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Abstract
This paper studies the rate of convergence to equilibrium for two diffusion models
that arise naturally in the queueing context: two-sided reflected Brownian motion
and the Ornstein–Uhlenbeck process. Specifically, we develop exact asymptotics and
upper bounds on total variation distance to equilibrium,which can be used to assess the
quality of the steady state as an approximation tofinite-horizonperformance quantities.
Our analysis relies upon the simple spectral structure that these two processes possess,
thereby explaining why the convergence rate is “pure exponential,” in contrast to the
more complex convergence exhibited by one-sided reflected Brownian motion.
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1 Introduction

In this paper, we study the rate of convergence to equilibrium for two diffusion pro-
cesses that arise naturally as weak limits of queueing systems: two-sided reflected
Brownian motion (RBM) and the Ornstein–Uhlenbeck (O–U) process. Our work is a
companion to Glynn and Wang [7], which provides a comprehensive analysis of the
rate of convergence to equilibrium for one-sided RBM (with lower reflecting boundary
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at the origin and negative drift). As in Glynn and Wang [7], our primary contribution
is to develop exact asymptotics and explicit upper bounds on the total variation (TV)
distance from equilibrium that can be used to assess the quality of the steady state as
an approximation to finite-horizon performance quantities. In addition, these bounds
and exact asymptotics can be used to provide guidance to help plan the length of the
“warm-up” period required to accurately compute steady-state quantities via simula-
tion for processes that can be approximated by these models (for additional discussion
of the initial transient problem, see Wang and Glynn [16,17]).

Let X = (X(t) : t ≥ 0) be a positive recurrent Markov process for which X(t) ⇒
X(∞) as t → ∞, where ⇒ denotes weak convergence. As in Glynn and Wang [7],
we denote the TV distance of X(t) to equilibrium (conditional on X(0) = x) by

d(t, x) = sup
A

|Px (X(t) ∈ A) − P(X(∞) ∈ A)|

= 1

2
sup

| f |≤1
|Ex f (X(t)) − E f (X(∞))|, (1.1)

where Px (·) denotes the probability law associated with X conditional on X(0) = x
and Ex (·) is the corresponding expectation operator, the first supremum is taken over
all measurable subsets A, and the second supremum is taken over all (measurable)
real-valued functions f bounded by 1 in absolute value. The total variation distance
is the most widely used metric for assessing rates of convergence of the transient
distribution to equilibrium; see, for example, Roberts and Rosenthal [15], Meyn and
Tweedie [14], andDiaconis [5].One nice property ofTVdistance is that it is guaranteed
to be monotone in t ; see, for example, Roberts and Rosenthal [15].

Let B = (B(t) : t ≥ 0) be a one-dimensional standard Brownian motion, so that
EB(t) = 0 and var B(t) = t for all t ≥ 0. In Glynn and Wang [7], we consider the
rate of convergence to equilibrium for a one-sided RBM X = (X(t) : t ≥ 0) with
drift −r and volatility σ > 0, so that X satisfies the stochastic differential equation
(SDE)

dX(t) = −rdt + σdB(t) + L(t).

Here, L = (L(t) : t ≥ 0) is the continuous non-decreasing process for which
I(X(t) > 0)dL(t) = 0 for t ≥ 0. This process is known as the local time of X at
the origin. The process X has an equilibrium distribution if and only if r > 0; see
Harrison [8, p. 102]. Set η = r/σ 2 and ν = r2/σ 2. Glynn and Wang [7] prove that,
for one-sided RBM,

d(t, x) ∼
√

2

π
(νt)−

3
2 exp

(
−νt

2

)
|1 − ηx |eηx−1

as t → ∞, when x 	= η−1, wherewe use the notation a(t) ∼ b(t) as t → ∞whenever
a(t)/b(t) → 1 as t → ∞. An interesting (and important) feature of this result is the

presence of the algebraically decaying pre-factor of order t− 3
2 that appears in this

setting.
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In this paper, we show that for two-sided RBM and the O–U process, the TV
distance has much simpler “pure exponential” asymptotics, so that

d(t, x) ∼ c(x)e−λt (1.2)

as t → ∞, for some function c(·), andwe identify c(·) andλ for both of themodels.We
also provide upper bounds ond(t, x) that can be potentially exploited computationally.

Section 2 develops some general theory, starting with a Hilbert space perspective
on rates of convergence and concluding with results focused on TV asymptotics and
upper bounds. In Sect. 3, we apply these results to two-sided RBM and the O–U
process, thereby verifying (1.2) for these models; see Theorems 2 and 3, respectively.

2 General theory

Let X = (X(t) : t ≥ 0) be an S-valued Markov process with a unique stationary
distribution π . For p ≥ 1, let L p(π) be the vector space of real-valued functions f
on S such that

Eπ | f (X(0))|p < ∞,

where Eπ (·) is the expectation operator conditional on X(0) having distribution π .
Then, L2(π) is a Hilbert space with inner product

〈 f , g〉 = Eπ f (X(0))g(X(0))

for f , g ∈ L2(π), having associated norm

‖ f ‖ = √〈 f , f 〉.

We assume that there exists a countably infinite orthonormal basis

(ui ∈ L2(π) : i ≥ 0)

for L2(π) for which u0(x) ≡ 1 for x ∈ S. Furthermore, we require that there exist

0 = λ0 < λ1 < λ2 < · · ·

such that

Exui (X(t)) = e−λi t ui (x)

for t ≥ 0, so that ui is an eigenfunction of X associated with eigenvalue −λi . Note
that

Eπui (X(1)) = Eπui (X(0)) = e−λi Eπui (X(0)),
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for i ≥ 0, so that Eπui (X(0)) = 0 for i ≥ 1.
In this case, f ∈ L2(π) can be written as

f =
∞∑
i=0

〈 f , ui 〉ui π a.e.

and

‖ f ‖ =
( ∞∑

i=0

〈 f , ui 〉2
) 1

2

;

see, for example, Folland [6, pp. 171–177].
For f ∈ L2(π), the Cauchy–Schwarz inequality implies that Ex | f (X(t))| < ∞

for π a.e. x . Set

(P(t) f )(x)
Δ= Ex f (X(t)).

Also, put

fn(x) =
n∑

i=0

〈 f , ui 〉ui (x),

wn(x) =
n∑

i=0

〈 f , ui 〉e−λi t ui (x).

Clearly, wn = P(t) fn π a.e. and wn → w∞ in L2(π). Since the Cauchy–Schwarz
inequality implies that

(P(t)( fn − f ))2(x) ≤ P(t)( fn − f )2(x)

for x ∈ S, it follows that

Eπ (wn(X(0)) − (P(t) f )(X(0)))2 = Eπ ((P(t) fn)(X(0)) − (P(t) f )(X(0)))2

≤ Eπ (P(t)( fn − f ))2(X(0))

= Eπ ( fn(X(0)) − f (X(0)))2

→ 0

as n → ∞, since fn → f in L2(π). Consequently, P(t) f = w∞ π a.e.
Set fc(x) = f (x) − Eπ f (X(0)) = f (x) − 〈 f , u0〉u0(x), and note that

∥∥eλ1t P(t) fc − 〈 f , u1〉u1
∥∥2 = ∥∥eλ1t (w∞ − 〈 f , u0〉u0) − 〈 f , u1〉u1

∥∥2

=
∥∥∥∥∥eλ1t

∞∑
i=1

e−λi t 〈 f , ui 〉ui − 〈 f , u1〉u1
∥∥∥∥∥
2

123



Queueing Systems

=
∥∥∥∥∥

∞∑
i=2

e−(λi−λ1)t 〈 f , ui 〉ui
∥∥∥∥∥
2

=
∞∑
i=2

e−2(λi−λ1)t 〈 f , ui 〉2

→ 0

as t → ∞, since λi > λ1 for i ≥ 2 and
∑∞

i=0〈 f , ui 〉2 < ∞ (because f ∈ L2(π)).
We have therefore proved Proposition 1.

Proposition 1 For f ∈ L2(π), we have

eλ1t ((P(t) f )(·) − Eπ f (X(0))) → 〈 f , u1〉u1(·)

as t → ∞ in L2(π).

Proposition 1 asserts that, in the L2(π) norm,

(P(t) f )(·) − Eπ f (X(0)) ≈ e−λ1t 〈 f , u1〉u1(·)

for t large.However, given our interest in the TVnorm [which ismore closely related to
L1(π)], we will nowmodify our setup somewhat. Note that the equality P(t) f = w∞
implies that

Ex f (X(t)) =
∫
S

p(t, x, y) f (y)π(dy)

for π a.e. x and f ∈ L2(π), where

p(t, x, y) =
∞∑
i=0

e−λi t ui (x)ui (y).

Such a representation for the transition density (with respect to π ) in terms of
decaying exponentials is often called a spectral representation. This motivates our
next assumption.

(A1) X = (X(t) : t ≥ 0) has a stationary distribution π for which

Px (X(t) ∈ dy) = p(t, x, y)π(dy)

for x, y ∈ S. Furthermore,

p(t, x, y) =
∞∑
i=0

e−λi t ui (x)ui (y)
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for x, y ∈ S, where Eπu2i (X(0)) = 1 for i ≥ 0, 0 = λ0 < λ1 < · · · , u0(x) ≡ 1 for
x ∈ S, and there exists t0 > 0 such that

∞∑
i=0

e−λi t0 |ui (x)| < ∞ (2.1)

for x ∈ S.

Equipped with (A1), we arrive at Theorem 1.

Theorem 1 If X satisfies (A1), then

d(t, x) ∼ 1

2
e−λ1t |u1(x)|

∫
S

|u1(y)|π(dy) (2.2)

as t → ∞, provided that u1(x) 	= 0. Also,

d(t, x) ≤ 1

2

∞∑
i=1

e−λi t |ui (x)| (2.3)

for t ≥ t0 and x ∈ S.

Proof It is well known that, because X(t) has a density with respect to π ,

d(t, x) = 1

2

∫
S

|p(t, x, y) − 1|π(dy).

(See, for example, Proposition 3 of Roberts and Rosenthal [15].) So, in view of the
fact that λ0 = 0 and u0(y) ≡ 1 for y ∈ S,

d(t, x) = 1

2

∫
S

∣∣∣∣∣
∞∑
i=1

e−λi t ui (x)ui (y)

∣∣∣∣∣ π(dy).

For t ≥ t0, the Cauchy–Schwarz inequality implies that

d(t, x) ≤ 1

2

∞∑
i=1

e−λi t |ui (x)|
∫
S

|ui (y)|π(dy)

≤ 1

2

∞∑
i=1

e−λi t |ui (x)|
√

‖ui‖2

≤ 1

2

∞∑
i=1

e−λi t |ui (x)|, (2.4)
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yielding result (2.3). To obtain result (2.2), note that

eλ1t d(t, x) = 1

2

∫
S

∣∣∣∣∣
∞∑
i=1

e−(λi−λ1)t ui (x)ui (y)

∣∣∣∣∣ π(dy).

Condition (2.1) and inequality (2.4) allow us to apply the dominated convergence
theorem to conclude that

∫
S

∣∣∣∣∣
∞∑
i=2

e−(λi−λ1)t ui (x)ui (y)

∣∣∣∣∣ π(dy) → 0

as t → ∞, thereby yielding result (2.2). ��
We note that Theorem 1 implies that the TV distance converges to 0 according

to “pure exponential” asymptotics (with no algebraically decaying pre-factor). To
understand why one-sided RBM has more complex asymptotics, it is instructive to
note that its spectral representation (with respect to its stationary distribution) has the
form

p(t, x, y) = 1 +
∫ ∞

ν
2

e−λt uλ(x)uλ(y)

(
s(λ)

2πλ

)
dλ,

where s(λ) = √
2λ − ν/σ for λ ≥ ν/2 and

uλ(x) = eηx
(
cos(s(λ)x) − η

s(λ)
sin(s(λ)x)

)

for λ > ν/2. In particular, one-sided RBM’s spectral representation has no positive
“gap” between λ = ν/2 and larger values in the spectrum, as required by (A1). This
lack of a gap is what contributes to the algebraic pre-factor for one-sided RBM; see
Glynn and Wang [7].

3 Rates of convergence for two-sided RBM and the O–U process

We shall now apply Theorem 1 to our two models. We say that X = (X(t) : t ≥ 0)
is a two-sided RBM (with reflecting boundaries at 0 and � > 0) having drift −r and
volatility σ > 0 if it satisfies the SDE

dX(t) = −rdt + σdB(t) + dL(t) − dU (t), (3.1)

where B and L are as in the one-sided setting, and U = (U (t) : t ≥ 0) is a non-
decreasing continuous process satisfying I(X(t) < �)dU (t) = 0 for t ≥ 0. The
process U is called the local time for X at �. Because of the reflecting barriers at 0
and �, X is always positive recurrent, regardless of the value of r ∈ R (unlike the
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one-sided case where r > 0 is required). In particular, the density p(·) (with respect
to Lebesgue measure) of the stationary distribution π for X is given by

p(y) =
{

2ηe−2ηy

1−e−2η� , 0 ≤ y ≤ �, η 	= 0
1
�
, 0 ≤ y ≤ �, η = 0,

(3.2)

where η is as in the one-sided setting; see Harrison [8, p. 99].
Two-sidedRBMarises as theweak limit of the number-in-systemprocess for queues

having a buffer with finite capacity �; see Whitt [18, p. 154]. In Berger and Whitt [1],
the authors study the quality of Brownian approximations for both the number-in-
system process and the overflow process in G/G/1/C systems. They further compute
asymptotic variance parameters associated with L(·) and U (·); see also Williams
[19] for a direct proof. More recently, Zhang and Glynn [20] study large deviations
asymptotics for U (·) as well as associated conditional queue dynamics, and D’Auria
and Kella [4] compute the stationary distribution for two-sided RBM in the presence
of Markov modulation.

In Linetsky [13], it is shown that, for 0 ≤ x, y ≤ �, the transition density of X with
respect to π is given by

p(t, x, y) =
∞∑
i=0

e−λi t ui (x)ui (y)

with λ0 = 0, u0(x) ≡ 1, and, when r 	= 0,

λi = ν

2
+ π2i2σ 2

2�2

and

ui (x) =
√√√√ 1 − e−2η�

η3� + π2i2η
�

{
π i

�
cos

(
xπ i

�

)
− η sin

(
xπ i

�

)}
eηx ,

for i ≥ 1 (with ν and η as in the one-sided case). On the other hand, if r = 0,

λi = π2i2σ 2

2�2

and

ui (x) = √
2 cos

(
xπ i

�

)

for i ≥ 1. Furthermore, Eπui (X(0))2 = 1 for i ≥ 0.
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When r 	= 0, the coefficient for the cosine term appearing in ui (·) can be bounded
by (π i/�)(π2i2η/�)− 1

2 = (η�)− 1
2 , whereas the coefficient for the sine function is

bounded by η(η3�)− 1
2 = (η�)− 1

2 . Consequently,

|ui (x)| ≤ 2√
η�

eηx

for 0 ≤ x ≤ � when r 	= 0 and i ≥ 1. On the other hand,

|ui (x)| ≤ √
2

for i ≥ 1 and r = 0. Since

∞∑
i=1

e−λi t = e− νt
2

∞∑
i=1

e
− π2i2σ2

2�2
t

≤ e− νt
2

∞∑
i=1

e
− π2iσ2

2�2
t

= e
−

(
ν
2+ π2σ2

2�2

)
t
(
1 − e

− π2σ2

2�2
t
)−1

= e−λ1t
(
1 − e

− π2σ2

2�2
t
)−1

,

evidently (A1) is satisfied. We therefore obtain Theorem 2.

Theorem 2 When X = (X(t) : t ≥ 0) is a two-sided RBM satisfying (3.1),

d(t, x) ∼ 1

2
e
−

(
ν
2+ π2σ2

2�2

)
t |u1(x)|

∫ �

0
|u1(y)|π(dy)

as t → ∞ when u1(x) 	= 0. Also,

d(t, x) ≤ e
−

(
ν
2+ π2σ2

2�2

)
t 1√

η�
eηx

(
1 − e

− π2σ2

2�2
t
)−1

for t > 0 and x ∈ [0, �] when r 	= 0, whereas

d(t, x) ≤ 1√
2
e
− π2σ2

2�2
t
(
1 − e

− π2σ2

2�2
t
)−1

for t > 0 and x ∈ [0, �] when r = 0.

We note that the exponential rate parameter associated with the rate of convergence
to equilibrium is always larger than in the one-sided case with the same drift r and
volatility σ (by an amount π2σ 2/(2�2)), and (not surprisingly) the rate is faster when
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� is small relative to σ . We further point out that our TV distance upper bound has the
desirable feature that it is within a constant factor of the exact asymptotic for d(t, x).

We turn next to the O–U process. We say that X = (X(t) : t ≥ 0) is an O–U
process with mean reversion rate μ and volatility σ > 0 if it satisfies the SDE

dX(t) = −μX(t)dt + σdB(t) (3.3)

for t ≥ 0. In order to guarantee positive recurrence, we require that μ be positive.
Then, the density p(·) (with respect to Lebesguemeasure) of the stationary distribution
π(·) is given by

p(y) =
√

μ

πσ 2 e
− μy2

σ2 ,

−∞ < y < ∞.
The O–U process arises as a weak approximation to the M/M/∞ queue; see

Iglehart [9] for the theoretical support for this approximation. In the finance literature,
theO–Uprocess is often called theVasicek SDE and can be used tomodel the evolution
of interest rates; see, for example, Brigo andMercurio [3], Chapter 3. In these settings,
X is shifted by a mean parameter a > 0, so that dX(t) = μ(a − X(t))dt + σdB(t)
for all t ≥ 0. The process X ′ = (X ′(t) : t ≥ 0) for which X ′(t) = X(t) − a then
satisfies (3.3).

For the O–U process (3.3), the transition density with respect to π takes the form

p(t, x, y) =
∞∑
i=0

e−λi t ui (x)ui (y) (3.4)

with λ0 = 0, u0(·) ≡ 1, and

λi = iμ,

ui (x) = (2i i !)− 1
2 Hi

(√
μ

σ
x

)

for i ≥ 1, where Hi (·) is the i th-order Hermite polynomial defined by

Hi (x) = (−1)i ex
2 di

dxi

(
e−x2

)

for i ≥ 0. Again, the ui have the property that

Eπui (X(0))2 = 1

for all i ≥ 0. The representation (3.4) follows from pp. 332–333 of Karlin and Taylor
[10] for the canonical case where μ = σ = 1, and the observation that
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p(t, x, y) =
√

μ

σ
p̃

(
μt,

√
μ

σ
x,

√
μ

σ
y

)
,

where p̃ = ( p̃(t, x, y) : t > 0, x, y ∈ R) is the transition density of the canonical
O–U process.

We can now appeal to Theorem 1 of Bonan and Clark [2] to establish the existence
of c̃ < ∞ such that

|ui (x)| ≤ c̃ exp

(
μx2

2σ 2

)
i−

1
12 (3.5)

for i ≥ 1. It follows that (2.1) holds, so that (A1) is satisfied, and hence Theorem 1
can be applied. Note that

∞∑
i=1

e−λi t |ui (x)| ≤ c̃e−μt (1 − e−μt )−1 exp

(
μx2

2σ 2

)

for t > 0 and x ∈ R. Since u1(x) =
√
2μ
σ

x , we arrive at Theorem 3.

Theorem 3 When X = (X(t) : t ≥ 0) is an O–U process satisfying (3.3),

d(t, x) ∼ e−μt |x |
√

μ

πσ 2

as t → ∞ when x 	= 0. Also,

d(t, x) ≤ e−μt (1 − e−μt )−1 c̃

2
exp

(
μx2

2σ 2

)

for t > 0 and x ∈ R.

Remark 1 In Lachaud [12], an exact asymptotic for d(t, x) is derived via a non-
rigorous Taylor series argument. The first part of Theorem 3 makes this rigorous.

Again, our upper bound on the TV distance has the desirable property that the upper
bound is within a constant factor of our TV distance asymptotic. However, our upper
bound involves the constant c̃.

In order to deal with this problem, we can potentially use Theorem 1 of Krasikov
[11] to quantify c̃. However, the bounds given there on Hi (·) only apply for i ≥ 6. We
therefore seek an alternative approach to upper bounding d(t, x) for the O–U process.
Fortunately, since the O–U process is Gaussian, this is feasible.

For z ∈ R, let

φ(z) = 1√
2π

e− z2
2

be the density of a standard Gaussian random variable Z (with mean zero and unit
variance).
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Proposition 2 Suppose that f ∈ L2(π). If 0 < γ 2 < 2 and τ ∈ R, then

|E f (γ Z + τ) − E f (Z)| ≤
√
E f 2(Z)

√√√√exp
(

τ 2

2−γ 2

)

γ
√
2 − γ 2

− 1.

Proof We start by observing that the Cauchy–Schwarz inequality implies that

|E f (γ Z + τ) − E f (Z)| =
∣∣∣∣∣∣
∫ ∞

−∞
f (y)

⎛
⎝φ

(
y−τ
γ

)
φ(y)γ

− 1

⎞
⎠ φ(y)dy

∣∣∣∣∣∣

=
∣∣∣∣∣∣E f (Z)

⎛
⎝φ

(
Z−τ
γ

)
φ(Z)γ

− 1

⎞
⎠

∣∣∣∣∣∣

≤
√
E f 2(Z)

√√√√√E

⎛
⎝φ

(
Z−τ
γ

)
φ(Z)γ

− 1

⎞
⎠

2

=
√
E f 2(Z)

√√√√√√E

⎛
⎜⎝φ

(
Z−τ
γ

)2
φ(Z)2γ 2 − 1

⎞
⎟⎠,

where the third equality follows from the fact that

E
φ

(
Z−τ
γ

)
φ(Z)γ

= 1.

But

1

γ 2 E
φ

(
Z−τ
γ

)2
φ(Z)2

= 1

γ 2

∫ ∞

−∞
e
− (y−τ )2

γ 2
+y2 e− y2

2√
2π

dy

= 1

γ 2

∫ ∞

−∞
e
−

(
1

γ 2
− 1

2

)
y2+ 2τ

γ 2
y− τ2

γ 2
dy√
2π

= 1

γ

∫ ∞

−∞
e
− 1

2γ 2

(√
2−γ 2 y− 2τ√

2−γ 2

)2

+ 2τ2

(2−γ 2)

1
γ 2

− τ2

γ 2

√
2 − γ 2

2πγ 2 dy
1√

2 − γ 2
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= 1

γ
e

τ2

γ 2

(
2

2−γ 2
−1

)
1√

2 − γ 2

∫ ∞

−∞
φ

(
2 − γ 2

2γ 2

(
y − 2τ

2 − γ 2

)2
) √

2 − γ 2

γ 2 dy

= 1

γ
√
2 − γ 2

e
τ2

2−γ 2 ,

from which the result follows. ��
Of course, it is well known that, conditional on X(0) = x , the O–U process has

Gaussian marginals, so that (3.4) sums to a Gaussian density. In particular, X(t) is
Gaussian with mean xe−μt and variance σ 2/(2μ)(1 − e−2μt ). Note that

f (X(t))
D= f̃

(√
1 − e−2μt Z +

√
2μ

σ
xe−μt

)

and f (X(∞))
D= f̃ (Z), where f̃ (x) = f (σ/

√
2μx). So, for f ∈ L2(π), Proposition

2 applies to f̃ with γ = √
1 − e−2μt and τ = √

2μ/σ xe−μt , thereby yielding the
identity

|Ex f (X(t)) − E f (X(∞))| = |Ex fc(X(t)) − E fc(X(∞))|

≤
√
var f̃ (Z)

√√√√exp
(

2x2e−2μtμ

σ 2(1+e−2μt )

)

(1 − e−4μt )
1
2

− 1

≤
√
var f̃ (Z)

√
exp

(
2x2e−2μtμ/σ 2

)
(1 − e−4μt )

1
2

− 1.

Note that if | f | ≤ 1, then | f̃ | ≤ 1 and var f̃ (Z) ≤ 4. Hence, we are led to Theorem 4,
which provides an explicit upper bound on the total variation distance to equilibrium.

Theorem 4 Suppose that X is an O–U process obeying the SDE (3.3). Then, for each
t > 0 and x ∈ R,

d(t, x) ≤
√
exp

(
2x2e−2μtμ/σ 2

)
(1 − e−4μt )

1
2

− 1. (3.6)

Note that the bound (3.6) is within a constant factor of Theorem 3’s asymptotic, estab-
lishing that Theorem 4 provides a reasonably tight bound and can be used effectively
in practice.

4 Conclusions

In this paper, we derived bounds and asymptotics that can be used to assess when
a finite-horizon formulation can be replaced by an equilibrium formulation for both
finite-buffer and infinite-server models, and to provide insight into related simulation
start-up issues. Because the Hilbert spaces for both processes have countable bases
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of eigenfunctions in which the “second eigenvalue” is isolated from the rest of the
spectrum (i.e., the second eigenvalue is not a limit point of other eigenvalues), simple
spectral representations that lead to exact exponential asymptotics for the rate of
convergence to equilibrium can be obtained in a relatively straightforward fashion
(in sharp contrast with one-sided RBM, for which the analysis is significantly more
challenging).
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