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Abstract

In subsurface aquifers, dispersion of contaminants is highly affected by the heterogeneity of the hydraulic conductivity
field. As an alternative to Monte Carlo (MC) simulations on probable conductivity fields, stochastic velocity processes
have been introduced to assess the uncertainty in the transport of contaminants. In continuum scale simulations,
discrete velocity models (such as correlated-CTRW) focus on modeling plume dispersion in the longitudinal direction.
There are alternative continuous velocity processes (such as the polar Markovian velocity process (PMVP)) that are
able to accurately model transport in both longitudinal and transverse directions. Importantly, the PMVP model
correctly predicts the limited spreading of the ensemble contaminant plume in the transverse direction. However, the
stochastic differential equations used in the PMVP model have specific drift and diffusion functions that are designed
for the exponential correlation structure. In this paper, a new discrete velocity process is described that is applicable to
modeling transport in two-dimensional conductivity fields for both Gaussian and exponential correlation structures. This
method is simple, in a sense that it does not require modeling the functional form of the drift and diffusion functions.
The new method is validated against Monte Carlo (MC) simulations for both correlation structures with high variances
of log-conductivity.
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1. Introduction

Modeling transport in porous media is highly impor-
tant in various applications including water resources
management and extraction of fossil fuels. Predicting
flow and transport in aquifers and reservoirs plays an
important role in managing these resources. Two signif-
icant factors influencing transport are the heterogeneity
and the uncertainty of the underlying conductivity
field. The classical strategy to deal with these two
factors is to perform Monte Carlo (MC) simulations on
probable conductivity fields which can have a very high
computationally cost. Moreover, ensemble statistics of
transport in heterogeneous domains displays non-Fickian
characteristics such as long tails for the first arrival time
probability density function (PDF) and non-Gaussian
spatial distributions [1, 2, 3]. Capturing this non-Fickian
behavior is particularly important for predictions of
contaminant transport in water resources. For example,
in water resources management long tails of the arrival
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time PDF can have a major impact on the contamina-
tion of drinking water, and therefore efficient predictions
of the spatial extents of contaminant plumes is key [4, 5, 6].

Past studies have provided a range of Lagrangian mod-
els for efficient prediction of this non-Fickian transport.
The continuous time random walk (CTRW) formalism
offers a framework to study anomalous transport through
disordered media and networks [1, 7]. The time domain
random walk method (TDRW), which is conceptually
similar to the CTRW method, directly calculates the
arrival time of a particle cloud at a given location [8, 9].
Similar to CTRW, consecutive velocities resulting from the
TDRW method are independent of each other. Detailed
studies of transport have shown conclusively that for long
times/distances, particle velocities in mass conservative
flow fields are correlated [10, 11] and accounting for this
correlation is crucial, specifically in cases with a high
variances of the log-conductivity field. To account for this
correlation, Markov velocity models have been developed.
The proposed Markov models can be classified based on
the underlying medium that they model (network vs.
continua), the variables chosen to index the stochastic
velocity process (temporal, spatial, and mixed (temporal
and spatial) models), and finally based on whether the
models are discrete or continuous (discrete Markov chains



vs. stochastic differential equations). In the next two
paragraphs, a short summary of some of the relevant
correlated velocity models is provided. In the view
of the suggested classification, the model proposed here
is a discrete temporal model for continuum scale problems.

Le Borgne et al. [12] proposed discrete Markov chains
for modeling the velocity process and tested the Markov
assumption for the longitudinal component of the velocity
of tracer particles in heterogeneous porous media. They
studied transition probabilities for the velocity process in
time and space. Subsequently, A one-dimensional spatial
Markov model was used in [13] to successfully model
transport in correlated heterogeneous domains. Kang
et al. [14, 15, 16] extended the discrete spatial Markov
model framework to two dimensions and performed
several studies on random lattice networks. Similar
structured and unstructured random lattice networks
were simulated with discrete temporal velocity models
(the stencil method) in [17]. The spatial Markov model
was also applied to the velocity field resulting from
simulation of flow in the pore space of real rock and to
disordered fracture networks [18, 19].

Meyer et al. used a temporal Markov model and suc-
cessfully modeled particle dispersion in two-dimensional
correlated conductivity fields using stochastic differential
equations [20]. This framework was then used to model
the joint velocity-concentration PDF [21]. In another
study, Meyer and Saggini [22] provided a framework for
testing the Markov hypothesis for the velocity of tracer
particles. In the class of mixed temporal and spatial
models, Meyer et al. [23] proposed the polar Markov
velocity process (PMVP). The PMVP model consists
of a set of SDEs for modeling transport in exponential
permeability fields with a velocity process in time and an
angle process in space. Another mixed set of SDEs were
proposed to model the velocity process resulting from
direct numerical simulation (DNS) of flow and transport
in the pore-space of real rocks [24].

For modeling transport in correlated continuum scale
permeability fields, two-dimensional simulations are
often performed for uncertainty quantification. In two-
dimensions, the ensemble contaminant plume has the
interesting property that it asymptotically stops spreading
in the transverse direction [25]. Among the stochastic
models proposed for modeling ensemble transport in
continuous correlated conductivity fields, some studies
focus on transport in the longitudinal direction and
propose a one-dimensional model that accurately captures
the transport characteristics in the longitudinal direction
[13]. In the literature, to the extent of the authors’
knowledge, the limited spreading of the plume in the
transverse direction was only captured by the stochastic
differential equations proposed in [20, 23].

In both [20] and [23] the proposed SDEs have specific
drift and diffusion functions that are designed for the
specific study. For example, the PMVP model proposed
in [23] consists of an SDE in space for the velocity angle
process and an independent SDE in time for the velocity
magnitude process. These SDEs have specific drift and
diffusion terms that work for conductivity fields with
exponential correlation structure with log-conductivity
variances between 1/16 and 4. These drift and diffusion
functions vary for different studies (compare [20] and
[24]). For modeling transport in correlated continuum
scale problems, the available SDE models are designed
for an exponential correlation structure, and a PMVP
model for a Gaussian conductivity correlation structure is
not available. Moreover, educated insight is required for
designing appropriate drift and diffusion function for new
scenarios.

In this work, we use a discrete temporal Markov velocity
process (referred to as DTMVP). Compared to the PMVP
model, the model proposed here does not require model-
ing the functional form of the drift and diffusion terms.
Hence, it is applicable to both exponential and Gaussian
correlation structures. Compared to other previously
proposed one-dimensional discrete models for continua
(e.g. [12, 13]), the DTMVP model can make accurate
predictions in both transverse and longitudinal directions.
Similar to PMVP, DTMVP also correctly predicts the
limited spreading of the ensemble contaminant plume
in the transverse direction. In the next two sections,
the transport problem and particle tracking setup are
explained in detail. The DTMVP model is described
in section 4. The results are discussed in section 5 and
DTMVP is compared to the stencil method in section 6.
Conclusions are given in section 7.

2. The single-phase transport problem

We study single-phase flow and transport in porous me-
dia. The velocity field of the fluid is calculated by Darcy’
s law

u(x) = −K(x)∇h(x), (1)

where K(x) is the hydraulic conductivity field. We study
incompressible flow, where the hydraulic head, h(x), can
be found by solving the continuity equation ∇.u = 0, lead-
ing to

∇.(K(x)∇h(x)) = 0. (2)

Once the hydraulic head and the velocity field are known,
assuming negligible pore-scale dispersion (PSD) and dif-
fusion, the transport of a contaminant is governed by the
advection equation

∂C

∂t
+

∂

∂xi
(uiC) = 0, (3)

2



where C(x, t) is the tracer concentration at position x and
time t, and ui is the ith component of the velocity vector
u. Tracking Lagrangian tracer particles is an alternative
to solving the advection equation for the tracer concentra-
tion. The particle tracking problem setup is elaborated in
the next section.

3. Particle tracking problem setup

We consider log-normal permeability distributions with
variances up to four. The particle tracking setup is
chosen very similar to [20, 13]. Meyer et al. studied a
case with an exponential correlation function, whereas Le
Borgne et al. studied a Gaussian correlation structure.
Here we consider both correlation structures. For both
correlation structures the correlation length (lY ) is chosen
equal to 8 grid cells. The computational domain is a
square with each edge length L equal to 128lY (1024
cells). In this study all four boundaries for the generated
conductivity fields are periodic, in the sense that the
correlation structure is preserved across all boundaries.
Figure 1 illustrates the periodicity of the generated
conductivity fields. These periodic conductivity fields are
generated using the Fourier integral method described
in [26]. The flow equation is also solved using periodic
boundary conditions. This periodic setup allows us to
generate longer particle trajectories by allowing particles
to pass multiple times through the domain. Due to the
periodicity of the domain boundary effects are not present
in the particle trajectories generated in this study.

In the considered problem, the mean velocity in the
longitudinal direction is U and the mean transverse
velocity is zero. For each correlation structure and
each log-conductivity variance, 500 realizations were
generated. In each realization a periodic flow problem was
solved. The flow problem was solved using a finite-volume
discretization and the resulting linear systems were solved
using an efficient algebraic multigrid solver [27].

In each realization 108 tracer particles were tracked
through the conductivity field. Each particle is tracked
until it travels 2400 times between cells. In order to fully
sample the velocity field in each realization, tracer release
locations were separated by lY . All particles were released
on the left boundary with a minimum distance of 10lY to
the top and bottom boundaries. Fig. 2 illustrates this
periodic particle tracking setup. The Integration of ve-
locity along a particle trajectory was performed using the
algorithm described in [28].

4. Describing the model

The model proposed in this work consists of two inde-
pendent processes for the particle velocity magnitude and
the particle velocity angle. It has been previously shown

that independence of the two processes in polar coordi-
nates can be approximately validated, even for cases with
high variance of log-conductivity [23]. In this section both
processes are described in detail. Both velocity and an-
gle processes are in time, which means that we model the
temporal evolution of the particle velocity vector at times
t0 = 0, ∆ts, 2∆ts, etc. Here, ∆ts is the averaging time step
which is a model input parameter. In has been shown in
previous studies that the velocity process can be far from
Markovian for relatively small values of ∆ts [22]. Figure 3
shows a sample particle trajectory and the same trajec-
tory averaged with different values of ∆ts. The averaging
time steps is described in terms of the characteristic time
scale of the problem δt = lY /U . Next, both the velocity
and angle process are described in detail. In the remain-
der of the manuscript the velocity and angle distributions
that are used for inferring model parameters are empirical
distributions generated by analyzing particles trajectories
from the MC simulations.

4.1. The velocity magnitude process

The velocity magnitude process (also referred to as the
velocity process) used here is a discrete Markov chain for
the average velocity in time. The average velocity is di-
vided into discrete classes as follows:

v ∈ ∪nvj=1(log(v)j , log(v)j+1), (4)

where nv is the number of velocity magnitude classes. As
previously suggested in [20], in order to better represent
slow transitions we use the logarithm of velocity magni-
tude for the definition of classes. The velocity magnitude
bin edges are first chosen such that the bins have equal
probability. Since there are not many extremely slow
or extremely fast particles, the bins corresponding to
these classes would be comparatively large. The extreme
velocity bins are further refined to have the final velocity
magnitude bins. The velocity bin corresponding to the
smallest velocity magnitudes is split into 10 smaller bins
and the 10 bins corresponding to the fastest velocities are
adjusted such that their width is smaller than a specified
threshold. For details of the refinement procedure, please
refer to the provided repository [29].

We refer to the discrete transition matrix for the
velocity magnitude as pvm(i|j). This is the probabil-
ity of encountering the state i after m transitions,
assuming that we started from the state j. The one-
step velocity transition matrix pv1(i|j) for the exponential
correlation structure for ∆ts = 10δt is illustrated in Fig. 4.

It has been previously shown in [22] that a Markovian
process is a good approximation for the velocity process
for ∆ts > 2.56δt . Provided that a Markov process can
closely model transitions between different velocity states,
we expect that the Chapman-Kolmogorov (CK) relation
holds for these transitions. We perform a test to compare

3
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Figure 1: Illustration of the periodicity of the generated conductivity fields. Shuffling the four quarters of a generated permeability field leads
to a new field which has the same correlation structure.
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Figure 2: Trajectories in one realization of the conductivity field with the Monte Carlo particle tracking setup described in section 3.

the m-step velocity transition with the m-fold product of
the one-step transition matrices. The five-step velocity
transition matrix pv5(i, j) is compared to pv1(i, j)

5
in Fig. 5

for ∆ts = 10δt. Column-wise comparison of these two
matrices is illustrated in Fig. 6 for transitions from a fast
and a slow initial velocity class.
Similar comparisons were performed for the Gaussian
correlation structure (see supporting information). The
results suggest that a Markov model is a good candidate

to accurately represent the velocity process for both
correlation structures considered in this study.

4.2. The angle process

Here our goal is to explore the possibility of using dis-
crete temporal models for modeling transport in highly
heterogeneous correlated permeability fields. An impor-
tant feature of the two-dimensional problem studied here
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Figure 3: A particle trajectory and the average representation of the same trajectory with three different time steps.
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Figure 4: pv1(i|j) for the exponential correlation structure for ∆ts =

10δt. Square root of the transition matrix is plotted for better con-
trast.

is the limited spreading of the plume in the transverse di-
rection [25]. Heuristically, this means that particles that
travel laterally too far from their injection point would, on

average, travel back towards that point. The distribution
of the particle angle conditional on the normalized dis-
tance from injection, p(θ|y), confirms this heuristic. The
left portion of fig. 7, shows p(θ|y) for the exponential cor-
relation structure for ∆ts = 10δt. To build the discrete
distribution of p(θ|y), the interval [−π, π] was divided into
nθ bins. Here

θ ∈ ∪nθj=1(θj , θj+1) (5)

represents the state of the velocity angle. Similarly the
normalized distance from injection is discretized in to ny
bins. The left portion of Fig. 7 shows the result of filling
this histogram by counting the observed angles at each
value of y. In order to use this distribution for simulating
contaminant plumes, one would need to approximate the
distribution for values of y where the histogram is noisy.
In other words it is necessary to “fill the holes in data”.
Fortunately, there are clear observable trends in this
distribution. These trends can be used to extrapolate the
distribution from values of y were the distribution is well
captured by the histogram to larger values of |y| where
the distribution is noisy.

The procedure used for filling the holes in the con-
ditional angle distribution is as follows. First, we fit
a known PDF template, Pearson type 3 (Pearson3),
to P (θ|y) for a set of y values where the histogram is
not noisy. Then the first three moments of the fitted
distributions are approximated as constants or linear
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Figure 5: Comparison of pv5(i, j) (left) and pv1(i, j)5 (right) for the exponential correlation structure for ∆ts = 10δt. Square root of the
transition matrices are plotted for better contrast.
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Figure 6: Column-wise comparison of pv5(i, j) and pv1(i, j)5 for the exponential correlation structure for ∆ts = 10δt. Left: initial class j = 4;
right: initial class j = 62.

functions of y. Specifically, a linear relation was used
for the first and third moments and the variance was
approximated by a constant. These moments are then
extrapolated to the values of y where the distribution is
noisy. Finally, the noisy distributions are approximated
by using the known form of the Pearson3 PDF and its
first three moments. Figure 8 shows the result of fitting a
Pearson3 PDF to P (θ|y) for two different values of y. The
first three moments of the fitted distribution and the low
order fits to these moments are shown in Fig. 9. As the
final result of this procedure, Fig. 7 shows the comparison
between the histogram obtained from the MC data and
the model histogram built using the moments of Pearson3
distribution.

The same procedure was applied to the MC simulation
results for the Gaussian correlation structure, resulting in

similar observations which are included in the support-
ing material. The most notable difference observed in the
moments of the Gaussian correlation structure compared
to the exponential correlation structure is the clear lin-
ear trend observable for the third moment of the empirical
angle distribution.

4.3. Simulating the particle plume using the proposed
stochastic model

Given pv1(i|j), p(θ|y) and initial distributions for the log-
arithm of the velocity magnitude (p(v0)) and angle (p(θ0))
a particle plume can be simulated using algorithm 1. We
refer to this model as the discrete temporal Markov veloc-
ity process (DTMVP).
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Figure 7: P (θ|y) for the exponential correlation structure with ∆ts = 10δt. Left: empirical distribution from MC simulations; right: modeled
histogram using the extrapolated moments of Pearson3 distribution.
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Figure 8: Comparison of P (θ|y) for two different values of y for the exponential correlation structure for ∆ts = 10δt.

5. Results

The DTMVP model was applied to the MC data
described in section 3 for both exponential and Gaussian
correlation structures with log-permeability variances of
1, 2, 4. The results for σ2 = 1, 2 are not included in
this manuscript for brevity. The results for the highest
variance case for the exponential correlation structure are
presented below. Corresponding figures for the Gaussian
correlation structure are included in the supporting
material.
We start by describing the results for the exponential
correlation structure with a variance of 4, and an aver-
aging time step ∆ts = 10δt. The results for smaller and

larger time steps are also discussed in this section. The
model parameters used for DTMVP are listed in table 1.
The two-dimensional plumes generated by DTMVP are
compared with the MC data in Figure 10. The extents of
the ensemble plumes are well captured by the DTMVP
model. For a closer inspection, the projection of the plume
on the longitudinal and transverse directions is compared
to the MC data in figures 11 and 12 for two different
times. The spreading of the plume is well captured by
the DTMVP model in both longitudinal and transverse
directions.

In these results we are averaging the particle trajectory
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Figure 9: First three moments of P (θ|y) as a function of y, for the
exponential correlation structure with ∆ts = 10δt.

with a time step ∆ts = 10δt. As it can be seen in Fig. 3,
this is a relatively course time step. With larger time steps
the average velocities would become less correlated. One
can argue that with very large stencil times, using a cor-
related random walk model would no longer be necessary
and independent spatial increments would be sufficient for
modeling the dispersion process at very low temporal res-
olutions. In order to inspect the added value by the DT-
MVP model compared to independent sampling from the
joint (v, θ) distribution, a numerical experiment is per-
formed. We model the particle plume according to algo-
rithm 2 and compare the results with the DTMVP model.
Figures 13 and 14 illustrate the results of this experiment
for a wide range of time steps (1δt < ∆ts < 10δt). As

// initialization

v0, θ0 ← draw from p(v0), p(θ0);
x0, y0 ← 0, 0;
for i← 1 to n do

// advance the particle location given

current velocity vector

xi = xi−1 + exp(vi−1)cos(θi−1)∆ts;
yi = yi−1 + exp(vi−1)sin(θi−1)∆ts;
// draw next log velocity magnitude given

current magnitude

vi ← draw from pv1(vi|vi−1);
// draw next angle given normalized

transverse distance from injection

θi ← draw from P (θi|yi);
end

Algorithm 1: Particle evolution with DTMVP

parameter value
nv 106
nθ 100
ny 60

# particles 500× 108

Table 1: DTMVP simulation parameters for both Gaussian and ex-
ponential correlation structures.

these results suggest, neglecting the velocity correlations
and the dependence of angle on y would lead to inaccurate
estimates of the plume. On the other hand, the DTMVP
model make accurate predictions for all the time steps be-
tween δt and 10δt. As it can be observed in Fig. 13, the
slow tail of the plume is better captured using larger val-
ues of ∆ts.
Our experiments show that in comparison with the expo-
nential correlation structure, for the Gaussian correlation
structure a larger average time step is required for accurate
predictions of the plume (results for the Gaussian case are
included in the supporting information). This observation
is consistent with previously reported results [22].

The evolution of the dimensionless mean square differ-
ences (MSD) of the plume predicted by algorithm 2, in
both longitudinal and transverse directions is depicted in
Fig. 15. For this plot and all subsequent dimensionless mo-
ment plots of the plumes, lY is used as the nondimensional-
ization length scale. This figure confirms that for the wide
range of tested time steps, independent sampling from the
joint distribution of (v, θ) is not sufficient to model the dis-
persion of the ensemble plume. Specifically, independent
sampling leads to ensemble plumes that scale differently
from the MC data in both longitudinal and transverse di-
rections.

Compared to the MC data, the projection of the plume
onto the transverse direction displays a more distinctive
peak near the origin. This peak is mainly due to the fact
that the model for the angle process does not include

8



a direct dependence on the angle history. In the next
section, this idea is explored in detail by comparing the
results to the results of the stencil method [17] where
p(vn+1, θn+1|vn, θn) is used.

// initialization

v0, θ0 ← draw from p(v0), p(θ0);
x0, y0 ← 0, 0;
for i← 1 to n do

// advance the particle location given

current velocity vector

xi = xi−1 + exp(vi−1)cos(θi−1)∆ts;
yi = yi−1 + exp(vi−1)sin(θi−1)∆ts;
// draw next log velocity magnitude and

angle from their joint distribution

vi, θi ← draw from p(v, θ)
end

Algorithm 2: Plume evolution with independent sam-
pling from p(v, θ)

6. Comparison to the stencil method

The stencil method [17] is also a discrete temporal
process that models the evolution of particle velocities
as a Markov chain for the (v, θ)-pair (see algorithm 3).
Similar to the DTMVP model, the correlation between the
magnitude of consecutive particle velocities is captured
by the stencil method. Unlike the DTMVP model, the
stencil method does not use any heuristic for limiting the
particle velocity angle. In this section we study the effect
of the restricted angle process in the DTMVP model on
predicted plumes by comparing the results to the stencil
method.
The stencil method was applied to the generated MC data
for both Gaussian and exponential correlation structures,
and the results are compared with the DTMVP model
for the range of averaging time steps, 1 < ∆ts/δt < 20.
The results show very similar trends for both correlation
structures. For brevity, only the results for the exponen-
tial correlation structure with log-conductivity variance
of four are presented in this section. Comparison of the
projection of the predicted plumes on the longitudinal
direction, illustrated in Fig. 16, shows that both models
make accurate predictions for dispersion along the mean
flow direction. Figures 17 and 18 show that both the
stencil method and the DTMVP model make similar
predictions for the evolution of the center of mass and
mean square difference of the longitudinal projection of
the plume.

The two models have a notable difference in predicting
the BT curve. Figure 19 shows that the DTMVP models
makes more accurate predictions for the first passage time
curve of the vertical plane x = 0.75L, for 1 < ∆ts/δt < 10.

// initialization

v0, θ0 ← draw from p(v0), p(θ0);
x0, y0 ← 0, 0;
for i← 1 to n do

// advance the particle location given

current velocity vector

xi = xi−1 + exp(vi−1)cos(θi−1)∆ts;
yi = yi−1 + exp(vi−1)sin(θi−1)∆ts;
// draw next log velocity magnitude and

angle from their conditional joint

distribution

vi, θi ← draw from p(vi, θi|vi−1, θi−1)
end

Algorithm 3: Plume evolution with the stencil method

For ∆ts = 20δt, both models make inaccurate predictions
for the BT curve. The predictions of the transverse plume
for the two models are qualitatively different, as illustrated
in Fig. 20. The peak in the DTMVP model predictions
is not present in the stencil method results. Figure 20
also shows that the extent of the transverse plume pre-
dicted by the stencil method changes as a function of ∆ts,
whereas the extent of the DTMVP model prediction does
not change significantly by changing the averaging time.
This is a consequence of the heuristic (P (θ|y)) built into
the DTMVP method.
The evolution of the dimensionless second central mo-
ment of the transverse plume is shown in Fig. 21. For
1 < ∆ts/δt < 10, the stencil method predicts an ensem-
ble plume that keeps growing in the transverse direction.
However, for a wide range of time steps, 4 < ∆ts/δt < 20,
the transverse MSD predicted by DTMVP stops growing
which qualitatively matches the behavior observed in the
MC data and expected from [25].

7. Conclusions

In this work, DTMVP, a flexible discrete stochastic pro-
cess has been proposed for modeling transport in high vari-
ance correlated conductivity fields with Gaussian and ex-
ponential correlation structures. The proposed model is
the first fully temporal two-dimensional velocity process
for transport in continuum scale. With respect to previ-
ously proposed one-dimensional correlated-CTRW models
for transport in correlated conductivity fields, DTMVP is
an alternative that can be used for making predictions in
both longitudinal and transverse directions. Compared to
the PMVP model, the proposed model is fully temporal
and does not require modeling the functional form of the
drift and diffusion terms utilized in PMVP. This simplic-
ity, allows DTMVP to be applied to both Gaussian and
exponential correlation structures without any modifica-
tion. Compared to the stencil method, DTMVP makes
more accurate predictions for breakthrough curves and the
transverse spreading of the ensemble plume.
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Figure 10: Comparison of the predicted plume (solid lines) versus the MC data (dashed lines) for two different times for the same contour
levels for the exponential correlation structure.
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for the exponential correlation structure.
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Figure 15: The evolution of the dimensionless second central moments of the plume for the exponential correlation structure compared with
the moments predicted by independent sampling from p(v, θ).
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Figure 16: Comparison of the projected plume on the longitudinal direction for the exponential correlation structure at t = 45δt; left: stencil
method, right: DTMVP.
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Figure 17: The evolution of the dimensionless longitudinal component of the plume center of mass for the exponential correlation structure;
left: stencil method, right: DTMVP.
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Figure 18: The evolution of the dimensionless second central moment of the plume in the longitudinal direction for the exponential correlation
structure; left: stencil method, right: DTMVP.
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Figure 19: Comparison of the BT curve for the vertical plane x = 0.75L for the exponential correlation structure; left: stencil method, right:
DTMVP.
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Figure 20: Comparison of the projected plume on the transverse direction for the exponential correlation structure at t = 45δt; left: stencil
method, right: DTMVP.
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Appendix A. Supporting figures for Gaussian correlation structure

This appendix is provided to support the claim that the discrete temporal Markov velocity process (DTMVP) can be
used to model transport in conductivity fields with a Gaussian correlation structure as well as exponential conductivity
fields. The results of applying the DTMVP model to a conductivity field with a Gaussian correlation structure with a
correlation length lY = 8 and variance of 4 are presented below.
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Figure A.1: pv1(i|j) for the Gaussian correlation structure for ∆ts = 10δt. Square root of the transition matrix is plotted for better contrast.
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Figure A.2: Comparison of pv5(i, j) (left) and pv1(i, j)5 (right) for the Gaussian correlation structure for ∆ts = 10δt. Square root of the
transition matrices are plotted for better contrast.
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17



-14 -5 5 14
y/lY

−π

−π/2

0

π/2

π

P
D
F

(θ
)

-14 -5 5 14
y/lY

−π

−π/2

0

π/2

π

0

10−1

100

Figure A.4: P (θ|y) for the Gaussian correlation structure with ∆ts = 10δt. Left: empirical distribution from MC simulations; right: modeled
histogram using the extrapolated moments of Pearson3 distribution.
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Figure A.5: Comparison of P (θ|y) for two different values of y for the Gaussian correlation structure for ∆ts = 10δt.
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Figure A.6: First three moments of P (θ|y) as a function of y, for the Gaussian correlation structure with ∆ts = 10δt.
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Figure A.7: Comparison of the predicted plume (solid lines) versus the MC data (dashed lines) for two different times for the same contour
levels for the Gaussian correlation structure.
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Figure A.8: Comparison of the predicted plume versus the MC data for t = 19δt for the Gaussian correlation structure.
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Figure A.9: Comparison of the predicted plume versus the MC data for t = 46δt for the Gaussian correlation structure.
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Figure A.10: Comparison of the predicted plumes from the independent model (left) and DTMVP (right) at t = 46δt for different time steps
for the Gaussian correlation structure.
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Figure A.11: Comparison of the predicted BT curves from the independent model (left) and DTMVP (right) at x = 0.75L for different time
steps for the Gaussian correlation structure.
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Figure A.12: The evolution of the second central moments of the plume for the Gaussian correlation structure compared with the moments
predicted by independent sampling from p(v, θ).
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Figure A.13: Comparison of the projected plume on the longitudinal direction for the Gaussian correlation structure at t = 46δt; left: stencil
method, right: DTMVP.
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Figure A.14: The evolution of the dimensionless longitudinal component of the plume center of mass for the Gaussian correlation structure;
left: stencil method, right: DTMVP.
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Figure A.15: The evolution of the dimensionless second central moment of the plume in the longitudinal direction for the Gaussian correlation
structure; left: stencil method, right: DTMVP.
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Figure A.16: Comparison of the BT curve for the vertical plane x = 0.75L for the Gaussian correlation structure; left: stencil method, right:
DTMVP.
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Figure A.17: Comparison of the projected plume on the transverse direction for the Gaussian correlation structure at t = 46δt; left: stencil
method, right: DTMVP.
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Figure A.18: The evolution of the dimensionless second central moment of the plume in the transverse direction for the Gaussian correlation
structure; left: stencil method, right: DTMVP.
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