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Abstract. We consider the context of “simulation-based recursions,” that is, recursions that
involve quantities needing to be estimated using a stochastic simulation. Examples include stochas-
tic adaptations of fixed-point and gradient descent recursions obtained by replacing function and
derivative values appearing within the recursion by their Monte Carlo counterparts. The primary
motivating settings are simulation optimization and stochastic root finding problems, where the low
point and the zero of a function are sought, respectively, with only Monte Carlo estimates of the func-
tions appearing within the problem. We ask how much Monte Carlo sampling needs to be performed
within simulation-based recursions in order that the resulting iterates remain consistent and, more
importantly, efficient, where “efficient” implies convergence at the fastest possible rate. Answering
these questions involves trading off two types of error inherent in the iterates: the deterministic error
due to recursion and the “stochastic” error due to sampling. As we demonstrate through a charac-
terization of the relationship between sample sizing and convergence rates, efficiency and consistency
are intimately coupled with the speed of the underlying recursion, with faster recursions yielding a
wider regime of “optimal” sampling rates. The implications of our results for practical implementa-
tion are immediate since they provide specific guidance on optimal simulation expenditure within a
variety of stochastic recursions.
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1. Introduction. We consider the question of sampling within algorithmic re-
cursions that involve quantities needing to be estimated using a stochastic simu-
lation. The prototypical example setting is simulation optimization (SO) [17, 26],
where an optimization problem is to be solved using only a stochastic simulation ca-
pable of providing estimates of the objective function and constraints at a requested
point. Another closely related example setting is the Stochastic Root Finding Prob-
lem (SRFP) [25, 28, 27], where the zero of a vector function is sought, with only
simulation-based estimates of the function involved. SO problems and SRFPs, instead
of stipulating that the functions involved in the problem statement be known exactly
or in analytic form, allow implicit representation of functions through a stochastic
simulation, thereby facilitating virtually any level of complexity. Such flexibility has
resulted in adoption across widespread application contexts. A few examples are
logistics [18, 19, 3], healthcare [1, 13, 11], epidemiology [14], and vehicular-traffic
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systems [24].

A popular and reasonable solution paradigm for solving SO problems and SRFPs
is to simply mimic what a solution algorithm might do within a deterministic con-
text, after estimating any needed function and derivative values using the available
stochastic simulation. An example serves to illustrate such a technique best. Consider
the basic quasi-Newton recursion

(1) Tpt1 = T — Oékﬁfl(fk)@f(%)»

used to find a local minimum of a twice-differentiable real-valued function f : R¢ — R,
where H(z) and V f(z) are the Hessian and gradient (deterministic) approximations
of the true Hessian Hy(z) and gradient Vf(z) of the function f : R — R at the
point z. (We emphasize that Hy(z) and Vf(z) as they appear in (1) are “deter-
ministic” and could be, for example, approximations obtained through appropriate
finite-differencing of the function f at a set of points around z.) Suppose that the
context in consideration is such that only “noisy” simulation-based estimates of f
are available, implying that the recursion in (1) is not implementable as written. A
reasonable adaptation of (1) might instead be the recursion

(2) X1 = Xg — aHy H (mi, X5V f (mig, Xi),

where Vf(my,z), z € RY and Hp(my,z), z € R? are simulation estimators of
Vf(z), z € R? and ﬁf(x), x € RY, constructed using estimated function values,
and the “step-length” &; estimates the step-length oy appearing in the deterministic
recursion (1). The simulation effort my, in (2) is general and might represent the num-
ber of simulation replications in the case of terminating simulations or the simulation
run length in the case of nonterminating simulations [21].

While the recursion in (2) is intuitively appealing, important questions arise
within its context. Since the exact function value f(z) at any point « is unknown and
needs to be estimated using stochastic sampling, one might ask how much sampling
my, should be performed during each iteration k. Inadequate sampling can cause
nonconvergence of (2) due to repeated mis-steps from which iterates in (2) might fail
to recover. Such nonconvergence can be avoided through increased sampling, that is,
using large my values; however, such increased sampling translates to an increase in
computational complexity and an associated decreased convergence rate.

The questions we answer in this paper pertain to the (simulation) sampling effort
expended within recursions such as (2). Our interest is a generalized version of (2) that
we call sampling controlled stochastic recursion (SCSR), which will be defined more
rigorously in section 3. Within the context of SCSR, we ask the following questions.

.1 What sampling rates in SCSR ensure that the resulting iterates are strongly
consistent, that is, converge to the correct solution with probability one?

Q.2 What is the convergence rate of the iterates resulting from SCSR, expressed
as a function of the sample sizes and the speed of the underlying deterministic
recursion?

Q.3 With reference to Q.2, are there specific SCSR recursions that guarantee a
canonical rate, that is, the fastest achievable convergence speed under generic
sampling?

Q.4 What do the answers to Q.1-@Q.3 imply for practical implementation?

Questions such as what we ask in this paper have recently been considered [15,
10, 29] but usually within a specific “algorithmic” context. (An exception is [7], which
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broadly treats the complexity trade-offs stemming from estimation, approximation,
and optimization errors within large-scale learning problems.) In [15], for instance,
the behavior of the stochastic gradient descent recursion

(3) Tp41 = Tk — Qg Jk

is considered for optimizing a smooth function f, where 4 is the step size used
during the kth iteration and gy is an estimate of the gradient V f(x). Importantly,
gk is assumed to be estimated such that the error in the estimate ey = g — V f(zy)
satisfies E [||ex||?] < By, where By, is a “per-iteration” bound that can be seen to
be related to the notion of sample size in this paper. The results in [15] detail the
functional relationship between the convergence rate of the sequence {zy} in (3) and
the chosen sequence {By}. Like in [15], the recursion considered in [10] is again (3),
but [10] considers the question more directly, proposing a dynamic sampling scheme
akin to that in [29] that is a result of balancing the variance and the squared bias of
the gradient estimate at each step. One of the main results in [10] states that when
sample sizes grow geometrically across iterations, the resulting iterates in (3) exhibit
the fastest achievable convergence rate, something that will be reaffirmed for SCSR
recursions considered in this paper.

As already noted, we consider the questions Q).1-Q).4 within a recursive context
(SCSR) that is more general than (3) or (2). Our aim is to characterize the relation-
ship between the errors due to recursion and sampling that naturally arise in SCSR,
and their implication to SO and SRFP algorithms. We will demonstrate through our
answers that these errors are inextricably linked and fully characterizable. Further-
more, we will show that such characterization naturally leads to sampling regimes
which, when combined with a deterministic recursion of a specified speed, result in
specific SCSR convergence rates. The implication for implementation seems clear:
given the choice of the deterministic recursive structure in use, our error character-
ization suggests sampling rates that should be employed in order to enjoy the best
achievable SCSR convergence rates.

1.1. Summary and insight from main results. The results we present are
broadly divided into those concerning the strong consistency of SCSR iterates and
those pertaining to SCSR’s efficiency as defined from the standpoint of the total
amount of simulation effort. Insight on consistency appears in the form of Theorem
5.2, which relates the estimator quality in SCSR with the minimum sampling rate that
will guarantee almost sure convergence. Theorem 5.2 is deliberately generic in that
it makes only mild assumptions about the speed of the recursion in use within SCSR
and about the simulation estimator quality. Theorem 5.2 also guarantees convergence
(to zero) of the mean absolute deviation (or £! convergence) of SCSR’s iterates to a
solution.

Theorems 6.1-6.9 and associated corollaries are devoted to efficiency issues sur-
rounding SCSR. Of these, Theorems 6.6-6.9 are the most important and characterize
the convergence rate of SCSR as a function of the sampling rate and the speed of re-
cursion in use. Specifically, as summarized in Figure 1, these results characterize the
sampling regimes resulting in predominantly sampling error (“too little sampling”)
versus those resulting in predominantly recursion error (“too much sampling”), along
with identifying the convergence rates for all recursion-sampling combinations. Fur-
thermore, and as illustrated using the shaded region in Figure 1, Theorems 6.6-6.9
identify those recursion-sampling combinations yielding the optimal rate, that is, the
highest achievable convergence rates with the given simulation estimator at hand. As
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it turns out, and as implied by Theorems 6.6-6.9, recursions that utilize more struc-
tural information afford a wider range of sampling rates that produce the optimal
rate. For instance, Theorems 6.6-6.9 imply that recursions such as (2) will achieve
the optimal rate if the sampling rate is either geometric, or superexponential up to a
certain threshold; sampling rates falling outside this regime yield subcanonical con-
vergence rates for SCSR. (The notions of optimal rates, sampling rates, and recursion
rates will be defined rigorously in short order.) The corresponding regime when using
a linearly converging recursion such as a fixed-point recursion is narrower and limited
to a small band of geometric sampling rates. Interestingly, our results show that sub-
linearly converging recursions are incapable of yielding optimal rates for SCSR, that
is, the sampling regime that produces optimal rates when a sublinearly converging
recursion is in use is empty. We also present a result (Theorem 6.10) that provides
a complexity bound on the mean absolute error of the SCSR iterates under more
restrictive assumptions on the behavior of the recursion in use.

1.2. Paper organization. The rest of the paper is organized as follows. In the
ensuing section, we introduce much of the standing notation and conventions used
throughout the paper. This is followed by section 3, where we present a rigorous
problem statement, and by section 4, where we present specific nontrivial examples of
SCSR recursions. Sections 5 and 6 contain the main results of the paper. We provide
concluding remarks in section 7, with a brief commentary on implementation and the
use of stochastic sample sizes.

2. Notation and convention. We will adopt the following notation throughout
the paper. For more details, especially on the convergence of sequences of random
variables, see [5]. (i) If x € R? is a vector, then its components are denoted through
z 2 (20, 2@ 2@) (i) We use e; € R? to denote a unit vector whose ith
component is 1 and whose every other component is 0, that is, e; (i) = 1 and ¢;(j) =0
for j # i. (iii) For a sequence of random variables {Z,}, we say Z, = Z if {Z,}
converges to Z in probability; we say Z, 4 7 to mean that {Z,} converges to Z in
distribution; we say that Z, 87t E[|Z,, — Z|P] — 0; and finally, we say Z, Rz
to mean that {Z,} converges to Z with probability one. When Z, "R z, where z
is a constant, we will say that Z,, is strongly consistent with respect to z. (iv) Z*
denotes the set of positive integers. (v) B.(z*) £ {z : ||z — 2*|| < r} denotes the
d-dimensional Euclidean ball centered on z* and having radius r. (vi) dist(x, B) =
inf{||x — y| : y € B} denotes the Euclidean distance between a point z € R? and
a set B C RY. (vii) diam(B) = sup{||z — y|| : ,y € B} denotes the diameter of
the set B C R? (viii) For a sequence of real numbers {a,}, we say a, = o(1) if
lim, o0 an, = 0 and a,, = O(1) if {a,} is bounded, i.e., 3¢ € (0,00) with |a,| < ¢
for large enough n. We say that a, = ©(1) if 0 < liminfa, < limsupa, < oo.
For positive-valued sequences {an}, {bn}, we say a, = O(by) if a,/b, = O(1) as
n — oo; we say ap, = O(b,) if a,/b, = ©(1) as n — oo. (ix) For a sequence of
positive-valued random variables {4, }, we say A, = o0,(1) if 4, 50 asn — oo; and
we say A, = Op(1) if {A,} is stochastically bounded, that is, for given € > 0 there
exists c(e) € (0,00) with P(A,, < ¢(e)) > 1 — € for large enough n. If {B,} is another
sequence of positive-valued random variables, we say A,, = O,(B,,) if A,/B,, = O,(1)
as n — oo; we say A, = 0,(By,) if A,,/B,, = 0,(1) as n — oco. Also, when we say
A, < Op(b,), we mean that A,, < B,,, where {B,,} is a random sequence that satisfies
B, = Op(b,). (x) For two sequences of real numbers {a,}, {b,} we say a,, ~ b, if
lim,, 00 an /by, = 1.
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Also, the following notions will help our exposition and will be used heavily.

DEFINITION 2.1 (growth rate of a sequence). A sequence {my} is said to exhibit
Polynomial(\y,p) growth if my, = A\p kP, k =1,2,..., for some A\, p € (0,00); it is said
to exhibit Geometric(c) growth if mgi1 = cmy,k = 0,1,2,..., for some ¢ € (1,00);
and it is said to exhibit SupEzponential(M,t) growth if my1 = \ymb, k=0,1,2,.. .,
for some A¢ € (0,00),t € (1, 00).

DEFINITION 2.2 (asequence increasing faster than another). Let {my} and {my}
be two positive-valued increasing sequences that tend to infinity. Then {my} is said
to increase faster than {my} if mgy1/my > Mygi1/my for large enough k. In such a
case, {my} is also said to increase slower than {my}.

According to Definitions 2.1 and 2.2, it can be seen that any sequence that is
growing as SupExponential(A, t) is faster than any other sequence that is growing as
Geometric(c); likewise, any sequence growing as Geometric(c) is faster than any other
sequence growing as Polynomial(A,, p).

3. Problem setting and assumptions. The general context that we consider
is that of unconstrained “sampling-controlled stochastic recursions” (SCSR), defined
through the following recursion:

(SCSR) Xit1 =Xk+Hk(mk7Xk), k=0,1,2,...,
where X € R? for all k. The “deterministic analogue” (DA) of SCSR is
(DA) Tr+1 :xk‘+hk(xk)a k2071727""

The random function Hy(my, ),z € R, called the “simulation estimator” should
be interpreted as estimating the corresponding deterministic quantity hg(x) at the
point of interest x, after expending mj amount of simulation effort. We emphasize
that the objects hy(-) and Hy(myg, ) appearing in (DA) and (SCSR) can be iteration
dependent functions. Two illustrative examples are presented in section 4.

3.1. Assumptions. The following two assumptions are standing assumptions
that will be invoked in several of the important results of the paper. Further assump-
tions will be made as and when required.

ASSUMPTION 3.1. The recursion (DA) exhibits global convergence to a unique
point x*; that is, the sequence {xy} of iterates generated by (DA) when started with
any initial point Ty satisfies limg_ oo v = T*.

ASSUMPTION 3.2. Denote the filtration
Fr = o{(Xo, Hy(mo, Xo)), (X1, Hi(m1, X1)), ..., (X, Hi(mp, Xi))}

generated by the “history sequence” after iteration k. Then the simulation estimator
Hy.(my, Xi) satisfies for k > 1, with probability one,

(4) E [mi | Hi (mg, Xi) = hie(X) | | Fre—1] < mo + s || X

for some a > 0, and where kg, k1 are some positive constants. We will refer to the
constant o as the convergence rate associated with the simulation estimator.

Assumption 3.1 assumes convergence of the deterministic recursion (DA)’s iterates
starting from any initial point xy. Such an assumption is needed if we were to expect
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stochastic iterations in (SCSR) to converge to the correct solution in any reasonable
sense. We view the deterministic recursion (DA) to be the “limiting form” of (SCSR),
obtained, for example, if the estimator Hy(my, ) at hand is a “perfect” estimator of
hi(z), constructed using a hypothetical infinite sample.

Assumption 3.2 is a statement about the behavior of the simulation estimator
Hyp(my,z),rz € R% and is analogous to standard assumptions in the literature on
stochastic approximation and machine learning, e.g., Assumption A3 in [6] and As-
sumption 4.3(b),(c) in [8]. In order to develop convergent algorithms for the context
we consider in this paper, some sort of restriction on the extent to which a simulation
estimator can “mislead” an algorithm is necessary. Assumption 3.2 is a formal cod-
ification of such a restriction; it implies that the error in the estimator Hy(my, Xk),
conditional on the history of the observed random variables up to iteration k, decays
with rate «. Furthermore, the manner of such decay can depend on the current iter-
ate Xj. Assumption 3.2 subsumes typical stochastic optimization contexts where the
mean squared error of the simulation estimator (with respect to the true objective
function value) at any point is bounded by an affine function of the squared Ls-norm
of the true gradient at the point, assuming that the gradient function is Lipschitz.

3.2. Work and efficiency. In the analysis considered throughout this paper,
computational effort calculations are limited to simulation effort. Therefore, the total
“work done” through k iterations of SCSR is given by

k
Wk, = Z my;.
i=1

Our assessment of any sampling strategy will be based on how fast the error E, =
| X% — x*|| in the kth iterate of SCSR (stochastically) converges to zero as a function
of the total work Wy. This will usually be achieved by first identifying the convergence
rate of Fj, with respect to the iteration number k& and then translating this rate with
respect to the total work Wy.

Under mild conditions, we will demonstrate that E}, cannot converge to zero faster
than W, (in a certain rigorous sense), where « is defined through Assumption 3.2.
This makes intuitive sense because it seems reasonable to expect that a stochastic
recursion’s quality is at most as good as the quality of the estimator at hand. We will
then deem those recursions having error sequences {Ey } that achieve the convergence
rate W, “ as being efficient. The convergence rate of Ej, with respect to the iteration
number k is of little significance.

4. Examples. In this section, we illustrate SCSR using two popular recursions
occurring within the context of SO and SRFPs. For each example, we show the ex-
plicit form of the SCSR and the DA recursions through their corresponding functions
Hi.(my,-) and hg(-). We also identify the estimator convergence rate « in each case.

4.1. Sampling controlled gradient method with fixed step. Consider the
context of solving an unconstrained optimization problem using the gradient method [9,
section 9.3], usually written as

(5) Tr+1 :l'k—Ft(—Vf(Ik)), kzoalv"'a
where f : R? — R is the real-valued function being optimized, Vf : R? — R? is its

gradient function, and ¢ > 0 is an appropriately chosen constant. (Instead of a fixed
stepsize t in (5), one might use a diminishing stepsize sequence {¢;} chosen to satisfy
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tk — 0, 4, tx = oo [4, Chapter 1].) Owing to its simplicity, the recursion in (5)
has recently become popular in large-scale SO contexts [8].

Let us now suppose that the gradient function g(-) £ V f(-) in (5) is unobservable,
but we have access to i.i.d. observations G;(z),i = 1,2,. .., satisfying E[G;(x)] = g(z)
for any x € R?. The sampling controlled version of the gradient method then takes
the form

my
(6) Xk+1=Xk+t<—mkIZGi(Xk)>7 k=0,1,...,
=1

thus implying the (SCSR) and (DA) recursive objects Hy,(my, z) £ t(—mjy ' Y% Gi(z)),
hi(z) & =tV f(z) for all z € RY. Using standard arguments [23, Theorem 2.1.14] it
can be shown that when f is strongly convex and differentiable with a gradient that
satisfies ||V f(x) — Vf(y)| < L||jz — y|| for all z,y € R%, L < oo, and the step size
t < L7, the iterates in (5) exhibit linear convergence to a zero of V f. Furthermore,
elementary probabilistic arguments show that Assumption 3.2 is satisfied with rate
constant o = 1/2.

4.2. Sampling controlled Kiefer—Wolfowitz iteration. Let us consider
unconstrained simulation optimization on a differentiable function f : R — R that
is estimated using F(m,z) = m~' 31" | F;(z), where F;(z),z € R%, i =1,2,..., are
i.i.d. copies of an unbiased function estimator F(z),r € R% of f. Assume that we
do not have direct stochastic observations of the gradient function V f(z) so that the
current context differs from that in section 4.1. (This context has recently been called
the “zeroth order” [16] for the reason that only function estimates are available.)
We thus choose the SCSR iteration to be a modified Kiefer—Wolfowitz [20] iteration
constructed using a finite difference approximation of the stochastic function obser-
vations. Specifically, recalling the notation G 2 (G, G, ... G®), suppose

(7) X1 = X —tG(my, X)), k=0,1,...,
where
, F(my, Xi + 5)) — F(my, Xj, — 5y
(8) GO Xy) = Vo X ¥ 9 ) = P, X 0 )
25kZ
estimates the ith partial derivative of f at X}, s, 2 (s,(fl), sf), . s,gd)) is the vector

step, and t is an appropriately chosen constant. Assume, for simplicity, that the
function observations generated at Xj — si are independent of those generated at
Xk + si.

In the notation of (SCSR) and (DA), the simulation estimator Hy(mg,z) =
—tG(my, ) and hy(z) £ —tVf(z) for all 2 € R? assuming that sj is chosen so
that s,(;) — 0 and \/miks,(;) — 00,7 = 1,2,...,d. Furthermore, if s; is chosen as
s,(;) = cmlzl/ % and f has a bounded third derivative, then Assumption 3.2 is satisfied
with o = 1/3 [2, Proposition 1.1]. Also, the deterministic recursion (DA) correspond-
ing to (7) is the same as that in section 4.1, and the iteration complexity discussed
there applies here as well.

Remark 4.1. In (8), derivative estimators with faster convergence rates can be
constructed by estimating higher order derivatives of f. For instance, by observing

G(i)(mk, T+ uéi)), 7 =1,2,...,n, at n strategically located design points = + w1,z +
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Uy ..., T + Uy, the error E[||Hk(mg, z) — hp(2)]]] = O(m,:"/2n+1), that is, the error

in the estimator can be made arbitrarily close to the Monte Carlo canonical rate
(’)(mlzl/z) [2, Chapter VII, section 1a.

5. Consistency. In this section, we present a result that clarifies the conditions
on the sampling rates to ensure that the iterates produced by SCSR exhibit almost
sure convergence to the solution z*. We will rely on the following elegant result that
appears in a slightly more specific form as Lemma 11 on page 50 of [30] .

LEMMA 5.1. Let {V;} be a sequence of nonnegative random variables, where E[V})
< 00, and let {ry} and {qi} be deterministic scalar sequences such that

E[Vit1|Vo, Vi, ..., V&] < (1 — ri)Vi + qr almost surely for k > kg,

where ko is fized, 0 <1 < 1,qx > 0, > 00 o Tk = 00, D peg @k < 00, limg_00 r,:lqk =0.
Then, limg oo Vi, = 0 almost surely and limg_, o, E[V}] = 0.

We now state the main consistency result for (SCSR) when the corresponding
deterministic DA recursion exhibits Sub-Linear(s) or Linear(¢) convergence.

THEOREM 5.2. Let Assumptions 3.1 and 3.2 hold. Let the sample size sequence
{my} satisfy mi* = O(k===%) for some § > 0. (The constant o is the convergence
rate of the simulation estimator appearing in Assumption 3.2.)

(i) Suppose the recursion (DA) guarantees a Sub-Linear(s) decrease at each k,

that is, for every x,k and some s € (0,1),

© o+ ua) = ol < (1= 3 ) = ']

Then | Xx — 2*|| 20 and E[|| Xx — 2*||] = 0.
(ii) Suppose the recursion (DA) guarantees a Linear(f) decrease at each k, that
is, for every x, k, the recursion (DA) satisfies

(10) [ + hx(x) — 27| < |z — 2.

Then | Xx — 2*|| 20 and E[|| X — 2*||] = 0.

Proof. Let us first prove the assertion in (i). Using (SCSR) and recalling the
unique solution x* to the recursion (DA), we can write

(11)  Xpy1 — 2" = Xp + hp(Xg) — 2" + Hp(mp, Xi) — he(Xz), k=0,1,2,....
Denoting Ej, = || X — «*||, (11) gives

S
(12) Bry1 < (1 - k>Ek + [[Hp (mues Xi) — hie(Xp)[l, k=0,1,2,....

Now conditioning on Fj_; and then taking expectation on both sides of (12), we get

E (Bt Fioos] < (1 - )E T E[ Hi (mi Xe) — i (X0)][|Fa]

k

s Ko K || Xkl
<[|[1--|F —
_< k) kT %4— me
SR e T

ko m§ 2

i~ . (1 (s — mmp k)>Ek+"Eo+/€i||x I
k mg
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If the sequence {my} is chosen so that m; ' = O(k~=79) for some § > 0 (as has been
postulated by the theorem), then for any given €, we see that xym, “k < € for large
enough k. Therefore, after “integrating out” the random variables H;(m;, X;),i =
0,1,...,k—1, in (13), we can write for any given € € (0, s) and k large enough that

ko + k|2 |

[e3

(14) E(Epi1|Eo, Br, ... B < (1 _ (8—6)>Ek .
k

k

Now, if we apply Lemma 5.1 to (14) with r, £ (s — €)k™! and ¢ = Bm;* for
B = ko + i lla*||, then 357 mp = 3707 (s — )k =00, 35,7 qr = Yo, By Y =
o, k~17%%) < 0o, and lim sup rk_lqk < limsup B(s — €)" 1k~ = 0. We thus see
that the postulates of Lemma 5.1 hold, implying that Ej "Bl and E[Ex] — 0.

Next, suppose the recursion (DA) exhibits Linear(¢) convergence. The inequality
analogous to (14) is then

a Ko + K1]|z*
(15)  E[Exs1|Eo, Ery. ., Bl) < (1= (1 =0 — mym;, ))Ek—s—OTlX”H.
k

Since {my} — oo, we see that for any given € € (0,1 — ¢), for large enough k

(16) E[Ejs1|Eo, Er, ..., E] < (1 _(1—4—6))Ek+w.

[e3%

my
Now, apply Lemma 5.1 to (16) with r;, £ 1—¢—e and g, = Bm,, © for 8 = ko+r1||z*].
If the sequence {my} is chosen so that m;' = O (kféf‘s) for some § > 0, then

Dok Tk = gy b€ =00, 30T qr = Yops, Bmy @ = OS2, k71T < oo and
lim sup r;lqk > limsup B(£ — €)~'k~1*% = 0. We thus see that the postulates of

Lemma 5.1 hold implying that F "Bl and E[Ex] — 0. 0

It is important to note that the assumed decrease condition, (9) or (10), is on the
(hypothetical) deterministic recursion (DA) and not the stochastic recursion (SCSR).
The motivating setting here is unconstrained convex minimization where a decrease
such as (9) or (10) can usually be guaranteed. The theorem can be relaxed to more
general settings where the decrease condition (10) holds only when X}, is close enough
to x*, but as we show later when we characterize convergence rates, we will still need
a weak decrease condition such as (9) to hold for all X}. For this reason, part (i) in
Theorem 5.2 should be seen as the main result on the strong consistency of SCSR.

The stipulation m; ' = O(k~=~%) for some § > 0 in Theorem 5.2 amounts to a
weak stipulation on the sample size increase rate for guaranteeing strong consistency
and £! convergence. That the minimum stipulated sample size increase depends on
the quality (as encoded by the convergence rate ) of the simulation estimator is to
be expected. However, part (ii) of Theorem 5.2 implies that the minimum stipulated
sample size increase does not depend on the speed of the underlying deterministic
recursion as long as it exceeds a sublinear rate. So, when a linear decrease (10) as
in part (ii) of Theorem 5.2 is ensured, the sample size stipulation m,zl = (’)(k‘é_‘s)
needed for strong consistency remains the same. This, as we shall see in greater detail
in ensuing sections, is because sampling error dominates the error due to recursion
and is hence decisive in determining whether the iterates converge.

6. Convergence rates and efficiency. In this section, we present results that
shed light on the convergence rate and the efficiency of SCSR under different sampling

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/18/18 to 128.12.244.5. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

54 R. PASUPATHY, P. GLYNN, S. GHOSH, AND F. HASHEMI

and recursion contexts. Specifically, we derive the convergence rates associated with
using various combinations of sample size increases (polynomial, geometric, super-
exponential) and the speed of convergence of the DA recursion (sublinear, linear,
superlinear). This information is then used to identify what sample size growth rates
may be best, that is, efficient, for various combinations of recursive structures and
simulation estimators. (See Figure 6.1 for a concise and intuitive summary of the
results in this section.)

In what follows, convergence rates are first expressed as a function of the iteration
k and the various constants associated with sampling and recursion. These obtained
rates are then related to the total work done through k iterations of SCSR given by
Wy = Zle m;, in order to obtain a sense of the efficiency.

As we show next, the quantity W, * is a stochastic lower bound on the error Ej,
in the SCSR iterates; thus, loosely speaking, « is an upper bound on the convergence
rate of the error in SCSR iterates. It is in this sense that we say SCSR’s iterates are
efficient whenever they attain the rate W, .

THEOREM 6.1. Let the postulates of Theorem 5.2 hold with a nondecreasing sam-
ple size sequence {my}, and let the recursion (DA) satisfy postulate (i) in Theorem
5.2. Furthermore, suppose there exist 6',e > 0, and a set Bs»(x*) such that, for large
enough k,

(17) inf P(m{(Hy(mp, z) — hi(x)Tu > ) > e

1
{(z,u) :x€Bsrm (x*);]|u||=1}

Then the recursion SCSR cannot converge faster than W, “; that is, there exists € > 0
such that for any sequence of sample sizes {my}, liminf, P(WEj, > ') > €.

Proof. Since the postulates of Theorem 5.2 are satisfied, we are guaranteed that
(| X5 — 2% B0 and hence that | X5 —2*|| 2 0. For proving the theorem, we will show
that for large enough k, P(m@ Ej, > ¢') > €, where € > 0. Since W}, = 25:1 mj > my,
the assertion of Theorem 6.1 will then hold.

Choose ¢ = min(¢’,0"”), where 6" is the constant appearing in (17). Since
{ X%} Py 2*, for large enough k, we have

(18) P(X) € Bsni(z")) > 1 —e.

Denoting Uy (Xy) := Xk + hi(Xg) — 2%, we can write for large enough &
(19) P(mgy1Epr1 > 0') 2> P(mg By > ') = P(Ar) + P(Az),
where the events A; and Ay in (19) are defined as follows.

Ar = (mg B > 6") N (Ur(Xg) #0);
(20) .AQ = (m?Ek_H Z 6/) n (Uk(Xk) = O) .

We also define the following two other events:

Cy = (mp (Hy(mg, Xi) — hie(Xi)" Up(Xi) = 6 |Ur(Xi)[l) N (Uk(X3) #0);
(21)  Cy = (mf || Hy(mp, Xi) — hi(Xp)|| > 8") 0 (Up(Xy) = 0).

Since Fx41 = ||Xk + Hk(mk,Xk) — :E*H, we notice that

(22) ER ) > 2(Hy(mg, Xi) — hie( X)) Uk(Xi) + | Hi (mi, Xi) — hie(X) |-
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Due to (22) and the Cauchy—Schwarz inequality [5], we see that A; O Cq; due to (22),
we also see that Ay DO Cy. Hence

(23) P(A1) =2 P(C1) and P(Az) = P(Cy).

Define Ry := {x : Ug(z) = 0}. Then, due to the assumption in (17), we see that for
any © € By (z*) N RS,

(24) P(Cy | Xp =) > e

And, since the Cauchy-Schwarz inequality [5] implies that m§ || Hy (mg, X&) —hi(Xi)||
> m¢ (Hy(mg, Xi) — hi(Xy)) " u for any unit vector u, we again see from the assump-
tion in (17) that for any = € By (2*) N Ry,

(25) P(Co | Xp = 2) > e.

Next, letting Fx, denote the distribution function of X}, we write

P(C) = [ B0 ] X, = ) dFx, (0)

> / P(Cy | Xy, = 2)l{z € By (a*) N RS} dFx, (2)
(26) > eP(Xy € By (") NRY),
where the second inequality in (26) follows from (24). Similarly,
(27) P(Cs) > eP(Xy € By (2™) N Ry).
Combining (26), (27), and (18), we see that for large enough k,
(28) P(C1) +P(C3) > e(1 —e).
Finally, from (28), (23), and (19), we conclude that for large enough k,
(29) P(ng By > &) > & = (1 — ),

and the theorem is proved. 0

Theorem 6.1 is important in that it provides a benchmark for efficiency. Specif-
ically, Theorem 6.1 implies that sampling and recursion choices that result in errors
achieving the rate W, ® are efficient. Theorem 6.1 relies on the assumption in (17)
which puts an upper bound on the quality (convergence rate) of the simulation estima-
tor Hy(myg, z); the reader will recall that Assumption 3.2 puts a lower bound on the
quality of Hy(myg,z). The condition in (17) is weak, especially since Hy(my, x), being
a simulation estimator, is routinely governed by a central limit theorem (CLT) [5]
of the form m@ (Hy(mg,x) — hi(x)) i>N(O, Y(z)) as k — oo, where N(0,X(z)) is a
normal random variable with zero mean and covariance ¥(x).

We emphasize that Theorem 6.1 only says that « is an upper bound for the con-
vergence rate of SCSR and says nothing about whether this rate is in fact achievable.
We will now work toward a general lower bound on the sampling rates that achieve
efficiency. We will need the following lemma for proving such a lower bound.

LEMMA 6.2. Let {ar} be any positive-valued sequence. Then
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(i) ax = @(Z?Zl a;) if {ax} is Geometric(c) or faster;
(i) ax = 0(2?11 a;) if {ax} is Polynomial(\y,p) or slower.

Proof of (i). If {ay} is Geometric(c) or faster, we know that ap41/ar > ¢ > 1 for
large enough k. Hence, for some ko and all k > j > ko, a;/ar, < ¢/~*. This implies
that for k& > ko,

k ko k
—1 o o1 _
ay, Zaj_ak ZaJ+ak Z a;
j=1 j=1

j=ko+1
kU k
-1 i—k
< ay E a; + E d
Jj=1 j=ko+1

ko k—ko—1 1
(30) :aglzaj—i— Z ¢l = T
j=1 =0

Using (30) and since aj < 2521 aj, we conclude that the assertion holds.
Proof of (ii). Let p > 0 be such that {ax} is Polynomial(A,, p) or slower. We then
know that for some ko > 0 and all k > j > ko, a;/ar > jP/kP. This implies that

k k k k k
(31) a;lzaj :agliajﬁ—a;l Z a; Zagliaj-Fk*p Z Jr.
J=1 J=1 j=1

j:k0+1 j:k?(]+1

Now notice that the term k=P Z§:k0+l jP appearing on the right-hand side of (31)
diverges as k — oo to conclude that the assertion in (ii) holds. O

We are now ready to present a lower bound on the rate at which sample sizes
should be increased in order to ensure optimal convergence rates.

THEOREM 6.3. Let the postulates of Theorem 6.1 hold.

(i) Suppose my = o(Wy). Then the sequence of solutions { X} is such that W Ey,
is not Op(1); that is, there exist € > 0 and a subsequence {k,} such that
P(W Ey, >n) > &

(i) If {my} grows as Polynomial(A\p,p), then W2 Ey is not Op(1).

Proof of (i). The postulates of Theorem 6.1 hold, and hence we know from (29)
in the proof of Theorem 6.1 that there exists K1(d’,€) such that for k > K;(d',¢),
(32) P(mEr > 6") > (1 — €,

where the constants €, d’ are positive constants that satisfy the assumption in (17).
Since my = o(W}) and « > 0, we see that m§ /W = o(1) as k — oco. Therefore,
for any n > 0, there exists K3(n) such that for k > Ky(n),

(33) § >nmg/We.
Combining (32), (33), we see that for any n > 0, if £ > max(K;(d’,¢€), K2(n)), then
(34) P(ngk >n mk) > (1 —e)e,

wi

and hence, for k > max(K1(d',¢€), K2(n)),
(35) P(WZE, > n) > (1 —e€)e.
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Proof of (ii). The assertion is seen to be true from the assertion in (i) and upon
noticing that if {ms} grows as Polynomial(\,,p), then my = o(Wy). d

Theorem 6.3 is important since its assertions imply that for SCSR to have any
chance of efficiency, sample sizes should be increased at least geometrically. This is
irrespective of the speed of the recursion DA. Of course, since this is only a lower
bound, increasing the sample size at least geometrically does not guarantee efficiency,
which, as we shall see, depends on the speed of the DA recursion. Before we present
such an efficiency result for linearly converging DA recursions, we need two more
lemmas.

LEMMA 6.4. Let {aj(k)}é‘?:l, k > 1, be a triangular array of positive-valued real
numbers. Assume that the following hold.

(i) There exist j* and > 1 such that “giéli;“) > 0 for all j € [j*,k — 1] and all

k>1. '

(ii) limsup,

ZiEIZ; ={; < oo for each j € [1,5* —1].
Then Sy, = Y%, a;(k) = O(ax(k)).
Proof. We have, for large enough k and any € € (0, c0),

=1

. a; (k) a; (k)
Sk = ap(k) ;) o () +]; ax(h)
j =1 k
(36) ap(k) [ e+ Y G+ Y ],
j=0 j=3*

where the inequality follows from assumptions (i) and (ii). Since 8 > 1,j* < oo, and
¢; < oo, the term within parentheses on the right-hand side of (36) is finite, and the
assertion holds. |

LEMMA 6.5. Let {S,} be a nonnegative sequence of random variables, Ny a well-
defined random variable, and {a,}, {b,} positive-valued deterministic sequences.

(i) IfE[S,] = O(an), then S,, = Op(an).

(i) If Sn < Op(by) for n > Ny, then S, = Op(by).

Proof. Suppose the first assertion is false. Then there exist € > 0 and a subse-
s

quence {n;} — oo such that P(=£ > j) > ¢ for all j > 1. This, however, implies
&
that E[jn’] > je for all j > 1, contradicting the postulate E[S,,] = O(a,). The first

assertion of the lemma is thus proved.

For proving the second assertion, we first note that the postulate S, < Op(b,)
for n > Ny means that S, < B, for n > Ny, where {B,} is a sequence of random
variables satisfying B,, = Op(b,). Now, since B,, = Op(b,), given € > 0, we can
choose b(e),n1(e) so that P(B,/b, > b(e)) < €/2 for all n > ni(e). Also, since Ny
is a well-defined random variable, we can find ns(e) such that for all n > no(e),
P(Ny > n) < ¢/2. We can then write for n > max(ni(€), n2(¢)) that

P(Sy/bn > b(e)) < P((By /by, > b(e)) N (No < n)) + P((By /by > b(e)) N (No > n))
< P(B, /b, > b(e)) + P(Ng > n)

€ €
thus proving the assertion in (ii). d
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We are now ready to prove the main result on the convergence rate and efficiency
of SCSR when the DA recursion exhibits linear convergence. Theorem 6.6 presents
the convergence rate in terms of the iteration number k first, and then in terms of
the total simulation work Wj,.

THEOREM 6.6 (linearly converging DA). Let Assumptions 3.1 and 3.2 hold. Also,
suppose the following two assumptions hold.
A1 The deterministic recursion (DA) exhibits Linear(f) convergence in a neigh-
borhood around x*; that is, there exists a neighborhood V of z* such that
whenever x €V, and for all k,

@+ hi(z) — 2™ < Lo =27, £ (0,1).

A.2 For all z,k,

s
|z + hp(z) —z*] < (1 — k)|x—a:*||, s€(0,1).

Then, recalling that Ey, 2 || Xy — z*||, as k — oo, the following hold:
(i)

Op(k=P*)  if {my} grows as Polynomial(\p, p), poc > 1;
Op (%) if {my} grows as Geometric(c) with c € (1,£71/);

Er = O, (%) if {my} grows as Geometric(c) with ¢ > =1/,
O, (%) if {my} grows as SupEzxponential(A,t).
(i)
W;ﬁEk = 0,(1) if {my} grows as Polynomial(\,,p), pa > 1;
WEE, = 0,(1)  if {mg} grows as Geometric(c) with ¢ € (1,£71/?);
(c_aﬁ_l)k WeE, = 0,(1) if {mg} grows as Geometric(c) with ¢ > (=1/%;
(log Wk)logt(l/l) E, O,(1)  if {mw} grows as SupEzponential( A, t).

Proof. First we see that Assumptions 3.1 and 3.2 and A.2 hold, and that all sample
size sequences {my} considered in (i) and (ii) satisfy my = O(k~= ) for some § > 0.
We thus see that the postulates of Theorem 5.2 hold, implying that Ey = || Xy —
x*| R, Therefore, excluding a set of measure zero, for any given A > 0 there exists
a well-defined random variable Ky = K(A) such that || X, — z*|| < A for k > K.
Now choose A such that the ball Ba(z*) C V, where V is the neighborhood appearing
in Assumption A.l. Since Xy 1 = Xj + Hi(my, Xi), we can write X, 454+1 — 2* =
XKotk — 2"+ hK0+k(XK0+1€) + HK0+/€(mK0+k7 XKoJrk) - hK0+k(XK0+/€)’ and hence

(38) | Xxoanr1—2"|| < X rysr—2" |+ Hrcork (Mrcg a0, Xrcork) =g (Xrco 1) |-

Recursing (38) backward and recalling the notation Ey = || X — x*||, we have for
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k>0

k

Eroihtr < O Ery + > | Higyj (Mo gy Xicos) — hicori (Xico i)l
=0

k

SN+ I Higy (Mo gy Xiots) — Mo (Xicot5)l
=0
k+Ko

= (PPN N RO H (my, X ) — (X))
j=Ko
k+ Ko

(39) SCTIA+ Y RO Hy(my, X5) = hy (X)),

=0

where the second inequality above follows from the definition of Ky, the equality
follows after relabeling j = j + Ko, and the third inequality follows from the addition
of some positive terms to the summation.
Relabeling k = Ko + k in (39) and denoting (; := H;(m;, X;) — h(j(X;), we can
write, for k > K,
k
(40) By < 57 R0HA LY "R

=0

Recalling the filtration F;_1 generated by the history sequence, we notice that

k k
E S G) | = S0 AE]G]]
j=0 Jj=0

k
= > ATEE(GH | Fial

<
[}

IN

IR [m;* (ko + k1 || X))

IN

M- 10

<
I
)

(41) Imy* (mo + ka2 || + w1 E [E;)),

J

where the first inequality in (41) is due to Assumption 3.2.
Due to Theorem 5.2, we know that for a given ¢ > 0, there exists ko(e) such that
for all k > k(e), E[E;] < e. We use this in (41) and write

k
By f|<jn}
j=0
ko (€) ) k ]
< ST o+ mallat | A BB+ > T my (k0 + k|2 + Kre)
=0 j=ko(e)+1
(42)

ko (€) k
< gFH ( 7 mG % (ko + |2 +,«U1E[Ej])> + (ko + ma |z || + rae) D £ Imy e

=0 Jj=0
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Since ko(e) is finite and E[E;] < oo for all k < ko(e), the inequality in (42) implies
that

k k
(43) E Y NG| =0 (44> Ime
j=0

=0

From part (i) of Lemma 6.5, we know that if a positive random sequence {S}} satisfies
E[Sk] = O(ax), where {ay} is a positive-valued deterministic sequence, then Si/ar =
O,(1). Therefore, we see from (43) (after setting Sy to be Z?:o £8=3)|¢;)) and ay to

be (F+1 4 Z?:o ¢5=Im7 ) that

k k
(44) S ETGN =0, [ 43T e
j=0

J=0

Use (40) and (44) to write, for k > K,

k
Ek+1 S ékJrlngoA 4 Op ékJrl + ng*jmj—oc
=0

k
(45) _ Op €k+1 + ngfjmj—a
=0

Now use part (ii) of Lemma 6.5 on (45) to conclude that

k
(46) Brpr =0, [ 7 4> 05 Imy
j=0

We will now show that the first equality in assertion (i) of Theorem 6.6 holds by
, i
in (46). Set the summand of Z?:O Ek_Jm;a to aj(k), and since m; = A, 5P, we

showing that the two assumptions of Lemma 6.4 hold for Z?:o (F=Im > appearing

have agbgf) = %(jjﬁ)pa. Choosing 3 such that § > 1 and /8 < 1, and setting
J7* = Max(1, W

The second assumption of Lemma 6.4 is also satisfied since for any fixed j* > 0,
lim sup,, GJ—E’Z; = lim sup,, fk*j(g)p”‘ =0 for all j € [1,5%].

ag

—1), we see that the first assumption of Lemma 6.4 is satisfied.

To prove the second and third equalities in assertion (i) of Theorem 6.6, suppose
{my} grows as Geometric(c) with ¢ < £71/% that is, c™® > . Then, noticing that
m; = mopc’, we write

k+1
4
" b e (=) )
Zékfjmj—a — maa sz‘fjcfja — maacfka
j=0 j=0 1——
C*&

(47) = O(ch)

and use (47) in (46). If {m;.} grows as Geometric(c) with ¢ > £~/ that is, c=® < ¢,
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then notice that (47) becomes

c—(X
1———
4

—a\ k+1
: k (7))
ng‘*jmj—a — mO—O( ng*jc*ja — ma(l <£>€k}
7=0 7=0

(48) = O(%).

Now use (48) in (46).
To see that the fourth equality in assertion (i) of Theorem 6.6 holds, we notice that
a sample size sequence {my} that grows as SupExponential(\, t) is faster (as defined
in Definition 2.2) than a sample size sequence {my,} that grows as Geometric(c).
Proof of (ii). To prove the assertion in (ii), we notice that since W}, = Z?Zl m;j,
we have

Wi = O(kPTh) if {my} grows as Polynomial(),, p);

= O(c*) if {my} grows as Geometric(c);
(49) = @((At‘jmo)tk) if {my} grows as SupExponential(\, t).

Now use (49) in assertion (i) to obtain the assertion in (ii). d

Theorem 6.6 provides various insights about the behavior of the error in SCSR,
iterates. For instance, the error structures detailed in (i) of Theorem 6.6 suggest
two well-defined sampling regimes where only one of the two error types, sampling
error or recursion error, is dominant. Specifically, note that Er = Op,(k™?*) when
the sampling rate is Polynomial(\,, p). This implies that when DA exhibits Linear()
convergence, polynomial sampling is “too little” in the sense that SCSR’s convergence
rate is dictated purely by sampling error since the constant ¢ corresponding to DA’s
convergence is absent in the expression for Ej;. The corresponding reduction in ef-

D
ficiency can be seen in (ii) where Ej is shown to converge as O, (W, “TF7) . (Recall
that efficiency amounts to { £} } achieving a convergence rate O, (W, “).)

The case that is diametrically opposite to polynomial sampling is superexponen-
tial sampling, where the sampling is “too much” in the sense that the convergence
rate Ej, = O,(¢*) is dominated by recursion error. There is a corresponding reduction
in efficiency as can be seen in the expression provided in (ii) of Theorem 6.6.

The assertion (ii) in Theorem 6.6 also implies that the only sampling regime that
achieves efficiency for linearly converging DA recursions is a Geometric(c) sampling
rate with ¢ € (1,£71/®). Values of ¢ on or above the threshold ¢~/ result in “too
much” sampling in the sense of a dominating recursion error and a corresponding
reduction in efficiency, as quantified in (i) and (ii) of Theorem 6.6.

Before we state a result that is analogous to Theorem 6.6 for the context of
superlinearly converging DA recursions, we state and prove a lemma that will be
useful.

/4’

LEMMA 6.7. Suppose {a;} is a positive-valued sequence satisfying a} — 1 as

j — 00, where ¢ > 1. If A € (0,1) is a well-defined random variable, then aquj 20.

Proof. Since A € (0,1), for any given € € (0,1), there exists d1(e) > 0 such that
P(A > (14 681(e))71) < e. Also, since a;/qj — 1 as j — oo, we can find Ny such that
for all j > Ny, a;/qj > 1 — 02(¢). Therefore, we see that for any given € > 0, there
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exists d1(e) > 0 such that for j > Ny,
(50)  Pa/TA>(1-82))(1+6(e)") =Pa/TA>1-5(e) <e.

Also notice that, for any given dy > 0, we can choose Ny such that (1 —d; (€))7 <
do for j > N,. Using this observation with (50), we see that, for any given dg > 0 and
€>0, I[”(aquJ > 0g) < € for j > max(Ny, Ns), and the assertion of the lemma holds.O0

THEOREM 6.8 (superlinearly converging DA). Let Assumption 3.1, Assumption
A.2 from Theorem 6.6, and the following assumption on superlinear decrease hold.
A.3. The deterministic recursion (DA) exhibits SuperLinear(X\y,q) convergence in
a neighborhood around x*; that is, there exist a neighborhood V of x* and
constants Aq > 0,q > 1 such that whenever x € V, and for all k,

[ + i (x) — 27| < Agllz — 2%

Also, suppose the simulation estimator Hy(my, Xy) satisfies for all k > 0,n > 0, with
probability one,

(51) E[mi"™ || Hy (my, Xi) — hae(Xi) ™ | Fe-a] < kg + 57 [ Xk,

for some a > 0 and where ko and k1 > 0 are constants. Then, as k — oo, the

following hold:

(1)

Op(k=oP if {my} grows as Polynomial(Ap, p), poc > 1,
P Op (™) if {my} grows as Geometric(c),
B (’)p(cl_atk) if {my} grows as SupExponential( A, t),t € (1,q),
(’)p(Aqk + cz_o‘qk) if {my} grows as SupExponential( A, t),t > q,
1
where ¢; = mo)\;/(t_l), co = H_é(2>\§)_a<qqfl>mo, k = max(ko, k1), and A is a Tan-

dom variable that satisfies A € (0,1).

(i)

W,?”?Ek = O0,(1) if{my} grows as Polynomial(A,,p), pa > 1,
WeE, = 0Op(1) if {my} grows as Geometric(c),
) WEE, = 0p(1) if {mx} grows as SupEzponential(X,1),t € (1,q),
(A_Wk + cg‘W’“) E, = 0,(1) if {my} grows as SupEzponential(A;,t),t > g,

where W), = (logCl Wk)lOgt 7,
Proof. Repeating arguments leading to (38) in the proof of Theorem 6.6, we write
(52) EK0+1€+1 < )‘qE(II(O-i—k + HCKOJrkHa

where Cxorrx = [Protrk(Xiot+k) — Hicork(MKo+ks XKot+k)|, and, as in the proof of
Theorem 6.6, Ky is a random variable such that, except for a set of measure zero,
| Xk —z*|| < A for k > Kp; the constant A is chosen such that the ball Ba(z*) C V

and A < (2)\q)%, where the set V is the neighborhood appearing in A.3.
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Denote s(n) :=1+q+---+¢" 1 =(¢"—1)/(¢g—1),n > 1, and recurse (52) to
obtain for k > 0

EK0+k+1 < /\qE}I(O_A,_k + ||<K0+kH

< Ag (MNBy i ICkori—1l)* + I Crorrll

2
<\ (QQ)\‘?E}I( who1 T 2‘1H<K0+k71||q) + ko4l
= 24/\1+qu< th1 T 29 AlICko+h—1 117 + <Ko+l

2
< 2N (N B oo+ Ikorr—2lD) " + 29X I Choh—1 1+ I Caotil

< 28(k+1)71>\2(k+1)E?;0 + Z ”CKo-‘rJ ||q )\s (k— ])2s(k j+1)—

7=0
1 k+Ko

E4+1)—1ys(k+1 ktKo—J  s(k+Ko—j k+Ko—j+1)—1

< 9s(k+1) )\Z( + )Eg(o + Z 119 )\Z( +Ko—j)9s(k+Ko—j+1)

j=Ko
1 k+Ko

E4+1)—1ys(k+1 ’ ktKo—3 y s(k+Ko—j k+Ko—j+1)—1

< 9s(k+1) )\2( + )Eg<0 + Z [t<Tke )\2( +Ko—j)gs(k+Ko—j+1)—1
j=0

(53)

where the second to last inequality in (53) is after relabeling j = j + Kp in the
inequality immediately preceding it, and the last inequality is obtained by adding
some positive terms to the right-hand side of (53).

Now relabel k = k + Ky in (53) and notice that Ex, < A by the definition of Ky
to get, for k > Ky,

k
Epir < 25(’€—Ko+1)—1/\2(1€—Ko+1)Aq"""o+1 Z HC,||q""j/\s(k—j)25(k—j+l)—1
7=0

k 1
(54) < (22g)"FTIOTDATT  200) T T G (@A8) I,
7=0

Now, we see from (51) (after taking expectation with respect to F,_1) that

k—j k=i  _qakI
EJIGIT T < wT “my®t (1 +E[X;]])

(55) <k mTo" T (L (27| + E[E)]),

where k = max(ko,k1). As in the proof of Theorem 6.6, due to Theorem 5.2, for
given € > 0 there exists ko(e) such that for j > ko(e), E[E;] < e. This and (55) imply
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that
k b 1 )
E D lgGIT " @Ag) 7+
§=0
ko (€) s 1 ) by
< DR T @A T Im T (1 o] + E[E])
j=0
k k—j 1 . k—j
(56) Y KT @A) ETITImT (1 |27 + ).

J=ko(e)+1

Since E[E;] < oo for j < ko(e), e* = max(max{E[E;] : j = 1,2,...,ko(e)},€) < o0.
The inequality in (56) then implies that

(57)

d F=3 oy g vs(k—j+1) « RS i oy b (k—j+1), —a
E ZHCqu (2Aq )" <1+ \\JF@)ZHq (2Ag )T m
=0

Jj=0

k—j

Again, as in the proof of Theorem 6.6, we know from part (i) of Lemma 6.5
that if a positive random sequence {S,} satisfies E[S,] = O(a,), where {a,} is a
deterministic positive-valued sequence, then S,, = O,(a,). Therefore, we see from
(57) that

k—j

k —j 1 . k —_j 1 .
(58) DG @A) I = 0, | ST Rt (207 ) kit o
§=0 J=0

Use (58) and (54) to write, for k > Ky,

k
7=0

k—j

Qg =

)s(k7j+1)mfaq
J

k—j

k
1 _ k k=3 oA i —a
(59) < (20)TTTH(A(KQ)T + 0, | Dk (20 BTt Imped
=0

where, after some algebra, the random variable A(Kj) in (59) can be seen to be

—Kg+1

(60) A(Ky) = ((22,)774)

(The constant A(Kp) € (0,1) because A has been chosen so that A < (2)\,1)%.)
Proof of (i). In what follows, the assertions in (i) will be proved using conclusions
from three parts named Part A, Part B, and Part C thlat follow. In Part A, we will
analyze the behavior of the summation Z?:o ke (2)\§)S(k’j+1)mj_°‘qk " appearing
in (59) when the sample size sequence {m; } is Polynomial(\,, p), or Geometric(c), or
SupExponential(\;, t) with ¢ € (1,¢). In Part B, we will analyze the behavior of the

i 1 . k—j
summation Zl;:o k17208 )s(k’”l)mj_aq ’ appearing in (59) when the sample size
sequence {m;} is SupExponential(\;,t) with ¢ > ¢. In Part C, we will analyze the
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k

behavior of the term (2)\q)7ﬁ71 (A(Kp))? appearing in (59). The conclusions from
Part A, Part B, and Part C will be “put together” in Part D to prove the assertion
in (i).

Part A. When the sample size sequence {m; } is Polynomial(\,, p), or Geometric(c),
or SupExponential(A,t) with ¢ € (1,q), we will show that the two postulates of

. 1 ) i

Lemma 6.4 hold for the sum Z?:o k1720 )S(kﬂ“)mj_aqk ’, thereby proving that

o i 1 . k—j 1
Zf:o ka7 (2X\¢ )S(k_”l)mj_aq ’ is of the same order as the last summand 26N M,
that is, 3% /qufj(2/\%)‘“(’“_j+1)m_aqkﬁ = (’)(2/1/\%771_0‘) Toward this, set a;(k) =
) 7=0 q 7 — q k . 5 j =
— 1 . k—j
K" (2Ag )kt md ’, and we have

k—j—1
q J

(61) 2l _ Hé-%%?)l( = )

a;(k) Mj+1

If {m;} grows as Polynomial()\,,p), Geometric(c), or SupExponential(\;,t) with ¢ €
(1, q), some algebra yields that a;41(k)/a;(k) > @ for any 8 € (0, 00) and large-enough
j. Thus, the first postulate of Lemma 6.4 is satisfied when {m,} is Polynomial(\,,p),
Geometric(c), or SupExponential(A¢, t) with ¢ € (1,¢). Also, since

k—j

- i) ()"

J

some algebra again yields that limsup,, a;(k)/ax(k) — 0 for j lying in any fixed in-
terval for the three cases Polynomial(A,, p), Geometric(c), and SupExponential(A, t)
with ¢ € (1,q), and hence the second postulate of Lemma 6.4 is satisfied as well.

We thus conclude that when the sample size sequence {m;} is Polynomial(\,,p),
or Geometric(c), or SupExponential(\;,t) with ¢ € (1,¢q),

k 1 . o 1

(62) Zﬁqk J(2>\5 )s(kfijl)m;aqk i -0 (2/?)\; mka) )

7=0
Part B. When the sample size sequence {m;} is SupExponential(\;, ¢) with ¢t > g,

_ 1 . k—j

the sum Z?:o K" j(2)\§)s(k—7+1)m;aq " appearing in (59) turns out to be of the

Lo .
order of the first summand k%" (2A§)‘g(k+1)mgaqk. In order to prove this, we write

1
k k—j 7 i —aqg® 7 .
Y=okt (2] )sk ]'H)mj %" " in reverse order as

S

o 1 . —j k . 1 X
(63) Z P (278 )s(k—ﬂ-&-l)mj—aqk = Z P (2\d )s(]-&-l)mlzo“?

3
J=0 =0

and again apply Lemma 6.4. Set the jth summand on the right-hand side of (63) to
a;(k) and obtain

CLj_H(k) . qul % . % a\ g
0 (e () )

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/18/18 to 128.12.244.5. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

66 R. PASUPATHY, P. GLYNN, S. GHOSH, AND F. HASHEMI

Then some algebra as in (61) yields that if {m;} grows as SupExponential(\¢, t) with
t > ¢, then aj41(k)/a;j(k) > B for any 5 € (0,00) and large enough j. Thus, the first
postulate of Lemma 6.4 is satisfied when {m;} is SupExponential(\, ) with ¢ > ¢.

Also, since
) @ —q* ANEY
) _ (pfyi) " ()"
ar(k) mzij

some algebra again yields that lim sup,, a;(k)/ax(k) — O for j lying in any fixed inter-
val when {my} is SupExponential(\;,¢) with ¢ > ¢, and hence the second postulate of
o1 .
Lemma 6.4 is satisfied as well. We thus see that the sum Z?:o k17208 )sth =ity md
N i . i 1 gh41_ _
appearing in (59) satisfies Zf:o kT (20 )5(’“_3+1)mj_(qu T =0k (2AG) e 1mO aqk)
. 1 q

= O(c;aqk), where ¢ = £~ (20 )7 5@-1 my.

We thus conclude that when the sample size sequence {m; } is SupExponential(\, t)

e 1 . k—
with ¢ > ¢, the sum Z?:o k1 (27g )s(k=d )y o " appearing in (59) satisfies

Salm

(65) k772X

ekt —0d ) _ (0" (207) ST g ) = O ().

.
i
o

Part C. Let us analyze the behavior of the term (2)\q)_ﬁ_1 (A(Ko))qk appearing
n (59). We recall that if {m;} is Polynomial(Ap,p), then m; = X\,j? where \,,p €
(0,00); if {m;} is Geometric(c), then m; = moc’ where ¢ € (1,00); and if {m;}
is SupExponential()¢, t), then m; = X\, mf where \;,t € (1,00). (See Definition
2.1.) We thus see that if the sample size sequence {m;} is Polynomial()\p,p), or

Geometric(c), or SupExponential(\;,t) with ¢ € (1,q), then m?/q] — lasj — oo.
Thus, when {m;} is Polynomial(\,, p), or Geometric(c), or SupExponential(A;, t) with

t € (1,q), we can invoke Lemma 6.7 with a; = m§ and A = A(Kj) € (0,1) to see that
the term (A(Ko))qk appearing in (59) satisfies, as k — oo,

a ¢ P
(66) mi (A(Kp))? —=0.

(It is important that the assertion in (66) is not true when {m, } is SupExponential(\;, t)
with t > ¢.)

Part D. Finally, we use (62) and (66) in (59) to see that when the sample size
sequence {m;} is Polynomial(\p,p), or Geometric(c), or SupExponential()¢,t) with
t e (1,q), for k > Ky,

1
(67) Er41 <0, (2/{)\(}’ mko‘) .
Now use part (ii) of Lemma 6.5 and the expressions for my, to conclude that the first
three assertions in (i) hold.
Similarly, use (65) in (59) when {m,} is SupExponential(A;,t) with ¢ > ¢, to see
that for £ > Kj,
(68) Er1 <0, (Aq" + c;aqk) .

Now use part (ii) of Lemma 6.5 to conclude that the last assertion in (i) holds as well.
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Proof of (ii). To prove the assertion in (ii), we recall that since Wy = Z?:l mj,
the expressions in (49) hold here as well. Now use (49) in assertion (i) to obtain the
assertion in (ii). |
Theorem 6.8 is the analogue to Theorem 6.6 but for superlinearly converging
DA recursions. Like Theorem 6.6, Theorem 6.8 demonstrates that there are two
well-defined sampling regimes corresponding to predominant sampling and recursion
errors. Assertion (i) in Theorem 6.8 implies that all of the polynomial sampling,
all of the geometric sampling, and part of the superexponential sampling result in a
predominant sampling error. This makes intuitive sense because the rapidly decaying
recursion error demands (or allows) additional sampling to drive the sampling error
down at the same rate as the recursion error. Correspondingly, as (ii) in Theorem
6.8 implies, there is a larger range of sampling rates that result in efficiency; in
some sense, this is the advantage of using a faster DA recursion. Specifically, (ii) in
Theorem 6.8 implies that any Geometric(c) (¢ € (1,00)) sampling is efficient, and
SupExponential(\;, t) sampling results in efficiency as long as t € (1, q).
We next prove a result analogous to Theorems 6.6 and 6.8 but for the case where
the DA recursion exhibits SubLinear(s) convergence.

THEOREM 6.9 (sublinearly converging DA). Let Assumptions 3.1 and 3.2 hold.
Also, suppose the deterministic recursion (DA) satisfies the sublinear decrease condi-
tion for each k; that is, for all z,k and some s € (0,1),

* S *
o+ mua) = a7l < (1= 3 ) o = 7]

Then, as k — oo, the following hold:

(i)

Op (=Pt if {my} grows as Polynomial(\,,p),pa € (1,5 + 1),
B, — Op(k™) if {mx} grows as Polynomial(\y, p), pa > s+ 1,
O,(k=*) if {my} grows as Geometric(c),
Op(k™) if {my} grows as SupExponential(\:,t).
(i)
alzl/(pa)
w, " Ey O,(1),  if {my} grows as Polynomial(\,,p),pa € (1,s+ 1),
W;p‘“" Ey, = 0,(1), if {my} grows as Polynomial(\,,p),pa > s+ 1,
(log. Wi)*Er = 0O,(1), if {myr} grows as Geometric(c),
(log, (log,, Wk))s Ey, = 0,(1), if{my} grows as SupExponential(l,t),

where ¢1 = mo)\i/(t_l).
Proof. Recalling the notation ¢, = Hy(mg, Xi) — hi(Xg), we write
Ep1 < | Xk — 2% 4+ R(Xk)[| + (Gl
(69) SEk(l_z)‘i'HCkH-
We then recurse (69) to obtain

k k—1 k
@ Bess ([1(1-2) )+ X0l IT (1-2) +
j=1 j=1

i=j+1
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Following the same argument we used in the proofs of Theorems 6.6 and 6.8, we see
that due to Theorem 5.2, there exists ko(e) such that for all & > ko(e), E[Ex] < e.
Combining this with Assumption 3.2 implies that for j > kq(e),

ElliG T =EEGI | Fi-1l]
< my (ko + mE[| X;])

(71) <mj (ko + kalla”| + K1 €).

We can then write for k > ko (e)

k—1
SR (1——)+|\<k|\
j=1 =541

ko (e) k k—1 k

= > =i 1T (1-2) + 3 elion IT (1-2) +Ellgu
< (koﬁflmncjn) (F(I)+ (1—f)) t ;HEH@Hilil (1-2) +Elln
o(e k
< (JZlEucjn) (i_ko%ﬂ (1—2.))

k—1 k
+ (ko + k1llz™|| + k1€) ( Z m;“ H (1_§> +mka>
i=j+1

J=ko(e)+1
(72) (Zm 1111 (1 - 2) +m;°“) :

where the first inequality in (72) follows since (1 — s/i) € (0,1) for all ¢ > 1, the
second inequality follows from the application of (71), and the last equality follows
since ko (e) < oo and E[||(;]|] < oo for j < ko(e).

As in the proof of Theorem 6.6, we know from part (i) of Lemma 6.5 that if a
positive random sequence {S,,} satisfies E[S,] = O(a,,), where {a,} is a deterministic
positive-valued sequence, then S,, = Op(a,). Therefore, we see from (72) that

Ca s a
(73) ZH@H 11 (1-2) +1a1 =0, Zm 1 (1-2) +mi
i=j+1 i=j+1
Combining (70) and (73), we can write

k k—1

S —a S
By < By H(l_j> + O, ij H (1_1')
Jj=1 j=1 i=j+1
(74) =0,(k™*)+ k0, Zm G+1)°],

where the equality in (74) follows upon noticing that ]_[Z (1 =3%)= O((£H1)s).
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If {m} grows as Polynomial(\,,p), as k — oo,

k k . —pa
—Qf s __ —« J . —pa+s __ —pa+s+1
(75) ;mj (G+1) f;Ap ('+1) (j + 1)7Pots = (K Patstly,

If {my} grows as Geometric(c), as k — oo,

k k
(76) S mitG 41T =Y mec (i +1)* = o(1).
j=1 j=1
If {my} grows as SupExponential(\;, 1), as k — oo,
(77) STmi+ 1) =3 met AN DG 1) = 0(1).
j=1 j=1

Now use (75), (76), and (77) in (74) to see that the assertion in (i) holds.

Proof of (ii). To prove the assertion in (ii), we again notice that since Wy 41 =
Zle myg, the expressions in (49) hold. Now use (49) in assertion (i) to obtain the
assertion in (ii). d

The context of Theorem 6.9, sublinearly converging DA recursions, is diametri-
cally opposite to that of Theorem 6.8 in the sense that most sampling regimes result
in predominantly recursion error. Specifically, (i) in Theorem 6.9 implies that all
geometric, all superexponential, and a portion (pa > s + 1) of polynomial sampling
result in dominant recursion error. Perhaps more importantly, (ii) in Theorem 6.9
implies that there is no sampling regime that results in efficiency when the DA recur-
sion exhibits sublinear convergence. The best achievable rate under these conditions
is W,;a"* where n* = s/(s+ 1+ «), obtained through Polynomial(A,, p) sampling for
p=(s+1a'

We will end this section with a finite-time bound on the mean absolute deviation
of SCSR’s iterates from the solution, assuming that the DA recursion exhibits a
linear contraction at every step, and not just asymptotically. This context occurs
when optimizing a strongly convex function using a linearly converging DA recursion.
The utility of Theorem 6.10 is clear—to identify the number of steps of the algorithm
required to achieve a mean absolute deviation that is below a specified threshold.
Analogous crude bounds for stochastic approximation have appeared recently [22].

THEOREM 6.10 (finite-time bounds). Let Assumptions 3.1 and 3.2 hold. Also,
let the deterministic recursion (DA) be such that

(78) [ehyr — 2| < Loy — 27|, k=01,...,

for some ¢ € (0,1). Then, for some constant o > 0,
k .
(79) E[| Xpt1 —2*[] < CVE[| Xo —a*[] + 0 Y 4 m; e
§=0

Furthermore, suppose the sample size sequence {my} increases as Geometric(c). Then,
in the efficient regime, that is, when £c® < 1, the following bound on the mean absolute
deviation of the solution Xy41 holds for k =0,1,....

o _ & k+1
) X -l < 6 (B -+ g () )
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Polynomial (A, p) Geometric(c) SupExponential (A, t)
pa=1+s
T s
Sublinear(\,, s) e ks E*
k—pa+1 ’
. L=c"
7 o
Linear(¢) ke S . ok
C—ak‘ .
oyt
) g
~ —ap
. CQ
Superlinear()g, q) kP e
cl—at"

Fia. 1. A summary of the error rates achieved by various combinations of recursion quality
and sampling rates. FEach row corresponds to a recursion rate while each column corresponds to
a sampling rate, and k denotes the iteration number. The entries refer to the error decay rates
resulting from corresponding choices of the sampling and recursion rates. For example, when using
a linearly converging recursion with Polynomial(Ap,p) sampling, the table shows that the resulting
error By, = || X — x*|| in the iterates satisfies By, = Op(k~P%). The combinations lying below
the dotted line have dominant sampling error since the corresponding entries involve only sampling
related constants. Likewise, those above dotted line have dominant recursive error due to the presence
of only recursion related constants. The combinations in the shaded region are efficient in the sense
that they result in the fastest possible convergence rates as measured in terms of the total simulation
work done. Notice that faster recursions afford a wider range of sampling rates that are efficient. For
example, it can be seen that all geometric sampling rates yield efficiency when using a superlinear
DA recursion. By contrast, only geometric sampling rates with ¢ < £~ yield efficiency when
using a linear DA recursion. Sublinearly converging recursions yield no sampling regimes that are
efficient.

Proof. Since Theorem 5.2 holds, there exists kg (€) < oo such that for all k > kq(e),
E[EL] <e. Also, E[E}] < oo for j < ko(e) < co. Therefore, we see that for all k,

E[Ey] < € := max(max{E[E;] : j =1,2,...,ko(€)},€) < c0.

Using this and Assumption 3.2, we see that (, = Hy(my, Xi) — hp(Xj) satisfies

Ell¢klll = EE[lCkll | Fr-1]]
< my (ko + s B[l X))
< my “ (ko + kallz” || + k1 E[E])
(81) <my (ko + kiljz™|| + K1e").

N
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Setting o := kg + K1||z*| + k1e*, and using (81) along with (78), we get for k > 0

E[J| X1 — o [[] = E[| X5 — 2* + ha(Xi)|] + E[l| el
<R[ Xk — 2] + =
my,

g o
a + mé
k—1 k

< PE[| Xy —2"|[] + £
m

k
(82) = (" Xo — ¥ +UZ€k_jm;a.
=0

The first assertion (79) of the theorem is thus proved.
To prove the assertion in (80), use my+1 = cmyg, k=0,1,..., in (79). d

Theorem 6.10 is applicable when a linear decrease is in effect in every iteration of
(DA), as happens, for instance, when the gradient method is applied to functions f
that are strongly convex with a Lipschitz gradient (see section 4.2). Results analogous
to Theorem 6.10 but for other types of DA recursions should be obtainable in a similar
fashion.

7. Concluding remarks. The use of simulation-based estimators within well-
established algorithmic recursions is becoming an attractive paradigm to solve opti-
mization and root-finding problems in contexts where the underlying functions can
only be estimated. In such contexts, the question of how much to simulate (toward
estimating function and derivative values at any point) becomes important particu-
larly when the available simulations are computationally expensive. In this paper, we
have argued that there is an interplay between the structural error inherent in the
recursion in use and the sampling error inherent in the simulation estimator. Our
characterization of this interplay provides guidance (see Figure 1) on how much sam-
pling should be undertaken under various recursive contexts in order to ensure that
the resulting iterates are provably efficient.

A few other comments relating to the results we have presented and about ongoing
research are now in order.

1. All of the results we have presented assume that the sequence of sample
sizes {my} used within SCSR is deterministic. To this extent, our results
provide guidance on only the rate at which sampling should be performed in
order that SCSR’s iterates remain efficient. We envision an implementable
algorithm dynamically choosing sample sizes as a function of the observed
trajectory of the algorithm while ensuring that the increase rates prescribed
by our results are followed. Our ongoing research attempts such a strategy
within the context of derivative-free optimization [12, 10].

2. None of the results we have presented are of the “central limit theorem” type;
they are cruder and of the O,(-) type. This is because, when the sampling
and recursion choices lie off the diagonal in Figure 1, either the recursion
error or the sampling error is dominant and consequently leads to a situation
where the contribution to the error in the SCSR iterates is due only to a
few terms. When the sampling and recursion choices lie on the diagonal, a
central limit theorem will likely hold, but characterizing such a fine result
will involve further detailed assumptions on the convergence characteristics
of the deterministic recursion.
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. Another interesting question that we have not treated here is that of iterate
averaging [31] to increase efficiency. Recall that our results suggest that
efficiency cannot be achieved for sampling regimes slower than geometric. It
is possible that iterate averaging might be useful in such subgeometric low
sampling regimes, e.g., polynomial. It also seems that such averaging is of less
value in high sampling regimes for the same reason that CLT-type results do
not take hold due to the Lindberg—Feller condition [32] failing on constituent
sums.
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