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Abstract. Power control over wireless networks has been an active area of research with
significant applied impact. A well-motivated line of this research, which has received
increasing attention, is applying game-theoretic tools for both gaining insight and design of
algorithms. In this paper, we build on the existing work and present a simple game-
theoretic formulation of power control on wireless networks that incorporates two novel
features. First, we do not impose exogenous power bounds on the feasible transmission
power. Second, we allow the channel environment to be stochastic and time varying.
Within this model, we first examine the deterministic game under a fixed environment, in
which we develop a novel fixed-point theorem of independent interest that operates in
general and unbounded partially ordered sets. We then leverage this customized fixed-
point theorem to establish various equilibrium-related results: existence, uniqueness, and
convergence, followed by a novel Price-of-Anarchy bound characterization. Finally,
we study the stochastic behavior of the best response dynamics and establish a number
of desirable properties in the presence of a stochastic and time-varying channel.

Keywords: game theory • stochastic stability • power control • fixed point theory • wireless networks

1. Introduction
Communications on wireless networks is a broad field
with important applications andwithpower control being
an important problem (Rappaport 2001, Goldsmith 2005).
Over the past two decades, distributed power control
(by which each transmitter regulates its own power)
has emerged to be the predominant power control
paradigm for good reasons: centralized coordination is
extremely difficult in an often-case large-scale wireless
network; further, a single point failure in a central
power allocator can have devastating effects.

Consequently, dedicated efforts have been devoted
to designing good distributed power control algorithms
that achieve certain performance (quality-of-service)
guarantees. Much of the work in this space traces
back to a simple distributed power control algorithm
proposed in Foschini and Miljanic (1993) that is shown
to achieve target signal-to-interference-and-noise ratio
(SINR) with minimum power, Subsequently, various
refinements and extensions have appeared in a series of
articles (Mitra 1994, Yates 1996, Ulukus and Yates 1998,
Holliday et al. 2003, Zhou et al. 2016b) also with the
principal objective of achieving certain SINR thresh-
olds. The landscape of objectives under consideration
have since been expanded significantly in wireless
communications (as well as in the closely related
wireline networks), resulting in more sophisticated
models that study, as a highly incomplete list,
throughput (El Gamal et al. 2006, Reddy et al. 2008,

Seferoglu et al. 2008), fairness (Eryilmaz et al. 2006),
delays (Eryilmaz et al. 2008, Altman et al. 2010), and
backlog (Gitzenis and Bambos 2002, Reddy et al. 2012,
Gopalan et al. 2015).
An important thread of work, which has much to

contribute on distributed power control, is a class of
utility-based models on the transmitter side that in-
duces strategic interactions, typically in the form of
a noncooperative multiplayer game. There have been
several such formulations that fall into this thread
(Famolari et al. 1999; Alpcan et al. 2002; Saraydar et al.
2002; Xiao et al. 2003; Han and Liu 2005; Srivastava
et al. 2005; Alpcan et al. 2006; Meshkati et al. 2007; Zhu
and Pavel 2007, 2008; Candogan et al. 2010; Hoang
et al. 2015; Zhou et al. 2016a), depending on the spe-
cific quantities that the utility model aims to capture
as well as the underlying wireless networks. More
broadly, this research thread belongs to the well-
known and well-motivated paradigm of applying
game theory to wireless networks. See Menache and
Ozdaglar (2010) and Han et al. (2014) for two seminal
monographs that give articulate and comprehensive
treatments on this field, including both theory and
applications.
At its core, such a utility-based model provides an

economic–theoretic explanation for the power-selection
process for a transmitter: why it chooses what it chooses
or, equivalently, how it should make a choice. Such a
game-theoreticmodel then naturally induces a distributed
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power control scheme (the well-known best response
update): at each iteration, a transmitter chooses the
power to maximize its utility. An attractive feature in
this resulting distributed power control scheme is that
they converge to the unique Nash equilibrium (NE) of
the game (shown in Menache and Ozdaglar 2010 and
Han et al. 2014), thereby providing a check on self-
consistency.

However, in the particular power control games,
prior models tend to assume the underlying channel
environment is static. That is, the power gain matrix
(inherently a function of the underlying wireless
network topology) and/or the channel noise are
typically assumed to be static over time. Although in
certain applications (e.g., slow-varying channels), this
provides a good approximation, in certain others,
moving wireless links and random channel distur-
bances can cause either (or both) assumption(s) to fail.
Consequently, a natural question arises: what is the
behavior of the best response power control scheme
under stochastic and time-varying channels? Given
the strong merits of the elegant best response power
control scheme as articulated byMenache and Ozdaglar
(2010) and Han et al. (2014), this question is fully mo-
tivated because a positive result on stochastic stabil-
ity will provide a characterization of its robustness,
thereby increasing its applicability. Our message,
fortunately, is that this is indeed the case even in the
absence of exogenous bounds on feasible transmis-
sion power.

1.1. Our Contributions
Our contributions are threefold. First, building on
existing models as the ones given in prior work
(Famolari et al. 1999, Menache and Ozdaglar 2010, Han
et al. 2014, etc.), we present a game-theoretic formula-
tion of power control in wireless communications that
incorporates two additional novel features (Section 2).
First, we do not impose exogenous power bounds on
the feasible transmission power as is commonly done
in the abovementioned power control games literature.
This not only gives a mathematically interesting per-
spective, but alsoprovides a goodproxy for understanding
the regime in which transmission power is large,
particularly when one is interested in stability-type
results as is our focus here. Second, we also allow the
channel environment to be stochastic and time varying
and thereby enable a robustness characterization of the
results obtained from the simplified case in which the
environment is fixed.

Second, we examine the deterministic game under the
fixed environment in which power is not exogenously
assumed to be bounded.We start by establishing a novel
and Tarksi-like fixed point theorem that dispenses with
the normal “bounded-lattice” assumption (Granas and
Dugundji 2003) prevalent in different variants of Tarski’s

theorem. This is a crucial step in our case because the
unbounded power assumption poses a challenge that
cannot be directly addressed using the existing fixed-
point theorems. We then establish the existence and
uniqueness of the Nash equilibrium by combining our
customized fixed-point theorem and the special struc-
tures in this particular power control context. The cus-
tomized fixed-point theorem is stated in a general poset
setting and hence is, in our view, interesting in its own
right and can potentially be used in other applications
that deal with unbounded decision variables. Further-
more, we also place emphasis on convergence to the
unique Nash equilibrium. In particular, we show that,
under our setting, both synchronous and asynchronous
best response dynamics converge to the unique Nash
equilibrium. Finally, we provide a case study on the
Price-of-Anarchy bounds for the power control game.
See Section 3 for details.
Third, we study in depth the stochastic behavior of the

best response dynamics under a simplemodel of stochastic
time-varying channel environments, in which we allow
both the channel gains (determined by the underlying
network link topology) and the noise to change randomly
over time. We show that the system admits a unique
stationary distribution, and the power iterates under the
best response dynamics will converge to this stationary
distribution irrespective of the initial conditions. Further-
more, we show that the convergence rate is exponential.
These results together provide a complete characteriza-
tion of the stochastic stability of the best response–based
power control scheme. Such a characterization is enabled
by certain interesting structural properties present in the
model, which we highlight in Section 4 by promoting the
geometric insights associatedwith the analysis. Finally, we
establish finite-time high-concentration bounds for the
long-run average transmission power under random en-
vironments and end the sectionwith a comparative statics
discussion that reveals an interesting insight on how
noise affects the system performance.
Some initial results are presented in the preliminary

conference version (Zhou and Bambos 2015). This paper
has significantly expanded upon Zhou and Bambos
(2015) in several aspects. First, it provides a stream-
lined presentation with full proofs. Second, for the fixed
environment case, we include the general poset fixed-
point theorem as well as detailed characterizations of
synchronous and asynchronous best response updates,
all of which are not discussed in Zhou and Bambos
(2015). Third, for the stochastic environment case, Zhou
and Bambos (2015) is limited only to a simulation-
based study that has shown the promise of stability
in the presence of stochastic and time-varying chan-
nels. Further, the randomness considered in Zhou and
Bambos (2015) is only limited to the noise: the power
gainmatrix is still assumed to be fixed and constant over
time. Here, we give an extensive and general theoretical
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treatment that, as a by-product, satisfactorily settles all
conjectures raised in Zhou and Bambos (2015) in a
forthright manner.

2. Game Model on Wireless Networks
In this section, we consider a game-theoretical for-
mulation of communications over wireless networks in
which the environment (to be defined in Section 2.1)
is fixed over time. This not only provides a simple
starting point, which will be generalized in Section 4 to
incorporate a random environment, but it also gives
crisp intuition of the properties of the system that prove
important for the random environment case.

2.1. Power Control in Wireless Communications
We consider a wireless communications setting as in-
troduced in Foschini and Miljanic (1993) in which there
is a network of N communication links, each of which
is composedof a transmitter anda corresponding intended
receiver. The power vector for transmission is denoted
by P � (P1, . . . ,PN), where Pi is the power used by (the
transmitter of) link i. Throughout the paper, it is as-
sumed that P ∈RN

+ .
1 A commonly used (Weeraddana

et al. 2012, Tan 2014) measure of link service quality is
the SINR. Given a power vector P, link i’s SINR Ri(P) is
given by

Ri(P) � GiiPi∑

j≠iGijPj + ηi
, (1)

where Gij is the channel gain from the transmitter j to
receiver i, and ηi is the overall noise, comprising both the
intrinsic noise (e.g., thermal noise) and the extraneous
noise induced by interferers outside of the system under
consideration. Collecting each individual generalized
noise into the vector η and all the channel gains into the
channel gain matrix G with G ∈RN×N

+ and Gii ∈R++, the
environment of a wireless network can be compactly
represented by the pair (G,η). For the rest of this section
and Section 3, the environment is assumed to be con-
stant. This assumption is lifted in Section 4.

2.2. Cost Model and Game
Each link acts as a rational agent, aiming to minimize its
own cost, which consists of two parts: first, a cost as-
sociated with power and, second, a cost associated with
the quality of the service received (its SINR), which can
be interpreted as the inverse utility derived from the
quality of service.Hence, givenP, the total costCi of link i
is given by

Ci(P) � ri(Pi) + fi

(
GiiPi∑

j≠iGijPj + ηi

)
,

where ri( · ) is link i’s cost of power and can be any
convex and increasing function, and fi :R+ →R+ is the
function that maps a given SINR to a cost for link i.
Note that, in particular, each link can have a dif-
ferent fi (and/or vi); links need not agree on the
amount of displeasure (i.e., cost) for the same SINR
given. However, because of the nature of the quan-
tity (inverse utility) that fi models, it is reasonable
to make the following structural assumptions (on
all fi’s):

Assumption 1.
1. fi is strictly decreasing and strictly convex;
2. limx→+∞ fi(x) � 0, limx→ 0+ fi(x) � +∞2;
3. fi is continuously differentiable.

Remark 1. Note that these assumptions imply that f ′i is
continuous (and also defined) on (0, +∞) and satisfies
the following conditions: f ′i (x)< 0,∀x∈ (0, +∞); limx→+∞
f ′i (x) � 0, limx→ 0+ f

′
i (x) � −∞. Examples of the cost

functions fi(x) include a
xp,∀a, p> 0, be

a
xp − 1, ∀b, a, p> 0,

c
logq(x+1),∀c, q> 0, d

x log(x+1),∀d> 0,3 and so on or any

convex combinations of those functions.

This setup naturally induces a N-player nonco-
operative game. We proceed with the standard so-
lution concept: Nash equilibrium (Başar and Olsder
1998), which is defined as follows in our current
context.

Definition 1. P is a (pure strategy) Nash equilibrium if,
for each i, Ci(P1, . . . ,Pi−1,Pi, . . . ,PN)≤Ci(P1, . . . , Pi−1,
P′
i , . . . ,PN),∀P′

i ∈R+.

That is, P is a (pure strategy) Nash equilibrium if and
only if, when every transmitter uses the power according
to P, no transmitter i has any incentive to unilaterally
deviate from Pi. In what follows, it is understood that
anyNash equilibriumwe refer to is a pure-strategyNash
equilibrium.
Under this game-theoretical formulation, several ques-

tions naturally arise:
• Does there exist a Nash equilibrium? If so, is it

unique?
• What dynamics of update schemes, if any, would

converge to the unique Nash equilibrium (if one exists)?
Contrary to Han et al. (2014), Menache and Ozdaglar

(2010), and Famolari et al. (1999), which also con-
sider utility models of power control games, here we
do not restrict the action space (i.e., power level P)
to be bounded. Consequently, one cannot directly
invoke the standard existence of Nash equilibrium
results as done in prior work. In general, when the
action space is a compact set, such existence of NE
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results typically amount to an application of either
Brouwer’s fixed-point theorem or Kukatani’s fixed
point theorem (Fudenberg and Tirole 1991, Granas
and Dugundji 2003). In Section 3, we provide a novel
fixed-point theorem, which can be viewed as a var-
iant of Tarski’s fixed-point theorem, which operates
in the absence of the endogenous bound on action
space.

2.3. Best Response Function
An alternatively equivalent and helpful view of the
Nash equilibrium is via best response functions.

Definition 2. The best response function gi :RN
+ →R+ of

link i is defined as follows:

gi(P) � argminP′
i∈R+Ci(P1, . . . ,Pi−1,P′

i , . . . ,PN).

In other words, gi gives the best (minimum cost)
Pi, assuming all the other links choose their power
according to the fixed given P. Similarly, the joint best
response function g :RN

+ →RN
+ is defined to be g(P) �

(g1(P), . . . , gN(P)). Therefore, P is a Nash equilibrium
if and only if P is a fixed point of g (i.e., P � g(P)).

In our current setting, for a given P, there exists a
unique minimizer P+

i ∈R+ that minimizes Ci(P1, . . . ,
Pi−1,P+

i , . . . ,PN). Hence, the best response function g is
well-defined, and each link i’s best response P+

i � gi(P)
can be found via the following first-order optimality
condition:

− f ′i

(
GiiP+

i∑

j≠iGijPj + ηi

)(
Gii∑

j≠iGijPj + ηi

)
� r′i (P∗

i ). (2)

Note that the best response function g implicitly de-
fined by Equation (2) is a continuous function by the
properties of fi and ri.

As it turns out, best response functions are not only
important in that they serve as a vehicle for establishing
results related to NE, but they also have significance
serving as a reasonable explanation for the process
through which the unique NE is eventually achieved,
starting from any initial condition. For this reason, we
close this section by studying in some detail the best
response function for our current game, which not only
provides some structural insight into the system, but
also proves useful later in charactering the Nash
equilibrium results.

Lemma 1. Let each f ′i (y)y be increasing in y≥ 0.
1. ∀P, P̂ ∈RN

+ , P≤ P̂⇒ g(P)≤ g(P̂).
2. For any given P, αg(P)> g(αP),∀α> 1.
3. For any P ∈RN

++, there exist α0 > 0, such that
αP> g(αP),∀α≥α0.

In all three cases, inequality is interpreted as component-
wise.

Proof. For (1), assume for contradiction purposes,
gi(P)> gi(P̂) for some i. Denote gi(P) � P+

i , gi(P̂) � P̂
+

i .

By convexity of ri(·), it follows that ri(P̂+

i )≤ ri(P+
i ).

Consider Equation (2) that defines gi, which we
rewrite as

− f ′i

(
GiiP+

i∑

j≠iGijPj + ηi

)(
GiiP+

i∑

j≠iGijPj + ηi

)
1
P+
i

� r′i (P∗
i ),

− f ′i

(
GiiP̂

+

i∑

j≠iGijP̂j + ηi

)(
GiiP̂

+

i∑

j≠iGijP̂j + ηi

)
1

P̂
+

i

� r′i (P̂∗
i ).

Because P+
i > P̂

+

i and P≤ P̂, we have GiiP+
i∑

j≠iGijPj+ηi
>

GiiP̂
+

i∑

j≠iGijP̂j+ηi
. Further, because − f ′i (y)y is a positive func-

tion strictly decreasing in y, we have

r′i (P∗
i ) � − f ′i

(
GiiP+

i∑

j≠iGijPj + ηi

)(
GiiP+

i∑

j≠iGijPj + ηi

)
1
P+
i

< − f ′i

(
GiiP̂

+

i∑

j≠iGijP̂j + ηi

)(
GiiP̂

+

i∑

j≠iGijP̂j + ηi

)
1

P̂
+

i

� r′i (P̂∗
i ),

which contradicts ri(P̂+

i )≤ ri(P+
i ). The conclusion therefore

follows.
For (2), pick any i and define P̄i � gi(P), P̂i � gi(αP).

First, because α> 1, we have P̂i ≥ P̄i per Statement (1).
By convexity of ri(·), this implies

r′i (P̂i)≥ r′i (P̄i) (3)

Next, by the optimality condition, we have

1.

− f ′i

(
GiiP̄i∑

j≠iGijPj + ηi

)(
Gii∑

j≠iGijPj + ηi

)
� r′i (P̄i); (4)

2.

− f ′i

(
GiiP̂i

α
∑

j≠iGijPj + ηi

)(
Gii

α
∑

j≠iGijPj + ηi

)
� r′i (P̂i). (5)

Assume gi(αP)≥αgi(P); then P̂i � βP̄i for some β≥
α> 1. Combined with Equation (2), this implies

− f ′i

(
GiiP̄i

α
β

∑

j≠iGijPj + ηi
β

)(
Gii

α
∑

j≠iGijPj + ηi

)
� r′i (P̂i).
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Because Gii

α
∑

j≠iGijPj+ηi
< Gii∑

j≠iGijPj+ηi
and − f ′i

(
GiiP̄i

α
β

∑

j≠iGijPj+ηi
β

)
<

− f ′i
(

GiiP̄i∑

j≠iGijPj+ηi

)
(because GiiP̄i

α
β

∑

j≠iGijPj+ηi
β

> GiiP̄i∑

j≠iGijPj+ηi
and − f ′i

is a strictly decreasing function), we have

r′i (P̂i ) � − f ′i

(
GiiP̄i

α
β

∑

j≠iGijPj + ηi
β

)(
Gii

α
∑

j≠iGijPj + ηi

)

< − f ′i

(
GiiP̄i∑

j≠iGijPj + ηi

)(
Gii∑

j≠iGijPj + ηi

)
� r′i (P̄i),

which contradicts Equation (13). Hence, gi(αP)<αgi(P).
Because this is true for any i, the claim is established.

For (3), we break the proof into two steps. In the first
step, we prove the assertion assuming ri is linear, in

which case the cost Ci(P) � ciPi + fi
(

GiiPi∑

j≠iGijPj+ηi

)
for some

ci > 0. In the second step, we establish that the linear
cost case (ri(Pi) � ciPi) is the hardest case. In other
words, if ri is any convex increasing function, then
g(αP)would only increase more slowly compared with
the linear case as α increases, thereby establishing the
full statement.

For the first step, note that because the function − f ′(x)
is strictly decreasing, its inverse, which we denote by hi,
exists (and is defined on (0, +∞)) and is also strictly
decreasing. In addition, by the properties of f ′(x), it
follows that limx→+∞ hi(x) � 0, limx→ 0+ hi(x) � ∞. As
a result, we have limα→+∞ hi(αx) � 0,∀x ∈ (0, +∞),
implying that hi(αx) � o(α)

α as α→∞ when hi(αx) is
viewed as a function of α for a fixed x.

Fix an arbitrary P∈RN
++. We have, for α> 1,

gi(αP) � α
∑

j≠iGijPj + ηi
Gii

hi(
ci
Gii

(α
∑

j≠i
GijPj + ηi))

<
α
∑

j≠iGijPj + ηi
Gii

hi(
ci
Gii

α
∑

j≠i
GijPj)

� α
∑

j≠iGijPj + ηi
Gii

o(α)
α

� o(α),∀i.

Hence, for α large enough, αPi > gi(αPi) for every i. Pick
such an α and set α0 to be this α. We then have
α0P> g(α0P). Consequently, for any α>α0, αP � α

α0

α0P> α
α0
g(α0P)> g( αα0

α0P) � g(αP), where the second
inequality follows from (2) of this lemma because α

α0
> 1.

For the second step, fix an arbitrary P∈RN
++ and

denote P+ � g(P). By the optimality condition, we have,
for each i,

− f ′i

(
GiiP+

i∑

j≠iGijPj + ηi

)(
Gii∑

j≠iGijPj + ηi

)
� r′i (P+

i )≜ ci. (6)

Now pick an α> 1 and plug αP into Equation (6) in
replacement of P. For Equation (6) to continue to hold,
P∗
i must increase by the same argument as in Statement (1)

of this lemma. However, because ri is convex, as P∗
i

increases, r′i (P+
i ) also increases and will exceed ci.

Consequently, because − f ′i (y)y is a positive function
strictly decreasing in y, P∗

i needs to increase less for
Equation (6) to hold compared with if ri(Pi) � ciPi,
where ci takes the particular value r′i (P+

i ) as defined in
Equation (6). This implies that the value g(αP) under
a convex cost ri will be no larger than the value g(αP)
under the corresponding linear cost ri. The claim,
therefore, follows immediately. ■

Remark 2. Because f ′i ( · )< 0 is an increasing function,
− f ′i (y) is positive and decreasing in y. Consequently,
the requirement that − f ′i (y)y is decreasing in y means
that − f ′i (y) must decrease faster than y increases. If
fi is twice differentiable, this condition is equivalent
to y≥ − f ′i (y)

f ′′i (y) ,∀y> 0. This condition is equivalent to the
relative risk aversion assumption given in Menache
and Ozdaglar (2010) under the utility (as opposed to
cost) formulation. Note that all the examples mentioned
in Remark 1 satisfy this assumption. For the rest of this
paper, unless noted otherwise, we assume that each fi
satisfies this condition in addition to Assumption 1.

3. Nash Equilibrium Characterizations:
Existence, Uniqueness
and Convergence

In this section, we address the set of questions raised at
the end of the previous section. As mentioned before,
a primary challenge in establishing the existence of the
Nash equilibrium lies in the absence of the endogenous
bounds on the power levels, resulting in both unbounded
action space and unbounded cost. We meet this chal-
lenge by introducing a customized, Tarski-like fixed-
point theorem that operates on unbounded structures as
previous fixed-point theorems (Brouwer’s, Kukatani’s,
andTarski’sfixed-point theorems andvariants) cannot be
directly applied here. We begin by a brief discussion on
the existing fixed-point theorems. This discussion serves
as a motivation to introduce our own customized fixed-
point theorem:we do so in a general setting (i.e., not tied
to the domainRn

+ in the current case) and in a streamlined
fashion so as to facilitate the comparisonwith the classical
Tarski’sfixed-point theorem. This customizedfixed-point
theorem, together with the structural properties of the
best response function in our setting, then lead to the
existence and uniqueness of the Nash equilibrium.
After establishing the existence and uniqueness of

theNash equilibrium,we thenproceed to establish that the
best response dynamics are guaranteed to converge to the
uniqueNash equilibrium in our setting—something that is
not at all common in a generalmultiplayer noncooperative

Zhou, Bambos, and Glynn: Stochastic Wireless Network Games
1502 Operations Research, 2018, vol. 66, no. 6, pp. 1498–1516, © 2018 INFORMS



game. We establish convergence in both the traditional,
synchronous best response update and the less stringent,
as well as more practical, asynchronous best response
update.

3.1. Fixed-Point Theorems
A vast amount of literature exists on fixed-point theo-
rems. The results can usually be classified based on the
assumptions of the underlying map or domain: the
completeness of the domain (Banach theorem and its
variants), the compactness and convexity of the domain
(Brouwer fixed-point theorem, Kakutani fixed-point
theorem4 and variants), the order–theoretical struc-
ture of the domain (Tarski’s theorems and variants),
just to name a few. For a detailed exposition, see Granas
and Dugundji (2003).

The ones that concern us here are those that operate
on partially ordered sets (hereafter referred to as posets)
with the prominent ones being the Knaster–Tarski
theorem and Tarski–Kantorovitch theorem. They are
relevant because the domain Rn

+ of the function g here
is a poset. However, these order–theoretical fixed-point
theorems (Davey andPriestley 2002,Granas andDugundji
2003) roughly share one feature in common: the poset of
interestmust be bounded—something clearlymissing in
the current setting. As an illustration example and for
ease of comparison, we first state (without proof) the
classical Tarski–Kantorovitch fixed-point theorem (Granas
and Dugundji 2003).

Definition 3. Let (P, ≤ ) be a partially ordered set and
G :P→P be a map.

1. A subset S⊂P is called a chain if S is totally or-
dered under ≤.

2. G is called a poset-mapping continuous map if,
for each countable chain {ci} having a supremum,
G(sup{ci}) � sup{G{ci}}.
Remark 3. If the underlying posetP is also ametric space
(such as Rn

+) and is, hence, endowed with the normal
continuity concept, a continuous map there needs to be
distinguished from a poset-mapping continuous map:
the former does not imply the latter. Furthermore, as
indicated in Granas and Dugundji (2003), a poset-
mapping continuous map is necessarily monotonic:
x≤ y⇒G(x)≤G(y), where x, y ∈P. This follows easily
by noting that if x≤ y, then y � sup{x, y}; hence,
G(y) � sup{G(x),G(y)}, implying that G(x)≤G(y).

We are now ready to state the Tarski–Kantorovitch
fixed-point theorem.

Theorem 1. Let (P, ≤ ) be a partially ordered set and
G :P→P be a poset-mapping continuous map. Assume the
following two conditions hold:

1. ∃p1 ∈P, p1 ≤G(p1);
2. every countable chain in {x ∈P | x≥ p1} has a supremum.

Then G has a fixed point.

Note that the unboundedness of the domain P (Rn

here) implies the second condition does not hold. As
a result, Tarski’s theorem cannot be directly invoked
here. Asmentioned earlier, a few other such fixed-point
theorems on posets or lattices also suffer from the same
problem.
Consequently, in the next subsection, we give our

customized theorem (also in a general setting) that
works around this unboundedness issue.

3.2. Our Variant of Fixed-Point Theorem

Theorem 2. Let (P, ≤ ) be a partially ordered set and
G :P→P be a poset-mapping continuous map. Assume the
following three conditions hold:

1. ∃p1 ∈P, p1 ≤G(p1);
2. every bounded countable chain in {x ∈P | x≥ p1} has

a supremum;
3. ∃p2 ∈P, p2 > p1, p2 ≥G(p2).

Then G has a fixed point.

Remark 4. Two things worth mentioning here. First,
Theorem 2 is not necessarily a generalization of Tarski’s
theorem as there can be partially ordered sets that do
satisfy Condition (3) in Theorem 2 but not Condition (2)
in Theorem 1. From another viewpoint, although the
second condition in Theorem 2 is less stringent, it does
have a more stringent requirement: Condition (3). Con-
sequently, Theorem2 canbeviewedas a variant of Tarski’s
theorem that serves complementary purposes. Second,
to give some intuition about the theorem, there is still
a notion of “boundness” built into Theorem 2: p2 serves
as an effective “upper bound” that prevents the fixed-
point iterations from going to infinity.

Proof. Consider the sequence {Gn(p1)}n∈N, where Gn is
recursively defined as follows: G0(p1) � p1,Gn(p1) �
G(Gn−1(p1)),∀n> 0. Because the map G is continuous,
it is also monotonic (Remark 3). Hence, we have
Gn−1(p1)≤Gn(p1),∀n∈N. Therefore, {Gn(p1)}n∈N forms
a chain (that is increasing).
Moreover, ∃p2 > p1, p2 ∈P implies that Gn(p2)≥

Gn(p1), and p2 ≥G(p2) implies that p2 ≥Gn(p2),∀n∈N.
It then follows that p2 ≥Gn(p1),∀n∈N, leading to that
the chain {Gn(p1)}n∈N is bounded; hence, it has a
supremum: call it p∗ (i.e., sup {{Gn(p1)}n∈N} � p∗).
By the definition of the poset-mapping continuity of

G, we have

G(p∗) � G(sup{Gn(p1)}n∈N)
� sup{G({Gn(p1)}n∈N)} � sup{{Gn(p1)}n∈N} � p∗.

Hence, p∗ is a fixed point of G. ■

Remark 5. Note that one could as well apply the same
iteration to p2, using p1 as a lower bound to establish
that another Nash Equilibrium exists as the limit of
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Gn(p2). In general, these two couldwell be two different
Nash equilibria. In the current context, we shall see
later that these twoNash equilibria are indeed the same
one because of the uniqueness of the Nash equilibrium
established by Theorem 3.

3.3. Existence and Uniqueness of the
Nash Equilibrium

By combining the customized fixed-point theorem in
Theorem 2 and the properties of the best response
function given in Lemma 1, we are now ready to
characterize the existence and uniqueness of the Nash
equilibrium.

Theorem 3. There exists a unique Nash equilibrium.

Proof. For existence, by Lemma 1, g is continuous and
monotonic. This leads to that g is a poset-mapping
continuous map. To see this, take any sequence
{pi}⊂RN

+ :
• Bymonotonicity of g, g(sup{pi})≥ g(pi),∀i, thereby

implying that g(sup{pi})≥ sup{g(pi)}.
• By continuity of g, g(sup{pi})≤ sup{g(pi)}.
Together, these two statements imply that g(sup{pi}) �

sup{g(pi)}; hence, g is poset-mapping continuous.
Fix any P ∈RN

++. By Lemma 1, we can find α suffi-
ciently large with αP> g(αP). Setting p1 � 0, p2 � αP,
we have p1 ≤ g(p1), p2 ≥ g(p2), p1 < p2. By the topological
structure of Rn

+, we have that every bounded (non-
empty) subset has a least upper bound (and, hence, of
course, implying every bounded countable chain has
a supremum). Applying Theorem 2 establishes the
existence of the Nash equilibrium.

For the uniqueness of Nash equilibrium, suppose we
have two different Nash equilibria x, y∈Rn

++ (note that
any Nash equilibrium must reside in Rn

++). Let i be the
index such that yi

xi
� maxj

{yj
xj

}
. Set β � yi

xi
. Without loss of

generality, assume β> 1.
Scale x by β so that βx≥ y and βxi � yi. We have

gi(βx)< βgi(x) � βxi. (7)

On the other hand, we also have

gi(βx)>� gi(y) � yi. (8)

This indicates that yi < βxi, contradicting the fact that
βxi � yi. Hence, x � y. ■

We end this subsection with a discussion on the
uniqueness of Nash equilibrium. First, unlike estab-
lishing the existence of aNash equilibrium,which can be
done in sufficient generality (as in our current version of
a fixed-point theorem or any of the existing fixed-point
theorems), the uniqueness result rarely holds in a gen-
eral game, and in the case that it does hold, one typically
needs to work with the special properties of the specific
class of games at hand in order to establish it. In the

current setting, to establish the uniqueness result, we
have exploited both the monotonicity property and
the scalability property of the best response function.
This is a rather standard argument and consistent with
the existing literature (Alpcan et al. 2002, Menache and
Ozdaglar 2010, Han et al. 2014) that do impose bounds
on the feasible action set.We do note that there is a slight
difference in the argument used here in the unbounded
action set case versus that used in the bounded action set
case. Specifically, if one imposes bounds on maximum
power, then g’s domain is some bounded feasible set. In
this case,whenwemultiply β by x, because β> 1, βxmay
well lie outside of the bounded feasible power set.
Consequently, a priori, one cannot directly apply g to βx.
If there is no maximum power constraint, then βx
will always be feasible (no matter how large β is), and
our uniqueness result relies on this operation to reach
a contradiction. In any case, it should be pointed out
that establishing a Nash equilibrium’s uniqueness often
needs to be done on a case-by-case basis (typically)
via ad hoc methods that fully exploit the problem
structure.

3.4. Synchronous Best Response Dynamics:
Convergence to the Unique NE

The best response function g also suggests a natural
way for the N links to arrive at the unique Nash
equilibrium: at each iteration, each link selects the best
power that minimizes its total cost, assuming all the
other links will choose their respective best powers
from the previous iteration. Hence, each link at each
iteration proceeds according to the following update
scheme (Algorithm 1).

Algorithm 1. (Synchronous Best Response Dynamics for
Power Update)
1: Each link i arbitrarily chooses an initial power

P0
i ∈R+

2: for iteration k � 0, 1, 2, 3, . . . do
3: for i � 1, . . . ,N do
4: Pk+1

i � gi(Pk)
5: end for
6: end for

Note that each link i will not be able to access the
powers (Pk

j ’s, j≠ i) used by other links in the previous
iteration; however, it need not because the total in-
terference and noise

∑
j≠iGijPk

j + ηi that each link (more
precisely, each link’s receiver) can detect is enough for
computing the current best power Pk+1

i . In particular,
each receiver i can sense the SINR from the previous
iteration and send it back to the corresponding trans-
mitter, which can then infer the quantity Gii∑

j≠iGijPk
j +ηi

,

which is sufficient for best response updates. Second,
for a general fi, the function values gi can be computed
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efficiently by doing a binary search because of the
monotonicity of f ′i . In certain cases, analytical solutions
can also be obtained (e.g., fi(x) � 1

x).
Next, we show that, under this update scheme, Pk

(the k-th power vector iterate)will converge to the unique
Nash equilibrium irrespective of the initial power
vector P0.

Lemma 2. Under Algorithm 1, Pk (the k-th power vector
iterate) converges to the unique Nash equilibrium irre-
spective of the initial power vector P0.

Proof. Note that the best response update inAlgorithm 1
can be compactly written as Pk � gk(P0), where gk(·)
denotes k repeated applications of the best response
update. By Lemma 1, for any initial power vector P0,
there exists a sufficiently large α> 0, such that

0≤P0 ≤αP0, (9)

with 0< g(0),αP0 > g(αP0). Consequently, by applying
g repeatedly to the three sides of (9), it follows from
Remark 5 that both gk(0) and gk(αP0) converge as
k→∞. The corresponding limits are fixed points of g
and are, therefore, Nash equilibria. However, because
there is a unique Nash equilibrium by Theorem 3, they
must coincide, and it then follows that gk(P0), always
satisfying gk(0)< gk(P0)< gk(αP0),∀k, converges to the
same unique Nash equilibrium. ■

We end this subsection with a brief discussion on
convergence speed. First, we note that when a fixed-
point iteration is applied in a general poset as defined
in Definition 3, it is not meaningful to speak of con-
vergence speed because, at that level of generality,
there is no notion of distance to measure the progress
toward a fixed point. Consequently, we directly dis-
cuss convergence speed in the current power control
setting, in which the underlying poset domain has an
additional metric space structure: in RN , any finite
dimensional norm ‖ · ‖ can serve as a distance metric to
measure progress toward the Nash equilibrium (the
fixed point in the current setting).

Second, we point out that all the existing results
in the literature on convergence speed can be in-
herited and utilized directly in the current setting.
This is because our version of a fixed-point theorem
(as introduced in Theorem 2) is a theorem concerning
existence of a fixed point with which we have lifted
the boundedness assumption. However, the current
results on convergence speed are oblivious to whether
the domain is bounded or not. (Another way to see that
those existing convergence speed results will carry
through in the current setting is that because we have
shown convergence in Lemma 2, the sequence gener-
ated from any initial point is automatically bounded.)
As an example, one would get a geometric convergence

rate if the best response function (the fixed point map
in the current setting) is contractive: g(·) satisfies ‖g(P)−
g(P̃)‖≤ρ‖P− P̃‖ for some ρ< 1. Another well-known
condition that gives a geometric convergence rate is
that the first-order derivative around the fixed point is
well behaved. More formally, let J(x) be the Jacobian
matrix of first partial derivatives of the best response
function g at a point x ∈RN :

Jij(x) � ∂gi(x)
∂xj

.

If we already know that a unique fixed point exists (in
this case it’s the Nash equilibrium) and that conver-
gence to the unique fixed point is guaranteed, then the
geometric convergence rate holds (Kirk and Sims 2001)
if ‖J(PNash)‖M ≤ ρ for some ρ< 1, where ‖ · ‖M is the
matrix norm induced by the vector norm ‖ · ‖ (that is
used to measure distance). Note that this condition
only requires good properties around the fixed point;
however, it is important to emphasize that this result
presupposes the convergence to the fixed point. Con-
sequently, our existence, uniqueness, and convergence
results established previously allow us to take ad-
vantage of all the existing convergence rate results.5

3.5. Asynchronous Best Response Dynamics:
Convergence to the Unique NE

An alternative and less demanding update scheme is
the asynchronous best response update (Algorithm 2)
in which, in each iteration, not every link is necessarily
updating its power. In comparison with the synchro-
nous update scheme, this is a more practical and easily
implementable scheme because, in a decentralized up-
date setting, itmay not be easy to enforce afixed time step
by which everyone updates simultaneously.

Algorithm 2. (Asynchronous Best Response Dynamics for
Power Update)
1: Each link i arbitrarily chooses an initial power

P0
i ∈R+

2: for iteration k � 0, 1, 2, 3, . . . do
3: Let 1k ⊂ {1, 2, . . . ,N} be a (possibly empty) set of

updating links at k
4: for each i∈1k do
5: Pk+1

i � gi(Pk)
6: end for
7: end for
Next, we show that, so long as each link updates its

power infinitely often, the iterate will converge to the
unique Nash equilibrium. To that end, we first in-
troduce some notation and characterize an important
property that is used for the asynchronous best re-
sponse update.

Definition 4. Let1⊂ {1, 2, . . . ,N} and {1k}∞k�1 be a given
sequence of sets with 1k ⊂ {1, 2, . . . ,N},∀k.

Zhou, Bambos, and Glynn: Stochastic Wireless Network Games
Operations Research, 2018, vol. 66, no. 6, pp. 1498–1516, © 2018 INFORMS 1505



• Define the partial best response function g1 :

RN
+ →RN

+ to be

g1i (P)≔ gi(P), i∈1
Pi, ı∉1.

{
(10)

Define the corresponding composition g{1
l}kl�1 of par-

tial updates as g{1
l}kl�1(P).

• Define the set of complete cycle times {tj}∞j�0 to be

tj ≔
0, j � 0
inf{k | k> tj−1,∀1≤ i≤N,∃k, i∈1k}, j≥ 1.

{
(11)

Intuitively, g1 is the one-step asynchronous best re-
sponse update, and tj is the first iteration by when
every link has updated its power at least j times.

Theorem 4. Under Algorithm 2, if each link i is updated
infinitely often, that is, for each i, | {k | i∈1k} | � +∞, then
Pk (the k-th power vector iterate) converges to the unique
Nash equilibrium irrespective of the initial power vector P0.

Proof. First note that, by definition, monotonicity still
holds under partial best response updates: If P≥ P̃, then
g1(P)≥ g1(P̃),∀1.

Next, let {1l}∞l�1 be the sequence of updating sets
given in Algorithm 2. We show that if P≤ g(P), then
gn(P)≤ g{1

l}tnl�1(P),∀n≥ 1, where gn(·), as before, is n
compositions of g with itself. We proceed by an in-
duction argument.

We first establish the base case: g(P)≤ g{1
l}t1l�1(P). To

see this, first note that, by monotonicity, we have

P≤ g{1
l}1l�1(P)≤ g{1

l}2l�1(P)≤ . . . ≤ g{1
l}t1l�1(P). (12)

For each i∈ {1, 2, . . . ,N}, let 1ki be the first set that
contains i. Per the definition of t1, we have ki ≤ t1.
Furthermore, because i∈1ki , we have

g{1
l}kil�1

i (P) � g1
ki

i

(
g{1

l}ki − 1
l�1 (P))≥ g1

ki

i (P) � gi(P),
where we have the implicit convention that g1

ki − 1
l�1 (P) �

P if ki − 1 � 0, and the inequality follows from (12).
Finally, invoking (12) again, we have that, for each i,

g{1
l}t1l�1

i (P)≥ g{1
l}kil�1

i (P)≥ gi(P), thereby leading to the
conclusion.

The rest of the induction follows easily because, by
assuming gn(P)≤ g{1

l}tnl�1(P),∀n≥ 1, we have

gn+1(P) � g(gn(P))≤ g(g{1l}tnl�1(P))≤ g{1
l}tn+1l�tn+1

(
g{1

l}tnl�1(P))
� g{1

l}tn+1l�1 (P).
By a similar argument, it follows that if P≥ g(P),
then gn(P)≥ g{1

l}tnl�1(P),∀n≥ 1.
Finally, as in the proof to Lemma 2, pick α> 0 such

that 0≤P0 ≤αP0 with 0< g(0),αP0 > g(αP0). Because

g{1
l}nl�1(0) is an increasing sequence with g{1

l}nl�1(0)≤ gn(0),
it has a limit with limn→+∞ g{1

l}nl�1(0)≤ p∗, where p∗ �
limn→+∞ gn(0) is the unique Nash equilibrium. On the

other hand, because gn(0)≤ g{1
l}tnl�1(0),∀, we have

lim
n→+∞ g{1

l}nl�1(0) � lim
n→+∞ g{1

l}tnl�1(0)
≥ lim

n→+∞ gn(0) � p∗,

and it follows that limn→+∞ g{1
l}nl�1(0) � p∗. By a similar

argument, we have limn→+∞ g{1
l}nl�1(αP) � p∗. This es-

tablishes that limn→+∞ g{1
l}nl�1(P0) � p∗. ■

However, if such an update scheme is used as
a distributed power control scheme in practice, then
therein lies a fundamental weakness of the modeling
assumption: whywould the environments (η andG) be
fixed over time? The answer is, of course, it wouldn’t:
neither the power gainmatrix nor the generalized noise
will. Therefore, it is of immediate interest to consider
the stochastic environment case.

3.6. Price of Anarchy in Power Control Games
An interesting problem for noncooperative games is to
compare the performance of aNash equilibrium solution
with that of the social optimal solution. The standard
metric in comparing equilibrium performances to social
optimal performance is known as the Price of Anarchy
(PoA), a notion first developed in the theoretical com-
puter science literature (Koutsoupias and Papadimitriou
1999). Specifically, PoA is defined as the ratio between
the cost achieved by the worst-performing Nash equi-
librium and the cost achieved by the social optimal. The
social optimal is the centralized optimal solution for an
aggregate social objective, typically formed as a sum of
all the individual costs. The smaller the PoA (note that
PoA is at least one by definition), the better a Nash
equilibrium fares in comparison with the social optimal
(even in the worst case).
PoA is mostly thoroughly analyzed in the class of

routing games (Roughgarden 2005, 2007; Papadimitriou
and Valiant 2010), in which the special structures of
routing games are exploited to obtain constant bounds
on PoA on the class of routing games independent of
the problem parameters. Broadly speaking, there are
two classes of routing games (each corresponding to
a different special structure). The first class is the atomic
routing games, in which each agent has a non-negligible
impact on the entire routing network (hence, the word
“atomic”) and has only a finite set of actions (corre-
sponding to the routes to take). In this (finite game)
setting, a variational inequality approach is then
employed (see Roughgarden 2007) to obtain PoA
bounds. For instance, when all the players’ cost func-
tions are affine, PoA is upper bounded by 2.618. The
second class is the nonatomic routing games, in which
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each agent has a negligible impact on the routing
network and can, therefore, be abstracted as a single
point in a continuum of agents. In other words, non-
atomic routing is akin to population games. In this
second class, assumptions are typically imposed such
that resulting games admit convex potentials based on
which bounds on PoA can be derived.

However, in general, unless special structures (as in
the routing games) exist, there may not exist any PoA
bounds. In particular, the power control games studied
here are neither finite games (every player has a con-
tinuum space of actions; further, the space of actions is
also unbounded) nor potential games (let alone convex
potential games). In fact, as we see next, for a general
power control game defined in this paper, there cannot
exist a constant bound on PoA.

Consider the two-link case in which each fi(x) � 1
x,

i � 1, 2 and r1(x) � cx,r2(x) � xwith 0 < c < 1. Fix η1� 0,

η2�0 and gainmatrix to be
[
G G′

G′ G

]
, whereG > G′. In this

case, we have C1(P) � G′P2
GP1

+ cP1 and C2(P)� G′P1
GP2

+P2.
It is straightforward to verify that the unique Nash

equilibrium PNash � (PNash
1 ,PNash

2 ) satisfies
G′PNash

2

G(PNash
1 )2 � c,

G′PNash
1

G(PNash
2 )2 � 1.

This then leads to that (PNash
2 )3

(PNash
1 )3 � c and PNash

2 � G′

Gc
1
3
.

Let P∗ be the optimal solution to the social objective
C(P) � C1(P) + C2(P2). It follows that

C(P∗)≤C((1, 1)) � 2
G′

G
+ c + 1< 2

(
G′

G
+ 1
)
.

On the other hand, evaluating the social objective at
PNash results in

C(PNash)>C2(PNash) � 2
G′

Gc
1
3
.

Consequently, the PoA is C(PNash)
C(P∗) > c−

1
3

1+ G
G′
> c−

1
3

2 G
G′
. Conse-

quently, we can pick a sequence of triples (G,G′, c) such
that c−

1
3

2 G
G′
→∞, in which case the PoA will diverge to in-

finity and cannot be bounded by a universal constant.
This discussion establishes that there cannot be

a bound on PoA for the general case. We now proceed to
characterize a PoA bound in the special case of the fully
homogeneous wireless network under the same cost
functions ( fi(x) � 1

x and ri(x) � cx) as in the preceding
discussion (in which the negative result is given). The
fully homogeneous case is one in which every player
shares the same characteristics as all the other players.
We believe this is an interesting yet illuminating simple
special case because, as it turns out, perhaps surprisingly,

in this case, the PoA is at most two, independent of the
number of players N; wireless environment parameters
G,G′, η; and the cost per unit power c. To the best of our
knowledge, no prior PoAbound onpower control games
has been identified even in this special case. We for-
malize the result in the following theorem.

Theorem 5. Consider a fully homogeneous power control
game in which every player shares the same cost functions
fi(x) � 1

x, ri(x) � cx and the wireless network is fully sym-
metric: Gii � G,Gij � Gji � G′,∀i, j, ηi � η, ∀i. Then the
PoA is at most two: ∀N ≥ 1,∀c,G> 0, ∀η, G′ ≥ 0,

C(PNash)
C(P∗) ≤ 2.

Proof. For ease of exposition, we break the proof into
the following three steps:

1. Characterizing the social optimal solution.
The social cost function is given by

C(P) �
∑N

i�1

{∑
j≠iG′Pj + η

GPi
+ cPi

}

We first show that there must be a unique minimum
to this total cost function with all components equal:
the unique minimum has the form P∗ � (p, p, . . . , p).
To see this, assume on the contrary P∗ � (P1, . . . ,PN)

in which not all components are equal. Then, by the
symmetry of the cost function, C(P) is invariant under
permutation. This implies that, in particular, all the N
cyclic permutations of P ((P1,P2,P3, . . . ,PN),(P2, P3, . . . ,
PN ,P1),(P3,P4, . . . ,P1,P2), . . . ,(PN ,P1,P2, . . . ,PN−1)) are all
minima of the function C(P).
Nowwe evaluate the function C(P) at the point P̃ that

is the average of those N cyclical permutations: P̃ �(∑N
i�1Pi
N ,

∑N
i�1Pi
N , . . . ,

∑N
i�1Pi
N

)
and obtain

C(P̃) � N
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∑

j≠iG′

∑N

i�1Pi
N + η

G
∑N

i�1Pi
N

+ c

∑N
i�1Pi

N

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
� N(N − 1)G

′

G
+ η

G
N2

∑N
i�1Pi

+ c
∑N

i�1
Pi. (13)

Next, note that

C(P) � G′

G

∑N

i�1

∑

j≠i

Pj

Pi
+ η

G

∑N

i�1
1
Pi

+ c
∑N

i�1
Pi

� 0.5
G′

G

∑N

i�1

∑

j≠i

(
Pj

Pi
+ Pi

Pj

)
+ η

G

∑N

i�1
1
Pi

+ c
∑N

i�1
Pi (14)
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>N(N − 1)G
′

G
+ η

G

∑N

i�1
1
Pi

+ c
∑N

i�1
Pi

� N(N − 1)G
′

G
+ η

G
N

1
N∑N

i�1
1
Pi

+ c
∑N

i�1
Pi (15)

>N(N − 1)G
′

G
+ η

G
N2

∑N
i�1Pi

+ c
∑N

i�1
Pi � C(P̃), (16)

where the first strict inequality follows because
there must be at least one pair (i, j) such that Pj

Pi
+ Pi

Pj
> 2

because not all Pi’s are the same and where the
second strict inequality follows from the classical
arithmetic-mean–harmonic-mean inequality (again
strict inequality holds because not all Pi’s are equal).
However, this yields an immediate contradiction be-
cause C(P)>C(P̃) but P is a minimum. Consequently,
there is a unique minimum P∗ � (p, p, . . . , p).

Plug this p into C and take the derivative and set it to

zero; it then follows, after some algebra, that p �
���
η
cG

√
.

Consequently, P∗ �
( ���

η
cG

√
,
���
η
cG

√
, . . . ,

���
η
cG

√ )
.

2. Characterizing the Nash equilibrium solution.

By the characterization of a Nash equilibrium, it
must satisfy g(PNash) � PNash, where g( · ) is the
best response function. This means that for each i, we
have

∑
j≠iG

′Pj + η

GP2
i

� c.

Per Theorem 3, there exists a unique Nash equilibrium.
Therefore, by symmetry, the unique Nash equilibrium
must satisfy

∑

j≠iG′pNash + η

G(pNash)2 � c,

thereby implying (after some algebra) that PNash �
(pNash, pNash, . . . , pNash), where

pNash � (N − 1)G′ +
��������������������������
((N − 1)G′)2 + 4Gcη
√

2Gc
.

3. Bounding the performance loss between the social
optimal and the NE.

We now analyze PoA, which is defined as C(PNash)
C(P∗) :

C(PNash)
C(P∗) �

∑N
i�1

{∑
j≠iG′pNash +η

GpNash + cpNash
}

∑N
i�1

{∑
j≠iG′p∗+η
Gp∗ +cp∗

}

�
(N − 1) G′

G + η

GpNash + cpNash

(N − 1) G′

G + η
Gp∗ + cp∗

�
(N − 1) G′

G + η

GpNash + cpNash

(N − 1) G′

G + 2
���
ηC
G

√ (17)

�

(N − 1) G′

G + 2cη

(N − 1)G′ +
������������������
((N − 1)G′)2+4Gcη

√

+ (N − 1)G′+
������������������
((N − 1)G′)2+4Gcη

√
2G

(N − 1) G′

G + 2
���
ηC
G

√ (18)

≤
(N − 1) G′

G + 2cη�����
4Gcη

√ + (N − 1)G′ +
������������
((N − 1)G′)2

√
+
�����
4Gcη

√
2G

(N − 1) G′

G + 2
���
ηC
G

√
�
2(N − 1) G′

G + 2
���
cη
G

√
(N − 1) G′

G + 2
���
ηC
G

√ ≤ 2,

(19)

where, for the second-to-last inequality, we have used
the fact that

�������
x + y

√ ≤ ��
x

√ + ��
y

√
,∀, x, y≥ 0. ■

4. Stochastic Stability of Best Response
Updates Under Random Environments

Motivated by the preceding discussion, we now con-
sider a wireless communications setting in which the
environment (both the gain matrix and the generalized
noise) is random across time steps. Our primary focus
is on studying the behavior of the best response update
under such random environments. We start with a
worst-case stability characterization of the best re-
sponse dynamics under varying environments.

4.1. Worst-Case Stability Characterization
Throughout the section, we use θi � ({Gij}Nj�1, ηi) to
denote the environment for link i, namely, all the in-
terferences and noise on receiver i. Collecting the θi’s
into a single matrix, θ � (G,η)∈RN×(N+1)

+ then denotes
the joint environment of all the links. We denote by
θk � (Gk,ηk) ∈RN×(N+1)

+ the joint environment (whichnow
varies across iterations) in the k-th iteration when follow-
ing the distributed power control update in Algorithm 1.
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Our first observation is that there is a natural partial
ordering on the set of all environments. For each in-
dividual link i, all else being equal, it is intuitive that
the environment is more “friendly” to it if Gii is larger
and all other Gij’s and the noise ηi are smaller because
a more “friendly” such environment allows link i to
transmit using less power while still achieving the
same SINR. As characterized by the following defini-
tion, under this ordering, we can think of a smaller θ as
representing a more “friendly” joint environment.

Definition 5. Let θi � ({Gij}Nj�1),ηi), θ̃i � ({G̃ij}Nj�1), η̃i)∈
RN+1

+ . The partial ordering 6 on RN+1
+ is defined as

θi6θ̃i if and only ifGii ≥ G̃ii,Gij ≤ G̃ij,∀j≠ i, ηi ≤ η̃i.

Furthermore, let θ, θ̃ ∈RN(N+1)
+ be joint environments.

Denote by θ6θ̃ if and only if θi6θ̃i,∀i.
Now that the environment itself is a variable, the

best response function should be viewed as a bivariate
function g(P,θ) in which the dependence of the best
response function on the joint environment is made
explicit. It is intuitive that when the joint environment
becomes less friendly (under the abovementioned or-
dering), every link’s best response becomes more ag-
gressive. It turns out that this is indeed the case as
stated by the following lemma, which follows from
a similar argument as in the proof of Statement 1 in
Lemma 1. Note that Lemma 1 and Lemma 3 together
establish that the best response is bimonotonic (i.e.,
monotonic in each of the two variables when holding
the other fixed), a crucial property at play for estab-
lishing the various stability results to come.

Lemma 3. For any fixed P ∈RN
+ , θ6θ̃⇒ g(P,θ)≤ g(P, θ̃).

Because of the nature and physical limits of the in-
terference and noise, we assume that the gain matrix
and the generalized noise are bounded. Specifically, we
assume that ∀k, 0<G ii≤Gk

ii ≤Gii, 0≤Gk
ij ≤Gij, i≠ j, 0<

η
i
≤ηki ≤ηi. Per the ordering in Definition 5, this di-

rectly translates to the following bounded environment
assumption:

θ i6θk
i6θi,∀k, i, (20)

where θ i � (0, . . . ,0,Gii,0, . . . ,0,η i
),θi � (Gi1, . . . ,Gij−1,Gii,

Gij+1, . . . ,GiN ,ηi); equivalently, θ6θk6θ,∀k. We de-
note by 8 the set of all such environments:
8� {θ | θ ≤θ≤θ}.

The first question that arises concerns the worst-
case stability of the best response update. The following
lemma indicates that a bounded environment results in
a bounded power iterate, something to be contrasted
with the classical Foschini–Miljanic power update as
given in Foschini andMiljanic (1993), inwhich the power
iterate can go to infinity even if the environment is finite.
The following theorem makes this statement precise.

Theorem 6. For a given constant ε ∈RN×(N+1)
+ , let Pe(ε) be

the equilibrium power vector under Algorithm 1 when the
joint environment is constant: θk � ε,∀k. Then, under the
bounded environment assumption θk ∈8,∀k and the update
in Algorithm 1, for any initial power vector P0 ∈RN

+ , we have

lim sup
k→∞

Pk ≤Pe(θ), lim inf
k→∞

Pk ≥Pe(θ ),

where Pk
i is given in Algorithm 1. Furthermore, if Pe(θ )≤

P≤Pe(θ), then Pe(θ )≤ g(P,θ)≤Pe(θ) for any θ satisfy-
ing θ ≤θ.

Proof. Pick an arbitrary initial vector P0 ∈RN
+ . By

Lemma 1, for any given Q> 0, we can always pick an
α> 0 large enough such that αQ≥ g(αQ),αQ≥P0 ≥ 0.
Set p0 � αQ,P 0 � 0.

Let Pk � h(P0,θ1, . . . ,θk) denote the k-iterate in
Algorithm 1 with the initial power vector being P0 and
the realizations of the joint environments beingθ1, . . . ,θk.
Set P

k � h(p0,θ,θ, . . . ,θ),P k � h(P 0, θ , θ , . . . , θ ). Be-
causeP

0 ≥P0
i ≥P 0, bymonotonicity (in power) of the best

response function (Lemma 1), we have

h(P 0,θ1, . . . ,θk)≤ h(P0,θ1, . . . ,θk)≤ h(P0,θ1, . . . ,θk).
By monotonicity (in environment) of the best response
function, we have

h(P 0, θ , θ , . . . , θ )≤ h(P 0,θ1, . . . ,θk),
h(P0

,θ1, . . . ,θk)≤ h(P0
,θ,θ, . . . ,θ).

This leads to P k ≤Pk ≤P
k
,∀k.

Furthermore, P
k
is a decreasing sequence with

limk→∞ P
k � Pe(θ), and P k is an increasing sequence

with limk→∞ P k � Pe(θ ). Therefore, we have

P
k ≥Pj,∀j≥ k, (21)

P k ≤Pj,∀j≥ k. (22)

DefineUk � supj≥kP
j,Lk � infj≥kPj. Inequalities (21) and

(22) imply that Uk ≤Pk,Lk ≤P k. Therefore,

lim sup
k→∞

Pk ≤Pe(θ), lim inf
k→∞

Pk ≥Pe(θ ).

The second part of the theorem also follows from
the bimonotonicity of the best response function: if
Pe(θ )≤P≤Pe(θ), then for any θ with θ ≤θ, we have
Pe(θ ) � g(Pe(θ ), θ )≤ g(P,θ)≤ g(Pe(θ),θ) � Pe(θ). ■

4.2. Stochastic Stability: Overview and Intuition
Theorem 6 gives a worst-case characterization of the
behavior of the best response update under a random
environment. The next step is to characterize the
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probabilistic behavior of the power vector iterate Pk in
Algorithm 1 when the environments Θk∞

k�0 now follow
some stochastic process. In what follows, we assume the
environments are independent and identically distrib-
uted across time (they can have correlation across links).
In particular, for simplicity and without loss of gen-
erality, we assume Θk are iid with a continuous
density function fΘ(θ) supported on8. Consequently,
the power iterates {Pk}∞k�0 in Algorithm 1 then form
a general state space Markov chain. We then inves-
tigate the probabilistic behavior by answering the
following questions:

• Does there exist a stationary distribution for the
Markov chain?

• If there indeed exists a stationary distribution, is it
unique?

• Will Pk converge to that unique stationary dis-
tribution (should a unique one exist) irrespective of the
initial condition?

• If convergence is ensured, what is the convergence
rate?

The news is quite positive: the first three questions all
have yes answers; for the last question, theMarkov chain
enjoys an exponential convergence rate provided the
initial power is bounded. Note that one aspect of why
instability could be an issue despite the fact that a unique
Nash equilibrium exists in the deterministic network
environment case is that once randomness enters the
network, there are effectively many Nash equilibria,
one for each network environment. Consequently, it is
a priori not clear at all how best response dynamics
would behave when jumping from the process of “chas-
ing” one Nash equilibrium to another. As we char-
acterize with rigor later, the end process is very well
behaved, and stochastic stability (in a very strong form)
is present.

We first give some intuition on why the Markov
chain has a unique stationary distribution and will

converge to it. First, Theorem 6 indicates that, irre-
spective of the initial condition, after finitely many iter-
ations, the power vector is confined in a N-dimensional
hyper-rectangle * � ∏N

i�1[Pe
i (θ ),Pe

i (θ)], which is the
set of all equilibrium power vectors, each corre-
sponding to a particular realization of environment
held constant throughout all iterations. Hence, without
loss of generality, we can assume the process starts in
*. Note that, again by Theorem 6, once the power vector
enters *, it will remain in it in subsequent iterations.
Second, because the best-response function is bimono-
tonic, there is a one-to-one correspondence between
a disturbance vector θ ∈8 and the corresponding
equilibrium Pe

i (θ) (i.e., the equilibrium generated if the
disturbance is fixed to be θ across time steps). Third,
another consequence of this bimonotonicity is that if
the initial condition is somewhere in *, then, after one
iteration, the possible locations of the current state is in
another smaller hyper-rectangle that contains the start-
ing point and that is contained in *. From there, each
possible location of the current state (in the smaller
hyper-rectangle) will, in the next iteration, produce
another hyper-rectangle (representing the set of all
possible locations in the next iteration) also contained
in *. This process will continue on until the possible
locations of the current state permeate the entire hyper-
rectangle * and mixing will happen.
Figure 1 provides a pictorial illustration of the ge-

ometry embodied in the previous discussion. First,
irrespective of what the initial power vector is, in
a finite number of iterations, the power iterate (Pk) will
enter a hyper-rectangle in Figure 1. In fact, Pk is trapped
in this hyper-rectangle: the crucial property of this
hyper-rectangle is that, starting anywhere inside, the
power iterate will never exit it. Second, once the power
iterate enters the hyper-rectangle (Pk in Figure 1(b)),
in the next iteration, there will be an area within the
hyper-rectangle that the next power iterate can reach

Figure 1. (Color online) Illustration of Power Update Dynamics

Notes. (a) Regardless of the initial condition, the power iterate will enter a hyper-rectangle andwill thereafter be trapped in it. (b) Propagation of
the current power iterate within the hyper-rectangle. The smaller hyper-rectangle around Pk represents the possible region that it can reach with
positive probability in one iteration. Similarly for Pk+1.

Zhou, Bambos, and Glynn: Stochastic Wireless Network Games
1510 Operations Research, 2018, vol. 66, no. 6, pp. 1498–1516, © 2018 INFORMS



with positive probability: this area is the smaller hyper-
rectangle around Pk. In other words, the next power it-
erate Pk+1 will enter anymeasurable subset of this smaller
hyper-rectangle with positive probability and will not
enter anywhere outside of it. Similarly, suppose after one
iteration, the power iterate is at Pk+1 as in Figure 1(b).
Then, again, the smaller hyper-rectangle around Pk+1
represents the possible region that it will reach with
positive probability in one iteration. The same can be
said for Pk+2, and it goes on. One can then intuitively
sense that such hyper-rectangles, representing possible
locations of the power iterate,will eventually “permeate”
the larger hyper-rectangle in which the power iterate is
trapped.

4.3. Stationary Distribution: Existence, Uniqueness,
and Convergence

To formally answer those questions, we now employ
theory from discrete–time general state space Markov
chains because {Pk}∞k�0 forms a RN

+ -valued, time-
homogeneous Markov chain. To this end, we first in-
troduce some of the key concepts and terminologies.6

Definition 6. Let (S,6) be a measurable space7 and
A⊂ S be an element in 6. Let {Xn}∞n�0 be a (S,6)-valued
Markov chain with transition kernel K(s;A).8

1. A σ-finite measure π on (S,6) is called an in-
variant measure if π(A) � ∫ Sπ(ds)K(s,A),∀A ∈6. An
invariant measure π that is also a probability measure
is called a stationary probability measure.

2. {Xn}∞n�0 is called φ-irreducible if there exists
a nontrivial measure φ on (S,6) such that

φ(A)> 0⇒Ps(τA <∞)> 0,∀s∈ S, (23)

where τA � min{n≥ 1 |Xn ∈A} is the first return time9

and Ps(τA <∞) denotes the probability of the first
return time being finite given that the process starts at s
(i.e., X0 � s).
3. A setA is calledHarris recurrent if Ps(∑∞

n�11{Xn∈A} �
∞)� 1,∀s∈S.

4. {Xn}∞n�0 is called a Harris recurrent chain if it is
φ-irreducible and φ(A)> 0⇒A is Harris recurrent,
∀A ∈6.

5. A setA is called a vm-small set if there exists apositive
integer m, a nontrivial measure vm on (S,6) such that
∀s∈A,∀B∈6,Km(s,B)≥ vm(B), where Km is the m-step
transition kernel. For brevity, we also call A a small set.

6. Let {Xn}∞n�0 be φ-irreducible. {Xn}∞n�0 is strongly
aperiodic if there exists a v1-small set A with v1(A)> 0.

7. {Xn}∞n�0 is called a positive Harris chain if it is
Harris recurrent and there exists a small set A such that
supa∈AEa[τA]<∞.10

A general Markov chain {Xn}∞n�0 need not have an
invariant measure; even if it does, it can still fail to have

a stationary probability measure. For any practical sto-
chastic system, having a unique stationary probability
measure and convergence to that stationary probability
measure is crucial because they characterize the
stochastic stability of that system. Definition 6 gives
the essential ingredients for guaranteeing the desired
features (existence, uniqueness, convergence) as for-
malized by the following theorem in Meyn and
Tweedie (2009).

Theorem 7. Let {Xn}∞n�0 be a time-homogeneous Markov
chain on (S,6) that is positive Harris.
• {Xn}∞n�0 has a unique stationary probability measure

π( · ).
• If {Xn}∞n�0 is strongly aperiodic, then the chain con-

verges to the stationary probability measure in total variation
distance:∀s∈ S, limn→∞‖Kn(s, · )−π( · )‖TV � 0, where the
n-step transition kernel gives the probability measure after
n steps when starting at s.
In our current setting, {Pk}∞k�0 has state space RN

+
(with the standard Borel σ-algebra). As we show next,
those sufficient conditions are satisfied, which we re-
cord in the following lemma.

Lemma 4. The Markov chain {Pk}∞k�0 has the following
properties:

1. It is φ-irreducible for some (nontrivial) φ.
2. It is Harris recurrent.
3. It is a positive Harris chain.
4. It is strongly aperiodic.

Proof.
(1) By Theorem 6, without loss of generality, we can

assume the initial state P0 is in the hyper-rectangle
* � ∏N

i�1[Pe
i (θ ),Pe

i (θ)]. Take any P ∈*; by the bimo-
notonicity of the best response function, there ex-
ists a unique θ ∈8 such that g(P,θ) � P. Further,
P � Pe(θ)(� limk→∞ gk(P0,θ),∀P0). Because the best
response function is continuous (in both P and θ), it
follows that, for any r-neighborhood of P, denoted
by 1P(r) � {P̃ ∈* | ‖P− P̃‖1 < r}, there exists an γ> 0
small enough and a positive integer T large enough
(γ,T can depend on P0) such that if∀k≤T, ‖θ−θk‖1 <γ,
then PT ∈1P(r). Because the density function fΘ(θ) is
continuous and supported on 8 (hence, fmin ≜
minθ∈8 fΘ(θ) exists and is positive), it follows that with
probability at least ( fminγ

N)T,PT ∈1P(r).
We now take the point Pe(θ ) (i.e., the minimum

equilibrium power vector) and consider the neigh-
borhood 1Pe(θ )(r). For each starting point P0 ∈*, in
one iteration, P1 can reach anywhere in the hyper-
rectangle:

*P0 ≜ {P | g(P0, θ )≤P≤ gi(P0,θ)}⊂*.
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Consequently, if A ∈6,A⊂*P0 ,λ(A)> 0, we have that
K(P0,A)≥ fminλ(A)> 0, where λ( · ) is the Lebesgue
measure.

Next, by continuity of the best response function g,
pick r̂ small enough such that

(≜ ⋂
P0∈1Pe (θ )(r̂)

*P0 ≠⌀.

Note that ( is itself a hyper-rectangle with a positive
Lebesgue measure. This construction ensures that
starting from any point in 1Pe(θ )(r̂), the Markov chain
will, in the next step, with positive probability, reach any
measurable subset of ( that has a positive Lebesgue
measure. Therefore, starting at any P0 ∈*, the Markov
chain will enter ( as well as any of its measurable
subsets with a positive Lebesgue measure with positive
probability in T + 1 steps.

Finally, take the (nontrivial) measure φ to be φ(A) �
λ(A∩()
λ(() ,∀A ∈6. This construction ensures that the

Markov chain is φ-irreducible.
(2) Fix any A ∈6 with φ(A)> 0. From the previ-

ous discussion, we know that starting at P0 � Pe(θ),
there exist γ,T such that11 PT+1 ∈A with probability at
least ( fminγ

N)Tfminλ(A). Equivalently, by setting ε �
( fminγ

N)Tfmin, we have KT+1(Pe(θ),A)≥ ελ(A).
Moreover, by the bimonotonicity of the best response

function g, starting at any other point P ∈* only gives
easier access to 1Pe(θ )(r̂): following the same realiza-
tions of the environment θ0, . . . ,θk, Pk+1

P0�P ≤ PP0�Pe(θ)k+1,
∀P ∈*, thereby leading to that

PP0�Pe(θ)k+1 ∈1Pe(θ )(r̂)⇒Pk+1
P0�P ∈1Pe(θ )(r̂).

Consequently, KT+1(P0,A)≥ ελ(A),∀P0 ∈*. Thus, with
probability at least ελ(A)> 0, A is visited in T + 1 steps
irrespective of the starting point. By the Borel Cantelli
Lemma (Billingsley 1986), A is, therefore, visited in-
finitely often with probability one. Harris recurrence
hence follows.

(3) Again set ε � ( fminγ
N)Tfmin. Take m � T + 1 and

vT+1(B) � ελ(B∩(),∀B ∈6 and note that ( is a vT+1-
small set. This follows because, for any P0 ∈( (in
fact any P0 ∈*), ∀B ∈6, KT+1(P0,B)≥KT+1(P0,B∩()≥
ελ(B∩()�vT+1(B).

We can directly compute an upper bound on the
expected return time:

sup
P0∈(

EP0[τ(]≤ sup
P0∈*

EP0[τ(]

≤
∑∞

i�1
ελ(()(1− ελ(())i−1 i(T + 1)

� T + 1
ελ(()<∞.

(4) Again, by continuity of the best response func-
tions, following the construction in (1), pick an r> 0
small enough such that

C≜1Pe(θ )(r)∩ ⋂
P0∈1

Pe (θ )(r̂)
*P0 ≠⌀.

We, therefore, have K(c,C)> 0,∀c∈C. Take m � 1 and
take the measure v1( · ) to be v1(A) � fminλ(A∩C),
∀A∈6, where again λ is the Lebesgue measure. It fol-
lows that C is a v1-small set because ∀B ∈6,∀P0 ∈
*,K(P0,B)≥K(P0,B∩C)≥ fminλ(B∩C) � v1(B). Fur-
ther v1(C)> 0; hence, the conclusion follows. ■
Lemma 4 together with Theorem 7 establishes the

following result.

Theorem 8. There exists a unique stationary probability mea-
sureπ( ·) for {Pk}∞k�0.Moreover,∀p0∈RN

+ , limn→∞ ‖Pn
p0( ·) −

π( ·)‖TV � 0, where Pn
p0( ·) denotes the probability measure

of the state at time n, starting at p0.

4.4. Stationary Distribution: Convergence Rate
Now that Theorem 8 establishes the existence and
uniqueness of and convergence to the stationary prob-
ability measure, we next turn to studying the conver-
gence rate. As mentioned before, here the Markov chain
converges to the unique stationary distribution expo-
nentially fast (i.e., at a geometric rate). As it turns out, the
chain is uniformly ergodic. We first define the notion of
a petite set, a generalization of small sets, that shall
provide an equivalent characterization of the geometric
convergence rate.

Definition 7. Consider the same measurable space
setup as in Definition 6. Let d( · ) be a probability dis-
tribution on Z+, the set of all nonnegative integers.

1. The sampled transition kernel Kd(s,A) is defined
to be Kd(s,A) � ∑∞

m�0K
m(s,A)d(m).

2. A set A is called vd-petite if Kd(s,A)≥ vd(A) for
some nontrivial measure vd on (S,6).
The following theorem from Meyn and Tweedie

(2009) relates the geometric convergence rate of a
Markov chain to a condition on petite sets.

Theorem 9. Let {Xn}∞n�0 be a time-homogeneous Markov
chain on (S,6). The following two conditions are equivalent:

1. There exist r> 1,R<∞ such that for all s∈ S,
‖_m(s, · )−π( · )‖TV ≤Rr−m.

2. The chain is aperiodic, and there exists a petite set A
satisfying

sup
s∈S

Es[τA]<∞.
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We are now ready to characterize the convergence
rate in the Markov chain formed by the best response
dynamics.

Theorem 10. Let the initial power P0 be bounded: 0≤P0 ≤P.
TheMarkov chain {Pk}∞k�0 converges to its unique stationary
probability measure π( · ) at a uniform geometric rate. There
exist r> 1,R<∞ such that for all P0 ∈∏N

i�1[0,Pi]
‖Km(P0, · )−π( · )‖TV ≤Rr−m.

Proof. First note that any vm-small set A is a vδm-petite
set, in which δm is the probability distribution that puts
all probability mass on m and zero on everything else.
Per the proof of (3) in Lemma 4, ( is a vT+1-small set
and, hence, a vδT+1-petite set. By Theorem 9, it suffices to
show that supP0∈∏N

i�1[0,Pi]EP0[τ(]<∞.

To show that, first observe that by Theorem 6, if
P0 � P, then there exists an TP such that PT

P ∈*.
Similarly, if P0 � 0, then there exists an T0 such that
PT0 ∈*. Take Tmax � max{TP,T0}. By the monotonic-
ity of the best response function, ∀P0 ∈∏N

i�1[0,Pi],
PTmax ∈*.

Finally, the conclusion follows because

sup
P0∈∏N

i�1[0,Pi]
EP0[τ(]≤ sup

P0∈∏N
i�1[0,Pi]

EP0[τ*] + sup
P0∈*

EP0[τ(]

≤Tmax + T + 1
ελ(()<∞,

where the last inequality follows from supP0∈*EP0[τ(]≤
T+1
ελ(()<∞ as shown in Lemma 4. ■

4.5. High-Concentration Bounds on Average Power
So far we have focused on the behavior of the last
power iterate Pk. From an engineering standpoint,
it is also natural and interesting to understand the
behavior of the long-run average power 1

T
∑T

k�1Pk used
under the best response dynamics. Per our previ-
ous characterization, it follows that the average
power has the desired feature of asymptotically
stabilizing to a constant (almost surely): Theorem 8
and the Birkhoff Ergodic theorem imply the fol-
lowing result.

Corollary 1. Let π( · ) be the unique stationary probability
measure. Then {Pk}∞k�0. 1T

∑T
k�1Pk converges almost surely to

∫ RN
+
Pπ(dP) as T→∞.

Corollary 1 gives an asymptotic characterization of
the average power. It would also be desirable to obtain
(component-wise) high-concentration bounds of the
form P( | 1n

∑n
k�1P

k
i −E[1T

∑T
k�1P

k
i ] | ≥ ε)≤ δi(T, ε) for each i,

where δi(T, ε) is decreasing quickly to zero as T

increases. Such high-concentration results establish
sharp concentration of the random vector 1

T
∑T

k�1Pk

around its mean. Toward this end, we utilize recent
results in Paulin (2012) on concentration inequalities on
Markov chains based on spectral methods. We first
introduce the necessary terminology.

Definition 8. Let {Xk}∞k�0 be a time-homogeneousMarkov
chain on a Polish12 state space Swith transition kernel
K(s,A) and stationary probability measure π( · ). Then
the mixing time of the chain tmix(ε) is defined as
follows:

tmix(ε) � min
{
t | sup

s∈S
‖Kt(s, · ),π( · )‖TV ≤ ε

}
. (24)

A constant that will be used later to obtain convenient
bounds is tmix � tmix(1/4).
Next we state a general concentration theorem from

Paulin (2012).

Theorem 11. Let X � (X1, . . . ,XT) be a time-homogeneous
Markov chain, taking values in a Polish state space Λ �
(Λ1 ×⋯×ΛT). Let f :Λ→R be a measurable function. If
there exists a c ∈RT

+ such that

f (x)− f (y)≤
∑T

k�1
ck1{xk≠yk},∀x, y∈Λ, (25)

then ∀ε> 0,

P
( | f (X)−E[ f (X)] | ≥ ε

)≤ 2 exp

(
− 2ε2

9‖c‖22tmix

)
. (26)

By properly specializing Theorem 11 to our current
setting, we obtain the following result. Note that tmix(�
tmix(1/4)) is a finite constant by Theorem 8. Therefore,
the convergence rate is exponentially fast in the number
of time steps.

Theorem 12. For each i,

P

(∣∣∣∣∣1T ∑T

k�1
Pk
i −E

[
1
T

∑T

k�1
Pk
i

]∣∣∣∣∣≥ ε

)

≤ 2 exp

(
− 2ε2T

9(Pe
i (θ)−Pe

i (θ ))2tmix

)
. (27)

Proof. Without loss of generality, we can take for each
j � 1, . . . ,T,Λj � ∏N

i�1[Pe
i (θ ),Pe

i (θ)] because, after fi-
nitely many steps, the state space will be confined into
the hyper-rectangle *. The space Λ is then clearly a
Polish space.
For each i, choose fi(x) �

(1
T
∑T

k�1x
k
)
i
, where xk ∈Λk,

∀k � 1, . . . ,T and ( · )i extracts the i-th component from
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a vector; fi is continuous and, hence, measurable. Take

ck � Pe
i (θ)−Pe

i (θ )
T , and we have ∀x, y ∈λ:

fi(x)− fi(y) � 1
T

∑T

k�1
(xk − yk)i � 1

T

∑T

k�1
(xk − yk)i1{xki≠yki }

≤ 1
T

∑T

k�1
(Pe

i (θ)−Pe
i (θ ))1{xki≠yki } �

∑T

k�1
ck1{xki≠yki }.

Plugging ‖c‖22 � (Pe
i (θ)−Pe

i (θ ))2
T into Equation (26) gives the

desired bound. ■

4.6. Comparative Statics: A Discussion
We conclude the section with a discussion on how the
network parameters would affect the final equilibrium.
We break the discussion into two parts. The first part
concerns deterministic network environments, and we
use the properties of the best response function and the
fixed-point iteration to give a comparative statics result
on how changes in the gainmatrixG and noise ηwould
move the final equilibrium point. The second part con-
cerns stochastic network environments, and we discuss
whether noise is detrimental or beneficial to the overall
system performance under best response–based power
control. We start on the deterministic channel case. This
result is essentially a simple synthesis of all the property
results proved earlier.

Theorem 13. Let the channel environment be denoted by
(G, η) and the corresponding unique Nash equilibrium be
denoted as PNash. Then

1. Pick any set of Gij’s with i≠ j and increase them to G̃ij.
Let P̃

Nash
be the resulting Nash equilibrium. Then P̃

Nash ≥
PNash, where the inequality is component-wise.

2. Pick any set of Gii’s and increase them to G̃ii. Let P̃
Nash

be the resulting Nash equilibrium. Then P̃
Nash ≤PNash, where

the inequality is component-wise.

Proof. Let θ denote the original channel environment,
and let θ̃ denote the final channel environment. In the
first case, because G̃ij ≥Gij,∀i≠ j, it follows that θ6θ̃.
Consequently, per Lemma 3, g(P,θ)≤ g(P, θ̃),∀P∈RN

++.
Therefore, pick an arbitrary P0 ∈RN

++ and apply g( · ,θ)
and g( · , θ̃) repeatedly results: gn(P0,θ)≤ gn(P0, θ̃) be-
cause g(P,θ) is monotonic in P per Lemma 1, where
gn means g composed with itself n times. Because

limn→∞ gn(P0,θ) � PNash, limn→∞ gn(P0, θ̃) � P̃
Nash

per
Theorem 2, the conclusion, therefore, follows.

The proof to the second case is identical (with the
inequality sign reversed). ■

We next provide a discussion on how noise affects
the system performance. In general, one would think
that noise would be detrimental to the system per-
formance. However, we shall present a simple yet il-
luminating special case to demonstrate that, although

the presence of noise can make the system performance
worse, that is not always the case.
Consider a two-link wireless network in which

G �
[
G G′

0 1

]
, η � [η1, 1], f1(x) � f2(x) � 1

x, and r1(x) �
c1x, r2(x) � c2x, where c1, c2 are fixed constants through-
out the discussion. Consequently, we have

C1(P1,P2) � G′P2 + η1
GP1

+ c1P1,

C2(P1,P2) � 1
P2

+ c2P2.

Therefore, by the optimality conditions for Nash

equilibrium,we have PNash
1 �

���������
G′P2+η1

Gc1

√
,PNash

2 �
��
1
c2

√
. Because

our main inquiry is whether noise is beneficial or not,
a fair comparison would be to compare and contrast the
following two:

1. Overall system performance under the best re-
sponse power control scheme when the environment is

fixed at Ḡ �
[
Ḡ Ḡ

′

0 1

]
, η � [η1, 1].

2. Overall system performance under the best re-
sponse power control scheme when the environment is
random but with mean equal to Ḡ , η.
In the first case, because the environment is de-

terministic, the equilibrium power is also a fixed
constant. The overall system cost at equilibrium
under best response power control is C(PNash

1 ,PNash
2 ) �

C1(PNash
1 ,PNash

2 )+ C2(PNash
1 ,PNash

2 ) � 2

�����������
c1( Ḡ′��

c2
√ +η1)
Ḡ

√
+2

���
c2

√
.

In the second case, the overall system cost takes the
same expression except now the environment
quantities G,G′,η1 are random.
Consequently, denoting by Ce the overall system cost

in equilibrium for the first case and by C̃e the expected
overall system cost in equilibrium for the second case,
we have

Ce − C̃e � 2

���������������
c1
( Ḡ′��

c2
√ + η1

)
Ḡ

√√
− 2E

[ ���������������c1
( G′��

c2
√ + η1

)
G

√ ]
,

where E[G] � Ḡ,E[G′] � Ḡ
′. We consider two cases:

1. If the interference parameters are noisy (i.e., either
G′ or η1 or both are random), then the system is better off
compared with the deterministic environment case.
This is because, by Jensen’s inequality, because

��
x

√
is

a strictly concave function, E
[ �����������c1
(
G′��
c2

√ +η1
)

G

√ ]
<

�����������
c1
(
Ḡ′��
c2

√ +η1
)

Ḡ

√
,

thereby implying that C̃e <Ce.
2. If link 1’s own channel gain is noisy (i.e., G is

random), then the system is worse off compared with
the deterministic environment case. This is because, by
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Jensen’s inequality, because 1��
x

√ is a strictly convex

function, E
[ �����������c1( G′��

c2
√ +η1)
G

√ ]
><

�����������
c1( Ḡ′��

c2
√ +η

1
)

Ḡ

√
, thereby implying

that Ce < C̃e.
We end the section with a brief discussion on the

seemingly counterintuitive phenomenon that the noise
can possibly increase the system performance. The
main insight that can be taken away from the specific
calculations done in the special case discussed previ-
ously is that noise has the effect of reducing the effective
strength of the parameter in the signal. Consequently, if
this strength reduction happens on parameters that are
beneficial to communications (such as each link’s own
channel gain Gii), then this would decrease the overall
system performance because then the link resides in
a more competitive environment (caused by the ran-
domness). However, if this strength reduction happens
on parameters that are harmful to communications in
the first place (such as interference gains or thermal
noise), then the overall system is lifted to a more benign
environment in which less effort is required for com-
munications, thereby driving down the overall system
cost. Of course, when everything becomes random,
things become much more complicated (even in the
special case considered earlier): ascertaining whether
the system cost becomes larger or smaller in such cases
must be done on a case-by-case basis because one needs
to work with specific distributions to discern which
“strength reduction” is more severe and which is less to
reach a conclusion about the overall effect. Nevertheless,
through this case study, we hope to communicate the
message that noise can be beneficial.

5. Conclusion
In view of the results in the prior sections, we believe this
simple game theoretic model has two elements to con-
tribute in the current literature. First, it provides a theo-
retical understanding of the “large-power” regime, in
which the typical bounded power assumption is lifted.
Second, and more importantly from an engineering
perspective, our results provide a complete charac-
terization of the best response update in the presence
of random channel environments, thereby increasing
its applicability. Additionally, we have derived a fixed-
point theorem that operates in unbounded poset struc-
tures. Such afixed-point theoremcanpotentiallyfindother
operations research–related applicationswithwhich one
deals with unbounded decision variables.
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Endnotes
1 In this paper, R+ denotes nonnegative reals and R++ denotes pos-
itive reals.
2We assume fi(0) � +∞ to continuously extend the domain of fi to
nonnegative reals.
3This can be easily verified by noting that f ′i (x) � − d

1
x+ 1

(x+1)log(x+1)
x log(x+1) , which

is negative and strictly increasing in x.
4Note that the Brouwer fixed-point theorem can be viewed as
a special case of the Kakutani fixed-point theorem as the former is
a function but the latter is a correspondence, which maps a point to
a set.
5 It is easy to see that, without any further condition on g, such as the
two just given, there can be no convergence rate guarantee in general.
6The definitions here follow mostly from Meyn and Tweedie (2009).
76 is a σ-algebra of subsets of S.
8 Intuitively, K(s;A) gives the probability of the next state being in
the set A with the current state at s. Formally, a transition kernel
K :S×6→ [0, 1] satisfies the following two properties:

•For each s ∈S,A→K(s,A) is a probability measure on (S,6).
•For each A ∈6, s→K(s,A) is a measurable function on (S,6).
In our case, the transition kernel is time-invariant. Similarly, we

can define the m− step transition kernel Km(s,A).
9Note the distinction between the first return time (n≥ 1) here and the
first visit time (n≥ 0).
10 Intuitively, it means the return time to A is uniformly bounded
when you start in A.
11Here we are suppressing the dependence of γ,T on the initial point
Pe(θ). It is understood that, from this point onward until the end of
the proof, γ,T will always refer to the initial point being Pe(θ).
12APolish space is a space homeomorphic to complete separablemetric
space. In particular, a complete separable metric space is Polish.
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Altman E, Başar T, De Pellegrini F (2010) Optimal monotone for-
warding policies in delay tolerant mobile ad-hoc networks.
Perform. Eval. 67(4):299–317.
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