
quent actions do not induce such jumps because they
are taken at the optimal time. Instead they tend tomain-
tain a designated level of intensity until the next repay-
ment event triggers a shift in the outstanding balance
and repayment intensity, upon which the bank relaxes
the collection effort until the repayment likelihood con-
tinuously drops to the (now lower) intensity threshold
once more. The collection process terminates as soon
as the outstanding balance reaches an economic balance
threshold below which account treatment is no longer
economically viable. From amathematical perspective,
the (unique) optimal collection strategy consists of an
impulse control at the time of placement (t � 0), fol-
lowed by a series of extended treatment intervals with
continuous control. Note that an arbitrary collection
strategy can consist ofmore thanone impulse, for exam-
ple, because subsequent actions are taken when the
repayment intensity has already fallen below the opti-
mal threshold (and consequently below the intensity
levels these actions can maintain). Next, we provide a
detailed analysis and formal description of the solution
to the collection problem (P).

3.1. Sufficient Optimality Condition
Without loss of generality, any admissible collection
strategy A ∈A can be represented in the form

A(t)�
∫
[0, t]

E(s) ds +
∞∑

k�0
∆Ak1{ϑk<t} , t ≥ 0, (5)

where the adapted nonnegative process E(t) describes
an infinitesimal extended collection effort applied on

a time interval and where the predictable jumps
∆Ak , A(ϑ+

k ) − A(ϑk) at �-stopping times ϑk for k ≥ 0
(with ϑk+1 > ϑk) correspond to concentrated collection
efforts, each of which has a sizeable impact on the
account’s repayment likelihood. In this formulation,
an account-treatment action (such as establishing first-
party contact, entering negotiations for a payment
plan, or filing a lawsuit) is modeled by a fixed intensity
level λ̂; see Section 3.2.3. If the current intensity λ(t)
is less than λ̂, implementing that action increases the
current intensity to this level through a jump of size
λ̂−λ(t). For example, initiating negotiation for a repay-
ment plan or filing a lawsuit can induce a jump in the
repayment intensity as these actions may change the
account holder’s priorities. While in effect, this action
maintains the intensity at λ̂ bymeans of the continuous
thrust κ(λ̂−λ∞), which captures the effect of the action
while it is implemented, for example, until an agree-
ment for a repayment plan is reached or a court order
is obtained.9 We allow for an action’s induced inten-
sity level λ̂ to depend on account-specific information.
For example, for a given current intensity λ(t), estab-
lishing and maintaining first-party contact through
phone calls, emails, or text messages can cause a size-
able intensity transition for “high-quality” accounts
while it may have virtually no impact on the repay-
ment intensity of “low-quality” accounts. For low-
quality accounts, achieving the same effectmay require
a stronger and more expensive treatment action, such
as filing a lawsuit.10 In our formulation, we assume
that any intensity level can, in principle, be attained
and maintained as long as the bank is able to absorb
the corresponding collection cost. To arrive at an actual
practical implementation of an “optimal” collection
strategy A∗, it is generally necessary to determine a
workable approximation using the bank’s available col-
lection toolbox. Effective policy-approximation tech-
niques for a given finite set of feasible account inter-
ventions are the subject of a future empirical study; see
Appendix D for further details.

Given the representation of admissible collection
strategies in Equation (5), a sufficient optimality con-
dition for a solution to the collection problem (P) is
obtained using a standard martingale argument; see
Endnote 2.

Theorem 1. Let v∗: �2
+
→� be a continuous, almost every-

where (a.e.) differentiable function that satisfies the Bellman
equation

0 � min
{

min
a>0
{v∗(λ+ δ2a ,w)+ ca − v∗(λ,w)},

min
ε≥0
(¤εv

∗)(λ,w)
}
, (λ,w) ≥ 0, (6)

and the boundary condition limλ→∞ v∗(λ,w) � −w, where
for any ε ≥ 0 and for any differentiable function v: �2

+
→�
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the integro-differential operator ¤ε is defined by

(¤εv)(λ,w), [κ(λ∞−λ)+ δ2ε]∂1v(λ,w)−ρv(λ,w)
+λƐ[v(λ+ δ10 + δ11R,w(1−R))− v(λ,w)−wR]+ cε,

(λ,w) ≥ 0. (7)

Then v∗ is the value function of the collection problem (P).

The Bellman equation (6) establishes the optimality
of a candidate value function by testing it for any pos-
sible improvement. Specifically, the first term of the
minimand on the right-hand side expresses the best
net reduction of the expected loss as a result of any
positive discrete effort.11 The second term of this min-
imand corresponds to the best expected net reduc-
tion of the objective for any admissible continuous
effort. For ε � 0, this term (when set to zero) guaran-
tees that a candidate value function is consistent with
the autonomous evolution of the intensity (see Equa-
tion (3)) when no account-treatment action is applied.
To guarantee that the value function is optimal, it is suf-
ficient that neither of the two terms is negative, so their
minimum on the right-hand side of Equation (6) must
vanish. Intuitively, the Bellman equation ensures that
neither a discrete nor a continuous collection effort can
lead to an improvement in the expected net loss and, in
addition, that, if inactivity is optimal, then the account-
state evolution is guaranteed to be autonomous. We
also note that a solution to the Bellman equation is, by
construction, unique.

Remark 2. At an optimum, the value of the first
term in the variational identity (6), when it exists,
can generally be achieved using one of several (and
possibly a continuum of) different simultaneous dis-
crete collection efforts. Because the loss is bounded
by the outstanding balance w, any optimal discrete
effort a∗(λ,w) is naturally bounded by w/c < ∞. By
the Berge maximum theorem, the set of solutions to
a parameterized optimization problem over a com-
pact set (here [0,w/c]) with continuous objective func-
tion is compact-valued (Berge 1963, p. 116). In partic-
ular, there exists a maximal optimal discrete collection
effort,

a∗(λ,w)�max
{
a ≥ 0: a ∈ argmin

â≥0
{v∗(λ+ δ2 â ,w)+ câ}

}
,

(λ,w) ≥ 0, (8)

which satisfies the Bellman equation (6) when it is
strictly positive. This solution is chosen here to exclude
an uncountable number of possible sequences of quasi-
simultaneous discrete interventions, all of which are
theoretically equivalent to implementing the maximal
intensity jump a∗(λ,w). This is in agreement with
our view that, in practice, an account-treatment action
(such as establishing first-party contact, entering nego-
tiations for a payment plan, or filing a lawsuit) can

only increase the repayment intensity to a certain level
from a currently smaller level λ(t); taking the same
action multiple times would not lead to a larger inten-
sity jump.

Corollary 1. Equation (6) partitions the attainable account
states (λ,w) ≥ 0 (i.e., the “state space” �2

+
) into three dis-

joint regions:
(i) an “action region,”

¡∗ ,
{
(λ,w) ∈ �2

+
: a∗(λ,w) > 0 and

min
ε≥0
(¤εv

∗)(λ,w) ≥ 0
}
, (9)

where v∗(λ+ δ2a∗(λ,w),w)+ ca∗(λ,w) − v∗(λ,w)� 0;
(ii) a “holding region,”

¨ ∗ , {(λ,w) ∈ �2
+
: a∗(λ,w)� 0, λ > λ∞ , and

(ε ≥ 0⇒(¤εv
∗)(λ,w)� 0)}; (10)

(iii) a “continuation region,”

£ ∗ , {(λ,w) ∈ �2
+
: a∗(λ,w)� (¤0v∗)(λ,w)� 0, and

(λ ≥ λ∞ , ε > 0⇒(¤εv
∗)(λ,w) > 0)}. (11)

Thus, ¡∗ ∪¨ ∗ ∪£ ∗ ��2
+
.

Given any two regions, the third can be obtained as
their complement in the state space �2

+
. These regions

are illustrated in Figure 1(a). The action region ¡∗

comprises all points of the state space at which an
immediate discrete collection effort is best. The hold-
ing region ¨ ∗ is formed by points on the bound-
ary of the action region ¡∗, from which—in the
absence of any collection effort—the account state
would drift immediately into ¡∗;12 see Figure 1(b).
From within ¡∗, the optimal discrete collection effort
moves the account state to the holding region ¨ ∗

where it becomes best to apply a continuous collection
effort so as to keep the debtor engaged, thus maintain-
ing the current repayment intensity. Finally, the com-
plement of A∗ ∪¨ ∗ is the continuation (or inaction)
region £ ∗ where collection actions are economically
inefficient.

Remark 3. (i) If (λ,w) ∈ ¡∗, then by Equation (8) in
Remark 2 it is (λ + δ2a∗(λ,w),w) < ¡∗: applying the
(maximal) optimal discrete collection effort leads to
a state outside of the action region. Indeed, Figure 2
shows a situation where an initial account state lies
strictly inside the action region ¡∗ and where the opti-
mal discrete collection effort moves the account state
to the holding region. (ii) For a corner solution, where
a∗(λ,w)� 0 by the first-order necessary optimality con-
dition: ∂1v∗(λ,w) ≥ −ĉ, where ĉ , c/δ2. In particular,
since (¤εv∗ − ¤0v∗)(λ,w) � (∂1v∗(λ,w) + ĉ)(δ2ε), if
∂1v∗(λ,w)�−ĉ, then necessarily (¤εv∗)(λ,w)� 0 for all
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Figure 1. (a) Partition of the State Space; (b) Vector Field Corresponding to the Autonomous Intensity Dynamics Between
Two Repayment Events
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ε ≥ 0, so (λ,w) ∈¨ ∗, provided λ > λ∞. By choosing the
continuous collection effort

ε∗(λ,w) , (κ/δ2)(λ− λ∞)1{(λ,w)∈¨ ∗} , (12)

the account state in the holding region remains in
the holding region ¨ ∗ until a repayment is received

Figure 2. Sample Paths Under Optimal Policy for the Collection Problem (P): (a) Account State; (b) Repayment Intensity; (c)
Outstanding Balance; (d) Collection Effort (Discrete and Continuous)

0.50

0.25

1.00

0.75

1.50

1.25

1.75

2.00

0

w [in $] 

(a)

0 25 50 75 100

�

�∞

0 1 2 3 4 5

0.5

1.0

1.5

2.0

0

(b)

t

�

(c)

w [in $] 

0 25 50 75 100

1

4

3

2

5

0

t

(d)

0 1 2 3 4 5

t

1.5

1.0

0.5

2.0

2.5

3.0

0

A*( · )

dA*( · )

since, by construction, κ(λ∞−λ)+δ2ε
∗(λ,w)�0. This is

depicted in Figure 2 where for (λ(t),w) ∈¨ ∗ a minimal
continuous collection effort is applied to keep the value
of the intensity λ(t) fixed and to prevent the account
state (λ(t),w) from entering into the action region ¡∗.
Finally, for ∂1v∗(λ,w) > −ĉ, clearly (¤0v∗)(λ,w) ≥ 0
implies that (¤εv∗)(λ,w) > 0, for any ε > 0.



Chehrazi, Glynn, and Weber: Dynamic Credit-Collections Optimization
Management Science, 2019, vol. 65, no. 6, pp. 2737–2769, ©2019 The Author(s) 2745

3.2. Constructing the Value Function
To construct the value function v∗, it is possible to
use a recursive approach, which, for any given ini-
tial account state (λ,w), converges in a finite num-
ber of steps and provides in each iteration an exact
solution restricted to a subset of the attainable sub-
sequent account states. For this, Section 3.2.1 derives
a semi-analytic solution to the collection problem (P)
in the absence of any collection activity, referred to
as “autonomous account value.” In Section 3.2.2, we
consider a “terminal collection problem.” Its solu-
tion determines “terminal” account states, for which
the “autonomous account value” satisfies the Bellman
equation (6). Any state trajectory (λ(t),W(t)) reaches
a terminal state with probability one in finite time.
Hence, the solution in this part of the state space is
referred to as the “terminal account value.” The latter
can be precomputed and, thus, initializes the recursion.
Section 3.2.3 introduces a family of “sustained exten-
sions,” indexed by the holding intensities λ̂ ≥ λ∞, to
extend the validity of a value function to generate its
next iteration by finding the (unique) optimal holding
intensity. Finally, Section 3.2.4 establishes the optimal-
ity of the recursion and provides expressions for the
optimal collection strategy. The recursion extends the
solution of the collection problem (P) from terminal
account states to the entire state space.
3.2.1. Autonomous Account Value. In the absence of
any account-treatment action, the stochastic evolu-
tion of the repayment intensity follows the SDE (3),
and the collection cost vanishes. Hence, the value
of the untreated account in (P) becomes (minus) the
expected discounted value of the autonomous repay-
ment sequence (Zi : i ≥ 1),

u(λ,w)�Ɛ

[
−
∞∑

i�1
e−ρTi Zi

����λ(0)�λ, W(0)�w
]

�Ɛ

[∫ ∞

0
e−ρs dW(s)

����λ(0)�λ,W(0)�w
]
, (13)

for all (λ,w) ≥ 0.
Theorem 2. For any (λ,w) ≥ 0, the autonomous account
value can be represented in the form

u(λ,w)�−
(
1− ρ

∫ ∞

0
exp(−ρt − λα(t) − κβ(t)) dt

)
w ,

(14)
where (α, β): �+ → �2 uniquely solves the initial-value
problem

Ûα(t)�−κα(t)+
∫ 1

0
[1−(1− r)

· exp(−(δ10 + δ11r)α(t))] dFR(r), α(0)�0, (15)
Ûβ(t)�λ∞ α(t), β(0)�0, (16)

for all t ≥ 0.
The representation of the autonomous account value

in Equation (14) decomposes the effects of time value of

money (via the discount factor e−ρt), the self-excitation
of the arrival intensity (via the discount factor e−λα(t)),
and its reversion toward the long-run steady state λ∞
(via the discount factor e−κβ(t)). For example, if repay-
ments can be made only in full (so FR becomes a Dirac
distribution at r � 1) and there is no mean reversion
(so κ � 0), then the repayment intensity is constant,
λ(t) ≡ λ, and (α(t), β(t)) � (t , λ∞t2/2), which by Equa-
tion (14) implies that u(λ,w)�−(λw)/(ρ+ λ).
Corollary 2. The autonomous account value in Equa-
tion (13) is such that

(i) (¤0u)(λ,w) � 0 on �2
+
with the boundary condition

limλ̂→∞ u(λ̂,w)�−w;
(ii) ∂1u(λ,w), ∂2u(λ,w), ∂12u(λ,w) < 0 � ∂22u(λ,w)

< ∂11u(λ,w) on �+ ×�++;
(iii) ∂2u(λ, 0), ∂12u(λ, 0) < 0 � u(λ, 0) � ∂1u(λ, 0) �

∂11u(λ, 0) � limλ̂→∞ ∂1u(λ̂,w), and limŵ→∞ u(λ, ŵ) �
limŵ→∞ ∂1u(λ, ŵ)�−∞.

By the preceding result, the expected loss, w +

u(λ,w), of an untreated account is decreasing and con-
vex in the repayment intensity λ while it is increas-
ing and linear in the outstanding balance w; see
Figures 3(c) and 3(d). Moreover, the expected loss
exhibits decreasing differences in the sense that a pos-
itive change in the repayment intensity decreases the
expected loss more for higher outstanding balances;
see Figure 3(b).
Remark 4. The solution (α, β): �+→ �2 to the initial-
value problem (15)–(16) is increasing and such that 0 ≤
α(t) ≤ (1− e−κt)/κ and 0≤ β(t) ≤ (λ∞/κ2)(κt−(1− e−κt)),
for all t ≥ 0. Thus, by Equation (14), the autonomous
account value can be bounded from below for all
(λ,w) ∈ [λ∞ ,∞)×�+:

u(λ,w) ≥ −
(
1−

ρe−(λ−λ∞)/κ

ρ+ λ∞

)
w. (17)

The last inequality implies a lower bound for expected
loss given default in the absence of active collections,

LGD� w + u(λ,w) ≥
(
ρw

ρ+ λ∞

)
e−(λ−λ∞)/κ , (18)

which may be used to determine the capital at risk in
the issuing bank’s delinquent account portfolio.
3.2.2. Terminal Account Value. An immediate impli-
cation of Corollary 2(i) is that u(λ,w) is the value
function of the collection problem (P) for any account
state (λ,w) in a subset of the continuation region £ ∗, for
which the trajectory (λ(t),W(t))t≥0 with (λ(0),W(0)) �
(λ,w) is guaranteed to remain in the continuation
region. For such account states, Remark 3(i) implies
that the collection problem (P) simplifies to

v∗0(λ,w)� min
a0≥0
{u(λ+ δ2a0 ,w)+ ca0}, (TCP)

where, upon expending the optimal effort a∗0(λ,w), the
bank obtains the autonomous value function at the
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new intensity. We refer to this problem as the terminal
collection problem since—no matter if the outstanding
debt is paid in full or not—it will never be optimal to
attempt active collections again.
Note that since ∂12u < 0 ≤ ∂11u by Corollary 2,

the minimand of (TCP) is supermodular in (a0 , λ)
and submodular in (a0 ,w) so that the discrete termi-
nal collection effort a∗0(λ,w) is decreasing in λ and
increasing in w. Hence, a trivial discrete terminal
effort a∗0(λ,w)� 0 implies that the optimal account
treatment remains trivial for larger intensities and
smaller balances; that is, a∗0(λ̂, ŵ)� 0 for all (λ̂, ŵ)with
λ̂ ≥ λ and ŵ ≤ w. On the other hand, any nontrivial
a∗0(λ,w) > 0 satisfies the necessary (and here also suffi-
cient) optimality condition by Fermat,

∂1u(λ+ δ2a∗0(λ,w),w)�−ĉ , (19)

where ĉ � c/δ2, as in Remark 3, denotes the effective
marginal collection cost, that is, the marginal collec-
tion cost c relative to the sensitivity δ2 of the intensity
process with respect to the collection effort. Thus, the
smallest balance

¯
w above which the terminal collection

effort remains nontrivial for some positive λ is such that
∂1u(0,

¯
w)�−ĉ, that is, by Theorem 2,

¯
w ,

(∫ ∞

0
α(t)exp[−ρt − κβ(t)] dt

)−1 ( ĉ
ρ

)
.

For any w exceeding the minimal actionable balance
¯
w,

consider the intensity threshold λ∗0(w), below which
the discrete terminal collection effort is nontrivial. By
the optimality condition (19), λ∗0(w) is the unique solu-
tion of ∂1u(λ,w) � −ĉ for w >

¯
w. Note that, similar

to a∗0(λ,w), submodularity of u implies that λ∗0(w)
is (strictly) increasing in w with limw→∞ λ

∗
0(w) �∞.13

Defining λ∗0(w), 0 for w ≤
¯
w, we canwrite the terminal

value function in (TCP) as

v∗0(λ,w)�


u(λ,w), if λ ≥ λ∗0(w),
u(λ+ δ2a∗0(λ,w),w)+ ca∗0(λ,w),

otherwise,
(20)

where for λ ≤ λ∗0(w), it is λ + δ2a∗0(λ,w) � λ∗0(w). Let
w∗0 be the unique balance w at which the intensity
threshold λ∗0(w) is equal to the long-run steady-state
intensity λ∞; that is, λ∗0(w∗0)� λ∞. Then, by Corollary 1,
for balances w ∈ [0,w∗0] we conclude that the holding
region ¨ ∗ is empty, and starting from λ ≥ λ∗0(w), λ(t)
never becomes smaller than λ∗0(w). Consequently, in
this region, the solution to the terminal collection prob-
lem (TCP) coincides with the solution to the (general)
collection problem (P).

Theorem 3. For any (λ,w) ∈ �+ × [0,w∗0], the value func-
tion v∗(λ,w) of the collection problem (P) is equal to the
value function v∗0(λ,w) of the terminal collection prob-
lem (TCP).

The following properties follow directly from Corol-
lary 2.

Corollary 3. For any (λ,w) ∈ �+ × [0,w∗0], v∗0(λ,w) is C1

and has second-order derivatives a.e. Moreover,
(i) 0 ≥ v∗0(λ,w) ≥ −w � limλ̂→∞ v∗0(λ̂,w);
(ii) −ĉ ≤ ∂1v∗0(λ,w) ≤ 0 � limλ̂→∞ ∂1v∗0(λ̂,w);
(iii) ∂2v∗0(λ,w), ∂22v∗0(λ,w), ∂12v∗0(λ,w) ≤ 0 ≤

∂11v∗0(λ,w).
Based on the fact that, by Theorem 3 for a sufficiently

small outstanding balance the collection problem (P)
can be reduced to a terminal collection problem, the
optimal collection strategy can be inferred from the
value function v∗0 characterized in Equation (20).

Corollary 4. For account states in �+ ×[0,w∗0], the contin-
uation, holding, and action regions are given by

£ ∗0 ��+ × [0, ¯
w] ∪ [λ∗0(w),∞)× ( ¯w ,w

∗
0], ¨ ∗

0 ��,
and ¡∗0 � [0, λ∗0(w)) × ( ¯w ,w

∗
0],

respectively. The optimal collection strategy for an account
in such states, that is, the optimal solution to the collection
problem (P) is A∗(t) ≡ a∗0(λ,w) for t > 0.

The intuition behind Theorem 3 and the optimal col-
lection strategy in Corollary 4 is that for accounts with
an outstanding balance below w∗0 it is either economi-
cally inefficient to attempt collection or elseworthwhile
to make only a single collection attempt (e.g., by estab-
lishing contact via a phone call, an email, or a let-
ter to remind the holder about the overdue balance).
Expending further collection effort is not advised since
the additional collection cost will exceed the expected
recovery. Figure 3(a) depicts

¯
w and w∗0 for the case stud-

ied in Section 4.
3.2.3. Sustained Extensions. For any λ, λ̂ ≥ λ∞
with λ ≥ λ̂, consider the cumulative distribution func-
tion of a “sustained” intensity process according to
SDE (3), which starts at λ(0) � λ, is bounded from
below by λ̂, and proceeds until the next repayment
event at a random time T ≥ 0,

� (T ≤ t | λ(0)� λ)� Fλ, λ̂(t) , 1−exp[−Φλ, λ̂(t)], t ≥ 0,

where θ(λ, λ̂) , −(1/κ) ln((λ̂− λ∞)/(λ− λ∞)) ≥ 0 is the
critical time t̂ ≥ 0 at which λ(t̂)� ϕ(t̂ , λ)� λ̂, and

Φλ, λ̂(t) ,
∫ t

0
max{ϕ(s , λ), λ̂} ds

�


λ∞t + (λ−ϕ(t , λ))/κ, if 0 ≤ t ≤ θ(λ, λ̂),
λ∞θ(λ, λ̂)+ (λ− λ̂)/κ+ λ̂(t − θ(λ, λ̂)),

otherwise.

Since Φλ, λ̂ is strictly increasing in (λ, λ̂), a decrease in
the initial value λ or a decrease in the lower bound λ̂
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produces a first-order stochastically dominant shift of
the cumulative distribution function Fλ, λ̂. The pay-
ment distribution is stochastically delayed if its inten-
sity starts at a lower value or is sustained at a smaller
lower bound.

Lemma 1. The expected present value of a unit repayment
under a sustained intensity process is

Ɛ[e−ρT | λ(0)� λ]�
∫ λ

λ̂

Q(λ, l)
ρ+ l

κ(l − λ∞)
dl +Q(λ, λ̂),

(21)
where, for λ ≥ λ̂ ≥ λ∞,

Q(λ, λ̂)� λ̂

(ρ+ λ̂)

(
λ̂− λ∞
λ− λ∞

) (ρ+λ∞)/κ
exp

(
−λ− λ̂

κ

)
(22)

represents Ɛ[e−ρT | T ≥ θ(λ, λ̂), λ(0)� λ] ·� (T ≥ θ(λ, λ̂) |
λ(0)� λ), that is, the expected present value of a unit repay-
ment while the intensity is being sustained at λ̂.

Given the current state (λ(0),W(0))� (λ,w) ∈ �2
+
, let

(λ(T),W(T)) be the state that can be reached after the
next repayment at T. Moreover, let v(λ(T),W(T)) be
(minus) the expected net account value right after the
repayment at T by following an admissible collection
strategy A ∈ A over [T,∞). Consider now an extension
of this policy that prescribes maintaining the repay-
ment intensity above λ̂ until the repayment time T.
After a repayment, the original collection strategy A
(which leads to the value function v) is applied. For
λ ≥ λ̂, by Lemma 1, this “sustained-extension strategy”
lowers the expected loss because

Ɛ[v̄(λ(T−),W(T−))e−ρT | λ(0)� λ,W(0)� w]

�

∫ λ

λ̂

v̄(l ,w)Q(λ, l)
l + ρ

κ(l − λ∞)
dl + v̄(λ̂,w)Q(λ, λ̂),

(23)

where

v̄(l ,w),
∫ 1

0
(v(l + δ10 + δ11r, (1− r)w)− rw) dFR(r) (24)

is (minus) the expected value of the account in
state (l ,w) given a (partial) repayment. To maintain the
intensity at λ̂ after having reached it, the bank needs
to expend a continuous collection effort E(s) � (κ/δ2) ·
(λ̂ − λ∞) for s ≥ θ(λ, λ̂). The expected present value
of the cost for sustaining the repayment intensity at λ̂
until the next repayment is, therefore,∫ ∞

θ(λ, λ̂)

(
c
∫ s

θ(λ, λ̂)
e−ρςE(ς)dς

)
dFλ, λ̂(s)� ĉκ

λ̂−λ∞
λ̂

Q(λ, λ̂).
(25)

Hence, given any outstanding balance w ≥ 0, the ex-
pected (minus) net account value under the sustained-
extension strategy can be described by the sustained-
extension operator

(³λ̂v)(λ,w) ,
∫ λ

λ̂

v̄(l ,w)Q(λ, l)
l + ρ

κ(l − λ∞)
dl

+

[
v̄(λ̂,w)+ ĉκ

λ̂− λ∞
λ̂

]
Q(λ, λ̂), λ ≥ λ̂. (26)

For λ < λ̂, a sustained-extension strategy requires an
immediate intensity jump of size a(λ, λ̂) � (λ̂ − λ)/δ2,
moving the repayment intensity from λ to λ̂, followed
by the continuous collection effort E(s) � κ/δ2(λ̂ − λ∞)
for s ≥ 0 to hold the intensity at λ̂, so that the sustained-
extension operator is defined as

(³λ̂v)(λ,w) , ca(λ, λ̂)+
[
v̄(λ̂,w)+ ĉκ

λ̂− λ∞
λ̂

]
Q(λ̂, λ̂),

λ < λ̂. (27)

The next result establishes invariance properties of ³λ̂.

Lemma 2. Assume that λ̂ ≥ λ∞ and let v: �2
+
→ �− be a

C1-function that has second-order derivatives a.e. Moreover,
assume that ∂1v , ∂2v , ∂12v , ∂22v ≤ 0. Then the sustained
extension of v,

v̂(λ,w; λ̂) , (³λ̂v)(λ,w),

is such that
(i) v̂: �2

+
→ �− remains C1 and is an a.e. twice differen-

tiable function such that ∂1 v̂ , ∂2 v̂ , ∂12 v̂ , ∂22 v̂ ≤ 0;
(ii) v̂ is continuously differentiable with respect to λ̂.

Moreover, ∂2 v̂ is decreasing in λ̂.

The sustained extension ³λ̂v preserves most first-
and second-order monotonicity properties of v. Note
that, while for an arbitrary level λ̂ the function v̂(·; λ̂) is
generically not convex in λ, as is shown in the next sub-
section, this second-order monotonicity is preserved at
“the optimal level” when extending an (optimal) value
function of the collection problem to a larger domain
of account states. The intensity dynamics induced by
the sustained-extension operator resemble the effects
of an account-treatment action. As noted in Section 3.1,
each account-treatment action can sustain a certain
intensity level λ̂. Implementing an account-treatment
action increases the intensity to λ̂, provided the cur-
rent intensity is smaller, and it maintains the intensity
at λ̂ as long as the action remains in effect.

3.2.4. Optimal Account Value. The key idea for con-
structing the value function v∗(λ,w) of the collection
problem for all (λ,w) ≥ 0 consists in recursively extend-
ing a known value function, valid for small balances,
to successively include larger balances. As shown in
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Figure 3. (a) Solution to the Collection Problem; (b)–(d) Comparison of Optimal and Autonomous Value
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Section 3.2.2, the value function of the collection prob-
lem (P) is the terminal value function v∗0(λ,w) in Equa-
tion (20) for all w ∈ [0,w∗0]. For any given outstanding
balance w > w∗0, the recursive construction of the value
function v∗ on �+ × [0,w] can be completed in a finite
number of iterations, provided that repayments cannot
become arbitrarily small.

Minimal-repayment assumption (MRA). There exists a
positive minimal (relative) repayment

¯
r ∈ (0, 1) such that the

support of FR is contained in [
¯
r, 1].

In practice, MRA is satisfied because there is a natu-
ral lower bound

¯
z imposed by any discrete currency on

nonzero absolute repayment amounts (e.g.,
¯
z � $0.01),

and one can set
¯
r �

¯
z/w.14 For a given minimal relative

repayment
¯
r and w > w∗0, the integer

i(w) ,
⌈ ln(w∗0/w)

ln(1−
¯
r)

⌉
≥ 1 (28)

is an upper bound for the number of repayments until
a positive outstanding balance is repaid up to the eco-
nomic balance threshold w∗0, below which it makes no

economic sense to actively pursue collection. For any
i ≥ 1, let w∗i , w∗0(1 − ¯

r)−i denote the maximum out-
standing balance that may require at most i repay-
ments for the outstanding amount to drop to or
below w∗0, so i(w) ≤ i if and only if w ≤ w∗i ; see Fig-
ure 3(a). Moreover, assume that the value function v∗i−1
of the collection problem (P) for account states in �+ ×
[0,w∗i−1] is obtained and has the following characteris-
tic properties.

Value properties. For a given i ≥ 1, v∗i−1: �+ × [0,w∗i−1]
→ � is C1 and has second-order derivatives a.e. In
addition, v∗i−1 satisfies the following three “value prop-
erties”:

(P1) 0 ≥ v∗i−1(λ,w) ≥ −w � limλ→∞ v∗i−1(λ,w);
(P2) −ĉ ≤ ∂1v∗i−1(λ,w) ≤ 0 � limλ→∞ ∂1v∗i−1(λ,w);
(P3) ∂2v∗i−1(λ,w), ∂22v∗i−1(λ,w), ∂12v∗i−1(λ,w) ≤ 0 ≤

∂11v∗i−1(λ,w).
Applying the sustained-extension operator ³λ̂ on

v∗i−1 extends the definition of v∗i−1. Let λ̂ ≥ λ∞ and for
any (λ,w) ∈ �+ × [w∗i−1 ,w

∗
i ] set

vi(λ,w; λ̂) , (³λ̂v∗i−1)(λ,w). (29)
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The intensity level λ̂, at which the sustained exten-
sion vi is being held before the next repayment is
subject to optimization, leading to the i-th collection-
continuation problem,

min
λ̂≥λ∞

vi(λ,w; λ̂), (λ,w) ∈ �+ × [w∗i−1 ,w
∗
i ]. (CCPi)

By Equation (27), it is vi(λ,w; λ̂) > vi(λ,w;λ) for λ̂
large enough so that the solution of (CCPi) must be
finite and must, therefore, also exist by the Weierstrass
theorem (Bertsekas 1995, p. 540).
Moreover, since the first-order necessary optimal-

ity condition of the i-th collection-continuation prob-
lem (CCPi), obtained by setting the derivative of
vi(λ,w; λ̂)with respect to λ̂ to zero,

fi(λ̂,w) , ĉ
(λ̂+ ρ)2
κ(ρ+ λ∞)

+ ĉ +
ρ

κ(ρ+ λ∞)
v̄∗i−1(λ̂,w)

+
λ̂(λ̂+ ρ)
κ(ρ+ λ∞)

∂1 v̄∗i−1(λ̂,w)� 0, (30)

is independent of λ, it can be concluded that the opti-
mal λ̂ depends only on w.15 Denoting by λ∗i(w) the
λ̂ ≥ λ∞ that solves the above optimality condition for
w ∈ [w∗i−1 ,w

∗
i ] the following result establishes existence

and uniqueness as well as monotonicity properties.

Theorem 4. The intensity level λ∗i(w) exists as a unique
solution to Equation (30); it is increasing in w, and
λ∗i−1(w∗i−1)� λ∗i(w∗i−1) for any i ≥ 1.

Recall that the solution to the terminal collection
problem (TCP) in Section 3.2.2 is the value function
of the collection problem (P) for w ∈ [0,w∗0]. The con-
struction of the value function can now proceed by
recursion for i ≥ 1. Specifically, for any (λ,w) ∈ �+ ×
[0,w∗i ], let

v∗i (λ,w)�
{

vi(λ,w;λ∗i(w)), if w ∈ (w∗i−1 ,w
∗
i ],

v∗i−1(λ,w), otherwise.
(31)

Building on Lemma 2(i), setting the holding intensity
λ̂ equal to λ∗i(w) yields the value properties.

Lemma 3. The function v∗i satisfies the value proper-
ties (P1)–(P3) on �+ × [0,w∗i ].

It follows that v∗i is indeed the value function of the
collection problem (P) as long as the account balance
does not exceed w∗i .

Theorem 5. For any (λ,w) ∈ �+ × [0,w∗i ], i ≥ 0, the value
function v∗i (λ,w) is the value function of the collection prob-
lem (P).

Analogous to the value function, the state-space par-
tition into continuation, holding, and action regions can
also be extended so as to include successively larger bal-
ances. For this, consider the continuation, holding, and

action regions £ ∗0, ¡
∗
0, ¨

∗
0 defined in Corollary 4, and

for i ≥ 1 set
£ ∗i , (λ∗i(w),∞)× (w∗i−1 ,w

∗
i ], ¨ ∗

i , {λ∗i(w)} × (w∗i−1 ,w
∗
i ],

¡∗i , [0, λ∗i(w)) × (w∗i−1 ,w
∗
i ].

Then the unique optimal collection strategy follows by
iteration from Theorem 5.
Corollary 5. For any (λ,w) ∈ �+ × (w∗i−1 ,w

∗
i ], define

a∗i (λ,w) , max{a(λ, λ∗i(w)), 0}. An optimal collection
strategy for an account with (λ(0),W(0))� (λ,w) ≥ 0 is

A∗(t)� a∗(λ,w)+
∫
[0, t]

E∗(s) ds , t > 0, (32)

with A∗(0) � 0. For s ≥ 0, the optimal discrete collection
effort is a∗(λ,w)� a∗i(w)(λ,w) while the optimal continuous
collection effort is given by

E∗(s)�
i(w)∑
k�1

1{(λ(s),W(s))∈¨ ∗k } (κ/δ2)(λ(s) − λ∞).

The optimal collection strategy in Equation (32) is
admissible (as an element of A) and solves the collec-
tion problem (P) for any given account state (λ,w) ≥ 0.
It includes a single discrete collection effort a∗ induced
by the first optimal account-treatment action at t � 0 to
move the repayment intensity instantaneously to the
action-region boundary. The optimal collection strat-
egy also includes a continuous collection effort E∗
induced by the first and subsequent optimal account-
treatment actions so as to hold the repayment inten-
sity at an optimal level when the waiting time between
repayment events becomes too large.16

4. Implementation
The empirical identification of the repayment process
is discussed by Chehrazi and Weber (2015) using both
maximum-likelihood estimation and the generalized
method of moments. Here we introduce optimization
and compare the performance of optimized collections
with the yield from untreated accounts. For this, we
consider the case where the relative repayment dis-
tribution is uniform on [

¯
r, 1] with a minimal rela-

tive repayment of
¯
r � 0.1 > 0, so MRA is satisfied.17

In this implementation, a time period represents a
quarter (three months), the mean reversion constant κ
is 0.7, and the long-run steady state is λ∞ � 0.1. There-
fore, in the absence of account-treatment actions, the
repayment intensity of an untreated account without
repayments reverts by about 50% (≈e−0.7) each quar-
ter toward λ∞. The sensitivity of the repayment pro-
cess with respect to willingness to repay is δ10 � 0.02
and with respect to ability to repay is δ11 � 0.5. The
sensitivity of the repayment process with respect to
the collection effort is δ2 � 1, effectively normalizing
the magnitude of effort to be commensurable with the
repayment intensity. The bank’s quarterly effective dis-
count rate is ρ � 6%, and its marginal cost of effort is
c � $6 per additional unit of repayment intensity.
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4.1. Account Value and Collection Strategy
Consider an account with outstanding balance w � $75
and repayment intensity λ� λ∞ at the beginning of the
collection process (i.e., at t � 0). Figure 3(a) depicts the
partition of the state space that characterizes the opti-
mal collection strategy: the shaded area indicates the
action region ¡∗; the portion of its boundary that lies
above λ∞ represents the holding region ¨ ∗; the com-
plement of ¡∗ ∪¨ ∗ is the continuation region £ ∗; see
Equations (9)–(11). As discussed in Section 3.2.4, the
value function v∗(λ,w) of the collection problem (P)
can be obtained in i(w) � 15 iterations, where, start-
ing with the terminal collection problem for account
balances in [0,w∗0] (with w∗0 � $16.30), at each step i ∈
{1, . . . , i(w)} an exact solution on [0,w∗i−1] is extended
to [0,w∗i ] (with w∗i � w∗0/(1 − ¯

r)i) until w ≤ w∗i . Fig-
ure 3(b) compares the optimal account value v∗(λ,w)
for the optimally treated account with the autonomous
account value u(λ,w) for the untreated account given
any account state (λ,w) ∈ [0, 2] × [0, $100].
Figure 3(c) shows the optimal and autonomous ac-

count values for λ � 1, as a function of w. The first
vertical line indicates the minimal actionable balance

¯
w � $15, belowwhich the two value functions coincide.
The second vertical line marks the outstanding bal-
ance at the optimal holding level λ∗(w) � 1; for larger
levels of w, the account state (1,w) is in the action
region ¡∗. As shown in Section 3, the value function
v∗(λ,w) is concave in w (i.e., it satisfies the value prop-
erty (P3)). Moreover, as noted in Theorem 2, u(λ,w)
is linear in w. Figure 3(d) depicts the optimal and
autonomous account values at w � $75 as a function of
the repayment intensity λ. The vertical lines indicate
the long-run steady state λ∞ and the optimal holding
intensity λ∗($75). Note that for λ ≤ λ∗(w), v∗(λ,w) is
affine in λ while for λ > λ∗(w) it becomes convex in λ.
By virtue of Theorem 2 the autonomous account value
is strictly convex in λ. As the initial intensity grows
beyond all bounds, the full outstanding balance can
be recovered essentially without account treatment as
limλ̂→∞ v∗(λ̂,w)� limλ̂→∞ u(λ̂,w)�−w, consistent with
value property (P1).
Figure 2 shows the particular realization of an

account-state trajectory, starting at (W(0), λ(0)) �

($75, 0.1).18 As the initial account state is an element
of¡∗, an immediate discrete collection effort introduces
an intensity jump, so that, at time t � 0+, the account-
state trajectory continues from ($75, λ(0+)) in the hold-
ing region; see Figure 2(a). Subsequently, the contin-
uous collection effort E∗(t) is applied (as obtained in
Corollary 5) to prevent the account state from drift-
ing back into the action region until a repayment
is received. The impulse control (at t � 0), together
with the subsequent continuous control, captures the
effect of the first optimal account-treatment action.
This action is chosen such that the intensity level

it attains (via jump) and maintains (via continuous
control) coincides with the optimal level λ∗($75) (or,
in practice, is close to λ∗($75)). Note that subsequent
optimal account-treatment actions do not induce any
jump as they are taken at the optimal time, that is,
before the repayment intensity enters the action region.
Figures 2(a)–2(d) show the evolution of the account’s
repayment intensity, the outstanding balance, and the
optimal collection effort as a function of time. As noted
before, in the absence of account treatment, the inten-
sity of the repayments reverts exponentially toward the
long-run steady state λ∞ � 0.1. This reversion tendency
is indicated in Figure 2(b) by a family of decreasing
dashed trajectories, which are followed when there are
no intensity jumps. The horizontal dashed lines corre-
spond to the optimal holding levels, which correspond
to the values of λ∗(w) in Figure 2(a) for the different
balances attained by the realization of the jump pro-
cess W(t).
Receiving a repayment of relative magnitude Ri in-

creases the repayment intensity by δ10 + δ11Ri in accor-
dancewith the holder’s estimatedwillingness and abil-
ity to repay, and it decreases the remaining outstanding
balance by W(t)Ri . This introduces a jump into the
account state that moves it away from the action and
holding regions. For the sample path shown in this
picture, after four separate repayments (Figure 2(c))
the account balance drops below the economic balance
threshold w∗0 �$16.30. Before the fourth repayment, the
repayment intensity declines to a level that requires a
second collection action by the bank. The optimal effort
required at this point is smaller than for the first collec-
tion action primarily because the outstanding balance
is considerably smaller; see Figure 2(d). Yet the second
action lasts until the fourth payment is received. As
indicated by our model, it cannot be optimal to termi-
nate an account-treatment action before a repayment is
received. From a practical point of view, such subopti-
mal termination is destined to have a negative impact
on the credibility of future actions. In this example, the
account makes a fifth repayment in the autonomous
(treatment-free) regime below the economic balance
threshold w∗0. Note that because the long-run steady
state λ∞ is strictly positive, all accounts will eventually
pay back in full if the bank is willing to wait indefi-
nitely. However, because of the time value of money
(ρ > 0), the expected economic account value V̄ ∗(λ,w)
is strictly less than the outstanding balance.

4.2. Model Mis-specification and
Robustness Analysis

The parameter vector (κ, δ10 , δ11 , δ2) determines an
account’s repayment behavior. It is critical to under-
stand how each parameter affects the optimal collec-
tion strategy as well as the optimal account value. The
effect of perturbing δ2 is fairly clear: a larger value for
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Figure 4. Sensitivity of the Boundary of the Optimal Action Region, the Autonomous Account Value, and the Optimized
Account Value with Respect to (a), (c), and (e) ±50% Perturbations in κ; (b), (d), and (f) ±50% Perturbations in δ11

–0.04

�11 = 0.75

�11 = 0.50

�11 = 0.25

0.010

0.010

0.010

0.012

0.012

0.012

0.014

0.014

0.014

0.016

0.016

0.016

0.018

0.0180.018

0.020

0.020

0.022

0.022

0.008

0.06

0.06

0.08

0.08

0.10

0.10

0.12

0.12
0.14

0.14

0.
14

0.16

0.08

0.10

0.12

0.08

0.10

0.12

0.120.12
0.10
0.08

0.10
0.08

0.120.10

2.00

1.75

1.50

1.25

1.00

0.75

�

0.50

0.25

0 25 50

(a) (b)

(c) (d)

(e) (f)

–0.08–0.07

–0.08

–0.06

w [in $]

75 100 0 25 50

w [in $]

75 100

0 25 50

w [in $]

75 100 0 25 50

w [in $]

75 100

0 25 50

w [in $]

75 100 0 25 50

w [in $]

75 100

0

2.0

1.5

1.0�

0.5

0

2.0

1.5

1.0�

0.5

0

2.0

1.5

1.0�

0.5

0

2.0

1.5

1.0�

0.5

0

2.00

1.75

1.50

1.25

1.00

0.75

�

0.50

0.25

0

–0.08

–0.08

–0.09

–0.09

–0.10

–0.09

–0.08

–0.08–0.07–0.06
–0.05

–0.08

–0.07

–
0.06

–
0.07 –0.06

–0.05
–0.04

–0.012 –0.012
–0.012–0.014

–0.014

–0.014
–0.014

–0.012
–

0.012

–0.010

–0.010–0.016

–0.018

–0.018

–0.020–0.022

–0.018

–0.016

–0.016

–0.020

–0.022

–0.024

k = 1.05

k = 0.70

k = 0.35

�11 = 0.75

�11 = 0.50

�11 = 0.25

δ2 implies an account holder who is more responsive to
collection actions, thus increasing the size of the opti-
mal action region and the optimal account value. We
focus below on the interesting effects of changing κ
and δ11. The effect of δ10 on the optimal action region
and the optimal account value is similar to δ11.

Regarding perturbations of κ, Figure 4(a) shows how
the boundary of the optimal action region changes
in response to a ±50% variation. A larger value of κ
increases the rate at which the repayment intensity
declines to λ∞. Consequently, in comparison with the
base case, it is costlier to maintain any intensity level.
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The impact of this change on the boundary of the opti-
mal action region depends on the magnitude of the
outstanding balance. For large balances, this translates
to earlier and more forceful account treatment: larger
expected rewards justify higher collection cost. For
small balances, however, treatment actions are delayed
and less forceful: the size of expected repayments may
not justify an immediate additional collection outlay
so that treatment actions are delayed until absolutely
necessary. Converse effects obtained when decreasing
κ since a slower reversion of the intensity to its long-
run steady state implies a longer lasting effect of the
treatment action. Thus, for high balances it is optimal
to delay treatment activities since, if the account state
is in the inaction region, (i) the intensity is already
large enough and (ii) it declines sufficiently slowly for a
repayment to arrive. In the unlikely event that a repay-
ment is not made, a weaker treatment action proves
optimal since the intensity declines at a slower pace, so
the impact of an action lasts longer. For small balances,
it is optimal to expedite an action primarily because
it is cheaper to implement and also because its effects
last longer. Figure 4(c) and 4(e) illustrates the rela-
tive change in the value function for both optimally
treated and untreated (autonomous) accounts when κ
changed by 50% either way. As in Figure 3(b)–3(d),
the blue lines (marked by squares) show the contours
for the relative change of the optimal account value
whereas the brown lines (marked by circles) represent
the contours of the relative change in the autonomous
account value. Since for low balances there is no treat-
ment, the contour levels coincide for small w. A higher
κ decreases the account value, so the change becomes
negative (Figure 4(c)). Conversely, a smaller κ increases
the account value, resulting in a positive change (Fig-
ure 4(e)). Disregarding the signs, the relative change
for the optimized account value slightly exceeds that
for the autonomous account value; however, both are
significantly below 50%.
The impact of δ11 on the size of the optimal action

region and on the optimal account value is monotone.
A larger δ11 produces a larger intensity jump when a
unit repayment arrives, thus increasing also the like-
lihood of further repayment events, therefore leading

Table 1. Robustness with Respect to Model Misclassification

κ δ10 δ11 δ2

+50% −50% +50% −50% +50% −50% +50% −50%

−v(0.1, $75; A) ($) 55.58 55.16 55.69 55.69 55.68 55.68 55.63 55.52
Cost of collection strategy A ($) 11.42 8.84 10.69 10.69 10.39 11.01 10.46 10.00���� v(0.1, $75; A) − v(0.1, $75; A∗)

v(0.1, $75; A∗)

���� (%) 0.19 0.95 0† 0† 0.01 0.01 0.11 0.31

Note. The optimal account value −v(0.1, $75; A∗) and cost of optimal collection strategy A∗ are $55.69 and $10.69, respectively.
†At δ10 � 0.02, a relative change of magnitude ±50% does not amount to a significant change in the value function.

to a higher account value. In addition, an increase
in future repayment likelihood reduces the need for
collection actions, thus shrinking the size of the opti-
mal action region (Figure 4(b)). Figure 4(d) and 4(f)
illustrates the contour levels of the relative change in
the autonomous and optimal account value caused by
+50% and −50% change in δ11, respectively. Similar
to Figure 4(c) and 4(e), the absolute values of these
changes remain significantly below 50%.

As mentioned in Section 2.1, the intensity pro-
cess λ(t) can be viewed as the best Bayesian esti-
mate of the actual (unobservable) repayment intensity
when the bank dynamically updates its belief accord-
ing to the observed repayment history; see Appendix C
for details. It is, therefore, instructive to examine how
model mis-specification may impact account value and
collection cost; see Table 1.19 In particular, we assume
that an account’s true parameters are (κ, δ10 , δ11 , δ2) �
(0.7, 0.2, 0.5, 1) and examine the account value, col-
lection cost, and relative error when, instead of the
optimal collection strategy A∗ for the true account
parameters, the collection strategy A for mis-specified
account parameters is used. For example, when the
bank estimates κ with +50% error, that is, incorrectly
assumes κ � 1.05 instead of κ � 0.7, the account value
decreases from its maximum $55.69, obtained from the
optimal collection strategy A∗, to $55.58, obtained by
the suboptimal collection strategy A, and the cost of
collection increases from $10.69 to $11.42; cf. first col-
umn of Table 1.

Despite a significant model mis-specification error,
the relative error in the optimal account value remains
usually small. There are two main reasons for this
inherent robustness. First, as noted earlier, the action/
inaction boundary is not sensitive to changes in the
values of account parameters. Second, the error in
the action/inaction boundary affects the outcome only
when the account state hits this boundary. As can be
observed in Figure 2, after an account is set on its
recovery path, the account state tends to remain in
the inaction region, limiting its exposure to the con-
sequences of mis-specification. The impact of model
mis-specification on the collection cost is more dif-
ficult to predict. For example, one may expect that



Chehrazi, Glynn, and Weber: Dynamic Credit-Collections Optimization
Management Science, 2019, vol. 65, no. 6, pp. 2737–2769, ©2019 The Author(s) 2753

Figure 5. Repayment Distributions: (a) pdf; (b) cdf
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overestimating κ reduces the cost of collection as this
shrinks the action region; see Figure 4(a). However,
somewhat surprisingly the collection cost increases;
see Table 1. Under mis-specified dynamics, the inten-
sity hits the action region more frequently, so the bank
unnecessarily takes more account-treatment actions,
thus driving up collection cost in expectation.

4.3. Collectability Improvement
In terms of the present value of an account, any
nontrivial account treatment produces a first-order
stochastically dominant shift in the revenue distribu-
tion over any given time horizon. The solid lines in Fig-
ures 5(a) and 5(b) show the (gross) present-value dis-
tributions for untreated (autonomous) and optimally
treated accounts, respectively.20 For our example, the
expected present value of the repayment increases
from $38.01 to $66.38, corresponding to an almost 75%
increase from 50.7% to 88.5% of the outstanding bal-
ance. Moreover, the coefficient of variation of gross
collections decreases significantly from 46.9% to 8.7%.
This illustrates that any nontrivial treatment strictly
improves the asset quality of nonperforming loans
by both increasing returns and decreasing risk. The
dashed lines in Figure 5(a) and 5(b) indicate the dis-
tribution of the net present account value, that is, the
optimal value of the account, including the collection
costs. For any account with an initial outstanding bal-
ance above the economic balance threshold w∗0, place-
ment in collections translates to expending immediate
positive effort to bring the account’s repayment inten-
sity from λ(0) � λ∞ to λ(0+) > λ∞. This leads to a
guaranteed lower bound for the overall collection cost,
which includes investments related to establishing and
continuing collections. As a result, a full net recovery
of the outstanding amount is impossible for an opti-
mally treated account (unless it starts with a repayment
intensity outside ¡∗). Hence, the autonomous repay-
ment distribution cannot be first-order stochastically

dominated by the distribution of the net present
account value.

5. Conclusion
Based on the results presented in Section 3, a bank’s
optimal collection strategy maps any possible state of
the account, expressed as a point (λ,w) in the (in-
tensity, balance) space to an optimal action. The op-
timal account treatment aims at maintaining the
repayment intensity at a minimum level λ∗(w) until
a repayment is received and the outstanding balance
eventually falls below the economic balance thresh-
old w∗0, at which point it is best to suspend an active
pursuit of the account. The optimal holding inten-
sity λ∗(w) is increasing in the outstanding balance,
leading to stronger (i.e., more aggressive) collection
actions for larger outstanding balances w. The eco-
nomic balance threshold increases in themarginal effec-
tive collection cost ĉ as the quotient of the marginal
collection cost c and the collection effectiveness (i.e.,
sensitivity of the repayment intensity with respect to
actions) δ2. These critical performance indicators allow
banks to sort collection agencies and, thus, to devise
an optimal agency-assignment policy. Because of the
increase in asset quality through collections, alluded
to in Section 4, an optimal collection strategy has the
potential to significantly reduce the bank’s loss given
default and, thus, also to lessen its required capital
reserves, not only because of the decrease in outstand-
ing balances, but because the pure risk in the collec-
tion of an outstanding balance is lowered by the bank’s
implementation of the optimal account-treatment strat-
egy or an approximation thereof (see Appendix D); an
in-depth treatment of approximately optimal collection
strategies taking explicitly into account a bank’s lim-
ited number of treatment measures is left as an inter-
esting topic for future research.

Beyond the specific practical implications for a
bank’s optimal debt-collection strategy, the findings
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have implications for the control of (affine) self-exciting
point processes. In this context, the construction of a
semi-analytical solution for the value function together
with a complete characterization of an optimal pol-
icy is new. Earlier results, including those by Costa
and Davis (1989), focus on the successive approxima-
tion of solutions. A monotonicity in the state evolu-
tion (balance decreasing with each repayment event) is
exploited to obtain a recursive extension of the domain
of an exact value function, so as to include any finite
initial state in a finite number of iterations. The pro-
posed approach has the added value of providing a
complete description of first- and second-order mono-
tonicity as well as limiting behavior in the form of
“value properties”; see Section 3.2.4. This, in turn,
allows for important economic insights, such as, in our
application, about the (dis-)economies of scale in col-
lections as a function of the size of the outstanding
consumer loan and the bank’s account-treatment effort.

Appendix A. Proofs
The following auxiliary result is used in the proof of
Theorem 1.
Proposition A.1. Fix (λ,w) ≥ 0, and let v∗: �+×[0,w]→� be a
bounded function. For any t ≥ 0 and admissible strategy A ∈A, let

H(t; A) ,
∫
[0, t]

e−ρs dW(s)+ c
∫
[0, t)

e−ρs dA(s)

+ e−ρt v∗(λ(t),W(t)),

where λ(t) is the solution of Equation (4) for the initial condition
λ(0)�λ, and W(t)�w−∑

i Zi1{Ti≤t}. If v∗ is such that (i) H(t; A)
is a submartingale for any admissible collection strategy A ∈ A
and (ii) there exists an admissible A∗ ∈ A for which H(t; A∗) is a
martingale, then

v∗(λ,w)� inf
A∈A

Ɛ

[∫
[0,∞)

e−ρs dW(s)

+ c
∫
[0,∞)

e−ρs dA∗(s)
���� λ(0)� λ, W(0)� w

]
,

and the collection strategy A∗ attains the infimum.

Proof. Note first that at t � 0, it is H(0; A) � v∗(λ,w). The
submartingale property of H(t; A) implies that v∗(λ,w) �
H(0; A) ≤ Ɛ[H(t; A) | λ(0) � λ,W(0) � w] for any t ≥ 0.
Since ∫[0, t] e−ρs dW(s) is bounded and decreasing in t,
c ∫[0, t) e−ρs dA(s) is an increasing function of t, and v∗ is
bounded, using the definition of the expectation operator
and the monotone-convergence theorem, one obtains

lim
t→∞

Ɛ[H(t; A) | λ(0)� λ,W(0)� w]

� Ɛ
[

lim
t→∞

H(t; A)
���λ(0)� λ,W(0)� w

]
.

Consequently,

v∗(λ,w) ≤ inf
A∈A

Ɛ

[∫
[0,∞)

e−ρs dW(s)

+ c
∫
[0,∞)

e−ρs dA(s)
���� λ(0)� λ,W(0)� w

]
. (A.1)

By the martingale property the infimum is attained for the
admissible collection strategy A∗ ∈ A, which completes the
proof. �

Proof of Theorem 1. It is enough to show that v∗ satisfies
the conditions of Proposition A.1, which implies that it
is the value function of the collection problem (P). Note that
the boundary condition, limλ→∞ v∗(λ,w)�−w, yields that v∗

is bounded on �+ × [0,w]. To simplify the rest of the proof,
we denote by

ν∗(t) , v∗(λ(t),W(t)), t ≥ 0,

the value along a state trajectory, and by

τk , inf{t > τk−1: λ(t+), λ(t−)}, k ≥ 1,

with τ0 , 0, the (discrete) collection-event times. The latter
leads to intensity jumps, be it via repayments (i.e., jumps in J)
or via discrete collection efforts (i.e., jumps in A). Further-
more, let

η(t) ,
∞∑

k�0
1{τk≤t}1{N (τ−k ),N (τk )} +

∞∑
k�0

1{τk<t}1{N (τ−k )�N (τk )} , t ≥ 0,

be the number of (discrete) collection events, including re-
payments up to and including t and discrete collection efforts
up to but not including t.21 With the expected relative repay-
ment r̄ � ∫1

0 r dFR(r) as in Equation (2), it is

H(t; A) −H(0; A)

�

∫
[0, t]

e−ρs [dW(s)+ r̄W(s−)λ(s−)ds]

−
∫
[0, t]

e−ρs r̄W(s−)λ(s−) ds

+ c
∫
[0, t]

e−ρsE(s) ds + c
∑

k: τk<t
e−ρτk∆Ak

+
∑

k: τk<t
e−ρτk [ν∗(τ+k ) − ν∗(τk)]+

∑
k: τk≤t

e−ρτk [ν∗(τk) − ν∗(τ−k )]

+

η(t)∑
k�1
[e−ρτk ν∗(τ−k ) − e−ρτk−1ν∗(τ+k−1)]

+ e−ρtν∗(t) − e−ρτη(t)ν∗(τ+η(t)), (A.2)

where the first term on the right-hand side is a martin-
gale and the last four terms decompose e−ρtν∗(t) − ν∗(0) into
sums of increments at and between the jumps of (λ(t),W(t)),
respectively. Since ν∗ is continuous between any two consec-
utive jumps (and after the last jump), one obtains

e−ρτk ν∗(τ−k ) − e−ρτk−1ν∗(τ+k−1)

�

∫ τ−k

τ+k−1

e−ρs

[
d
ds
ν∗(s) − ρν∗(s)

]
ds , 1 ≤ k ≤ η(t),

and

e−ρtν∗(t) − e−ρτη(t)ν∗(τ+η(t))

�

∫ t

τ+
η(t)

e−ρs

[
d
ds
ν∗(s) − ρν∗(s)

]
ds , t ≥ 0.
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Note that on each interval (τk−1 ,min{τk , t}), 1 ≤ k ≤
η(t) + 1, the outstanding balance W(t) and the discrete por-
tion A(t) − ∫[0, t] E(s) ds of the action process A(t) are constant,
so by Equation (4):

dν∗(s)
ds

� ∂1v∗(λ(s),W(s))[κ(λ∞ − λ(s))+ δ2E(s)],

s ∈ (τk−1 ,min{τk , t}).

Hence, the last two terms in Equation (A.2) simplifies to

η(t)∑
k�1
[e−ρτk ν∗(τ−k ) − e−ρτk−1ν∗(τ+k−1)]+ e−ρtν∗(t) − e−ρτη(t)ν∗(τ+η(t))

�

∫ t

0
e−ρs[[κ(λ∞ − λ(s))+ δ2E(s)]∂1v∗(λ(s),W(s))

− ρv∗(λ(s),W(s))] ds , t ≥ 0.

For the repayment events, one obtains∑
k: τk≤t

e−ρτk [ν∗(τk) − ν∗(τ−k )]

�

∫
[0, t]

e−ρs[v∗(λ(s),W(s)) − v∗(λ(s−),W(s−))] dN (s)

�

∫
[0, t]×[0, 1]

e−ρs[v∗(λ(s−)+ δ10 + δ11r,W(s−)(1− r))

− v∗(λ(s−),W(s−))]N̂ (ds , dr)

�

∫
[0, t]×[0, 1]

e−ρs[v∗(λ(s−)+ δ10 + δ11r,W(s−)(1− r))

− v∗(λ(s−),W(s−))](N̂ (ds , dr) − λ(s) dsdFR(r))

+

∫
[0, t]×[0, 1]

e−ρs[v∗(λ(s−)+ δ10 + δ11r,W(s−)(1− r))

− v∗(λ(s−),W(s−))]λ(s) dsdFR(r),

where for any Borel-subset B ∈ ¢([0, 1]) the process N̂ (t ,B)
counts, on [0, t], the number of all repayment events with
relative repayments in B.22 Note that the first term on the
right-hand side of the preceding equation is a martingale.
Finally, at the times of discrete collection efforts it is∑
k:τk<t

e−ρτk [ν∗(τ+k )−ν∗(τk)]

�
∑

k:τk<t ,∆Ak>0
e−ρτk [v∗(λ(τk)+δ2∆Ak ,W(τk))−v∗(λ(τk),W(τk))].

Combining these results, Equation (A.2) can be written in the
form

H(t; A) −H(0; A)�
∫
[0, t]

e−ρs [dW(s)+ r̄W(s−)λ(s−) ds]

+

∫
(0, t]×[0, 1]

e−ρs[v∗(λ(s−)+ δ10 + δ11r,W(s−)(1− r))

− v∗(λ(s−),W(s−))](N̂ (ds , dr) − λ(s) ds dFR(r))

+

∫
[0, t]

e−ρs(¤E(s)v
∗)(λ(s),W(s)) ds

+
∑

k: τk<t ,∆Ak>0
e−ρτk [v∗(λ(τk)+ δ2∆Ak ,W(τk))

+ c∆Ak − v∗(λ(τk),W(τk))]. (A.3)

Hence, since by the Bellman equation (6) for any admis-
sible A ∈ A the last two terms are nonnegative, H(t; A) is

a submartingale. It remains to be shown that there exists
an admissible strategy A∗ ∈ A for which H(t; A) is a mar-
tingale. Defining a∗(λ,w) as in Equation (8), the Bellman
equation (6) naturally partitions the state space �2

+
into

three regions: ¡∗, ¨ ∗, and £ ∗ as given in Corollary 1. By
the definition of a∗(λ,w), it immediately follows that ¡∗ ∩
(¨ ∗∪£ ∗)��. In addition, since minâ≥0{v∗(λ+ δ2 â ,w)+ câ} ≤
v∗(λ,w), and v∗ satisfies the Bellman equation, it follows
that if (λ,w) ∈ ¡∗, then v∗(λ + δ2a∗(λ,w),w) + ca∗(λ,w) �
v∗(λ,w). The definition of a∗(λ,w) also allows us to con-
clude that when (λ,w) < ¡∗, it is ∂1v∗(λ,w) ≥ −ĉ and,
hence, minâ>0{v∗(λ + δ2 â ,w) + câ} does not have any solu-
tion in this region. Therefore, for v∗ to satisfy Equation (6),
minε≥0{(¤εv∗)(λ,w)} has to be well-defined and equal to
zero. However, this immediately follows, since (¤εv∗)(λ,w)
is an affine function of ε whose slope is ∂1v∗(λ,w) + ĉ ≥ 0.
Then by the definitions in Equations (10)–(11), (λ,w) <¡∗ is
either assigned to ¨ ∗ (if ∂1v∗(λ,w) + ĉ � 0 and λ > λ∞) or
£ ∗ (if ∂1v∗(λ,w) + ĉ > 0 or λ ≤ λ∞). Hence, ¨ ∗ ∩ £ ∗ � � and
¡∗ ∪¨ ∗ ∪£ ∗ ��2

+
. Now let A∗(0) , 0, and define

A∗(t) , a∗(λ,w)+
∫
[0, t]

E∗(s) ds , t > 0, (A.4)

where E∗(s) � ε∗(λ(s),W(s)) (see Remark 3 for the definition
of ε∗(λ,w)). Note that by definition, A∗ is left-continuous,
nondecreasing, and adapted to �. At t � 0, A∗ introduces
a jump of size δ2a∗(λ,w) in the intensity process if and
only if (λ,w) ∈ ¡∗. For any t > 0, by the definition of
ε∗(λ,w), it is guaranteed that (λ(t),W(t)) < ¡∗ over which
(¤E∗(t)v∗)(λ(t),W(t)) � 0. Consequently, for strategy A∗, the
last two terms of Equation (A.3) are zero and H(t; A∗) is a
martingale. This concludes the proof. �

Proof of Corollary 1. See the proof of Theorem 1. �

Proof of Theorem 2. The arguments in the proofs of Propo-
sition A.1 and Theorem 1 imply the result, provided that
(¤0u)(λ,w) � 0. The latter can be verified by direct calcula-
tion as follows:

(¤0u)(λ,w)
� [κ(λ∞ − λ)]∂1u(λ,w) − ρu(λ,w)

+ λƐ[u(λ+ δ10 + δ11R,w(1−R)) − u(λ,w) −wR]

�−[κ(λ∞ − λ)]ρw
∫ ∞

0
α(t)exp(−ρt − λα(t) − κβ(t)) dt

+ ρw − ρ2w
∫ ∞

0
exp(−ρt − λα(t) − κβ(t)) dt

+ λƐ

[
−w(1−R)+ ρw(1−R)

·
∫ ∞

0
exp(−ρt − (λ+ δ10 + δ11R)α(t) − κβ(t)) dt

−wR + w − ρw
∫ ∞

0
exp(−ρt − λα(t) − κβ(t)) dt

]
� ρw + ρw

∫ ∞

0

[
−κ(λ∞ − λ)α(t) − ρ

+ λƐ[(1−R)exp(−(δ10 + δ11R)α(t)) − 1]
]

· exp(−ρt − λα(t) − κβ(t)) dt .
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Using Equations (15)–(16), we obtain

(¤0u)(λ,w)� ρw + ρw
∫ ∞

0
[−ρ− λ Ûα(t) − κ Ûβ(t)]

· exp(−ρt − λα(t) − κβ(t)) dt � 0,

as claimed. �

Proof of Corollary 2. (i) The first claim has already been
established in the proof of Theorem 2. For the second claim,
note that for any t > 0 such that α(t) � 0, Ûα(t) � r̄ > 0; there-
fore, α(t) and β(t) are strictly positive for t > 0. Hence, as
λ̂→∞, the integrand in Equation (14) converges uniformly
to zero, which implies the results. (ii) The claims follow by
direct calculation:

∂1u(λ,w)�−ρw
∫ ∞

0
α(t)exp(−ρt − λα(t) − κβ(t)) dt ≤ 0;

∂11u(λ,w)� ρw
∫ ∞

0
α2(t)exp(−ρt − λα(t) − κβ(t)) dt ≥ 0;

∂12u(λ,w)�−ρ
∫ ∞

0
α(t)exp(−ρt − λα(t) − κβ(t)) dt < 0;

∂2u(λ,w)�−
(
1− ρ

∫ ∞

0
exp(−ρt − λα(t) − κβ(t)) dt

)
< 0

� ∂22u(λ,w).

Note that for w > 0, all inequalities become strict. (iii) The
claims follow immediately from the calculations in parts (i)
and (ii), also from the definition of the autonomous account
value u(λ,w). �

The following auxiliary result is used in the proof of
Theorem 3.

Proposition A.2. For any (λ,w) ∈ �2
+
, it is

{a∗0(λ,w)} � arg min
â≥0

{u(λ+ δ2 â ,w)+ câ}.

Moreover, the (nonpositive) decrement u(λ + δ2a∗0(λ,w),w) +
ca∗0(λ,w)−u(λ,w) is (i) increasing in λ, (ii) decreasing in w, and
(iii) concave with respect to w.

Proof. Since u(·,w) is strictly convex (see part (ii) of Corol-
lary 2), the minimizer is unique (i.e., the argument of the
minimization problem is a singleton). Parts (i) and (ii) can be
shown by direct calculation (using the envelope theorem):

d
dλ
[u(λ+ δ2a∗0(λ,w),w)+ ca∗0(λ,w) − u(λ,w)]

� max{∂1u(λ,w),−c/δ2} − ∂1u(λ,w) ≥ 0,

and

d
dw
[u(λ+ δ2a∗0(λ,w),w)+ ca∗0(λ,w) − u(λ,w)]

� ∂2u(λ+ δ2a∗0(λ,w),w) − ∂2u(λ,w) ≤ 0,

where the last inequality holds since, by Corollary 2(ii),
∂12u(λ,w) < 0. Concavity follows, since u(λ + δ2 â ,w) + câ −
u(λ,w) is concave (affine) in w, and this property is preserved
under pointwise minimization. �

Proof of Theorem 3. By construction, v∗0(λ,w) is continuous
and has continuous first-order derivatives (see the proof
of Corollary 3 for details). For λ > λ∗0(w), (¤0v∗0)(λ,w) �
(¤0u)(λ,w) � 0, and ∂1v∗0(λ,w) � ∂1u(λ,w) > −c/δ2. Conse-
quently, it follows that mina0>0{u(λ + δ2a0 ,w) + ca0} has no
solution, and (¤εv∗0)(λ,w)> 0 for any ε > 0. For λ�λ∗0(w), it is
∂1v∗0(λ,w) � −c/δ2. Thus, similarly, mina0>0{u(λ + δ2a0 ,w)+
ca0} has no solution; however, it is (¤εv∗0)(λ,w) � 0 for any
ε ≥ 0. Note that since λ∗0(w) ≤ λ∞, it is κ(λ − λ∞)/δ2 ≤ 0, and
hence, �+ × [0, ¯

w] ∪ [λ∗0(w),∞) × ( ¯w ,w
∗
0] � £ ∗ ∩ �+ × [0,w∗0]

and ¨ ∗ ∩ �+ × [0,w∗0] � �. In other words, if (λ(t),W(t)) �
(λ∗0(w),w), then (λ(t + s),W(t + s)) ∈ £ ∗ for any s ≥ 0 and any
choice of A. Finally, one needs to establish that for λ < λ∗0(w),
(¤εv∗0)(λ,w) ≥ 0, for ε ≥ 0. For this, consider the fact that

(¤εv
∗
0)(λ,w)

� (¤εv
∗
0)(λ,w) − (¤0u)(λ,w)

�−ρ(v∗0(λ,w) − u(λ,w))+ κ(λ∞ − λ)(∂1v∗0(λ,w) − ∂1u(λ,w))
+ δ2ε ∂1v∗0(λ,w)+ cε
+ λƐ[v∗0(λ+ δ10 + δ11R,w(1−R))
− u(λ+ δ10 + δ11R,w(1−R))] − λ(v∗0(λ,w) − u(λ,w))

�−ρ(v∗0(λ,w) − u(λ,w))+ κ(λ∞ − λ)(∂1v∗0(λ,w) − ∂1u(λ,w))
+ λƐ[v∗0(λ+ δ10 + δ11R,w(1−R))
− u(λ+ δ10 + δ11R,w(1−R))] − λ(v∗0(λ,w) − u(λ,w))

Since v∗0(λ,w) � u(λ + δ2a∗0(λ,w),w) + ca∗0(λ,w) �

mina0≥0{u(λ + δ2a0 ,w) + ca0} ≤ u(λ,w) and ∂1u(λ,w) <
−c/δ2, all terms in the expression of (¤εv∗0)(λ,w), except
for the argument of the expectation operator, are positive.
For any r ∈ [0, 1], if λ + δ10 + δ11r ≥ λ∗0(w(1 − r)), then
v∗0(λ + δ10 + δ11r,w(1 − r)) − u(λ + δ10 + δ11r,w(1 − r)) �
0. Moreover, if λ + δ10 + δ11r < λ∗0(w(1 − r)), then by
Proposition A.2:

v∗0(λ+ δ10 + δ11r,w(1− r)) − u(λ+ δ10 + δ11r,w(1− r))
≥ v∗0(λ,w(1− r)) − u(λ,w(1− r))
≥ v∗0(λ,w) − u(λ,w).

It follows that (¤εv∗0)(λ,w) ≥ 0 for λ− λ∗0(w) < 0 ≤ ε. �
Proof of Corollary 3. It is enough to establish the claims
for w ∈ [

¯
w ,w∗0] since otherwise v∗0(λ,w)� u(λ,w), and Co-

rollary 3 becomes a special case of Corollary 2. Since
v∗0(λ,w) is twice continuously differentiable for λ,λ∗0(w),
let us focus on the interesting case where λ � λ∗0(w).
Note that continuity of v∗0(λ,w) at λ � λ∗0(w) follows
from its definition. For λ < λ∗0(w), by direct calculation,
∂1v∗0(λ,w) � −c/δ2 and ∂2v∗0(λ,w) � ∂2u(λ + δ2a∗0(λ,w),w).
Moreover, by the definition of λ∗0(w), it is a∗0(λ∗0(w),w)�0 and
∂1u(λ∗0(w),w) � −c/δ2. Thus, limλ→λ∗0(w)+

∂1u(λ,w) � −c/δ2,
limλ→λ∗0(w)+

∂2u(λ,w) � limλ→λ∗0(w)−
∂2u(λ + δ2a∗(λ,w),w),

limŵ→w− ∂1u(λ∗0(w),ŵ)�−c/δ2, and finally

lim
ŵ→w+

∂2v∗0(λ∗0(w),ŵ)� lim
ŵ→w+

∂2u(λ∗0(w)+δ2a∗0(λ∗0(w),ŵ),ŵ)

�∂2u(λ∗0(w),w)� lim
ŵ→w−

∂2v∗0(λ∗0(w),ŵ).

Hence, v∗0(λ,w) isC1 and a.e. twice differentiable. (i) ByCorol-
lary 2, −w≤u(λ,w), and hence, −w≤v∗0(λ,w)�mina0≥0 u(λ+
δ2a0 ,w)+ ca0 ≤ u(λ,w) ≤ 0, which implies the first claim.
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The second claim follows since, for λ̂ ≥ λ∗0(w), v∗0(λ̂,w)�
u(λ̂,w), and again by Corollary 2 it is limλ̂→∞u(λ̂,w)�
−w. (ii) By construction, for λ≤λ∗0(w), it is ∂1v∗0(λ,w)�−ĉ.
Since for λ≥λ∗0(w), ∂1v∗0(λ,w)�∂1u(λ,w), the claim follows
from Corollary 2. (iii) Similar to part (ii), by Corollary 2
the claims hold for λ > λ∗0(w). For λ < λ∗0(w), by the defi-
nition of v∗0(λ,w) we have ∂2v∗0(λ,w)�∂2u(λ+δ2a∗0(λ,w),w)
≤ 0, ∂12v∗0(λ,w)� ∂11v∗0(λ,w)� 0, and ∂22v∗0(λ,w)� ∂12u(λ+

δ2a∗0(λ,w),w)δ2∂2a∗0(λ,w)≤0. Note that at λ�λ∗0(w) the func-
tion v∗0(λ,w) does not have continuous second-order deriva-
tives. Nevertheless, its one-sided second-order derivatives
(left and right) satisfy the relevant inequalities. �

Proof of Corollary 4. The result can be obtained analogously
to Corollary 1. �

Proof of Lemma 1. Assuming λ ≥ λ̂ ≥ λ∞, the present value
of a unit repayment under sustained intensity process is

Ɛ[e−ρT | λ(0)� λ]�
∫ ∞

0
e−ρs dFλ, λ̂(s)

�

∫ θ(λ, λ̂)

0
e−ρs exp(−λ∞s − (λ−ϕ(s , λ))/κ)ϕ(s , λ) ds

+

∫ ∞

θ(λ, λ̂)
e−ρs exp(−λ∞θ(λ, λ̂) − (λ− λ̂)/κ

− λ̂(s − θ(λ, λ̂)))λ̂ ds .

Using a change of variable, the first integral becomes∫ θ(λ, λ̂)

0
e−ρs exp(−λ∞s − (λ−ϕ(s , λ))/κ)ϕ(s , λ) ds

�

∫ λ̂

λ

e−ρθ(λ, l) exp(−λ∞θ(λ, l) − (λ− l)/κ) −l
κ(l − λ∞)

dl

�

∫ λ

λ̂

(
l − λ∞
λ− λ∞

) (ρ+λ∞)/κ
exp

(
−λ− l

κ

)
l

κ(l − λ∞)
dl.

Substituting the expression of θ(λ, λ̂), given in the main text,
yields∫ ∞

θ(λ, λ̂)
e−ρs exp(−λ∞θ(λ, λ̂) − (λ− λ̂)/κ− λ̂(s − θ(λ, λ̂)))λ̂ ds

� exp(−(ρ+ λ∞)θ(λ, λ̂))exp
(
−λ− λ̂

κ

)
·
∫ ∞

0
exp(−(ρ+ λ̂)s)λ̂ ds

�

(
λ̂− λ∞
λ− λ∞

) (ρ+λ∞)/κ
exp

(
−λ− λ̂

κ

)
λ̂

(ρ+ λ̂)
.

Combining these two integrals gives the result. �

Proof of Lemma 2. (i) Similar to Corollary 3, it is enough to
show that v̂(λ,w; λ̂) is continuously differentiable at λ � λ̂.
Note that the continuity of v̂(λ,w; λ̂) follows from the defini-
tion. For λ > λ̂, it is

∂1 v̂(λ,w; λ̂)

�
λ

κ(λ− λ∞)
v̄(λ,w)+

∫ λ

λ̂

v̄(l ,w)∂1Q(λ, l)
l + ρ

κ(l − λ∞)
dl

+

[
v̄(λ̂,w)+ ĉκ

λ̂− λ∞
λ̂

]
∂1Q(λ, λ̂),

∂2 v̂(λ,w; λ̂)

�

∫ λ

λ̂

∂2 v̄(l ,w)Q(λ, l)
l + ρ

κ(l − λ∞)
dl + ∂2 v̄(λ̂,w)Q(λ, λ̂).

For λ < λ̂, ∂1 v̂(λ,w; λ̂) � −ĉ and ∂2 v̂(λ,w; λ̂) � ∂2 v̄(λ̂,w) ·
Q(λ̂, λ̂). The derivative of Q(λ, λ̂)with respect to λ is

∂1Q(λ, λ̂)

�
λ̂

(ρ+ λ̂)

(
λ̂− λ∞
λ− λ∞

) (ρ+λ∞)/κ
exp

(
−λ− λ̂

κ

) (−(ρ+ λ∞)
κ(λ− λ∞)

− 1
κ

)
�

λ̂

(ρ+ λ̂)

(
λ̂− λ∞
λ− λ∞

) (ρ+λ∞)/κ
exp

(
−λ− λ̂

κ

) ( −(ρ+ λ)
κ(λ− λ∞)

)
so that limλ→λ̂+ ∂1 v̂(λ,w; λ̂) � −ĉ, and limλ→λ̂+ ∂2 v̂(λ,w; λ̂) �
limλ→λ̂− ∂2 v̂(λ,w; λ̂). The first- and second-order monotonic-
ity of v̂ with respect to w follow from the corresponding
properties of v and the fact that these properties are pre-
served by (discounted) expectation. The monotonicity of v̂
and ∂2 v̂ with respect to λ are obtained since for λ ≥ λ̂,

v̂(λ,w; λ̂)�
∫ ∞

0
v̄(max{λ̂, ϕ(λ, s)},w)e−ρs dFλ, λ̂(s)

+ ĉκ
λ̂− λ∞
λ̂

Q(λ, λ̂),

∂2 v̂(λ,w; λ̂)�
∫ ∞

0
∂2 v̄(max{λ̂, ϕ(λ, s)},w)e−ρs dFλ, λ̂(s).

In particular, ĉ(κ(λ̂ − λ∞)/λ̂)Q(λ, λ̂) is decreasing in λ.
Moreover, the functions v̄(max{λ̂, ϕ(λ, s)},w)e−ρs and
∂2 v̄(max{λ̂, ϕ(λ, s)},w)e−ρs are increasing in s. Hence, if λ1 >
λ2 > λ̂, then by the first-order stochastic dominance order
in the family of distributions Fλ, λ̂ , as discussed in the main
text, it is∫ ∞

0
v̄(max{λ̂, ϕ(λ1 , s)},w)e−ρs dFλ1 , λ̂

(s)

≤
∫ ∞

0
v̄(max{λ̂, ϕ(λ2 , s)},w)e−ρs dFλ1 , λ̂

(s)

≤
∫ ∞

0
v̄(max{λ̂, ϕ(λ2 , s)},w)e−ρs dFλ2 , λ̂

(s),

and similarly∫ ∞

0
∂2 v̄(max{λ̂, ϕ(λ1 , s)},w)e−ρs dFλ1 , λ̂

(s)

≤
∫ ∞

0
∂2 v̄(max{λ̂, ϕ(λ2 , s)},w)e−ρs dFλ1 , λ̂

(s)

≤
∫ ∞

0
∂2 v̄(max{λ̂, ϕ(λ2 , s)},w)e−ρs dFλ2 , λ̂

(s).

(ii) Since v̂(λ,w; λ̂) is continuously differentiablewith respect
to λ̂ as long as λ̂ , λ, one can restrict attention to check-
ing that its right- and left-derivatives coincide for λ̂ � λ. For
λ̂ > λ, substituting the expression for Q(λ̂, λ̂) using Equa-
tion (22) and taking the derivative of v̂(λ,w; λ̂) with respect
to λ̂ yields

d
dλ̂

v̂(λ,w; λ̂)�
κ(ρ+ λ∞)
(λ̂+ ρ)2

[
ĉ
(λ̂+ ρ)2
κ(ρ+ λ∞)

+ ĉ

+
ρ

κ(ρ+ λ∞)
v̄(λ̂,w)+

λ̂(λ̂+ ρ)
κ(ρ+ λ∞)

∂1 v̄(λ̂,w)
]
.
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Similarly, for λ̂ < λ, by direct calculation,

d
dλ̂

v̂(λ,w; λ̂)�
(
λ̂−λ∞
λ−λ∞

) (λ∞+ρ)/κ
exp

(
−λ− λ̂

κ

)
κ(ρ+λ∞)
(λ̂+ρ)2

·
[
ĉ
(λ̂+ρ)2
κ(ρ+λ∞)

+ ĉ+
ρ

κ(ρ+λ∞)
v̄(λ̂,w)+

λ̂(λ̂+ρ)
κ(ρ+λ∞)

∂1 v̄(λ̂,w)
]
.

Hence, one obtains

lim
λ̂→λ+

d
dλ̂

v̂(λ,w;λ̂)� lim
λ̂→λ−

d
dλ̂

v̂(λ,w;λ̂).

The second claim follows since, for λ < λ̂, Q(λ̂, λ̂) � λ̂/
(ρ+ λ̂) is positive and increasing while ∂2 v̄(λ̂,w) is nega-
tive and decreasing. For λ≥ λ̂, similar to part (i), the result
holds since ∂2 v̄(max{λ̂,ϕ(λ,s)},w)e−ρs is an increasing func-
tion of s, and for λ̂1>λ̂2, Fλ,λ̂1

<stFλ,λ̂2
. Specifically,∫ ∞

0
∂2 v̄(max{λ̂1 , ϕ(λ, s)},w)e−ρs dFλ, λ̂1

(s)

≤
∫ ∞

0
∂2 v̄(max{λ̂2 , ϕ(λ, s)},w)e−ρs dFλ, λ̂1

(s)

≤
∫ ∞

0
∂2 v̄(max{λ̂2 , ϕ(λ, s)},w)e−ρs dFλ, λ̂2

(s),

which concludes the proof. �

Proof of Theorem 4. The derivative of fi(λ̂,w) with respect
to λ̂ is

d
dλ̂

fi(λ̂,w)� ĉ
2(λ̂+ ρ)
κ(ρ+ λ∞)

+
2(ρ+ λ̂)
κ(ρ+ λ∞)

∂1 v̄∗i−1(λ̂,w)

+
λ̂(λ̂+ ρ)
κ(ρ+ λ∞)

∂11 v̄∗i−1(λ̂,w) ≥ 0;

the inequality holds since by Equation (24)

v̄∗i−1(λ̂,w)� Ɛ[v∗i−1(λ̂+ δ10 + δ11R,w(1−R)) −wR],

and by the value properties (P2)–(P3) it is ∂1v∗i−1(λ,w) ≥ −ĉ
and ∂11v∗i−1(λ,w) ≥ 0. Since by the value property (P2) it is
limλ̂→∞ ∂1v∗i−1(λ̂,w)�0, the gradient fi(λ̂,w)must be positive
as long as λ̂ is large enough. Therefore, it is possible to restrict
attention to establishing that fi(λ̂,w) ≤ 0 for some finite λ̂ ≥ 0.
For i � 1, this is achieved at λ̂ � λ∞ because λ∗0(w∗0) � λ∞,
∂1u(λ∞ ,w∗0) � −ĉ, v∗0(λ̂ + δ10 + δ11R,w(1 − R)) � u(λ̂ + δ10 +

δ11R,w(1−R)) for λ̂ ≥ λ∞, and by Corollary 2(i),

(λ̂+ ρ)2
κ(ρ+ λ∞)

∂1u(λ̂,w)+ ∂1u(λ̂,w)+
(λ̂− λ∞)(λ̂+ ρ)
(ρ+ λ∞)

∂11u(λ̂,w)

�
ρ

κ(ρ+ λ∞)
Ɛ[u(λ̂+ δ10 + δ11R,w(1−R)) −wR]

+
λ̂(λ̂+ ρ)
κ(ρ+ λ∞)

Ɛ[∂1u(λ̂+ δ10 + δ11R,w(1−R))];

thus, f1(λ∞ ,w∗0) � 0.23 Taking the derivative f1(λ∞ ,w) with
respect to w and using the value property (P3) yields that

ρ

κ(ρ+ λ∞)
∂2 v̄∗i−1(λ̂,w)+

λ̂(λ̂+ ρ)
κ(ρ+ λ∞)

∂12 v̄∗i−1(λ̂,w) < 0,

which implies the result. For i > 1, the claim follows via
induction using a similar argument. Specifically, assume that

λ∗i−1(w) satisfies the optimality condition (30) for all w ∈
[w∗i−2 ,w

∗
i−1]. Hence,

ĉ
(λ∗i−1(w)+ ρ)2

κ(ρ+ λ∞)
+ ĉ +

ρ

κ(ρ+ λ∞)
v̄∗i−2(λ∗i−1(w),w)

+
λ∗i−1(w)(λ∗i−1(w)+ ρ)

κ(ρ+ λ∞)
∂1 v̄∗i−2(λ∗i−1(w),w)� 0.

On the other hand, by the definition of vi(λ,w; λ̂) and
v∗i−1(λ,w) as well as by virtue of the value properties,

ĉ
(λ∗i−1(w∗i−1)+ ρ)2

κ(ρ+ λ∞)
+ ĉ +

ρ

κ(ρ+ λ∞)
v̄∗i−2(λ∗i−1(w∗i−1),w∗i−1)

+
λ∗i−1(w∗i−1)(λ∗i−1(w∗i−1)+ ρ)

κ(ρ+ λ∞)
∂1 v̄∗i−2(λ∗i−1(w∗i−1),w∗i−1)

� ĉ
(λ∗i−1(w∗i−1)+ ρ)2

κ(ρ+ λ∞)
+ ĉ +

ρ

κ(ρ+ λ∞)
v̄∗i−1(λ∗i−1(w∗i−1),w∗i−1)

+
λ∗i−1(w∗i−1)(λ∗i−1(w∗i−1)+ ρ)

κ(ρ+ λ∞)
∂1 v̄∗i−1(λ∗i−1(w∗i−1),w∗i−1)� 0.

Therefore, it is fi(λ∗i−1(w∗i−1),w∗i−1) � fi−1(λ∗i−1(w∗i−1),w∗i−1)
� 0. Taking the derivative fi(λ∗i−1(w∗i−1),w) with respect to w
yields

ρ

κ(ρ+ λ∞)
∂2 v̄∗i−1(λ∗i−1(w∗i−1),w)

+
λ∗i−1(w∗i−1)(λ∗i−1(w∗i−1)+ ρ)

κ(ρ+ λ∞)
∂12 v̄∗i−1(λ∗i−1(w∗i−1),w) < 0;

the last inequality is implied by the value property (P3).
Hence, fi(λ∗i−1(w∗i−1),w) is negative for w ∈ (w∗i−1 ,w

∗
i ], which

allows us to conclude that λ∗i (w) exists. The uniqueness of
the solution follows from the fact that when the optimal-
ity condition fi(λ̂,w) � 0 holds, then the second-order con-
dition ∂1 fi(λ̂,w) > 0 is also satisfied. Indeed, if this is not
true, then ∂1 fi(λ̂,w) � 0, which implies ∂1 v̄∗i−1(λ̂,w) � −ĉ
and ∂11 v̄∗i−1(λ̂,w) � 0. But this means that ∂1v∗i−1(λ̂ + δ10 +

δ11R,w(1− R)) � −ĉ and ∂11v∗i−1(λ̂ + δ10 + δ11R,w(1− R)) � 0,
FR-almost surely. By the value properties, it is ∂11v∗i−1(λ,w)
≥ 0 and ∂1v∗i−1(λ,w) ≥ −ĉ, so ∂1v∗i−1(λ + δ10 + δ11R,w(1− R))
� −ĉ and ∂11v∗i−1(λ + δ10 + δ11R,w(1 − R)) � 0 for any λ <
λ̂. Hence, fi(λ,w) � 0 for λ ≤ λ̂, that is, in particular for
λ̂ � λ∞. This contradicts the fact that fi(λ̂,w) is increasing
in λ̂ and that there exists λ̂ ≥ λ∞ at which fi(λ̂,w) < 0. Thus,
λ∗i (w)must be unique. Finally, the monotonicity obtains since
∂2 fi(λ̂,w) < 0. �

The following auxiliary result is used in the proof of
Lemma 3.

Proposition A.3. For any λ̂ ≥ λ∞, vi(λ,w; λ̂) has the following
properties:

(i) For any (λ,w) ∈ [λ̂,∞)× [w∗i−1 ,w
∗
i ], it is

κ(λ∞ − λ)∂1vi(λ,w; λ̂) − ρvi(λ,w; λ̂)
+ λƐ[v∗i−1(λ+ δ10 + δ11R,w(1−R)) − vi(λ,w; λ̂) −wR]� 0.

(ii) limλ→λ̂+ ∂1vi(λ,w; λ̂)�−ĉ.
(iii) limλ→λ̂+ ∂11vi(λ,w; λ̂) � ((λ∞ + ρ)/((λ̂ − λ∞)(λ̂ + ρ))) ·

fi(λ̂,w) where fi(λ̂,w) is defined in Equation (30).
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Proof. (i) Using the calculations in the proof of
Lemma 2(i), it is

∂1vi(λ,w; λ̂)� λ

κ(λ− λ∞)
v̄∗i−1(λ,w)

+

∫ λ

λ̂

v̄∗i−1(l ,w)∂1Q(λ, l)
l + ρ

κ(l − λ∞)
dl

+

[
v̄∗i−1(λ̂,w)+ ĉκ

λ̂− λ∞
λ̂

]
∂1Q(λ, λ̂)

�
λ

κ(λ− λ∞)
v̄∗i−1(λ,w) −

(ρ+ λ)
κ(λ− λ∞)

vi(λ,w; λ̂),

which implies the claim. (ii) The result is obtained analo-
gously to the proof of Lemma 2(i). (iii) The second derivative
of vi(λ,w; λ̂)with respect to λ is

∂11vi(λ,w; λ̂)

�−
λ+ ρ

κ(λ− λ∞)
∂1vi(λ,w; λ̂)+

λ∞ + ρ

κ(λ− λ∞)2
vi(λ,w; λ̂)

+
λ

κ(λ− λ∞)
∂1 v̄∗i−1(λ,w) −

λ∞
κ(λ− λ∞)2

v̄∗i−1(λ,w),

Taking the limit and substituting the corresponding expres-
sions for vi(λ̂,w; λ̂) and ∂1vi(λ̂,w; λ̂) yield

lim
λ→λ̂+

∂11vi(λ,w; λ̂)�
λ∞ + ρ

(λ̂− λ∞)(λ̂+ ρ)
fi(λ̂,w),

which completes the proof. �
Proof of Lemma 3. By definition (31) and Corollary 3, it suf-
fices to prove the statements for w ∈ [w∗i−1 ,w

∗
i ]. Note that

v∗i (λ,w) is twice continuously differentiable for (λ,w) ∈
(λ∗i (w),∞) × (w∗i−1 ,w

∗
i ] and (λ,w) ∈ [0, λ∗i (w)) × (w∗i−1 ,w

∗
i ].

Therefore, we only need to show that its first-order deriva-
tives are continuous at (λ∗i (w),w) when w ∈ (w∗i−1 ,w

∗
i ] and

(λ,w∗i−1)when λ ≥ 0. Note that continuity of v∗i (λ,w) at these
two boundaries follows by the continuity of v̄∗i−1 and the def-
inition of v∗i . For any (λ,w) ∈ (λ∗i (w),∞)× (w∗i−1 ,w

∗
i ]:

∂1v∗i (λ,w)

�
λ

κ(λ−λ∞)
v̄∗i−1(λ,w)

+

∫ λ

λ∗i (w)
v̄∗i−1(l ,w)∂1Q(λ, l)

l+ρ
κ(l−λ∞)

dl

+

[
v̄∗i−1(λ∗i (w),w)+ ĉκ

λ∗i (w)−λ∞
λ∗i (w)

]
∂1Q(λ,λ∗i (w))

�
λ

κ(λ−λ∞)
v̄∗i−1(λ,w)−

(ρ+λ)
κ(λ−λ∞)

v∗i (λ,w), (A.5)

∂2v∗i (λ,w)�
∫ λ

λ∗i (w)
∂2 v̄∗i−1(l ,w)Q(λ, l)

l+ρ
κ(l−λ∞)

dl

+∂2 v̄∗i−1(λ∗i (w),w)Q(λ,λ∗i (w)),

where the derivative with respect to w is obtained using the
envelope theorem. For (λ,w) ∈ [0, λ∗i (w)) × (w∗i−1 ,w

∗
i ]:

∂1v∗i (λ,w)�−ĉ ,
∂2v∗i (λ,w)� ∂2 v̄∗i−1(λ∗i (w),w)Q(λ∗i (w), λ∗i (w)),

where, as before, the optimality of λ∗i (w) (see Equation (30))
is taken into account when computing the derivative of v∗i
with respect to w. Therefore, by continuity of λ∗i (w), it is

limλ→λ∗i (w)+
∂1v∗i (λ,w) � −c/δ2 � −ĉ, limλ→λ∗i (w)+

∂2v∗i (λ,w) �
∂2 v̄∗i−1(λ∗i (w),w)Q(λ∗i (w), λ∗i (w)), limŵ→w− ∂1v∗i (λ∗i (w), ŵ) �

−c/δ2 � −ĉ , and limŵ→w+ ∂2v∗i (λ∗i (w), ŵ) � limŵ→w+

∂2 v̄∗i−1(λ∗i (ŵ), ŵ)Q(λ∗i (ŵ), λ∗i (ŵ)) � limŵ→w− ∂2v∗i (λ∗i (w), ŵ).
Hence, v∗i (λ,w) is C1 in �+ × (w∗i−1 ,w

∗
i ]. It remains to be

shown that limw→(w∗i−1)−
∂1v∗i−1(λ,w) � limw→(w∗i−1)+

∂1v∗i (λ,w)
and limw→(w∗i−1)−

∂2v∗i−1(λ,w) � limw→(w∗i−1)+
∂2v∗i (λ,w). These

properties follow since v̄∗i−1 is C1.

Value properties (P1)–(P3). Similar to the proof of
Lemma 2(i), v∗i (λ,w) is decreasing and concave in w since
v∗i−1(λ,w) is decreasing and concave in w, and these proper-
ties are preserved under both (discounted) expectation and
pointwise minimization. Moreover, by the envelope theo-
rem, ∂2v∗i (λ,w) � ∂2vi(λ,w;λ∗i (w)); hence, by Lemma 2(i),
∂2v∗i (λ,w) is decreasing in λ. Note that by Equation (23)
and the definition of Q(λ, λ̂) (see Equation (22)) one obtains
that limλ→∞ v∗i (λ,w) � −w. Using this and Equation (A.5), it
immediately follows that limλ→∞ ∂1v∗i (λ,w)� 0. Moreover, as
shown above, by the definition of v∗i (λ,w), it is ∂1v∗1(λ,w) �
−ĉ for λ ≤ λ∗i (w). Hence, property (P2) is obtained by show-
ing that ∂11v∗i (λ,w) ≥ 0. To this end, we note that by Proposi-
tion A.3(i) for any λ ≥ λ̂ ≥ λ∗i (w):

vi(λ,w; λ̂)� v∗i (λ,w)+
(
λ̂− λ∞
λ− λ∞

) (λ∞+ρ)/κ
exp

(
−λ− λ̂

κ

)
· κ(λ̂− λ∞)

λ̂+ ρ

[
∂1v∗i (λ̂,w)+

c
δ2

]
.

Taking the derivative of vi(λ,w; λ̂)with respect to λ̂ yields

d
dλ̂

vi(λ,w; λ̂)�
(
λ̂− λ∞
λ− λ∞

) (λ∞+ρ)/κ
exp

(
−λ− λ̂

κ

)
κ(λ∞ + ρ)
(λ̂+ ρ)2

·
{[ (λ̂+ ρ)2
κ(λ∞ + ρ) + 1

] [
∂1v∗i (λ̂,w)+

c
δ2

]
+
(λ̂− λ∞)(λ̂+ ρ)
(ρ+ λ∞)

∂11v∗i (λ̂,w)
}
. (A.6)

Equivalently, using the definition of vi(λ,w; λ̂), defini-
tion (26), and Equation (22), one obtains

d
dλ̂

vi(λ,w; λ̂)

�−
(
λ̂− λ∞
λ− λ∞

) (λ∞+ρ)/κ
exp

(
−λ− λ̂

κ

)
λ̂

κ(λ̂− λ∞)
v̄∗i−1(λ̂,w)

+

(
λ̂− λ∞
λ− λ∞

) (λ∞+ρ)/κ
exp

(
−λ− λ̂

κ

)
λ̂+ ρ

κ(λ̂− λ∞)
·
[
λ̂

λ̂+ ρ
v̄∗i−1(λ̂,w)+

c
δ2

κ(λ̂− λ∞)
λ̂+ ρ

]
+

(
λ̂− λ∞
λ− λ∞

) (λ∞+ρ)/κ
exp

(
−λ− λ̂

κ

)
·
[

ρ

(λ̂+ ρ)2
v̄∗i−1(λ̂,w)+

λ̂

λ̂+ ρ
∂1 v̄∗i−1(λ̂,w)+

c
δ2

κ(ρ+ λ∞)
(λ̂+ ρ)2

]
,

which simplifies to

d
dλ̂

vi(λ,w; λ̂)�
(
λ̂− λ∞
λ− λ∞

) (λ∞+ρ)/κ
exp

(
−λ− λ̂

κ

)
·
κ(ρ+ λ∞)
(λ̂+ ρ)2

fi(λ̂,w). (A.7)
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Combining the preceding two equations implies that[ (λ̂+ρ)2
κ(λ∞+ρ)

+1
] [
∂1v∗i (λ̂,w)+

c
δ2

]
+
(λ̂−λ∞)(λ̂+ρ)
(ρ+λ∞)

∂11v∗i (λ̂,w)

�
c
δ2

[ (λ̂+ρ)2
κ(ρ+λ∞)

+1
]
+

ρ

κ(ρ+λ∞)
v̄∗i−1(λ̂,w)

+
λ̂(λ̂+ρ)
κ(ρ+λ∞)

∂1 v̄∗i−1(λ̂,w).

Based on this, taking the derivative with respect to λ̂ gives

2(λ̂+ ρ)
κ(λ∞ + ρ)

[
∂1v∗i (λ̂,w)+

c
δ2

]
+

[ (λ̂+ ρ)2
κ(λ∞ + ρ) + 1

]
∂11v∗i (λ̂,w)

+
(λ̂− λ∞)+ (λ̂+ ρ)
(ρ+ λ∞)

∂11v∗i (λ̂,w)

+
(λ̂− λ∞)(λ̂+ ρ)
(ρ+ λ∞)

∂111v∗i (λ̂,w)

�
2(λ̂+ ρ)
κ(ρ+ λ∞)

[
c
δ2

+ ∂1 v̄∗i−1(λ̂,w)
]
+
λ̂(λ̂+ ρ)
κ(ρ+ λ∞)

∂11 v̄∗i−1(λ̂,w).
(A.8)

Note that at λ̂ � λ∗i (w) it is ∂1v∗i (λ∗i (w),w) � −c/δ2, and
by Proposition A.3(iii), ∂11v∗i (λ∗i (w),w) � 0. However, the
right-hand side of the above equality is positive. Conse-
quently, we can conclude that ∂111v∗i (λ∗i (w),w) > 0, which
pushes ∂11v∗i (λ̂,w) into the positive domain and ensures that
∂1v∗i (λ̂,w) + c/δ2 > 0 for λ̂ > λ∗i (w). Now, assume there is
λ̂ > λ∗i (w) for which ∂11v∗i (λ̂,w) � 0. Since λ̂ ≥ λ∗i (w∗i−1) �
λ∗i−1(w∗i−1), one obtains

0 < ∂1v∗i (λ̂,w)+
c
δ2
< ∂1v∗i (λ̂,w(1−R))+ c

δ2

� ∂1v∗i−1(λ̂,w(1−R))+ c
δ2

< ∂1v∗i−1(λ̂+ δ10 + δ11R,w(1−R))+ c
δ2

where the last inequality follows from the convexity of
v∗i−1(λ,w). Hence,

0 < ∂1v∗i (λ̂,w)+
c
δ2
< ∂1 v̄∗i−1(λ̂,w)+

c
δ2
,

so that by Equation (A.8), ∂11v∗i (λ̂,w) never vanishes
in the first place. Finally, we need to prove that 0 ≥
v∗i (λ,w). For λ ≥ λ∞, this follows, since 0 ≥ vi(λ,w;λ∞) ≥
minλ̂≥λ∞ vi(λ,w; λ̂) � v∗i (λ,w), where the first inequality

Appendix B. Notation

Table B.1. Summary of Notation

Symbol Description Range

A Set of admissible collection strategies �∞

¡∗ Optimal action region �2
+

A(t) Bank’s collection strategy �+

A∗(t) Optimal collection strategy �+

a∗(λ,w) Optimal discrete collection effort �+

∆Ak kth discrete collection effort �+

B Borel (sub-)set ¢

holds because 0 ≥ v∗i−1(λ,w). For λ ≤ λ∞, the last claim
holds since 0 ≥ ĉλ∞ + u(λ∞ ,w) ≥ ĉλ∞ + vi(λ∞ ,w;λ∞) ≥
minλ̂≥λ∞ vi(λ,w; λ̂) � v∗i (λ,w), where the first inequality fol-
lows since w > w∗0 while the second follows from the defini-
tion of vi(λ,w;λ∞) and by virtue of the fact that ū(λ,w) ≥
v̄∗i−1(λ,w). �
Proof of Theorem 5. Similar to Lemma 3, it is sufficient to
show that the statement is true when w ∈ (w∗i−1 ,w

∗
i ]. By con-

struction and by Proposition A.3(i), it is (¤0v∗i )(λ,w) � 0 for
λ > λ∗i (w). Moreover, the fact that ∂1v∗i (λ,w) > −c/δ2 implies
that (¤εv∗i )(λ,w)> 0 for ε > 0, and arg minâ>0{v∗i (λ+δ2 â ,w)+
câ}��. For λ� λ∗i (w), it is ∂1v∗i (λ∗i (w),w)�−c/δ2, and hence,
(¤εv∗i )(λ,w)� 0 for ε ≥ 0. In addition, minâ>0{v∗i (λ+ δ2 â ,w)+
câ} does not have any solution. For λ < λ∗i (w),

a∗i (λ,w)� (λ∗i (w) − λ)/δ2

� max
{
a ≥ 0: a ∈ arg min

â>0
v∗i (λ+ δ2 â ,w)+ câ

}
,

and the minimum value is equal to v∗i (λ,w). It only remains
to be established that for λ ∈ [0, λ∗i (w)] it is

(¤εv∗i )(λ,w)
λ+ ρ

�−[v∗i (λ∗i (w),w)+ c/δ2(λ∗i (w) − λ)]+
κ(λ− λ∞)
λ+ ρ

c
δ2

+
λ

λ+ ρ
Ɛ[v∗i−1(λ+ δ10 + δ11R,w(1−R)) −wR] ≥ 0.

By Proposition A.3, equality is obtained at λ∗i (w); hence, it
is sufficient to show that the above expression is decreasing
with respect to λ. The latter holds because, by taking the
derivative with respect to λ,

c
δ2

+
κ(λ∞ + ρ)
(λ+ ρ)2

c
δ2

+
ρ

(λ+ ρ)2 Ɛ[v
∗
i−1(λ+ δ10 + δ11R,w(1−R)) −wR]

+
λ

λ+ ρ
Ɛ[∂1v∗i−1(λ+ δ10 + δ11R,w(1−R))]

�
κ(ρ+ λ∞)
(λ+ ρ)2 fi(λ,w) ≤ 0,

which completes the proof. �

Proof of Corollary 5. The result can be found as in Corol-
lary 1. �
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Table B.1. Continued

Symbol Description Range

c Marginal cost of effort �++

ĉ Effective marginal cost of effort (� c/δ2) �+

(¤εv)(λ,w) Integro-differential operator (at ε ≥ 0) �
� , {¦ t : t ∈ �+} Information filtration —
¦ t Available information at t �
FR Distribution of relative repayment Ri �∞

i Index of repayment event �
J(t) , [N (t),R(t)]> Repayment process �×�+

N (t) ,
∑

i

1{Ti≤t} Repayment counting process (willingness to repay) �

r̄ Expected relative repayment (r̄ , Ɛ[Ri]) [0, 1]
Ri , Zi/W(Ti−1) Relative repayment at t � Ti [0, 1]
R(t) ,

∑
i

Ri1{Ti≤t} Cumulative relative repayment process (ability to repay) �+

s Generic time index �+

(³λ̂v)(λ,w) Sustained-extension operator (with holding intensity λ̂) �+

t Time in the collection process �+

Ti Arrival time of ith repayment �+

u(λ,w) Autonomous account value �−
v(λ,w) Generic value function �
v∗(λ,w) Optimal account value �−
V̄ ∗(λ,w) Account’s expected economic value �+

w Outstanding balance �

¯
w Minimal actionable balance �+

w∗0 Economic balance threshold [
¯
w ,∞)

W(t) Outstanding balance (at t) �+

Zi Amount of ith repayment �+

(α(t), β(t)) Solution to the initial-value problem (15)–(16) �2
+

δ1 , [δ11 , δ12]> Sensitivity of λ(t)with respect to J(t) �2
+

δ2 Sensitivity of λ(t)with respect to A(t) �+

ε∗(λ,w) Optimal infinitesimal collection effort �+

E∗(t) , ε∗(λ(t),W(t)) Infinitesimal collection-effort trajectory �+

ϑk Time of kth discrete collection effort �+

κ Mean reversion rate of the intensity process �+

λ Repayment intensity �+

λ∞ Long-run steady-state intensity �+

λ(t) Intensity process �+

ν∗(t) , v∗(λ(t),W(t)) Value trajectory �
ρ Discount factor �++

ϕ(s , λ(t)) Flow of intensity (between jumps) �+

Appendix C. Comparison with Hidden-Markov
Model Variant

As noted in Section 2, we provide here a simple model for
repayments with an unobservable arrival rate and show that
in a Bayesian setting the dynamics of the repayment intensity,
viewed as the expected value of the repayment arrival rate
conditional on available information, is qualitatively equiv-
alent to the intensity dynamics implied by the self-exciting
point process with law of motion specified in Equation (3) of
the main text.

Preliminaries. Consider a Markov jump process M(t), de-
fined for t ≥ 0, whose states belong to the set S � {L,H}.
Given that M(t) � H at the current time t, the next state-
transition event (at a random transition time τH) arrives at
the rate ΛH . Upon arrival of a state transition at time τH ≥ t,
the process M will either remain in state H (with probabil-
ity pH) or move to state L (with probability 1 − pH); see Fig-
ure C.1(a). Similarly, if M(t) � L, the next transition arrives

at the rate ΛL , and upon arrival of such a transition at τL , M
will either remain in state L (with probability pL) or move to
state H (with probability 1 − pL). The Markov jump process
M is not observable, yet its value affects the arrival rate of
an observable Poisson process (Ti , i ≥ 1). If M is in state H
(resp., L), the unobservable arrival rate λ̃(t) of the observable
Poisson process is equal to λH (resp., λ̃(t) � λL), where—
without any loss of generality—we assume throughout that
λL < λH . Let � � (¦ t , t ≥ 0) denote the filtration generated by
(Ti , i ≥ 1) and N (t) � ∑

i 1{Ti≤t} the corresponding counting
process. Our goal is to characterize the dynamics of ΠH(t) ,
� (M(t)�H |¦ t), that is, the probability of M being in state H,
which, in turn, allows us to determine the expected arrival
intensity λ(t) , Ɛ[λ̃(t) | ¦ t]. Bayraktar and Ludkovski (2009)
carry out this task for a general Markov process with the aid
of infinitesimal generators. Here, we derive the correspond-
ing results in a more elementary way by taking advantage of
the fact that the state space S is binary.
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Figure C.1. (a) Binary Markov Jump Process; (b) Controlled Markov Jump Process
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Proposition C.1. The probabilityΠH(t) satisfies the ordinary dif-
ferential equation

ÛΠH(t)� (1− pL)ΛL(1−ΠH(t)) − (1− pH)ΛHΠH(t)
− (λH − λL)(1−ΠH(t))ΠH(t) (C.1)

for all t ≥ 0 with t , TN (t), that is, between any two consecutive
observable events (Ti , i ≥ 1).
Proof. Between any two observable events, that is, for
t , TN (t), the probability

ΠH(t)� � (M(t)� H | ¦ TN (t) ,TN (t)+1 > t)

can be decomposed using the law of total probability and is
equal to

� (M(t)� H,M(t − ε)� H | ¦ TN (t) ,TN (t)+1 > t)
+� (M(t)� H,M(t − ε)� L | ¦ TN (t) ,TN (t)+1 > t)

� � (M(t)� H |M(t − ε)� H,¦ TN (t) ,TN (t)+1 > t)
· � (M(t − ε)� H | ¦ TN (t) ,TN (t)+1 > t)
+� (M(t)� H |M(t − ε)� L,¦ TN (t) ,TN (t)+1 > t)
· � (M(t − ε)� L | ¦ TN (t) ,TN (t)+1 > t).

Hence,

ÛΠH(t)� lim
ε→0+

ΠH(t) −ΠH(t − ε)
ε

� lim
ε→0+

{
1
ε

[
� (M(t)� H |M(t − ε)� H,¦ TN (t) ,TN (t)+1 > t)

−ΠH(t − ε)
]
� (M(t − ε)� H | ¦ TN (t) ,TN (t)+1 > t)

+
1
ε

[
� (M(t)� H |M(t − ε)� L,¦ TN (t) ,TN (t)+1 > t)

−ΠH(t − ε)
]
� (M(t − ε)� L | ¦ TN (t) ,TN (t)+1 > t)

}
.

(C.2)

Using Bayes’ rule, it is

� (M(t− ε)�H |¦ TN (t) ,TN (t)+1 > t)
�� (M(t− ε)�H,TN (t)+1 > t |¦ TN (t) ,TN (t)+1 > t− ε)

/ (
� (M(t− ε)�H,TN (t)+1 > t |¦ TN (t) ,TN (t)+1 > t− ε)

+� (M(t− ε)�L,TN (t)+1 > t |¦ TN (t) ,TN (t)+1 > t− ε)
)

�� (TN (t)+1 > t |M(t− ε)�H,¦ TN (t) ,TN (t)+1 > t− ε)ΠH(t− ε)/ (
� (TN (t)+1 > t |M(t− ε)�H,¦ TN (t) ,TN (t)+1 > t− ε)ΠH(t− ε)

+� (TN (t)+1 > t |M(t− ε)�L,¦ TN (t) ,TN (t)+1 > t− ε)
· (1−ΠH(t− ε))

)
,

where

� (TN (t)+1 > t |M(t − ε)� H,¦ TN (t) ,TN (t)+1 > t − ε)
� 1− λHε+ o(ε2),

� (TN (t)+1 > t |M(t − ε)� L,¦ TN (t) ,TN (t)+1 > t − ε)
� 1− λLε+ o(ε2);

see Equations (C.3)–(C.6) for details. Consequently,

� (M(t− ε)�H |¦ TN (t) ,TN (t)+1 > t)

�
(1−λHε+ o(ε2))ΠH(t− ε)

(1−λHε+ o(ε2))ΠH(t− ε)+ (1−λLε+ o(ε2))(1−ΠH(t− ε))

≈ (1−λHε)ΠH(t− ε)
(1−λHε)ΠH(t− ε)+ (1−λLε)(1−ΠH(t− ε))

and

� (M(t− ε)�L |¦ TN (t) ,TN (t)+1 > t)
�1−� (M(t− ε)�H |¦ TN (t) ,TN (t)+1 > t)

�
(1−λLε+ o(ε2))(1−ΠH(t− ε))

(1−λHε+ o(ε2))ΠH(t− ε)+ (1−λLε+ o(ε2))(1−ΠH(t− ε))

≈ (1−λLε)(1−ΠH(t− ε))
(1−λHε)ΠH(t− ε)+ (1−λLε)(1−ΠH(t− ε))

.

Similarly, it is

� (M(t)�H |M(t− ε)�H,¦ TN (t) ,TN (t)+1 > t)
�� (M(t)�H,TN (t)+1 > t |M(t− ε)�H,¦ TN (t) ,TN (t)+1 > t− ε)/ (

� (M(t)�H,TN (t)+1 > t |M(t− ε)�H,¦ TN (t) ,TN (t)+1 > t− ε)
+� (M(t)�L,TN (t)+1 > t |M(t− ε)�H,¦ TN (t) ,TN (t)+1 > t− ε)

)
,
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and

� (M(t)�H |M(t− ε)�L,¦ TN (t) ,TN (t)+1 > t)
�� (M(t)�H,TN (t)+1 > t |M(t− ε)�L,¦ TN (t) ,TN (t)+1 > t− ε)/ (

� (M(t)�H,TN (t)+1 > t |M(t− ε)�L,¦ TN (t) ,TN (t)+1 > t− ε)
+� (M(t)�L,TN (t)+1 > t |M(t− ε)�L,¦ TN (t) ,TN (t)+1 > t− ε)

)
.

Note that

� (M(t)� H,TN (t)+1 > t |M(t − ε)� H,¦ TN (t) ,TN (t)+1 > t − ε)
� � (TN (t)+1 > t |M(t)� H,M(t − ε)� H,¦ TN (t) ,TN (t)+1 > t − ε)
· � (M(t)� H |M(t − ε)� H,¦ TN (t) ,TN (t)+1 > t − ε)

� (1− λHε+ o(ε2))(1−ΛHε+ pHΛHε+ o(ε2))
≈ 1− λHε− (1− pH)ΛHε, (C.3)

since the chance of M switching its state within (t− ε, t)more
than once is of the order of ε2. Similarly,

� (M(t)� L,TN (t)+1 > t |M(t − ε)� H,¦ TN (t) ,TN (t)+1 > t − ε)
� � (TN (t)+1 > t |M(t)� L,M(t − ε)� H,¦ TN (t) ,TN (t)+1 > t − ε)
· � (M(t)� L |M(t − ε)� H,¦ TN (t) ,TN (t)+1 > t − ε)

� (1+ o(ε))((1− pH)ΛHε+ o(ε2)) ≈ (1− pH)ΛHε, (C.4)

where the chance of having more than one event for M, irre-
spective of whether it leads to a change in the state, is of the
order of ε2. Repeating the above argument produces

� (M(t)� H,TN (t)+1 > t |M(t − ε)� L,¦ TN (t) ,TN (t)+1 > t − ε)
� � (TN (t)+1 > t |M(t)� H,M(t − ε)� L,¦ TN (t) ,TN (t)+1 > t − ε)
· � (M(t)� H |M(t − ε)� L,¦ TN (t) ,TN (t)+1 > t − ε)

� (1+ o(ε))((1− pL)ΛLε+ o(ε2)) ≈ (1− pL)ΛLε. (C.5)

Finally,

� (M(t)� L,TN (t)+1 > t |M(t − ε)� L,¦ TN (t) ,TN (t)+1 > t − ε)
� � (TN (t)+1 > t |M(t)� L,M(t − ε)� L,¦ TN (t) ,TN (t)+1 > t − ε)
· � (M(t)� L |M(t − ε)� L,¦ TN (t) ,TN (t)+1 > t − ε)

� (1− λLε+ o(ε2))(1−ΛLε+ pLΛLε+ o(ε2))
≈ 1− λLε− (1− pL)ΛLε, (C.6)

where again, the likelihood of having M switching its state
within (t − ε, t)more than once is of the order of ε2. Combin-
ing Equations (C.3)–(C.6), one obtains

� (M(t)� H |M(t − ε)� H,¦ TN (t) ,TN (t)+1 > t)

≈
1− λHε− (1− pH)ΛHε

1− λHε− (1− pH)ΛHε+ (1− pH)ΛHε

�
1− λHε− (1− pH)ΛHε

1− λHε
,

and

� (M(t)� H |M(t − ε)� L,¦ TN (t) ,TN (t)+1 > t)

≈
(1− pL)ΛLε

(1− pL)ΛLε+ 1− λLε− (1− pL)ΛLε

�
(1− pL)ΛLε

1− λLε
.

Finally, substituting the above in Equation (C.2) gives

lim
ε→0+

{
1
ε

[
1− λHε− (1− pH)ΛHε

1− λHε
−ΠH(t − ε)

]
· (1− λHε)ΠH(t − ε)
(1− λHε)ΠH(t − ε)+ (1− λLε)(1−ΠH(t − ε))

+
1
ε

[ (1− pL)ΛLε

1− λLε
−ΠH(t − ε)

]
· (1− λLε)(1−ΠH(t − ε))
(1− λHε)ΠH(t − ε)+ (1− λLε)(1−ΠH(t − ε))

}
� lim
ε→0+

{
1
ε

[
(1− λHε)(1−ΠH(t − ε)) − (1− pH)ΛHε

]
· ΠH(t − ε)
(1− λHε)ΠH(t − ε)+ (1− λLε)(1−ΠH(t − ε))

+
1
ε

[
(1− pL)ΛLε− (1− λLε)ΠH(t − ε)

]
· (1−ΠH(t − ε))
(1− λHε)ΠH(t − ε)+ (1− λLε)(1−ΠH(t − ε))

}
� lim
ε→0+

(
(λL − λH)(1−ΠH(t − ε))ΠH(t − ε)

+ (1− pL)ΛL(1−ΠH(t − ε)) − (1− pH)ΛHΠH(t − ε)
)/ (

(1− λHε)ΠH(t − ε)+ (1− λLε)(1−ΠH(t − ε))
)
,

which leads to the ordinary differential equation (C.1) as
claimed. �

Proposition C.2. Between any two consecutive observable events
Ti and Ti+1, the probability ΠH(t) is given by

ΠH(t) � πH, 2 − (πH, 2 − πH, 1)/(
1+
ΠH(Ti) − πH, 1

πH, 2 −ΠH(Ti)
exp[−(πH, 2 − πH, 1)(t −Ti)]

)
,

t ∈ [Ti ,Ti+1), (C.7)

where ΠH(Ti) is the initial value for t � Ti at the beginning of the
interarrival interval; furthermore,

0 ≤ πH, 1 ,
γ1 − γ2

2(λH − λL)
≤ 1 ≤ πH, 2 ,

γ1 + γ2

2(λH − λL)
, (C.8)

with

γ1 , (λH − λL)+ (1− pH)ΛH + (1− pL)ΛL ,

γ2 ,
√
γ2

1 − 4(λH − λL)ΛL(1− pL).

Proof. By Proposition C.1, the probabilityΠH satisfies Equa-
tion (C.1) for all t ∈ (Ti ,Ti+1). The equilibrium points πH, 1 and
πH, 2 are obtained by setting the right-hand side to zero. It is
0 ≤ πH, 1 ≤ 1 ≤ πH, 2 since the function f (x) � (λH − λL)x2 −
[(λH − λL)+ (1− pH)ΛH + (1− pL)ΛL]x + (1− pL)ΛL is convex,
positive at x � 0, and negative at x � 1. Equation (C.1) is a
Riccati differential equation and can be solved using stan-
dard methods (see, e.g., Weber 2011, Chapter 2), which—by
taking into account the initial value ΠH(Ti)—yields Equa-
tion (C.7). �

Remark C.1. If ΠH(Ti) > πH, 1, then ΠH is strictly decreasing
whereas for ΠH(Ti) < πH, 1 it is strictly increasing. Finally, if
ΠH(0) � πH, 1, then ΠH(t) ≡ πH, 1 on (Ti ,Ti+1) since then the
system is in equilibrium (as ÛΠH(t) ≡ 0).
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Proposition C.3. At any arrival time t � TN (t), it is ΠH(t) >
ΠH(t−), that is, the probability ΠH experiences a positive jump
regardless of the sign of ΠH(t−) − πH, 1.

Proof. At any t � TN (t), we have

ΠH(t)� � (M(t)� H | ¦ TN (t)−1
,TN (t) � t)

� lim
ε→0+

� (M(t)� H | ¦ TN (t)−1
, t − ε < TN (t) ≤ t)

� lim
ε→0+

� (M(t)� H,TN (t) ≤ t | ¦ TN (t)−1
, t − ε < TN (t))

� (TN (t) ≤ t | ¦ TN (t)−1
, t − ε < TN (t))

.

The numerator in the preceding expression can be rewrit-
ten as

� (M(t)� H,M(t − ε)� H,TN (t) ≤ t | ¦ TN (t)−1
, t − ε < TN (t))

+� (M(t)� H,M(t − ε)� L,TN (t) ≤ t | ¦ TN (t)−1
, t − ε < TN (t))

while the denominator takes the form

� (M(t)� H,TN (t) ≤ t | ¦ TN (t)−1
, t − ε < TN (t))

+� (M(t)� L,TN (t) ≤ t | ¦ TN (t)−1
, t − ε < TN (t)),

where

� (M(t)� L,TN (t) ≤ t | ¦ TN (t)−1
, t − ε < TN (t))

� � (M(t)� L,M(t − ε)� H,TN (t) ≤ t | ¦ TN (t)−1
, t − ε < TN (t))

+� (M(t)� L,M(t − ε)� L,TN (t) ≤ t | ¦ TN (t)−1
, t − ε < TN (t)).

Similar to Equations (C.3)–(C.6), it is

� (M(t)� H,M(t − ε)� H,TN (t) ≤ t | ¦ TN (t)−1
, t − ε < TN (t))

� � (TN (t) ≤ t |M(t)� H,M(t − ε)� H,¦ TN (t)−1
, t − ε < TN (t))

· � (M(t)� H |M(t − ε)� H,¦ TN (t)−1
, t − ε < TN (t))ΠH(t − ε)

� (λHε+ o(ε2))(1−ΛHε+ pHΛHε+ o(ε2))ΠH(t − ε)
≈ λHεΠH(t − ε),
� (M(t)� H,M(t − ε)� L,TN (t) ≤ t | ¦ TN (t)−1

, t − ε < TN (t))
� � (TN (t) ≤ t |M(t)� H,M(t − ε)� L,¦ TN (t)−1

, t − ε < TN (t))
· � (M(t)� H |M(t − ε)� L,¦ TN (t)−1

, t − ε < TN (t))
· (1−ΠH(t − ε))

� o(ε)((1− pL)ΛLε+ o(ε2))(1−ΠH(t − ε)) ≈ 0,
� (M(t)� L,M(t − ε)� H,TN (t) ≤ t | ¦ TN (t)−1

, t − ε < TN (t))
� � (TN (t) ≤ t |M(t)� L,M(t − ε)� H,¦ TN (t)−1

, t − ε < TN (t))
· � (M(t)� L |M(t − ε)� H,¦ TN (t)−1

, t − ε < TN (t))ΠH(t − ε)
� o(ε)((1− pH)ΛHε+ o(ε2))ΠH(t − ε) ≈ 0,

and

� (M(t)� L,M(t − ε)� L,TN (t) ≤ t | ¦ TN (t)−1
, t − ε < TN (t))

� � (TN (t) ≤ t |M(t)� L,M(t − ε)� L,¦ TN (t)−1
, t − ε < TN (t))

· � (M(t)� L |M(t − ε)� L,¦ TN (t)−1
, t − ε < TN (t))

· (1−ΠH(t − ε))
� (λLε+ o(ε2))(1−ΛLε+ pLΛLε+ o(ε2))(1−ΠH(t − ε))
≈ λLε(1−ΠH(t − ε)).

Consequently, one obtains

ΠH(t)� lim
ε→0+

� (M(t)� H,TN (t) ≤ t | ¦ TN (t)−1
, t − ε < TN (t))

� (TN (t) ≤ t | ¦ TN (t)−1
, t − ε < TN (t))

� lim
ε→0+

λHεΠH(t − ε)
λHεΠH(t − ε)+ λLε(1−ΠH(t − ε))

�
λHΠH(t−)

λHΠH(t−)+ λL(1−ΠH(t−))
>ΠH(t−),

as claimed. �

Autonomous Intensity Dynamics. We are now ready to con-
sider the law of motion for the conditional expectation
λ(t) � Ɛ[λ̃(t) | ¦ t] introduced earlier in the absence of any
account-treatment action. Given a nondegenerate param-
eter vector (pL , pH ,ΛL ,ΛH , λL , λH) � 0, we interpret the
sequence of observable random stopping times (Ti , i ≥ 1) as
the account holder’s repayment events, whereby each repay-
ment is drawn from a certain empirically identified repay-
ment distribution, similar to the assumptions in the main
text. In this context, the hidden Markov jump process M
describes the account holder’s unobservable repayment pri-
ority (with H for “high priority” and L for “low priority”).
The resulting law of motion,

λ(t)� λHΠH(t)+ λL(1−ΠH(t))� λL + (λH − λL)ΠH(t),

closely resembles the autonomous intensity dynamics
obtained in Section 2.1 in the sense that it features positive
jumps at repayment events and a smooth decrease toward
a long-run stationary value (λ∞ � λL + (λH − λL)πH, 1) in
the prolonged absence of repayment events; see Figures 2(b)
and C.2(a).
Controlled Intensity Dynamics. As discussed in the main
text, an account-treatment strategy consists of a sequence of
actions. We denote the starting time of a collection action
by ϑ and assume that the collection action continues until
a repayment is received, that is, until TN (ϑ)+1. The first mea-
sure taken to implement a suitable collection action often
takes the account holder by surprise and can immediately
change the account holder’s priorities, so that M moves from
“low” to “high.” Consequently, we assume that if M(ϑ) � L
at time t � ϑ, the state of the hidden Markov jump process
can change to H with probability pa . If this transition does
not take place at t � ϑ, it will take place at a random time τa
with arrival intensity (1 − pL, a)ΛL, a as long as the collection
action remains in effect (i.e., over [ϑ,TN (ϑ)+1]). Upon moving
to state H, the Markov jump process M evolution is governed
by ΛH, a and pH, a , which have the same interpretation as ΛH
and pH before. Figure C.1(b) illustrates these dynamics. Note
that at t � ϑ,

ΠH(ϑ+)� lim
ε→0+

� (M(ϑ+ ε)� H | ¦ ϑ ,TN (ϑ)+1 > ϑ+ ε)

� lim
ε→0+

� (M(ϑ+ ε)� H,M(ϑ)� H | ¦ ϑ ,TN (ϑ)+1 > ϑ+ ε)

+ lim
ε→0+

� (M(ϑ+ ε)� H,M(ϑ)� L | ¦ ϑ ,TN (ϑ)+1 > ϑ+ ε).

In particular,

� (M(ϑ+ ε)� H,M(ϑ)� H | ¦ ϑ ,TN (ϑ)+1 > ϑ+ ε)

�
� (M(ϑ+ ε)� H,M(ϑ)� H,TN (ϑ)+1 > ϑ+ ε | ¦ ϑ)

� (TN (ϑ)+1 > ϑ+ ε | ¦ ϑ)
,
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Figure C.2. Numerical Illustration: (a) Bayesian Intensity Dynamics; (b) Autonomous and Controlled Parameters
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Figure D.1. Approximation of the Optimal Discrete Collection Strategy A∗M by an M-Envelope Strategy Ã∗M: (a) Upper
M-Envelope Approximation Scheme Based on A∗ in the (Intensity, Balance) Space; (b) Intensity Dynamics Obtained from A∗M
and Ã∗M, respectively (Where S̃i � Si Are i.i.d. Exponential)
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and

� (M(ϑ+ ε)� H,M(ϑ)� L | ¦ ϑ ,TN (ϑ)+1 > ϑ+ ε)

�
� (M(ϑ+ ε)� H,M(ϑ)� L,TN (ϑ)+1 > ϑ+ ε | ¦ ϑ)

� (TN (ϑ)+1 > ϑ+ ε | ¦ ϑ)
,

where

� (M(ϑ+ ε)� H,M(ϑ)� H,TN (ϑ)+1 > ϑ+ ε | ¦ ϑ)
� � (TN (ϑ)+1 > ϑ+ ε |M(ϑ+ ε)� H,M(ϑ)� H,¦ ϑ)
· � (M(ϑ+ ε)� H |M(ϑ)� H,¦ ϑ)ΠH(ϑ)

� (1+ o(ε))(1+ o(ε))ΠH(ϑ) ≈ΠH(ϑ), (C.9)
� (M(ϑ+ ε)� H,M(ϑ)� L,TN (ϑ)+1 > ϑ+ ε | ¦ ϑ)

� � (TN (ϑ)+1 > ϑ+ ε |M(ϑ+ ε)� H,M(ϑ)� L,¦ ϑ)
· � (M(ϑ+ ε)� H |M(ϑ)� L,¦ ϑ)(1−ΠH(ϑ))

� (1+ o(ε))(pa + o(ε))(1−ΠH(ϑ)) ≈ pa(1−ΠH(ϑ)), (C.10)
� (M(ϑ+ ε)� L,M(ϑ)� L,TN (ϑ)+1 > ϑ+ ε | ¦ ϑ)

� � (TN (ϑ)+1 > ϑ+ ε |M(ϑ+ ε)� L,M(ϑ)� L,¦ ϑ)
· � (M(ϑ+ ε)� L |M(ϑ)� L,¦ ϑ)(1−ΠH(ϑ))

� (1+ o(ε))(1− pa + o(ε))(1−ΠH(ϑ))
≈ (1− pa)(1−ΠH(ϑ)), (C.11)

and

� (M(ϑ+ ε)� L,M(ϑ)� H,TN (ϑ)+1 > ϑ+ ε | ¦ ϑ)
� � (TN (ϑ)+1 > ϑ+ ε |M(ϑ+ ε)� L,M(ϑ)� H,¦ ϑ)
· � (M(ϑ+ ε)� L |M(ϑ)� H,¦ ϑ)ΠH(ϑ)

� (1+ o(ε))o(ε)ΠH(ϑ) ≈ 0. (C.12)

Combining Equations (C.9)–(C.12) gives

lim
ε→0+

� (M(ϑ+ ε)� H,M(ϑ)� H | ¦ ϑ ,TN (ϑ)+1 > ϑ+ ε)

� lim
ε→0+

� (M(ϑ+ ε)� H,M(ϑ)� H,TN (ϑ)+1 > ϑ+ ε | ¦ ϑ)
� (TN (ϑ)+1 > ϑ+ ε | ¦ ϑ)

�ΠH(ϑ),

and

lim
ε→0+

� (M(ϑ+ ε)� H,M(ϑ)� L | ¦ ϑ ,TN (ϑ)+1 > ϑ+ ε)

� lim
ε→0+

� (M(ϑ+ ε)� H,M(ϑ)� L,TN (ϑ)+1 > ϑ+ ε | ¦ ϑ)
� (TN (ϑ)+1 > ϑ+ ε | ¦ ϑ)

� pa(1−ΠH(ϑ)).

Hence, for any pa > 0, ΠH(t) and, in turn, also λ(t) � Ɛ[λ̃(t) |
¦ t] experience a positive jump. Choosing (1− pL, a)ΛL, a and
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(1 − pH, a)ΛH, a such that πH, 1 � ΠH(ϑ) + pa(1 − ΠH(ϑ)),
with the parameter vector (pL , pH ,ΛL ,ΛH) replaced by
(pH, a , pL, a ,ΛL, a ,ΛH, a) in Equation (C.8), yields dynamics that
are qualitatively equivalent to the intensity dynamics in the
main text.

Figure C.2(a) shows the corresponding dynamics for
an account whose autonomous intensity dynamics evolve
according to the parameter vector in the table of Fig-
ure C.2(b); that is with (pL , pH ,ΛL ,ΛH) � (0.95, 0.10, 0.20,
1.00). When the repayment priority is “high,” that is,
M(t)� H, on average 1.5 repayments are received per time
unit (quarter). When this priority is “low,” that is, M(t)� L,
the repayment arrival rate is 0.1 per quarter. In the absence
of account treatment, this leads to πH, 1 � 0.004 and πH, 2 �

1.646 determining the intensity’s long-run stationary value,
λ∞ � 0.106. Figure C.2(a) depicts a case where the ini-
tial intensity level, at t � 0, is λ∞. As in the main text,
assuming that the outstanding balance is large enough so
(λ∞ ,w) ∈¡∗, one can increase and maintain the intensity by
taking a suitable account-treatment action. An action, taken
at ϑ � 0 with parameter vector (pL, a , pH, a ,ΛL, a ,ΛH, a , pa) �
(0.10, 0.50, 3.00, 2.00, 0.65), moves the repayment intensity
(via a jump caused by pa) to a new long-run stationary value,
λ∞ � 1.000, compatible with πH, 1 � 0.643 and πH, 2 � 3.000.
The action remains in effect until a repayment is received.
During this period, the intensity level remains constant since
the system is held in equilibrium. Upon receiving a repay-
ment, the intensity experiences a positive jump as described
before. For the case illustrated in Figure C.2(a), there are
no subsequent actions. Consequently, the intensity reverts
back to its autonomous long-run stationary value, λ∞ �0.106,
unless a further repayment is received (e.g., at T2 � 2.5).

Appendix D. Implementation Details
To aid in the practical implementation of the optimal collec-
tion strategy discussed in the main text, we now provide a
brief discussion of model identification and algorithm for a
simple collection strategy constructed from the optimal solu-
tion to (P), provided there are only a finite number of (empir-
ically identified) collection actions and attainable intensity
levels.

Model Identification. Let y ∈ �n be a vector of account-
specific characteristics, such as the predefault FICO score
and outstanding balance at the point of collections place-
ment. To identify the account-specific parameter vector
(κ(y), δ10(y), δ11(y), δ2(y)), one can use the estimation meth-
ods developed by Chehrazi and Weber (2015) given obser-
vations of a portfolio of delinquent accounts with respect
to collection activity and repayment events over the time
interval [0, h] for some h > 0 (usually in the order of 6–24
months). For each account (the index of which is omitted),
the set of observed data usually includes the account-specific
attribute vector y, the repayment events (Ti ,Ri)N (h)i�1 , and the
collection activity (ϑk ,mk)K(h)k�1 in terms of timing and type
of action on [0, h]. At time ϑk the kth collection action of
type mk (from an available menu of actions M , {1, . . . , m̄})
is taken, for example, in the form of a legal action or the
establishment of a repayment plan with a certain number of
installments. The number of collection actions up to but not
including time t ∈ [0, h] is denoted byK(t)�∑

k≥1 1{ϑk<t}. The

bank observes the starting time of an action, its termination
time (which may coincide with a repayment or a starting
time of a subsequent action), and also all specific measures
taken to implement the action (which together determine the
action type). In addition to the account-specific parameter
vector (κ(y), δ10(y), δ11(y), δ2(y)), it is necessary to estimate
the common long-run steady-state intensity λ∞ (which can
be set to zero for conservative/robust estimates; see Chehrazi
and Weber 2015), and the vector of action-specific intensi-
ties λ̂M , (λ̂m)m∈M. Each action-specific intensity is scaled
by δ2(y) to pin down its account-specific impact, that is,
the account’s responsiveness to the relevant type of collec-
tion action. The log-likelihood of observing the repayment
times (Ti)N (h)i�1 given (Ri)N (h)i�1 , and (ϑk ,mk)K(h)k�1 as a function of
(κ(y), δ10(y), δ11(y), δ2(y), λ∞ , λ̂M) is

L((Ti)N (h)i�1 | (Ri)N (h)i�1 , (ϑk ,mk)K(h)k�1 )�
N (h)∑
i�1

ln(λ(T−i )) −
∫ h

0
λ(s) ds ,

where

λ(t)�



λ∞ , t � 0,
λ(T−i )+ δ10(y)+ δ11(y)Ri , t � Ti ,

λ(ϑ−k ), t � ϑk ,

λ∞ + (λ(Ti) − λ∞)exp(−κ(y)(t −Ti)),
t ∈ (Ti ,Ti+1 ∧ ϑK(Ti )+1),

λ̂mk
δ2(y),

t ∈ (ϑk ,TN (ϑk )+1 ∧ ϑk+1) and λ(ϑk) ≤ λ̂mk
δ2(y),

λ̂mk
δ2(y)+ (λ(Ti) − λ̂mk

δ2(y))exp(−κ(y)(t −Ti)),
t ∈ (ϑk ,TN (ϑk )+1 ∧ ϑk+1) and λ(ϑk) > λ̂mk

δ2(y).

As in lattice theory, the binary ∧-operator denotes the mini-
mum. Assuming an affine dependence of the parameters κ,
δ10, δ11, δ2 on the vector of account-specific characteristics y
(as in Chehrazi and Weber 2015), maximum-likelihood esti-
mates can be found bymaximizing the sumof log-likelihoods
over the observed account portfolio subject to feasibility.
Approximately Optimal Collections. Upon identifying λ̂M

together with the rest of the model parameters, the solu-
tion A∗ to the collection problem (P) in the main text, with-
out restrictions of intensity levels, can be used to obtain an
approximately optimal solution to the discrete version of
the collection problem where controlled intensity levels are
restricted to components of the vector λ̂M. It turns out that a
direct solution A∗M of the discrete collection problem leads to
a nonconvex action region ¡∗M and, thus, to analytical com-
plexities that are beyond the scope of this paper. Instead of
dealing with the additional details, we provide here a sim-
ple method for enveloping A∗ (i.e., the solution to (P)) by
a collection strategy Ã∗M and show numerically, by example,
that the resulting collection performance tends to be close to
the collection performance of the optimal discrete collection
strategy A∗M despite a significant optimality gap between A∗

and A∗M because of the discretization. For this, we first define
the (upper)M-envelope of the optimal action set¡∗ as

λ̃∗M(w) , λ̂mM(w) ,

where mM(w) , min{m ∈ M: λ∗(w) ≤ λ̂m or m � m̄}.24 The
M-envelope collection strategy Ã∗M is then defined as a collec-
tion strategy that results from taking an action if and only if,
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at the current time t ≥ 0, the account state lies in the closure
of the action set ¡∗, that is, if and only if (λ(t),W(t)) ∈ cl¡∗.
Any action is such that it pushes the repayment intensity
from λ(t) to the upper M-envelope λ̃∗M(w) using a discrete
effort and then maintains that intensity level until the next
repayment using a continuous effort.

As an example, consider a situation where m̄ � 6 dis-
crete intensity levels are available and assume that λ̂M �

(m/4)m∈M � (0.25, 0.5, . . . , 1.5). To allow for comparison, we
use the same set of parameters as in the main text,
that is, (λ∞ , κ, δ10 , δ11 , δ2 , ρ, ¯

r, c) � (0.1, 0.7, 0.02, 0.5, 1, 6%,
0.1, $6). Figure D.1 illustrates the construction of the M-
envelope collection strategy Ã∗M, which effectively rounds
up the optimal intensity level under the original strategy
(which solves (P)) as long as it is feasible to do so. This
figure also depicts the direct solution A∗M of the discrete
collection problem for the same sample path (with per-
fect coupling; Thorisson 2000). Denoting the value gener-
ated by this collection policy by ṽM(λ,w) and the (numer-
ical) value of the optimal discrete policy by v∗M(λ,w), the
relative error is ẽM(λ,w) , |(ṽM(λ,w) − v∗M(λ,w))/v∗M(λ,w)|.
Given an initial intensity λ � λ∞ and initial outstanding bal-
ance w � $75, the example yields ẽM(λ,w) � 0.14%. Mean-
while, the optimality gap caused by discrete action space
is gM(λ,w) , |(v∗M(λ,w) − v∗(λ,w))/v∗(λ,w)|, whence, in the
example, gM(λ,w)� 6.8%� ẽM(λ,w).
Continuous vs. Discrete Collection Strategies. An account-
treatment action is composed of a set of measures that can
be taken in different order by different people (with differ-
ent levels of authority and at different levels of proficiency).
The perceived authority of the bank’s representative (hence-
forth referred to as “agent”) and the agent’s experience in
dealing with debtors play a significant role in determining
the level of repayment intensity λ̂m a collection action (of
type m ∈ M) can achieve and maintain. Collection records
available in practice usually show measures taken at discrete
instants in time, which, compared with an agent’s actual
activities (that the authors have witnessed in person, on
recordings, and through interviews), capture only a very
narrow aspect of the task. Indeed, an effective action typ-
ically cannot be implemented instantaneously; a particular
measure is often combined with other measures over mul-
tiple days or even weeks. For example, when a pre-agreed
repayment date is approaching, automated phone calls, text
messages, and reminder emails are sent to the debtor. Once
a repayment has been missed and a sufficiently long time
has elapsed (so the account state hits the boundary of ¡∗),
attempts are made by the collection team to establish contact
and cooperation; indeed, more than one agent may be “work-
ing the account” because different skill sets are required or
for behavioral reinforcement, somewhat analogous to “good
cop/bad cop” interrogation techniques. A significant fraction
of the agents’ daily routine is, therefore, spent on automated
dialing. Once first-party contact has been established, the
next action depends on the state of the account. For exam-
ple, negotiating an updated repayment schedule requires an
agent to review the file, request updated information about
the debtor’s financial standing, and possibly conducting a
field visit. To finally determine a sequence of installments
acceptable to all parties requires additional contact cycles.
Thus, in reality, the action of restructuring a repayment plan

is not as discrete (both in time and intensity level) as it may
appear in a data set. A collection agency’s menu of actions
M is finite not because only a finite set of intensity levels
can be achieved a priori, but because the implementation of
actions within that agency is often standardized and carried
out by the same set of agents in a more or less similar man-
ner.25 The M-envelope strategy outlined earlier captures the
discretization effects caused by standardizing the process. It
also captures both discrete and continuous elements of col-
lection efforts, driven by the generic mismatch between the
theoretically optimal intensity to implement, as prescribed
by the solution A∗ to (P), and the best feasible intensity level
in the optimal discrete collection strategy A∗M.

Endnotes
1Meier and Sprenger (2010) find that in the United States a larger
present bias exhibited by consumers is associated with higher credit-
card debt. Telyukova and Wright (2008) show that the credit-card
debt puzzle, that is, the failure of consumers to pay off high-interest
credit debt using balances in low-interest-bearing accounts or cash,
can be viewed as a special case of the return-dominance puzzle con-
cerning the coexistence of assets with different rates of return, such
as cash and savings accounts.
2This approach relates to the use of the Snell envelope in optimal
stopping problems; see, for example, Karatzas and Shreve (1998,
Appendix D).
3Related to the control of pure jump processes (including PDPs) is
the control of Markovian systemswith Brownianmotion (Davis et al.
2010). The additional diffusion term tends to augment the differen-
tiability of the value function, which, in turn, simplifies optimality
proofs for threshold-type policies.
4The possibility of early settlement offers is subject to future
research; see Chehrazi and Weber (2010) for a (robust) static
approach.
5The chance of recovering an outstanding balance in the long run
increases in λ∞. The empirical regularity of observing larger repay-
ments during an economic boom is reflected by a probabilistic
increase in the number of repayments (Chehrazi and Weber 2015).
6The standard information filtration � represents the internal history
of the repayment process (Ti ,Zi : i ≥ 1). Specifically, ¦ t ∈ � with ¦ t �

σ(1{Zi∈B}1{Ti≤s} ; i ≥ 1, s ∈ [0, t],B ∈ ¢([0, 1])), where ¢([0, 1]) is the
collection of all Borel-subsets of [0, 1].
7While the notion of “effort” may suggest a continuous dependence
of the change of the repayment intensity, our formulation does allow
for instantaneous changes in the intensity dynamics (i.e., jumps); see
Section 3.1.
8 In the United States, the relevant statutes of limitations vary by
state and type of debt and also depend on the specifics of the credit
agreement. According to the Consumer Financial Protection Bureau:

In some states, the statute of limitations period begins when
you failed to make a required payment on a debt. In other
states it is counted from when you made your most recent
payment, even if that payment was made during collection. In
some states, even a partial payment on the debt will restart the
time period. In most states, debt collectors can still attempt to
collect debts after the statute of limitations expires.

See https://www.consumerfinance.gov/askcfpb/1389/what-statute
-limitations-on-debt.html for details. The possibility of early ter-
mination of collections by the account holder through filing for
bankruptcy protection can be captured in our formulation by increas-
ing the discount rate ρ.

https://www.consumerfinance.gov/askcfpb/1389/what-statute-limitations-on-debt.html
https://www.consumerfinance.gov/askcfpb/1389/what-statute-limitations-on-debt.html
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9 In our context, a collection strategy consists of a sequence of
account-treatment actions, each of which is implemented by taking a
sequence of treatment measures over a period of time. For example,
establishing first-party contact is an action that is implemented by
taking measures such as phone calls, letters, emails, messages, and
field visits.
10This is reflected in our model by the coefficient δ2.
11The complementarity of the terms in Equation (6), relating to dis-
crete and continuous collection efforts, requires excluding the some-
what trivial situation where a∗(λ,w) � 0. Thus, if a is required to be
strictly positive, the corresponding minimum may not exist, and in
that case, its value is set to +∞. Dropping this restriction, the largest
optimal discrete effort in Equation (8) naturally always exists.
12Given A � 0 and t ∈ [Ti ,Ti+1), the point (λ(t),W(t)) ∈ ∂¡∗ lies in¨ ∗

if and only if λ(t) > λ∞ and (λ(t̂),W(t̂)) ∈¡∗ for all t̂ ∈ (t , t + ε] and
some ε > 0. Since the repayment probability, � (Ti+1 ∈ (t , t + ε] | ¦ t)�
1−exp(−∫ t+ε

t λ(s) ds), goes to zero as ε→ 0+, with probability 1 there
is no repayment in some right neighborhood of t, so W(t̂)� W(t) for
all t̂ ∈ (t , t + ε].
13The claim follows since, by Corollary 2(iii), limŵ→∞ ∂1u(λ, ŵ)�−∞.
14MRA can be relaxed by taking the limit for

¯
r→ 0+. For any

¯
r, the

construction of the value function presented in this paper is exact
relative to the repayment distribution FR . The latter is empirically
indistinguishable from a distribution that satisfies MRA by identify-
ing

¯
r with the lowest observed nonzero relative repayment.

15See the proof of Lemma 2 for algebraic details.
16The optimal collection strategy in Corollary 5 is unique up to
changes of the continuous collection effort on a set of measure zero.
Moreover, the second and subsequent account-treatment actions do
not induce any jump in the intensity process since they are taken at
the optimal time, that is, before the intensity enters the action region.
17 In any practical setting, the relative repayment distribution FR( · )
can be estimated by an empirical cdf F̂R( · ), which, in our case, has
been discretized in 0.005 intervals on [

¯
r, 1].

18 It is assumed that at the time of placement λ(0) � λ∞. Since the
primary reason for collection is that the holder has failed to make
any repayment for a considerably long period (between 90 and 180
days, depending on the institution), given the intensity dynamics, it
is reasonable to assume that λ(t), t ≤ 0, has converged to λ∞ before
the collection process starts (at the time of placement, t � 0).
19The objective function of the collection problem (P) for a given
collection strategy A starting at (λ,w) is denoted by v(λ,w; A).
20These distributions are related to the dynamic collectability score
(DCS) introduced by Chehrazi andWeber (2015); they are computed
here for a simulation horizon that is large enough to cover the time
required for full repayment for all sample paths.
21The intensity process is right-continuous at τk that are due to
repayment events, as these events are not predictable, and it is left-
continuous at τk that are due to (predictable) discrete collection
efforts.
22As an alternative to the SDE (4), one can describe the evolu-
tion of the repayment intensity also in integral form: λ(t) � λ(0) +
∫[0, t] κ(λ∞ − λ(s−)) ds + ∫[0, t] ∫[0, 1](δ10 + δ11r)N̂ (ds , dr) + δ2A(t), for
all t ≥ 0 (see Brémaud 1981).
23The last expression is obtained by solving for u(λ̂,w) using
(¤0u)(λ̂,w)� 0 and then differentiating with respect to λ̂.
24As in the main text, λ∗(w) is the boundary of the action region ¡∗.
Without loss of generality, λ∞ < λ̂1 < · · · < λ̂M <∞.
25A set of actions in a given collection policy applied to statistically
indistinguishable accounts by two different collection agencies may
well induce statistically different intensity levels since the agencies
are likely to implement the “same” nominal actions by taking differ-
ent measures, in different orders, employing agents with heteroge-
neous levels of proficiency and debtor-perceived authority.
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