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Abstract This paper discusses the rate of convergence to equilibrium for one-
dimensional reflected Brownian motion with negative drift and lower reflecting
boundary at 0. In contrast to prior work on this problem, we focus on studying the
rate of convergence for the entire distribution through the total variation norm, rather
than just moments of the distribution. In addition, we obtain computable bounds on
the total variation distance to equilibrium that can be used to assess the quality of the
steady state for queues as an approximation to finite horizon expectations.
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1 Introduction

This paper is concerned with the convergence to equilibrium of the reflected Brownian
motion (RBM) process X = (X (t): t ≥ 0). This process can be characterized as the
unique solution of the stochastic differential equation (SDE)
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dX (t) = −rdt + σdB(t) + dL(t), (1.1)

subject to X (0) = x ≥ 0, where r > 0, B = (B(t): t ≥ 0) is standard Brownian
motion, and L = (L(t): t ≥ 0) is a continuous non-decreasing process for which
I(X (t) > 0)dL(t) = 0 for all t ≥ 0. The boundary process L is often called the local
time of X (at the origin). The parameter −r represents the drift of X and σ > 0 its
volatility.

As is well known, RBM arises naturally as an approximation to the single-server
queue in heavy traffic. To illustrate, suppose that W = (Wn : n ≥ 0) is the wait-
ing time (exclusive of service) sequence for the first-in first-out (FIFO) single-server
queue having inter-arrival times (χn : n ≥ 1) and service times (Vn : n ≥ 0). If
((χn+1, Vn): n ≥ 0) is a stationary sequence, then heavy-traffic approximation asserts
that

Wn
D≈ X (n), (1.2)

where
D≈ denotes has approximately the same distribution as (and has no rigorous

meaning), and X is an RBM with drift −r and volatility σ given by

− r = E(V0 − χ1),

σ 2 = Var(V0 − χ1) + 2
∞∑

j=1

Cov(V0 − χ1, Vj − χ j+1). (1.3)

A key result giving theoretical support to (1.3) is the limit theorem, due to Iglehart
and Whitt [20], that holds as r ↘ 0; see also Borovkov [8].

When r > 0, both W and X have finite-valued steady states, in the sense that

Wn ⇒ W∞ (1.4)

and
X (t) ⇒ X (∞) (1.5)

as n, t → ∞, where ⇒ denotes weak convergence. Furthermore, Kingman [21]
proved a limit theorem supporting the approximation

W∞
D≈ X (∞)

when r is small. The random variable X (∞) has an exponential distribution:

P(X (∞) ∈ dx)
Δ= π(dx) = 2ηe−2ηxdx

for x ≥ 0, where η = r/σ 2; see Harrison [19] p.102.
It is common, in many queueing applications, to approximate various transient

performance measures by their corresponding more analytically tractable steady-state
limits. Steady-state analysis also avoids the need for the modeler to specify a time
horizon or initial distribution in pursuing his or her model analysis. Either one of these
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modeling choices can be problematic, since there may be no natural candidate for
either one.

Akey issue that arises in replacing a transient analysis by an equilibrium formulation
is the quality of the resulting approximation. In view of (1.2), it is natural to use
the rate of convergence to equilibrium for RBM as a vehicle toward approximating
the rate of convergence for the pre-limit queueing model. Accordingly, Abate and
Whitt [1,2] study the rate of convergence of Ex X (t)k to E X (∞)k as t → ∞ (for
k = 1, 2, . . .), where Ex (·) is the expectation operator associated with the probability
Px (·) Δ= P(· | X (0) = x). This was supplemented by an accompanying paper [3]
on moment convergence for the M/M/1 queue, thereby extending earlier work of
Cohen [10]. In addition, Abate and Whitt [4] considered the transient behavior of the
workload process of the M/G/1 queue, but without a focus on utilizing the results to
study the question of the rate of convergence to equilibrium.

This paper provides a further complement to this body of theory on rates of conver-
gence, by comprehensively studying the rate at which the entire distribution of X (t)
converges to that of X (∞) as t → ∞. In Sect. 2, we obtain both asymptotic and finite-
time bounds for the rate at which X (t) converges to X (∞) in the total variation norm;
see (2.14) and (2.13). The total variation norm is the most widely used metric within
the Markov process context for studying rates of convergence to equilibrium (see, for
example, Roberts and Rosenthal [25], Meyn and Tweedie [23], and Diaconis [11]).
We further generalize our results to the h-norm distance between X (t) and X (∞); see
Theorem 2. Given (1.3), these results translate immediately into a recommendation
for the time t = t (ε) associated with guaranteeing that the “distance to equilibrium”
be less than some given ε > 0; see (2.21).

In Sect. 3, our focus is on the time t at which a tail probability Px (X (t) > y) can
be well approximated by P(X (∞) > y). Our theoretical vehicle here is the use of
large deviations, so that the suggested approximation (3.1) is likely to be especially
relevant when the event {X (t) > y} is “rare” under Px .

While Sect. 2 considers the rate at which instantaneous performance measures of
the form Ex f (X (t)) converge to E f (X (∞)) (for a given real-valued performance
functional f ), Sect. 4 studies their integrated counterpart, namely Ex

∫ t
0 f (X (s))ds.

Such integrated performance measures are especially relevant in cost/reward settings
where the costs and rewards are aggregated over a given operational time horizon.
Again, we develop approximations and bounds that can be used to assess when such
finite horizon integrated performance measures can be replaced by an equilibrium
expectation; see (4.9).

In Sect. 5, we change our perspective somewhat, re-interpreting the results of
Sects. 2 and 4 to help assess how long a steady-state simulation must be run, in
order that the bias introduced by the initial distribution be smaller than some given
tolerance. Our recommendations differ, depending on whether the steady state is com-
puted by simulating a single long replicate, or by generating p shorter replicates (as
is natural in the parallel computing context).

Finally, Sect. 6 discusses RBM from the standpoint of its spectral representation.
This representation is intimately connected to the Hilbert space of functions L2(π)

that are square-integrable with respect to RBM’s stationary distribution. The fact that
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the convergence to equilibrium includes an algebraic non-exponential factor arises as a
consequence of the fact that the spectrum has a continuous component. One interesting
subtlety has to do with the fact that the spectral representation provides a description
of the rate of convergence only for a subset of L2(π); see (6.6) and (6.7).

It should be noted that the companion paper Glynn andWang [16] considers rates of
convergence to equilibrium for two additional diffusion processes that arise naturally
in queueing theory: two-sided RBM and the Ornstein–Uhlenbeck process.

2 Total variation convergence to equilibrium for RBM

In this section, we study the rate of convergence for instantaneous performance mea-
sures of the form Ex f (X (t)) to the equilibrium expectation E f (X (∞)). We start by
recalling that the (conditional) cumulative distribution of function of X (t) is given by

Px (X (t) ≤ y) = 1 − Φ

(−y + x − r t

σ
√

t

)
− e−2ηyΦ

(−y − x + r t

σ
√

t

)
, (2.1)

where Px (·) Δ= P(· | X (0) = x) andΦ(·) denotes the cumulative distribution function
associated with a standard normal random variable (rv) N (0, 1); see, for example,
Harrison [19], p. 48. It follows immediately that the transition density of X is given
by

p(t, x, y) = 2ηe−2ηyΦ

(
r t − x − y

σ
√

t

)
+ 1

σ
√

t
φ

(−r t + x − y

σ
√

t

)

+ 1

σ
√

t
e−2ηyφ

(
r t − x − y

σ
√

t

)
, (2.2)

where φ(·) denotes the standard normal probability density function.
We consider first the most widely adopted “distance measure” used to study con-

vergence rates for Markov processes, namely the total variation distance given by

d(t, x)
Δ= ‖Px (X (t) ∈ ·) − P(X (∞) ∈ ·)‖
= sup

0≤ f ≤1
|Ex f (X (t)) − E f (X (∞))|

= sup
A

|Px (X (t) ∈ A) − P(X (∞) ∈ A)|,

where the final supremum is taken over all measurable subsets A of [0, ∞). This is
easily seen to equal

1

2

∫ ∞

0
|p(t, x, y) − p(y)|dy. (2.3)

A well-known property of the total variation distance for Markov processes, mono-
tonicity in time (see, for example, Proposition 3 of Roberts and Rosenthal [25]), makes
it especially convenient for the study of convergence rates. Indeed,

123



Queueing Syst

d(s + t, x) = 1

2

∫ ∞

0

∣∣∣∣
∫ ∞

0
(p(t, x, z) − p(z))p(s, z, y)dz

∣∣∣∣ dy

≤ 1

2

∫ ∞

0
|p(t, x, z) − p(z)|

∫ ∞

0
p(s, z, y)dydz

= d(t, x)

for s, t ≥ 0.
To explore the rate of convergence of d(t, x) to zero, it is convenient to find an

alternative representation to (2.2) for p(t, x, y) − p(y). In particular, we will now
derive the spectral representation for the transition density ofRBM.Because of the key
role itwill play in our analysis,weprovide a direct proof. (Aswe shall discuss in Sect. 6,
the existing proof of the spectral representation for RBM relies on functional analysis
ideas associatedwith the self-adjointness of the infinitesimal generator associatedwith
X ; see Linetsky [22].)

Throughout this paper, we will state our results for general RBM, but often prove
the results only for the special case of canonical RBM. The RBM X̃ = (X̃(t): t ≥ 0)
is said to be canonical if r = σ = 1. In particular, the self-similarity of Brownian
motion ensures that

X (·) D= 1

η
X̃(ν·),

where
D= denotes equality in distribution and ν = r2/σ 2. It then follows that the

transition density p for an RBM with drift −r and volatility σ can be expressed in
terms of the transition density p̃ for X̃ , namely

p(t, x, y) = η p̃(νt, ηx, ηy). (2.4)

Consequently, our derivation of the spectral representation will focus on canonical
RBM.

Let Φ(·) = 1 − Φ(·), and note that (2.1) implies that

Px (X (t) ≤ y) − P(X (∞) ≤ y)

= −Φ

(
x − y − t√

t

)
+ e−2yΦ

(
t − x − y√

t

)

= −
∫ x−y−t√

t

−∞
e− v2

2
dv√
2π

+ e−2y
∫ ∞

t−x−y√
t

e− w2
2

dw√
2π

=
∫ ∞

t

y − x − z

2z
3
2

e− (x−y−z)2

2z
dz√
2π

+ e−2y
∫ ∞

t

y + x + z

2z
3
2

e− (z−x−y)2

2z
dz√
2π

.

(2.5)
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We now observe that

e− (x+y)2

2z√
2π z

= Ee
i(x+y)

N (0, 1)√
z

√
2π z

=
∫ ∞

−∞
e− ξ2z

2 (cos(xξ) cos(yξ) − sin(xξ) sin(yξ))dξ · 1

2π

= 1

π

∫ ∞

0
e− ξ2z

2 (cos(xξ) cos(yξ) − sin(xξ) sin(yξ))dξ, (2.6)

where we use the evenness of the cosine and sine products in the last step.
A similar expression to (2.6) holds for e−(x−y)2/(2z)/

√
2π z. Taking the difference

between these two expressions yields the identity

2

π

∫ ∞

0
e− ξ2z

2 sin(xξ) sin(yξ)dξ = ze− (x−y)2

2z

z
3
2
√
2π

− ze− (x+y)2

2z

z
3
2
√
2π

. (2.7)

Differentiating (2.7) with respect to x , we find that

2

π

∫ ∞

0
e− ξ2z

2 ξ cos(xξ) sin(yξ)dξ = (y − x)e− (x−y)2

2z

z
3
2
√
2π

+ (x + y)e− (x+y)2

2z

z
3
2
√
2π

. (2.8)

Substituting (2.7) and (2.8) into the right-hand side of (2.5) then shows that

Px (X (t) ≤ y) − P(X (∞) ≤ y)

= 1

π
ex−y

∫ ∞

t

∫ ∞

0
e− (ξ2+1)z

2 (ξ cos(xξ) − sin(xξ)) sin(yξ)dξdz

= 1

π
ex−y

∫ ∞

0
(ξ cos(xξ) − sin(xξ)) sin(yξ)

∫ ∞

t
e− (ξ2+1)z

2 dzdξ

= 2

π
ex−y

∫ ∞

0
(ξ cos(xξ) − sin(xξ)) sin(yξ)

e− (ξ2+1)t
2

ξ2 + 1
dξ.

Differentiating the above expression with respect to y shows that

p(t, x, y) − p(y)

= 2

π
ex−y

∫ ∞

0
(ξ cos(xξ) − sin(xξ))(ξ cos(yξ) − sin(yξ))

e− (ξ2+1)t
2

ξ2 + 1
dξ. (2.9)

(All of the above interchanges of differentiation with integration are easily justified
via the dominated convergence theorem.) Substituting λ = −(ξ2 + 1)/2 into (2.9)
yields Proposition 1, our desired spectral representation (stated for general RBM).
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Proposition 1 For all x, y ≥ 0 and t > 0,

p(t, x, y) − p(y) = p(y)

∫ − ν
2

−∞
eλt uλ(x)uλ(y)

(
− s(λ)

2πλ

)
dλ, (2.10)

where s(λ) = √−2λ − ν/σ for λ ≤ −ν/2, and

uλ(x) = eηx
(
cos(s(λ)x) − η

s(λ)
sin(s(λ)x)

)
(2.11)

for λ < −ν/2.

Formula (2.10) expresses the difference p(t, x, y) − p(y) as an integral of decaying
exponentials. As we shall see in the proof of Theorem 1, this significantly simplifies
our convergence analysis.

Remark 1 We shall also later need the quantity

u− ν
2
(x) = lim

λ↗− ν
2

uλ(x) = eηx (1 − ηx). (2.12)

We use the notation o(a(t)) to denote a function g(t) such that |g(t)|/a(t) → 0 as
t → ∞. For p > 0, let

L p(π) =
{

h:
∫ ∞

0
|h(x)|pπ(dx) < ∞

}

and write

〈 f, g〉 =
∫ ∞

0
f (x)g(x)π(dx)

whenever f g ∈ L1(π ).

Theorem 1 For each t > 0 and x ≥ 0,

d(t, x) ≤
√

2

π
(νt)−

3
2 e− νt

2 (1 + ηx)eηx min(νt, 1), (2.13)

and

d(t, x) =
√

2

π
(νt)−

3
2 e− νt

2 |1 − ηx |eηxe−1 + o
(

t−
3
2 e− νt

2

)
(2.14)

as t → ∞.
Furthermore, if f is a continuous function for which f u−ν/2 ∈ L1(π), then

Ex f (X (t)) = E f (X (∞)) + 1√
2π

(νt)−
3
2 e− νt

2 u− ν
2
(x)

〈
f, u− ν

2

〉
+ o

(
t−

3
2 e− νt

2

)

(2.15)
as t → ∞.
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Proof As noted earlier, we can specialize our proof to canonical RBM. Note that the
substitution −z = (λ + 1

2 )t into (2.10) yields

p(t, x, y) − p(y) = p(y)
e− t

2

2π t

∫ ∞

0
e−zu− z

t − 1
2
(x)u− z

t − 1
2
(y)

√
2z
t

z
t + 1

2

dz

= 2
√
2

π
t−

3
2 e− t

2 ex−y
∫ ∞

0

√
ze−zk(t, x, y, z)dz, (2.16)

where

k(t, x, y, z) =
(

1

1 + 2z
t

) (
cos

(√
2z

t
x

)
−

√
t

2z
sin

(√
2z

t
x

))

·
(
cos

(√
2z

t
y

)
−

√
t

2z
sin

(√
2z

t
y

))
.

Because | sin(w)/w| ≤ 1 for all w, it follows that

z
1
2 |k(t, x, y, z)| ≤ (1+x)(1+y)

z
1
2

2z
t + 1

≤ (1+x)(1+y)min

(
t

2z
1
2

, z
1
2

)
. (2.17)

Consequently,

|p(t, x, y) − p(y)| ≤ 2
√
2

π
t−

3
2 e− t

2 ex−y(1 + x)(1 + y)

·
∫ ∞

0
e−z min

(
t

2
z− 1

2 , z
1
2

)
dz

≤ 2
√
2

π
t−

3
2 e− t

2 ex−y(1 + x)(1 + y)

·min

(
t

2
Γ

(
1

2

)
, Γ

(
3

2

))

= 2
√
2

π
t−

3
2 e− t

2 ex−y(1 + x)(1 + y)

·min

(
t

2

√
π,

√
π

2

)
, (2.18)

where Γ (·) denotes the gamma function; the values for Γ (1/2) and Γ (3/2) can be
found on p. 19 of Artin [5]. Integrating over y, we obtain the bound (2.13) on d(t, x).

As for (2.14), note that we can multiply both sides of (2.16) by e
t
2 t

3
2 , and use the

bound (2.17) to establish the required domination needed for the application of the
dominated convergence theorem, thereby obtaining the limit

123



Queueing Syst

t
3
2 e

t
2

∫ ∞

0
|p(t, x, y) − p(y)|dy → 2

√
2

π
ex |1 − x |

∫ ∞

0
z
1
2 e−zdz

∫ ∞

0
|1 − y|e−ydy

as t → ∞. The limit (2.14) then follows from the fact that

∫ ∞

0
|1 − y|e−ydy = 2

∫ 1

0
(1 − y)e−ydy = 2e−1.

For the final assertion, note that the continuity of f implies that f is bounded
over finite intervals, so that the bounded convergence theorem yields the correct limit
behavior for the integral (in y) over [0, 2/η]. For the integral in y over [2/η, ∞), we
note that (1 + y)/|u−ν/2(y)| is bounded there, and exploit the dominating function
(2.17) and the dominated convergence theorem to finish the proof. ��

Remark 2 We note that the total variation distance d(t, x) is always guaranteed to be
less than or equal to 1, so that the right-hand side of (2.13) is interesting only when
the value of t is large enough that the bound is less than 1.

Evidently, for t ≥ 1/ν, (2.13) implies that

d(t, x) ≤
√

2

π
(νt)−

3
2 e− νt

2 (1 + ηx)eηx . (2.19)

In particular,

d(t, 0) ≤
√

2

π
(νt)−

3
2 e− νt

2 (2.20)

for t ≥ 1/ν. This latter upper bound is within a factor of e of the correct long-term
behavior described by (2.14) when x = 0.

Theorem 1 provides a solution to the practical question of how large t must be in
order that the distance of X (t) be within ε in total variation norm from X (∞). In
particular, (2.19) suggests that we choose t = t (ε) according to the formula

t (ε) = 2

ν

(
log

(√
2

π

(ηx + 1)

ε

)
+ ηx

)
, (2.21)

provided that ε ≤
√

2
π
(ηx + 1)/e (since this choice guarantees that t (ε) ≥ 1/ν).

We can now use (2.21) as a guideline for determining when the pre-limit queue has
a distribution within ε of its equilibrium.

We observe that (2.14) asserts that the total variation convergence rate is minimized
asymptotically at x = 1/η = 2E X (∞). Note that (in the case of canonical RBM)
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e−x u− 1
2− z

t
(x)

(
1

1 + 2z
t

)−1

=
⎛

⎝1 − 1

2

(√
2z

t

)2

x2 + o

(
1

t

)

−
√

t

2z

⎛

⎝
√
2z

t
x − 1

6

(√
2z

t

)3

x3 + o
(

t−
3
2

)
⎞

⎠

⎞

⎠

·
(
1 − 2z

t
+ o

(
1

t

))

= (1 − x)

(
1 − 2z

t

)
+ z

t

(
−x2 + 1

3
x3

)
+ o

(
1

t

)
,

via a Taylor expansion in 1/t . Hence

k(t, 1, y, z) = −2

3

z

t
u− 1

2− z
t
(y)e−y + o

(
1

t

)

as t → ∞. Because
∫ ∞

0
z
3
2 e−zdz = Γ

(
5

2

)
= 3

4

√
π,

a dominated convergence argument similar to that used in the proof of Theorem 1
shows that

d(t, 1/η) =
√

2

π
(νt)−

5
2 e− νt

2 + o
(

t−
5
2 e− νt

2

)

as t → ∞, thereby yielding the total variation convergence rate associated with the
exceptional state x = 1/η = 2E X (∞).

We now generalize our total variation result to the more general weighted variation
h-norm defined by

‖Px (X (t) ∈ ·) − P(X (∞) ∈ ·)‖h
Δ= sup

| f |≤h
|Ex f (X (t)) − E f (X (∞))|.

The total variation distance d(t, x) is one half the h-norm corresponding to the enve-
lope function h = e, where e(x) = 1 for x ≥ 0. Such h-norms are natural in the
queueing context where one is interested in studying convergence rates for unbounded
performance measures f (such as Ex X (t)). In contrast to the total variation norm, h-
norms are typically non-monotone in t .

Theorem 2 Suppose that h ≥ 1 is a continuous function for which hu− ν
2

∈ L1(π).
Then
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‖Px (X (t) ∈ ·) − P(X (∞) ∈ ·)‖h

≤
√

2

π
(νt)−

3
2 e− νt

2 eηx (1 + ηx)min (νt, 1)
∫ ∞

0
ηe−ηy(1 + ηy)h(y)dy (2.22)

for t > 0 and x ≥ 0, and

‖Px (X (t) ∈ ·) − P(X (∞) ∈ ·)‖h

= 1√
2π

(νt)−
3
2 e− νt

2

∣∣∣u− ν
2
(x)

∣∣∣
∫ ∞

0

∣∣∣u− ν
2
(y)

∣∣∣ h(y)p(y)dy + o
(

t−
3
2 e− νt

2

)

as t → ∞.

The proof of this result is similar to that of Theorem 1 and is therefore omitted.

Inmany applied settings,modelers choose to simplify a transient analysis bymaking
an equilibrium approximation to the transient performance measure. In particular, if
the modeler wishes to be assured that all performance functionals f sitting within an
envelope function h have expectation Ex f (X (t))within ε of their equilibrium values,
the upper bound (2.22) can be used to determine the magnitude of the approximation
error.

Example 1 If h(x) = 1 + x for x ≥ 0 (so that both indicator functions and Ex X (t)
are covered), then the upper bound (2.22) is given by

√
2

π
(νt)−

3
2 e− νt

2 eηx (1 + ηx)min (νt, 1)
3 + 2η

η
,

which is 1+ 3
2η times as large as that for the total variation distance analogue (in which

h = e). The time required to make this h-norm less than ε is then increased additively
by an amount equal to log(1+ 3

2η ) relative to the time t (ε) given by (2.21) for the total
variation norm. So, the approximation “cost” to the envelope h(x) = 1+ x relative to
the total variation norm is small when E X (∞) is of moderate size. This suggests that
the formula (2.21) is still useful even when dealing with unbounded functionals f .

Example 2 If h(x) = eθx for x ≥ 0, then we need to choose θ < η in order to
satisfy the condition of Theorem 2. In this setting, the factor of 1 + 3

2η in Example 1

is replaced by η(2η − θ)/(2(η − θ)2). Again, the time required to make this h-norm
less than ε relative to the total variation norm is increased additively by the amount
log(η(2η−θ)/(2(η−θ)2)), again showing that (2.21) is typically a good convergence
guideline even for many unbounded functions.

We conclude this section by noting that an easy consequence of (2.16) is that

p(t, x, y)− p(y) = η

√
2

π
(νt)−

3
2 e− νt

2 eη(x−y)(ηx−1)(ηy−1)+o
(

t−
3
2 e− νt

2

)
(2.23)
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as t → ∞, uniformly in x and y on compact intervals.We note that this relation implies
that p(t, x, ·) crosses p(·) at a point converging (as t → ∞) to y = 1

η
, and that the

crossing is from above to below when x < 1
η
(and from below to above when x > 1

η
).

So, the transition density allocates more mass to [0, 1/η] for all t sufficiently large
when X starts in that interval (with a similar conclusion when X starts in [1/η,∞)).

3 Rates of convergence for tail probabilities

We now briefly discuss rates of convergence to equilibrium for tail probabilities of
the form Px (X (t) > y) to P(X (∞) > y). Such probabilities arise naturally in many
application settings, as quality-of-service constraints often involve such probabilities
(for example, the requirement that no more than a given proportion of customers
experience a delay greater than y).

To provide some additional insight into this question (beyond that of Sect. 2), we
consider a “large deviations” setting in which x , y, and t are large. Specifically, we
consider an asymptotic regime in which (x, y, t) = (x̃, ỹ, t̃)τ with τ → ∞. Let
a ∨ b denote max(a, b) for a, b ∈ R.

Theorem 3 If (x, y, t) = (x̃, ỹ, t̃)τ , then

1

τ
log Px (X (t) > y) →

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ t̃ ≤ x̃−ỹ
r ∨ 0,

− (ỹ−x̃+r t̃)2

2σ 2 t̃
,

x̃−ỹ
r ∨ 0 ≤ t̃ ≤ (

√
x̃+√

ỹ)2

r ,

−2η ỹ, t̃ ≥ (
√

x̃+√
ỹ)2

r ,

as τ → ∞.

Given that τ−1 log P(X (∞) > y) → −2η ỹ as τ → ∞, Theorem 3 suggests that
Px (X (t) > y) equilibrates to P(X (∞) > y) roughly when

t ≈ (
√

x + √
y)2

r
, (3.1)

when x , y, and t are reasonably large.We note that the time to equilibrium is increasing
in x . This suggests that when Px (X (t) > y) is small (and {X (t) > y} is a rare event),
it can take longer for the probability to reach the equilibrium value when the system
is initialized with a large workload.

Proof (of Theorem 3) Recall that when X is a canonical RBM,

Px (X (t) > y) = Φ

(−y + x − t√
t

)
+ e−2yΦ

(−y − x + t√
t

)
.
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In our large deviations scaling, it follows from the Mill’s ratio asymptotic for Φ(·)
(see, for example, Grimmett and Stirzaker [18], p. 98) that in this canonical context,

1

τ
logΦ

(−y + x − t√
t

)
→

{
0, 0 ≤ t̃ ≤ (x̃ − ỹ) ∨ 0,

− (ỹ+t̃−x̃)2

2t̃
, t̃ ≥ (x̃ − ỹ) ∨ 0,

(3.2)

and

1

τ
log

(
e−2yΦ

(−y − x + t√
t

))
→

{
−2 ỹ − (t̃−x̃−ỹ)2

2t̃
, t̃ ≤ x̃ + ỹ,

−2 ỹ, t̃ ≥ x̃ + ỹ,
(3.3)

as τ → ∞. Observe that−2 ỹ −(t̃ − x̃ − ỹ)2/(2t̃) ≤ −(ỹ + t̃ − x̃)2/(2t̃) for t̃ ≤ x̃ + ỹ,
and hence

1

τ
log Px (X (t) > y) → max

(
− (ỹ + t̃ − x̃)2

2t̃
, −2 ỹ

)

for t̃ ≥ (x̃ − ỹ) ∨ 0. The function −(ỹ + t̃ − x̃)2/(2t̃), viewed as a function of t̃ ,
crosses below−2 ỹ precisely at t̃ = (

√
x̃ +√

ỹ)2, thereby proving the theorem in view
of (3.2) and (3.3). ��

The monotonicity in x of the equilibrium time t given by (3.1) can be explained as
follows. When {X (t) > y} is “rare,” the most likely path (when viewed as a function
of time) associated with this event is one in which X roughly follows a straight line
path from x to y in which X never touches the reflecting boundary at 0. However, when
t is large enough, a competing path becomes dominant. In particular, for t sufficiently
large, a more probable trajectory generating {X (t) > y} is one in which X drifts down
from x to the reflecting barrier at 0 according to its natural drift −r and stays in a
vicinity of the origin until time t − y/r , after which the process increases linearly from
level 0 to level y, crossing level y just before time t . The equilibrium time associated
with (3.1) is exactly that time t at which the probability of the second competing path
that empties the queue overtakes the probability associated with the straight line path.
Since the time required for the system to empty is increasing in x , we find that the
equilibrium time (3.1) must be monotone in x .

Our next result makes this explanation rigorous. Let

φ1(s̃) = x̃ − r s̃, 0 ≤ s̃ ≤ t̃,

φ2(s̃) = x̃ + (ỹ − x̃)
s̃

t̃
, 0 ≤ s̃ ≤ t̃,

φ3(s̃) =

⎧
⎪⎨

⎪⎩

x̃ − r s̃, 0 ≤ s̃ ≤ x̃
r ,

0, x̃
r ≤ s̃ ≤ t̃ − ỹ

r ,

ỹ + r(s̃ − t̃), t̃ − ỹ
r ≤ s̃ ≤ t̃,

and put I1 = (0, (x̃ − ỹ)/r ∨ 0), I2 = ((x̃ − ỹ)/r ∨ 0, (
√

x̃ + √
ỹ)2/r), and

I3 = ((
√

x̃ + √
ỹ)2/r, ∞).
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Theorem 4 Suppose that (x, y, s, t) = (x̃, ỹ, s̃, t̃)τ with 0 ≤ s̃ ≤ t̃ . Then, for all
ε > 0, i = 1, 2, 3, and t̃ ∈ Ii ,

1

τ
log Px

(∣∣∣∣
X (s)

τ
− φi (s̃)

∣∣∣∣ < ε

∣∣∣∣ X (t) > y

)
→ 0

as τ → ∞.

Proof Weonly outline the argument, since it is straightforward. Consider, for example,
the case in which t̃ ∈ I3. For 0 ≤ s̃ ≤ x̃/r , note that, for ε > 0,

Px

(∣∣∣∣
X (s)

τ
− φ3(s̃)

∣∣∣∣ < ε, X (t) > y

)

= Px

(∣∣∣∣
X (s)

τ
− (x̃ − r s̃)

∣∣∣∣ < ε, X (t) > y

)

≥ Px

(∣∣∣∣
X (s)

τ
− (x̃ − r s̃)

∣∣∣∣ < ε

)
Px−rs−ετ (X (t − s) > y).

For all ε > 0 small, (
√

x̃ − r s̃ − ε + √
ỹ)2/r < t̃ − s̃, so Theorem 3 implies that

1

τ
log Px−rs−ετ (X (t − s) > y) → −2η ỹ

as τ → ∞. Since Px (|X (s)/τ − (x̃ − r s̃)| < ε) → 1 as τ → ∞, the result follows
for this combination of s̃ and t̃ . The other cases can be similarly handled. ��

4 Rates of convergence for integrated performance measures

Modelers frequently replace the exact integrated performance measure

Ex

∫ t

0
f (X (s))ds

by its steady-state approximation. In particular, it is common to use the approximation

Ex

∫ t

0
f (X (s))ds ≈ t E f (X (∞))

when the time horizon t is large.
While one could approach this problem mathematically by directly integrating the

spectral representation (2.10), a more natural vehicle here is to use Poisson’s equation
to study this problem. Specifically, we can seek a function g so that

g(X (t)) +
∫ t

0
( f (X (s)) − E f (X (∞)))ds (4.1)
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is a Px -martingale adapted to (Ft : t ≥ 0), where Ft = σ(X (s): 0 ≤ s ≤ t) is the
σ -algebra generated by X to time t . In the presence of such a function g, it follows
that

Ex

∫ t

0
f (X (s))ds − t E f (X (∞)) = g(x) − Ex g(X (t)). (4.2)

We can then use the results of Sect. 2 to analyze the right-hand side of (4.2).
Indeed, suppose that g is twice continuously differentiable. Itô calculus allows us

to express (4.1) as

∫ t

0
(L g)(X (s))ds +

∫ t

0
g′(X (s))σdB(s) +

∫ t

0
g′(X (s))dL(s)

+
∫ t

0
( f (X (s)) − E f (X (∞)))ds, (4.3)

where L is the second-order differential operator given by

L = −r
d

dx
+ σ 2

2

d2

dx2
.

Recalling that L increases only when X is at the origin, we find that

∫ t

0
g′(X (s))dL(s) = g′(0)(L(t) − L(0)).

Given that the stochastic integral involving the integrator dB(s) is always a local
martingale, if we choose g to satisfy

(L g)(x) = −( f (x) − E f (X (∞)))

s.t. g′(0) = 0, (4.4)

then (4.3) will be a local martingale; (4.4) is Poisson’s equation (see Glynn and Meyn
[15] and the references therein) corresponding to the right-hand side − fc, where

fc(x)
Δ= f (x) − E f (X (∞)). Conveniently, Eq. (4.4) can be solved explicitly (for all

nonnegative measurable functions f ), yielding

g(x) = g(0) − 1

r

∫ x

0
fc(y)(e−2η(y−x) − 1)dy. (4.5)

Because E fc(X (∞)) = 0, result (4.5) can further be rewritten as

g(x) = g(0) + e2ηx

r

∫ ∞

x
fc(y)e−2ηydy + 1

r

∫ x

0
fc(y)dy. (4.6)

We are now free to choose g(0) = 0.
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Consider the special case in which f : [0, ∞) → [0, 1] is continuously differen-
tiable. Then, g is twice continuously differentiable and (4.3) is a Px -martingale (not
just local martingale), since the boundedness of f and result (4.6) ensure that

∫ t

0
Ex g′(X (s))2ds < ∞

for all t > 0. Moreover, by relation (4.2),

∫ ∞

0
f (z)

(
1

t

∫ t

0
Px (X (s) ∈ dz)ds − P(X (∞) ∈ dz)

)

=
∫ ∞

0
g(z)

1

t
(Px (X (0) ∈ dz) − Px (X (t) ∈ dz)),

where g admits the integral representation in terms of f as specified by (4.5). Since this
equality of measures holds for every bounded continuously differentiable f , it holds
for all nonnegative measurable functions f . Hence, for all (measurable) indicator
functions f ,

∣∣∣∣
1

t
Ex

∫ t

0
f (X (s))ds − E f (X (∞))

∣∣∣∣

≤ 1

t
(|g(x)| + E |g(X (∞))| + |Ex g(X (t)) − Eg(X (∞))|), (4.7)

where g is computed via relation (4.5).
To obtain an upper bound for the right-hand side of (4.7), we note that if f is an

indicator function, then | fc(x)| ≤ 1 and

|g(x)| ≤ 1

r

∫ ∞

0
e−2ηy+2η(x∧y)dy

= x

r
+ 1

2ν
,

where a ∧ b
Δ= min(a, b) for a, b ∈ R. Moreover, (2.18) implies that

|Ex g(X (t)) − Eg(X (∞))|

≤
√

2

π
e− νt

2 eηx (1 + ηx)

∫ ∞

0
ηe−ηy(1 + ηy)

(
y

r
+ 1

2ν

)
dy

= 4

ν

√
2

π
e− νt

2 eηx (1 + ηx)

for νt ≥ 1. So, we are led to Proposition 2.
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Proposition 2 For all x ≥ 0 and νt ≥ 1,

∥∥∥∥
1

t

∫ t

0
Px (X (s) ∈ ·)ds − P(X (∞) ∈ ·)

∥∥∥∥

≤ 1

t

(
x

r
+ 3

2ν
+ 4

ν

√
2

π
e− νt

2 eηx (1 + ηx)

)
.

From Proposition 2, we can easily compute a bound on the time t = t (ε) needed for
the total variation distance of t−1

∫ t
0 Px (X (s) ∈ ·)ds to equilibrium to be smaller than

any given ε > 0.

Remark 3 We derive our theory here for general RBM (as opposed to the canonical
case), because the additional notational burden is light, and the theory here does not
dealwith density-related issueswhere the scaling relationship (2.4) applies. (Of course,
scaling relationships for Sect. 4’s quantities could also be derived if we wished, again
reducing the calculations to the canonical setting.)

We can similarly compute the h-norm distance between t−1
∫ t
0 Px (X (s) ∈ ·)ds and

the stationary distributionπ , allowing us to develop uniform bounds on the rate of con-
vergence to equilibrium for time averages of all unbounded performance functionals
f bounded by a suitable continuous envelope function h for which

∫ ∞

0
yh(y)e−ηydy < ∞. (4.8)

In particular, for any continuously differentiable f for which | f | ≤ h, (4.6) implies
that if we set g(0) = 0, then

|g(x)| ≤ 2

r

∫ ∞

0
h(y)e−2ηy+2η(x∧y)dy.

We now apply (2.18) to obtain the bound

|Ex g(X (t)) − Eg(X (∞))| ≤
√

2

π
e− νt

2 eηx (1 + ηx)

∫ ∞

0
ηe−ηy(1 + ηy)

2

r

·
∫ ∞

0
h(z)e−2ηz+2η(y∧z)dzdy

= 4

r

√
2

π
e− νt

2 eηx (1 + ηx)

∫ ∞

0
h(z)(1 + ηz)e−ηzdz.

Finally, in view of the fact that

E |g(X (∞))| ≤ 2

r

∫ ∞

0
(1 + 2ηy)e−2ηyh(y)dy,
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we obtain Proposition 3. (As in the proof of Proposition 2, although the upper bound
in Proposition 3 is derived for continuously differentiable functions, it in fact holds
for general nonnegative functions.)

Proposition 3 For all x ≥ 0 and νt ≥ 1,

∥∥∥∥
1

t

∫ t

0
Px (X (s) ∈ ·)ds − P(X (∞) ∈ ·)

∥∥∥∥
h

≤ 1

t

(
2

r

∫ ∞

0
h(y)e−2ηy+2η(x∧y)dy + 2

r

∫ ∞

0
(1 + 2ηy)e−2ηyh(y)dy (4.9)

+ 4

r

√
2

π
e− νt

2 eηx (1 + ηx)

∫ ∞

0
h(z)(1 + ηz)e−ηzdz

)
.

As in the total variation context, we can use (4.9) to obtain an upper bound on the time
t = t (ε) required for the h-norm to be less than any given ε > 0.

Of course, the dominant terms in the bound (4.9) are the first two terms on the
right-hand side. Below we compute these two terms for several important envelope
functions.

Example 3 When h(x) = 1 + x p for p > 0 (as occurs with performance measures
that correspond to moments),

|g(x)| + E |g(X (∞))|

≤ 2

r

∫ x

0
(1 + y p)dy + e2ηx

ηr

∫ ∞

2ηx

(
1 + y p

(2η)p

)
e−ydy

+ 2

r

∫ ∞

0
(1 + 2ηy)e−2ηy(1 + y p)dy

= 2x1+p

(1 + p)r
+ 2x

r
+ 1

ν
e2ηx (e−2ηx + (2η)−p)Γ (1 + p, 2ηx)

+ 1

ν

(
2 + (2η)−pΓ (3 + p)

1 + p

)
,

where Γ (s, x) = ∫ ∞
x ys−1e−ydy denotes the incomplete Gamma function. In partic-

ular, if p = 1, then

|g(x)| + E |g(X (∞))| ≤ x2

r
+ (2r + σ 2)x

r2
+ 3rσ 2 + 2σ 4

r3
.

For p = 2,

|g(x)| + E |g(X (∞))| ≤ 2x3

3r
+ x2

ν
+ (2r2 + σ 4)x

r3
+ 6r2σ 2 + 5σ 6

2r4
.
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Example 4 For exponential moments, an appropriate envelope function is one of the
form h(x) = eθx with θ < 2η. (If we were imposing the conditions needed for
Ex g(X (t)) to converge to Eg(X (∞)) exponentially fast at rate ν/2, then we would
require the stronger condition θ < η.) In this case,

|g(x)| + E |g(X (∞))| = 2(2η(eθx − 1) + θ)

θr(2η − θ)
+ 2(4η − θ)

r(2η − θ)2
.

We conclude this section by noting that the distance to equilibrium for integrated
performance measures of RBM decreases in proportion to t−1, whereas for instanta-
neous performance measures, it tends to zero exponentially fast. Related results can be
found in Thorisson [26]. So, when ε is small, the time horizon at which an integrated
performance measure can be replaced by its equilibrium analogue is much larger than
that required for an instantaneous performance measure.

5 Simulation implications

In Sects. 2, 3 and 4, we have discussed approximations for the distance to equilibrium
for instantaneous performance measures, tail probabilities and integrated performance
measures. These results were motivated by operations management and queueing
applications in which the natural decision horizon leads to consideration of transient
quantities, and the intent is to determine the approximation error induced when the
transient quantity is replaced by its corresponding steady-state quantity.

In this section, we change our perspective somewhat. In particular, computing
transient performance measures via simulation is often easier than computing steady-
state quantities via simulation, because transient quantities can easily be generated
in finite time. On the other hand, generating rv’s from the steady-state distribution is
impossible in general (see Asmussen et al. [7]), so that in the simulation setting, the
natural question is how long a transient simulation must be run, in order that a good
approximation to the steady state be obtained. This question is variously known, in
the simulation literature, as the warm-up problem, the start-up problem, or the initial
transient problem (see Wang and Glynn [28] and the references therein for additional
discussion).

This problem also arises in the setting of Markov chain Monte Carlo (MCMC).
In that context, the goal is to sample from a Bayesian posterior distribution, and the
computational approach involves simulating a Markov process chosen in such a way
that its stationary distribution coincides with the desired posterior. In the MCMC
setting, one can always construct the sampler so as to guarantee that it is a reversible
Markov process. This ensures a spectral representation for the transition density and
allows for the development of special-purpose mathematical tools (such as Cheeger’s
inequality) for bounding the “spectral gap” that separates the dominant eigenvalue 0
(associated with the stationary distribution) from the rest of the spectrum.With the use
of such tools, one can now sometimes obtain useful bounds on the rate of convergence
to equilibrium.
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In simulating queueingmodels, the typicalmodel is not a reversibleMarkovprocess.
Thus, it is unclear how one can useMarkov process theory to usefully generate insights
into the initial transient problem in this simulation context. The approach we take in
this paper is to use the RBM as a mathematical vehicle for generating practically
useful guidelines that can be used for such steady-state simulations. Specifically, we
take the view that if our underlying queue can be weakly approximated via RBM,
then one can use the time to equilibrium for the RBM to generate a guideline for
the underlying queueing model. This perspective is very similar in philosophy to
the approach followed by Whitt [29] and Asmussen [6] in analyzing the interaction
between heavy-traffic effects and steady-state simulation run-length determination in
queues.

In computing α
Δ= E f (X (∞)), the single replication strategy involves generating

X (0) from a distributionμ (say), simulating X to time t , and utilizing the time average
t−1

∫ t
0 f (X (s))ds as an estimator for α. An alternative is to delete the first s(t) time

units from the observed time series, and to instead use the modified quantity (t −
s(t))−1

∫ t
s(t) f (X (s))ds as an estimator for α. Not surprisingly, unless X (0) is chosen

badly (for example,much larger than E X (∞)), very little is gained through thedeletion
of the observations associated with the time interval [0, s(t)], because the biggest
issue governing the quality of the estimator is its variability, rather than its bias. From
a variability viewpoint, we wish to average over as much data as possible, leading to
the conclusion that s(t) should be small or even zero. Mean square error calculations
supporting this “no deletion” conclusion can be found in Section 6 ofWang and Glynn
[27]; see Grassmann [17] for further discussion of this point.

However, the situation changes in the multiple replication setting, because bias due
to initialization effects can then have a substantial effect on estimator quality. Such
multiple replication strategies are becoming increasingly attractive, because of the
emerging prevalence of multi-processor computing platforms on which independent
replications can potentially be run on each of the available processors. Assuming that
one estimates a steady-state expectation α = E f (X (∞)) by simulating independent
and identically distributed (iid) replicates X1, . . . , X p of X to time t on each of p
processors and retains all the simulated data, the corresponding estimator for α is then
given by

α(p, t)
Δ= 1

pt

p∑

i=1

∫ t

0
f (Xi (s))ds.

Suppose that | f | ≤ h, where h satisfies (4.8). If all p simulations are initialized with
Xi (0) = x , then the bias of α(p, t) is

Eα(1, t) − α = 1

t
gc(x) + O

(
e− νt

2

)
(5.1)

as t → ∞, uniformly in p, where O(c(t)) is a function such that O(c(t))/c(t) is
bounded as t → ∞, and gc(·) is defined as in Sect. 4.
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Furthermore, if we strengthen (4.8) so that

h(y) = O(eθy) (5.2)

as y → ∞ for some θ < η, thenweare in a position to analyze the variability ofα(p, t)
via the central limit theorem (CLT). Our proof uses a mixing argument rather than the
martingale representation (4.1) (followed by an application of the martingale CLT) so
as to avoid a need to assume that fc is sufficiently smooth so that Itô’s formula can be
applied directly to gc. (Note that (4.4) means that gc’s second derivative is essentially
− fc.)

Let Pπ (·) = ∫ ∞
0 Px (·)π(dx) and let Eπ (·) be the corresponding expectation oper-

ator.

Theorem 5 Suppose that f satisfies (5.2). Then,

√
t

(
1

t

∫ t

0
f (X (s))ds − α

)
⇒ aN (0, 1) (5.3)

as t → ∞, where

a2 = 2
∫ ∞

0
Eπ fc(X (0)) fc(X (t))dt.

Furthermore, if p is such that
√

pt(Exα(1, t) − α) ⇒ 0 as t → ∞, then

√
pt(α(p, t) − Eα(1, t)) ⇒ aN (0, 1) (5.4)

as t → ∞.

Proof Wefirst apply (2.13), thereby allowing us to conclude that for each (measurable)
subset A and n ≥ 0,

∣∣∣∣Px

(∫ n+1

n
fc(X (s))ds ∈ A

)
− Pπ

(∫ 1

0
fc(X (s))ds ∈ A

)∣∣∣∣

≤ c1e
ηx (1 + ηx)e− νn

2

for some constant c1 > 0. So, for 1 ≤ q < 2,

φq(n)

Δ= sup
A

E
1
q
π

∣∣∣∣Pπ

(∫ n+1

n
fc(X (s))ds ∈ A

∣∣ X (0)

)
− Pπ

(∫ 1

0
fc(X (s))ds ∈ A

)∣∣∣∣
q

≤ c2e
− νn

2 E
1
q
π e

ηq X (0)(1 + ηX (0))
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for some constant c2 > 0. We now choose δ > 0 sufficiently small so that θ(2+ δ) <

2η. If we set q = (2 + δ)/(1 + δ), we find that

∞∑

n=1

φq(n)
δ

1+δ < ∞.

In addition,

∣∣∣∣
∫ 1

0
fc(X (s))ds

∣∣∣∣
2+δ

≤
∫ 1

0
| fc(X (s))|2+δds,

so

Eπ

∣∣∣∣
∫ 1

0
fc(X (s))ds

∣∣∣∣
2+δ

≤ Eπ | fc(X (0))|2+δ < ∞.

Hence, Theorem 3.1, p. 351 of Ethier and Kurtz [13] can be applied, yielding the
CLT (5.3) under Pπ . Because X (t) converges in total variation to X (∞) under Px

(see Sect. 2), X can be coupled to a stationary version of X ; see Thorisson [26]. The
coupling then easily leads to (5.3) under Px .

To prove (5.4), we first develop an additional mixing result to complement those
of Sect. 2. Let w satisfy θ + η < w < 2η, where θ is given as in (5.2). Set v(x) =
2ewx − 2wx + 1, and note that we have constructed v so that v′(0) = 0 and it is
positive over [0, ∞). In fact, v(x) ≥ ewx for x ≥ 0. Furthermore,

(L v)(x) ≤ −cv(x) + d

for some c, d > 0 and all x ≥ 0. Consequently, Theorem 6.1 of Meyn and Tweedie
[24] can be applied, so that there exist constants κ > 0 and c3 > 0 such that

‖Px (X (t) ∈ ·) − P(X (∞) ∈ ·)‖v ≤ c3(v(x) + 1)e−κt (5.5)

for all t, x ≥ 0.
To now verify (5.4), we apply the Lindeberg–Feller theorem; see p.214-215 of

Chung [9]. This theorem can be applied to obtain (5.4), provided that (t (α(1, t) −
Eα(1, t))2: t > 0) is Px -uniformly integrable. In view of our assumption on p, this is
equivalent to proving that (t (α(1, t) − α)2: t > 0) is Px -uniformly integrable, which
is, in turn, equivalent to showing that

1

t
Ex

(∫ t

0
fc(X (s))ds

)2

→ a2 (5.6)

as t → ∞; see p. 101 of Chung [9].
Note that (5.2) allows us to apply Theorem 2, thereby yielding

|Ex fc(X (t))| ≤ c4e
− νt

2 eηx (1 + ηx)
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for some constant c4 > 0. Hence,

∣∣∣e
νt
2 fc(x)Ex fc(X (t))

∣∣∣ ≤ c5e
(θ+η)x (1 + ηx)

≤ c6e
wx

for suitable constants c5, c6 > 0. The bound (5.5) therefore implies that, for 0 ≤ s ≤
u,

∣∣∣e
ν(u−s)

2 Ex fc(X (s)) fc(X (u)) − e
ν(u−s)

2 Eπ fc(X (0)) fc(X (u − s))
∣∣∣

≤ c3(v(x) + 1)e−κs

≤ c7e
−κsewx

for some constants c7 > 0. It follows that there exists β > 0 for which

|Ex fc(X (s)) fc(X (u)) − Eπ fc(X (0)) fc(X (u − s)) ≤ c7e
−βuewx . (5.7)

An immediate consequence of (5.7) is that

1

t
Ex

(∫ t

0
fc(X (s))ds

)2

− 1

t
Eπ

(∫ t

0
fc(X (s))ds

)2

→ 0

as t → ∞. Finally, it is straightforward to show that

1

t
Eπ

(∫ t

0
fc(X (s))ds

)2

→ a2

as t → ∞, proving (5.6) and completing the argument to justify (5.4). ��
Related CLTs are discussed in Whitt [29] and Asmussen [6], but their discussion

focuses exclusively on f (x) = x (and on interchanging the heavy-traffic limit and
t → ∞).

Note that (5.1) and (5.4) together imply that when the number of processors p is
of the order t or larger, the bias becomes a dominant source of error in the estimator
α(p, t)’s ability to accurately compute α. In this case, choosing a good starting state
so as to minimize |gc(·)| becomes important. The examples below show that the best
possible starting state x depends heavily on the choice of f .

Example 5 When f (x) = x ,

gc(x) = x2

2r
− 1

4η2r

and the unique zero of gc(·) occurs at x = σ√
2r

(x ≈ 0.7071 when r = σ = 1).
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Example 6 Let f (x) = x2. Then,

gc(x) = x3

3r
+ x2

2ηr
− 1

2η3r

and the unique zero of gc(·) occurs at x ≈ 0.8064 (when r = σ = 1).

Example 7 Suppose that f (x) = eθx for θ < η. Then,

gc(x) = −θ2 + (4η2 − 2θη)(eθx − θx − 1)

θr(2η − θ)2
.

If r = σ = 1 and θ = 1/2, then the unique zero of gc(·) occurs at x ≈ 0.7645.

Example 8 Let f (x) = I(x > b) for b ≥ 0. In this setting,

gc(x) =
⎧
⎨

⎩

e−2ηb
(
e2ηx −1−2η(b+x)

)

2ηr , x < b,

e−2ηb
(
e2ηb(−2ηb+2ηx+1)−2η(b+x)−1

)

2ηr , x ≥ b,

The unique zero of gc(·) occurs at x ≈ 0.7526 when r = σ = 1 and b = 1. When
b = 2 (and r = σ = 1), x ≈ 0.9684. When b = 10 (and r = σ = 1), x ≈ 1.5929.

Of course, in implementing these recommended starting values in a queue that can
be well approximated by RBM, one substitutes the values of r and σ given by (1.3)
into the above formulae.

An alternative strategy is to delete the initial time segment [0, s(t)] from each of
the independent simulations generated by the p processors, thereby yielding

α̃(p, t) = 1

p(t − s(t))

p∑

i=1

∫ t

s(t)
f (Xi (s))ds.

If s(t)/t → 0 as t → ∞, then (5.4) holds with α̃(p, t) substituting for α(p, t) (and
E α̃(1, t) substituting for Eα(1, t)). So, this deletion has no asymptotic effect on the

variability of α̃(p, t) − E α̃(1, t) (which is of order (pt)− 1
2 ). However, the bias is

significantly reduced. In particular,

Ex α̃(1, t) − α = 1

t − s(t)

∫ t

s(t)
Ex fc(X (s))ds. (5.8)

Under condition (5.2), (2.22) applies, so that

Ex α̃(1, t) − α = 1

t − s(t)

∫ t

s(t)
O

(
s− 3

2 e− νs
2

)
ds

= O
(
(s(t))−

3
2 e− νs(t)

2

)
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as t → ∞.
Suppose now that the number of processors p is large and that t = pw for w > 0.

If we choose s(t) = k log t with k > (1 + w)/(νw), then the bias of α̃(p, t) is of

smaller asymptotic order than its variability (pt)− 1
2 . Because we can now choosew as

small as we wish (by choosing k correspondingly large), we note that the completion
time t for such a parallel computation can be made small, provided that one uses such
an initial bias deletion strategy.

So, in the multiple replication setting, deletion of the segment [0, s(t)] is a sensible
strategy (unlike the single replication context). For queues that are well approximated
by RBM, we note that the bias (5.8) can be made uniformly small over all functions fc

satisfying (5.2); seeTheorem2. (This uniformity is importantwhenwewish to estimate
multiple expectations E f (X (∞)) from the same simulation runs.) Theorem 2 further
suggests that an especially good choice of starting state is then given by x = 1/η =
2E X (∞) and that this choice will work uniformly over all functions f dominated by
an envelope function satisfying (5.2). This is in sharp contrast to our earlier analysis
of α(p, t), where the choice of starting state depends heavily on the specific choice
of f .

In implementing these ideas in a queueing context, one could either approximate
2E X (∞) via σ 2/r or estimate 2E X (∞) (crudely) by running a few preliminary
simulation runs to obtain a rough estimate of 2E X (∞), followed by simulating the
“production runs” described above.

6 Spectral theory for RBM

The spectral representation of Sect. 2 is a special case of the more general spectral
representations that are typically available for one-dimensional reversible Markov
processes. However, as we shall see below, there are several subtle issues that arise in
the RBM setting that are worth illuminating.

The simplest setting in which spectral representations arise is that of an irreducible,
aperiodic and reversible finite state Markov chain Y = (Yn : n ≥ 0) having one step
transition matrix R = (R(x, y): x, y ∈ S), where S is the state space of Y . The
reversibility implies the existence of real eigenvalues λ1, . . . , λd of R (with d =
|S|), and corresponding real column eigenvectors u1, . . . , ud , such that the ui are
orthonormal with respect to the inner product induced by the stationary distribution
(π(x): x ∈ S) associated with R. In other words, 〈ui , u j 〉 = 0 if i �= j and 〈ui , u j 〉 =
1 if i = j , where

〈 f, g〉 Δ=
∑

x∈S
π(x) f (x)g(x).

Because R is stochastic, one of the eigenvalues, say λ1, must be equal to one, and
its corresponding orthonormalized eigenvector is u1(x) ≡ 1 for x ∈ S. We can then
assume that the eigenvalues have been indexed so that 1 = λ1 > |λ2| ≥ · · · ≥ |λd |. It
follows that, for any f ,
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Rn f =
d∑

i=1

〈 f, ui 〉Rnui

=
d∑

i=1

〈 f, ui 〉λn
i ui ,

and hence (by specializing f to an indicator on the state y), we find that

Rn(x, y) − π(y) = π(y)

d∑

i=2

λn
i ui (x)ui (y). (6.1)

The spectral representation (6.1) makes the computation of the rate of convergence to
equilibrium relatively straightforward. Much of the literature on Markov chain Monte
Carlo rests on this observation; see, for example, the Cheeger bound of Diaconis and
Stroock [12].

The finite state perspective generalizes, in a natural way, to one-dimensional dif-
fusions (which are an especially tractable class of reversible Markov processes). In
this context, the transition matrix R is replaced by the infinitesimal generator of the
diffusion, together with whatever restrictions must be placed on the domain of the
generator. In the RBM setting, L replaces R, and the domain consists of twice con-
tinuously differentiable functions having a vanishing derivative at the origin.

In view of our finite state discussion, we are therefore led to the consideration of
the eigenvalues of L , so that we wish to find values of λ for which there exists a
corresponding twice continuously differentiable eigenfunction uλ for which

L uλ = λuλ

subject to u′
λ(0) = 0. (6.2)

If there exists a solution to the eigenvalue problem (6.2), then we say that λ is a formal
eigenvalue ofL .

Remark 4 As in Sect. 4, we derive the theory directly for the general case, because
the additional notational burden is light.

Proposition 4 Every λ ∈ R is a formal eigenvalue of L .

Proof The functions uλ defined in (2.11) and (2.12) solve (6.2) for λ ≤ −ν/2. For
λ > −ν/2, the corresponding eigenfunction

uλ(x) = (η + β(λ))ex(η−β(λ)) − (η − β(λ))ex(η+β(λ))

2β(λ)

solves (6.2), where β(λ) = √
2λ + ν/σ . ��

If λ is such that e−λt uλ(X (t)) is a Px -martingale, then we call λ a probabilistic
eigenvalue ofL .
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Proposition 5 Every λ ∈ R is a probabilistic eigenvalue of L .

Proof According to Itô’s formula,

d(e−λt uλ(X (t))) = e−λt (L uλ − λuλ)(X (t))dt + e−λt u′
λ(X (t))σdB(t)

+ e−λt u′
λ(X (t))dL(t),

so that (6.2) implies that

e−λt uλ(X (t)) = uλ(X (0)) +
∫ t

0
e−λsu′

λ(X (s))σdB(s).

Since uλ(·) grows (at most) exponentially, and X (·) has tails that are uniformly dom-
inated on compact time intervals by Gaussian tails, it follows that

∫ t

0
e−2λs Ex u′

λ(X (s))2ds < ∞

for each t ≥ 0, so that e−λt uλ(X (t)) is a square-integrable martingale with respect to
Px for each x ≥ 0. ��

It turns out that these approaches to defining the spectrum ofL are not appropriate
from a functional analysis perspective. Recall that our finite state development rests
on the inner product ( f, g), so that the appropriate generalization to the RBM setting
naturally relies upon the Hilbert space L2(π) and its associated inner product 〈 f, g〉.
Hence, a better definitional approach takes the view that λ lies in the spectrum of L
whenever L − λI fails to have a bounded inverse on L2(π), where I is the identity
operator. Put ‖ f ‖ = √〈 f, f 〉 for f ∈ L2(π).

Theorem 6 LetS = {0}∪(−∞, − ν
2

]
. For λ /∈ S , there exists a twice continuously

differentiable function g = gλ, f solving

L g − λg = − f

subject to g′(0) = 0, (6.3)

whenever f ∈ L2(π) is a continuous function. Furthermore,

sup
‖ f ‖�=0

‖gλ, f ‖
‖ f ‖ < ∞. (6.4)

On the other hand, when λ ∈ S , there exist continuous functions f ∈ L2(π) for
which no g ∈ L2(π) solves (6.3).

Proof For λ /∈ S , put

G(x, y, λ) = 1

2rβ(λ)
eη(x+y)−β(λ)|x−y| + λ + rβ(λ) + ν

2λrβ(λ)
e(x+y)(η−β(λ))
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and set

gλ, f (x) =
∫ ∞

0
G(x, y, λ) f (y)π(dy). (6.5)

Then, gλ, f = g satisfies (6.3). Furthermore, for λ > 0, Itô’s formula and (6.3) imply
that

g(x) =
∫ ∞

0
e−λt Ex f (X (t))dt,

and hence

g(x) = 1

λ
Ex f (X (ξ)),

where ξ is an exponential rv with rate parameter λ independent of X . The Cauchy–
Schwarz inequality therefore implies that

g2(x) ≤ 1

λ2
Ex f 2(X (ξ))

and hence

‖g‖2 ≤ 1

λ2

∫ ∞

0

∫ ∞

0
λe−λt Ex f 2(X (t))dtπ(dx)

= 1

λ2
‖ f ‖2;

in particular, G(·, ·, λ) induces a bounded linear operator on L2(π) for λ > 0.
On the other hand, for λ ∈ (−ν/2, 0), 0 < β(λ) < η and

e(x+y)(η−β(λ))

eη(x+y)−β(λ)|x−y| = e−2β(λ)(x∧y) ≤ 1,

so there exists a constant c1 such that

|G(x, y, λ)| ≤ c1e
η(x+y)−β(λ)|x−y|.

It follows that, when f ∈ L2(π),

‖g‖2 ≤ c21

∫ ∞

0

(∫ ∞

0
eηx−β(λ)|x−y|e−ηy f (y)dy

)2

π(dx).

Again, the Cauchy–Schwarz inequality can be applied, thereby yielding

(∫ ∞
0 e−β(λ)|x−y|e−ηy f (y)dy

∫ ∞
0 e−β(λ)|x−y|dy

)2

≤
∫ ∞
0 e−β(λ)|x−y|e−2ηy f 2(y)dy

∫ ∞
0 e−β(λ)|x−y|dy

,
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and consequently

‖g‖2 ≤ c21

∫ ∞

0

∫ ∞

0
e−β(λ)|x−y|e−2ηy f 2(y)dy ·

∫ ∞

0
e−β(λ)|x−z|dze2ηxπ(dx).

But, for x ≥ 0,

∫ ∞

0
e−β(λ)|x−z|dz ≤

∫ ∞

−∞
e−β(λ)|w|dw < ∞,

so there exists c2 for which

‖g‖2 ≤ c2

∫ ∞

0

∫ ∞

0
e−β(λ)|x−y|2ηe−2ηy f 2(y)dydx

= c2

∫ ∞

0
f 2(y)2ηe−2ηy

∫ ∞

0
e−β(λ)|x−y|dxdy

≤ c2

∫ ∞

−∞
e−β(λ)|w|dw · ‖ f ‖2,

proving (6.4) for −ν/2 < λ < 0. (We have given here a direct proof of a result that
can also be established via a convolution inequality due to Young; see, for example,
Folland [14], pp. 240–241.)

When λ = 0 ∈ S , the general solution to (6.3) for f (x) = −x ∈ L2(π) is given
by

e2ηx − 2ηx(ηx + 1)

4rη2
+ c

for c ∈ R, so that g /∈ L1(π) (and hence is not in L2(π)). Furthermore, for λ = −ν/2,
the general solution to (6.3) with f (x) = −x takes the form

2ηx(1 − eηx ) + 4

rη2
+ ceηx (1 − ηx)

for c ∈ R, so that g is never in L2(π). Finally, for λ < −ν/2, (6.3) with f (x) = −x
admits the family of solutions

eηx cos(s(λ)x)

λ
+ r − λx

λ2
+ c

(
eηx

(
cos(s(λ)x) − η

s(λ)
sin(s(λ)x)

))

for c ∈ R. Again, there is no choice of c for which g ∈ L2(π), proving our final
assertion. ��

We note thatS is a mixed spectrum that has both a continuous part (−∞, −ν/2]
and a discrete component {0}. Furthermore, even for λ ∈ S , uλ /∈ L2(π). In addition,
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since uλ → uγ as λ → γ , the uλ cannot be orthonormal. Nevertheless, despite these
complications, an analogue to (6.1) holds, namely (2.10).

Because spectral theory is built upon L2(π), we have no reason to expect that the
convergence rate theory of Sect. 2 generalizes to convergence rates to equilibrium
for functions f ∈ L1(π) that are not in L2(π). Indeed, for λ ∈ (−ν/2, 0), we have
already established that e−λt uλ(X (t)) is a martingale, so that

Ex uλ(X (t)) = eλt uλ(x) → 0 = Euλ(X (∞)) (6.6)

as t → ∞. Hence, uλ ∈ L1(π) and the rate of convergence of Ex uλ(X (t)) to its
equilibrium value is precisely exponential with rate parameter λ. Thus, depending on
how close λ is to 0, the exponential rate can be arbitrarily close to 0.

Note that uλ(x) is of order ex(η+β(λ)) as x → ∞. When λ ↗ 0, η + β(λ) ↗ 2η.
So, an alternative interpretation is that exponential moments in which f (x) = eθx ,
with η < θ < 2η, have exponential convergence rates to equilibrium with rate

β−1(θ − η) = σ 2(θ − η)2 − ν

2
.

On the other hand, when θ < η, the theory of Sect. 2 applies, and Ex f (X (t)) con-
verges to E f (X (∞)) at the rate t−3/2e−νt/2 specified there.

We have just argued that (2.15) does not describe the rate of convergence to equilib-
rium for functions f ∈ L1(π) that are not in L2(π). The rate of convergence for such
functions must be analyzed on a case-by-case basis. But, despite the fact that spec-
tral theory is built upon L2(π), there are also some functions f ∈ L2(π) for which
(2.15) is not descriptive of the rate of convergence. In particular, the asymptotic (2.15)
includes the limiting quantity 〈 f, u− ν

2
〉. Note that there exist functions f ∈ L2(π) for

which 〈 f, u− ν
2
〉 = ∞. This suggests that the rate of convergence for such functions

can be slower than the order t− 3
2 e− νt

2 described in Sect. 2. Proposition 6 makes this
rigorous.

Proposition 6 Let f (x) = eηx (1 + ηx)−2 for x ≥ 0. Then, f ∈ L2(π) and

lim inf
t→∞ t

3
2 e

νt
2 |Ex f (X (t)) − E f (X (∞))| = ∞. (6.7)

Proof We focus on the case of canonical RBM, in which f (x) = ex (1 + x)−2.
Obviously,

E f 2(X (∞)) = 2
∫ ∞

0
(1 + y)−4dy < ∞,
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so f ∈ L2(π). Also, since Ex | f (X (t))| < ∞ and f ∈ L1(π), (2.16) implies that

π

2
√
2

t
3
2 e

t
2 e−x (Ex f (X (t)) − E f (X (∞)))

=
∫ ∞

0

∫ ∞

0
e−z z

1
2

(
cos

(√
2z

t
x

)
−

√
t

2z
sin

(√
2z

t
x

))

·
(
cos

(√
2z

t
y

)
−

√
t

2z
sin

(√
2z

t
y

)) (
1 + 2z

t

)−1

dz

· dy

(1 + y)2
.

Because | cos(w)| ≤ 1,
∣∣ 1
w
sin(wx)

∣∣ ≤ |x |, and
∫ ∞

0
zγ e−zdz < ∞

for γ > −1 and w > 0, (6.7) follows if we establish that

lim inf
t→∞

∫ ∞

0

∫ ∞

0
e−z z

1
2

√
t

2z
sin

(√
2z

t
y

) (
1 + 2z

t

)−1

dz
dy

(1 + y)2
= ∞. (6.8)

For ε > 0, choose δ > 0 so that 1
w
sin(w) ≥ 1 − ε for 0 ≤ w ≤ √

2δ. Then,

√
t

2z
sin

(√
2z

t
y

)
≥ (1 − ε)y

for y ≤ δ
√

t
z . Hence, the double integral in (6.8) can be lower bounded by m(t, x),

where

m(t, x)
Δ=

∫ ∞

0

∫ δ

√
t
z

0
e−z z

1
2 (1 − ε)y

(
1 + 2z

t

)−1 dy

(1 + y)2
dz

−
∫ ∞

0

∫ ∞

δ

√
t
z

e−z z
1
2

√
t

2z

dy

(1 + y)2
dz. (6.9)

Moreover,

m(t, x) ≥ 1 − ε

2

∫ t

0
e−z z

1
2

∫ δ

√
t
z

0

y

(1 + y)2
dydz −

√
t

2

∫ ∞

0
e−z

√
z√

z + δ
√

t
dz

→ 1 − ε

2

∫ ∞

0
e−z z

1
2

∫ ∞

0

ydy

(1 + y)2
dz − 1

δ
√
2

∫ ∞

0

√
ze−zdz

= ∞
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as t → ∞, where we used the monotone convergence theorem for simplifying the
first integral at the last step. This proves (6.8). ��

As a consequence, we see that some “extra condition” (such as f u− ν
2

∈ L1(π))

beyond just requiring f ∈ L2(π) is indeed needed for the results of Sect. 2 to hold.
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