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ABSTRACT

We provide a unified framework to treat the asymptotic analysis for the non-batched quantile sensitivity
estimators of Fu et al. (2009), Liu and Hong (2009), and Lei et al. (2017). With only mild differences
in regularity conditions and proofs, asymptotic results including strong consistency and a central limit
theorem are established for all three estimators. Simulation results substantiate the theoretical analysis.

1 INTRODUCTION

Quantiles play a central role in characterizing quality of service in the service industry and risk in the
financial industry. In financial risk management, quantile is also known as value-at-risk (VaR) and has
become a standard benchmark that can be translated directly into minimum capital requirements (see Jorion
2007).

In applications, the quantile of a stochastic system is rarely available in closed form. Therefore,
statistical sampling (simulation) is commonly used to estimate the quantile. The asymptotic properties of
quantile estimators have been studied extensively in a large body of statistics literature, e.g., David and
Nagaraja (1970) and Serfling (2009). Simulation techniques to enhance the efficiency of quantile estimation
can be found in Jin et al. (2003) and Glasserman (2004).

Recent attention has focused on quantile sensitivity estimation; see Hong (2009), Fu et al. (2009), Liu
and Hong (2009), Heidergott and Volk-Makarewicz (2009), Heidergott et al. (2014), Jiang et al. (2014),
Jiang and Fu (2015), Volk-Makarewicz and Heidergott (2015), Heidergott and Volk-Makarewicz (2016),
and Lei et al. (2017). Extensions to sensitivity estimation of conditional value-at-risk (CVaR), closely
related to quantile sensitivity estimation, can be found in Hong and Liu (2009) and Hong et al. (2014).
Asymptotic analysis is an important part of most of the cited works.

The quantile sensitivity estimators can be categorized as either batched or non-batched. Batching means
n independent and identically distributed (i.i.d.) observations are split into k batches with m observations
in each batch (n ≈ km). For example, the infinitesimal perturbation analysis (IPA) estimator in Hong
(2009) and the weak derivative (WD) estimator in Heidergott and Volk-Makarewicz (2016) generally need
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batching, although batching can be avoided in certain special cases, e.g. Jiang and Fu (2015). Asymptotic
analysis is simpler for the batched estimators, but the convergence rates for these estimators are generally
worse than their non-batched counterparts.

Examples of existing non-batched quantile sensitivity estimators include a conditional Monte Carlo
(CMC) method in Fu et al. (2009) and a kernel-based (KB) estimator in Liu and Hong (2009). The
asymptotic analysis is more challenging for these estimators, because the same batch of data is used to
estimate both the quantile and the sensitivity; thus, classical statistics results based on i.i.d assumptions do
not apply due to the introduced dependence.

Hong and Liu (2009), Fu et al. (2009), and Liu and Hong (2009) used a novel technique to deal with
the dependence issue for their estimators, but the analysis is somewhat tedious and to a large extent case
dependent. More importantly, the asymptotic results are not as strong as the asymptotic results for classic
quantile estimation, as Fu et al. (2009) and Liu and Hong (2009) only proved weak consistency, and the
convergence rate of the CMC estimator in Fu et al. (2009) is established by the square-root convergence
of the second moment instead of a central limit theorem. Without a central limit theorem, there is no
theoretical justification for constructing a confidence interval and doing hypothesis testing.

More recently, Peng et al. (2017) proposed a generalized likelihood ratio (GLR) method for sensitivity
estimation of discontinuous sample performances, and Lei et al. (2017) applied GLR to derive a new
quantile sensitivity estimator that does not use batching. In this work, we provide a single framework to
treat the asymptotic analysis for the non-batched quantile sensitivity estimators in Fu et al. (2009), Liu
and Hong (2009), and Lei et al. (2017). With only a slight difference in regularity conditions, asymptotic
results including strong consistency and a central limit theorem are established for all three estimators. An
alternative proof for the central limit theorem can be found in Glynn et al. (2017).

The rest of the paper is organized as follows. Section 2 introduces the quantile sensitivity estimation
problem and the estimator. We provide preliminary background on empirical processes theory and present
our main results in Section 3. The last section offers conclusion.

2 QUANTILE SENSITIVITY ESTIMATION

For a random variable (r.v.) Z(θ) in a parametric family, the quantile at probability level α , denoted by
qα(θ), is defined as

qα(θ)
.
= sup{y : F(y;θ)≤ α},

where F is the distribution function of Z. If F(·;θ) is continuous, the quantile can be simplified as
qα(θ) = F−1(α;θ). Throughout the paper, we assume Z(θ) is a continuous r.v., i.e., admitting a density
f (·;θ), and the following regularity condition is presumed:

A0 There exists ε > 0 such that the density f (x;θ) exists on (qα
θ
−ε,qα

θ
+ε), f (qα

θ
;θ)> 0 and f (·;θ)

is continuous at qα
θ

.

With condition A0, the quantile sensitivity ∂qα(θ)/∂θ is well defined, and by using implicit function
differentiation on F(qα(θ);θ) = α with respect to θ , we have (see Fu et al. 2009, Heidergott and
Volk-Makarewicz 2016)

dqα(θ)

dθ
=− ∂F(x;θ)

∂θ

∣∣∣∣
x=qα (θ)

/
f (qα(θ);θ) . (1)

Let Z = {Z1, . . . ,Zn} be i.i.d realizations of Z(θ). The order statistics of Z will be denoted by

Z1:n < Z2:n < .. . < Z`:n < .. . < Zn:n .

A classic quantile estimator is the order statistic Zdαne:n, where d·e is the ceiling operator. With condition
A0, the following asymptotic results including strong consistency and a central limit theorem for the classic
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quantile estimator can be found in statistics textbooks such as Serfling (2009):

lim
n→∞

Zdαne:n = qα(θ) a.s.,

√
n(Zdαne:n−qα(θ))

d→ N
(

0,
α(1−α)

f 2(qα(θ);θ)

)
, n→ ∞,

(2)

where a.s. means almost surely and d→ indicates convergence in distribution.
In the context of Monte Carlo simulation, the distribution function and density of an output r.v., e.g.

the average waiting time in an M/M/1 queue, usually are not available analytically, so formula (1) cannot
be directly applied. On the other hand, a simulation model for the output r.v. is constructed by (see Fu
et al. 2009, Heidergott and Volk-Makarewicz 2016, Lei et al. 2017)

Z(θ) = h(X(θ);θ) (3)

where h(·;θ) is a measurable function, and X(θ) is a vector of input r.v.s in a parametric family, e.g.
the interarrival times and service times in a queue. We suppress the dependence of X and h on θ

henceforth. Monte Carlo simulation is used to estimate ∂qα(θ)/∂θ through simulating i.i.d. replications
O = {(X1,Z1), . . . ,(Xn,Zn)}, where {X1, . . . ,Xn} are i.i.d. realizations of X . The (non-batched) quantile
sensitivity estimators in Fu et al. (2009), Liu and Hong (2009), and Lei et al. (2017) all have the following
form:

D̂n =−
∑

n
i=1 Φ(1)(Xi,Zdαne:n)

∑
n
i=1 Φ(2)(Xi,Zdαne:n)

. (4)

where the numerator and denominator of the quantile sensitivity estimators have the following two forms:

M1 Φ( j)(x,γ) = G j(x,γ), j = 1,2, where G j(x,γ) is continuous with respect to γ .

M2 Φ( j)(x,γ) = Ψ j(x)1{h(x)≤ γ}, j = 1,2, where h(·) is the measurable function in (3) and 1{·}
denotes the indicator function.

The CMC estimator in Fu et al. (2009) and the KB estimator in Liu and Hong (2009) have the form
M1, and the GLR estimator in Lei et al. (2017) has the form M2. To establish asymptotic results for the
two types of estimators above, we need two sets of regularity conditions.

Estimators of form M1 require a Lipschitz condition on G j, and first and second moment conditions
on the corresponding Lipschitz functions, which are given by Assumption A1 as follows:

A1.1 suppose for G j(·,γ), j = 1,2, there exist measurable functions K j(·) s.t.

|G j(x,γ1)−G j(x,γ2)|< K j(x)|γ1− γ2|, j = 1,2 ;

A1.2 E[K j(X)]< ∞, j = 1,2;
A1.2 E[K2

j (X)]< ∞, j = 1,2.

Estimators of form M2 require first and second moment conditions on Ψ j, which are given by Assumption
A2 as follows:

A2.2 E[Ψ j(X)]< ∞, j = 1,2;
A2.2 E[Ψ2

j(X)]< ∞, j = 1,2.
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Although the first moment condition is implied by the second moment condition, we will use the first
moment condition to establish strong consistency and the second moment condition to establish a central
limit theorem. Although weak consistency is implied by a central limit theorem, strong consistency is not.

Our goal is to establish asymptotic results analogous to (2) for the quantile sensitivity estimator D̂n.
Define Φ

( j)
α (·) .

= Φ( j)(·,qα), and further introduce the following regularity condition.

A3 ∂θ F(x;θ) and f (x;θ) are differentiable with respect to x.

Theorem 1 For quantile sensitivity estimator (4) of form M1 under conditions A1 and A3 and form M2
under conditions A2 and A3, we have

D̂n→
dqα(θ)

dθ
a.s., n→ ∞,

and
√

n
(

D̂n−
dqα(θ)

dθ

)
d→ N(0,σ2), n→ ∞,

where σ2 =Var(Γ), and

Γ
.
=

1
f (qα(θ);θ)

Φ
(1)
α −

∂θ F(x;θ)|x=qα (θ)

f 2(qα(θ);θ)
Φ

(2)
α

+

{
∂θ F(x;θ)∂ 2

xxF(x;θ)
∣∣
x=qα (θ)

f 3(qα(θ);θ)
−

∂ 2
xθ

F(x;θ)
∣∣
x=qα (θ)

f 2(qα(θ);θ)

}
1{Z(θ)≤ qα(θ)}

Remark. The asymptotic variance in the theorem matches that in Example 3 of Glynn et al. (2017).
The proof of the theorem can be found in the next section. The difficulty in directly obtaining these two
asymptotic results is due to the fact that without batching, Xi and Zdαne:n are dependent, because they come
from the same batch of observations O, i = 1, ..n; thus the classic law of large numbers and central limit
theorem do not directly apply. The asymptotic variance in the theorem can be used to build confidence
intervals, if the (first- and second-order) derivatives of the distribution function can be estimated. For this
purpose, we can use the GLR estimators for distribution sensitivities in Fu et al. (2017), which are all of
form M2.

3 ASYMPTOTIC ANALYSIS

In this section, we use an empirical processes technique to address the dependence in proving the asymptotic
results for the quantile sensitivity estimator (4). We introduce only the minimum theory required to establish
our results. Please refer to Van der Vaart (2000) for details.

3.1 Empirical Processes

Let ξ1, ...,ξn be i.i.d. r.v.s with distribution P. We denote the empirical distribution defined as the discrete
uniform measure on the observations by Pn(·)

.
= 1

n ∑
n
i=1 δξi(·), a random measure on R, where δξ (·) is the

distribution that is degenerate at ξ , where ξ is a generic r.v. with distribution P. The empirical expectation
and the expectation of of ϕ(ξ ) will be denoted respectively by

Pnϕ
.
=
∫

ϕ(z) Pn(dz) =
1
n

n

∑
i=1

ϕ(ξi),

Pϕ
.
=
∫

ϕ(z) P(dz) = E[ϕ(ξ )] .
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Definition 1 A class F of measurable functions is called P-Glivenko-Cantelli if

‖Pnϕ−Pϕ‖F
.
= sup

ϕ∈F
|Pnϕ−Pϕ| → 0 a.s., n→ ∞ .

Remark. We can see the a.s. convergence is uniform with respect to functions in a Glivenko-Cantelli class.
The Glivenko-Cantelli class is introduced for the proof of strong consistency of the quantile sensitivity
estimator.

The empirical process {Gnϕ : ϕ ∈F} evaluated at ϕ is defined as

Gnϕ
.
=
√

n(Pnϕ−Pϕ) =
∑

n
i=1 (ϕ(ξi)−Pϕ)√

n
.

By the multivariate central limit theorem, for any finite set of measurable functions {ϕi, i = 1, ..,k} s.t.
Pϕ2

i < ∞, i = 1, ..,k,

(Gnϕ1, ..,Gnϕk)
d→ (GPϕ1, ..,GPϕk), n→ ∞,

and {GPϕ : ϕ ∈F} is a centered Gaussian process with normal finite-dimensional distribution:

(GPϕ1, ..,GPϕk)∼ N(0,Σ),

with the covariance matrix Σ = (Σi, j)k×k given by

Σi, j = Pϕiϕ j−PϕiPϕ j .

Definition 2 A class F of measurable functions is called P-Donsker if the sequence of processes
{Gnϕ : ϕ ∈F} converges in distribution to the centered Gaussian process {GPϕ : ϕ ∈F} in the space
`∞(F ), where `∞(F ) is a collection of bounded real-valued functionals on F , equipped with the uniform
(sup) norm || · ||F .

Remark. Notice that the definition of a Donsker class requires the convergence in distribution of a stochastic
process, which is stronger than the finite-dimensional convergence in distribution of the stochastic process
at finite epochs. A sufficient condition to justify the convergence in distribution of the stochastic process
can be found in Chapter 18 of Van der Vaart (2000). The convergence in distribution is “uniform” with
respect to functions in a Donsker class. The Donsker class is introduced for the proof of the central limit
theorem of the quantile sensitivity estimator.

Whether a class of functions is Glivenko-Cantelli or Donsker depends on the “size” of the class. A finite
class of integrable functions is always Glivenko-Cantelli and a finite class of square-integrable functions
is always Donsker. To provide a sufficient condition for Glivenko-Cantelli or Donsker for an infinite class
of functions requires a way to measure the size of a class of functions in terms of entropy. The bracketing
entropy is relative to an Lr(P)-norm defined as

‖ϕ‖P,r = (P|ϕ|r)1/r .

For two functions l and u with finite Lr(P)-norm (they need not belong to F ), the bracket [l,u] is defined
as {ϕ ∈F : l(x)≤ ϕ(x)≤ u(x), ∀ x}. An ε-bracket in Lr(P) is a bracket [l,u] such that (P(u− l)r)1/r < ε .
The bracketing number N[ ](ε,F ,Lr(P)) is the minimal number of ε-brackets needed to cover F , and the
bracketing integral is defined as

J[ ](y,F ,Lr(P)) =
∫ y

0

√
lnN[ ](ε,F ,L2(P)) dε .
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Lemma 1 (Lemmas 19.13 and 19.14 in Van der Vaart 2000)

(i) A class of measurable functions F s.t. ∀ ε > 0, N[ ](ε,F ,L1(P))< ∞ is P-Glivenko-Cantelli.
(ii) A class of measurable functions F s.t. J[ ](1,F ,L2(P))< ∞ is P-Donsker.

Then we introduce the notion of a “random function”. In our paper, a random function means a
measurable function that depends on random observations, i.e. ϕ̂n(·)

.
= ϕ(·; γ̂n), where γ̂n is estimated

by the samples ξ1, ..,ξn. In particular, an example of random functions are measurable functions in the
numerator and denominator of the quantile sensitivity estimator (4), i.e.,

Φ̂
( j)
n,α(·)

.
= Φ

( j)(·,Zdαne:n), j = 1,2,

where Zdαne:n depends on observations Z = {Z1, . . . ,Zn}, which are functions (3) of n realizations of input
r.v.s {X1, . . . ,Xn}.

The most critical conditions for establishing strong consistency and a central limit theorem for the
random functions Φ̂

( j)
n,α , j = 1,2, are that the function classes

F
( j)
γ

.
= {Φ( j)(·,γ) : γ ∈ R}, j = 1,2,

belong to P-Glivenko-Cantelli and P-Donsker, respectively (see Chapter 19.4, Van der Vaart 2000), which
requires some additional regularity conditions.

The following lemma establishes a general result for strong consistency and a central limit theorem
for a random function.
Lemma 2 (Chapter 19.4 of Van der Vaart 2000)

(i) Suppose F is a P-Glivenko-Cantelli class and ϕ̂n(·) ∈F . If there is a function ϕ ∈ L1(P) such
that

∫
(ϕ̂n(z)−ϕ0(z)) dP(z)→ 0 a.s., n→ ∞, then

Pnϕ̂n→ Pϕ0 a.s., n→ ∞,

where

Pnϕ̂n
.
=

1
n

n

∑
i=1

ϕ̂n (ξi) .

(ii) Suppose that F is a P-Donsker class and ϕ̂n(·) ∈F . If there is a function ϕ0 ∈ L2(P) such that∫
(ϕ̂n(z)−ϕ0(z))2 dP(z) d→ 0, n→ ∞, then

Gnϕ̂n
d→GPϕ0, n→ ∞,

where

Gnϕ̂n
.
=
√

n
(∫

ϕ̂n(z) Pn(dz)−
∫

ϕ̂n(z) P(dz)
)

.

3.2 Main Results

Now we are ready to present the main results.
Lemma 3 For quantile sensitivity estimator (4) of form M1,

(i) under A1.2, the function classes F
( j)
γ , is P-Glivenko-Cantelli, j = 1,2;

(ii) under A1.3, the function classes F
( j)
γ is P-Donsker, j = 1,2.



Peng, Fu, Glynn and Hu

The proof of Lemma 3 can be directly found in Chapter 19.6 (page 271) of Van der Vaart (2000).
Lemma 4 For quantile sensitivity estimator (4) of form M2,

(i) under A2.1, the function classes F
( j)
γ , is P-Glivenko-Cantelli, j = 1,2;

(ii) under A2.2, the function classes F
( j)
γ is P-Donsker, j = 1,2.

Proof. Let −∞ = γ0 < γ1 < · · · < γk = ∞ be a partition of R. Consider brackets of the form [li,ui],
i = 1, ..,k, where

li(x) = 1{h(x)≤ γi−1,Ψ j(x)≥ 0}Ψ j(x)+1{h(x)≤ γi,Ψ j(x)< 0}Ψ j(x),

ui(x) = 1{h(x)≤ γi,Ψ j(x)≥ 0}Ψ j(x)+1{h(x)≤ γi−1,Ψ j(x)< 0}Ψ j(x) .

We can see [li,ui], i = 1, ..,k, cover the function class F
( j)
γ . Under the first moment condition in (i), it is

easy to show li and ui has finite L1(P)-norm. For the bracketing entropy relative to the L1(P)-norm,

E[ui(X)− li(X)] = E [1{γi−1 ≤ h(X)≤ γi}|Ψ j(X)|] .

Denote c1
.
= E[|Ψ j(X)|], and let b1 = dc1/εe+ 1. With appropriate selection of the partition points, we

can find b1 ε-brackets in L1(P) which cover F
( j)
γ . Therefore, N[ ](ε,F

( j)
γ ,L1(P))≤ b1 < ∞. By Lemma

1, F
( j)
γ is P-Glivenko-Cantelli.

Under the second moment condition in (ii), it is easy to show li and ui have finite L2(P)-norm. For the
bracketing entropy relative to the L2(P)-norm,

E
1
2 [(ui(X)− li(X))2] = E

1
2 [1{γi−1 ≤ h(X)≤ γi}|Ψ j(X)|2] .

Denote c2
.
= E[|Ψ j(X)|2], and let b2 = dc2/ε2e+1. With appropriate selection of the partition points, we

can find b2 ε-brackets in L2(P) covering F
( j)
γ , which implies N[ ](ε,F

( j)
γ ,L2(P))≤ b2. For any r > 0, we

have limε→0 εr lnε = 0, therefore

J[ ](1,F
( j)
γ ,Lr(P)) =

∫ 1

0

√
lnN[ ](ε,F

( j)
γ ,L2(P)) dε ≤

∫ 1

0

√
−2lnε + ln(c2 +1) dε < ∞ .

By Lemma 1, F
( j)
γ is P-Donsker.

Theorem 2 For quantile sensitivity estimator (4) of form M1,

(i) under A1.1 and A1.2, PnΦ̂
( j)
n,α → PΦ

( j)
α a.s. as n→ ∞, j = 1,2;

(ii) under A1.1 and A1.3, GnΦ̂
( j)
n,α

d→GPΦ
( j)
α as n→ ∞, j = 1,2.

Proof. Since Zdαne:n→ qα a.s. as n→ ∞, with the Lipschitz condition,∣∣∣∣∫ (Φ̂
( j)
n,α(x)−Φ

( j)
α (x))P(dx)

∣∣∣∣= ∣∣∣∣∫ (G j(x,γ)−G j(x,γ
′
))P(dx)

∣∣∣∣∣∣∣∣
γ=Zdαne:n,γ

′
=qα

≤ |Zdαne:n−qα |
∫

K j(x)P(dx)→ 0 a.s., n→ ∞,
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by using the first moment condition in (i). From the conclusion (i) of Lemma 4, the conclusion (i) of this
theorem is proved by referring to Lemma 2. With the Lipschitz condition,∫

(Φ̂
( j)
n,α(x)−Φ

( j)
α (x))2P(dx) =

{∫
(G j(x,γ)−G j(x,γ

′
))2P(dx)

}∣∣∣∣
γ=Zdαne:n,γ

′
=qα

≤ |Zdαne:n−qα |2
∫

K2
j (x)P(dx)→ 0 a.s., n→ ∞,

which implies convergence in distribution, by using the second moment condition in (ii). From the conclusion
(ii) of Lemma 4, the conclusion (ii) of this theorem is proved by referring to Lemma 2.

Theorem 3 For quantile sensitivity estimator (4) of form M2,

(i) under A2.1, PnΦ̂
( j)
n,α → PΦ

( j)
α a.s. as n→ ∞, j = 1,2;

(ii) under A2.2, GnΦ̂
( j)
n,α

d→GPΦ
( j)
α as n→ ∞, j = 1,2.

Proof. Since Zdαne:n→ qα a.s. as n→ ∞, from the structure of the estimator of form M.2, ∀ x,

Φ̂
( j)
n,α(x) = Ψ j(x)1

{
h(x)≤ Zdαne:n

}
→Ψ j(x)1{h(x)≤ qα}= Φ

( j)
α (x) a.s. n→ ∞ .

With the first moment condition in (i) and the fact that 1{· ≤ 0} is bounded, the sequence Φ̂
( j)
n,α is dominated

by an integrable function, so conclusion (i) can be proved by similar arguments as in the proof of Theorem
2. In addition, ∫

(Φ̂
( j)
n,α(x)−Φ

( j)
α (x))2P(dx)

=

{∫
1{min(γ,qα)≤ h(x)≤max(γ,qα)}Ψ2

j(x)P(dx)
}∣∣∣∣

γ=Zdαne:n

.

With condition A0, we know

lim
n→∞

P(min(qα ,γ)≤ h(X)≤max(qα ,γ))|γ=Zdαne:n = 0 a.s.

With the second moment condition in (ii), by the absolute continuity of the Lebesgue integral (or dominated
convergence theorem), we have

lim
n→∞

∫
(Φ̂

( j)
n,α(x)−Φ

( j)
α (x))2P(dx) = 0 a.s.,

which implies convergence in distribution. From the conclusion (ii) of Lemma 4, the conclusion (ii) of
this theorem is proved by referring to Lemma 2.

Remark. The key idea for the proofs of strong consistency and a central limit theorem for a random function
in Theorems 2 and 3 is to use the uniform convergence of the empirical expectation and empirical process
in the function class Glivenko-Cantelli and Donsker, respectively. In general, pointwise convergence is not
sufficient to guarantee uniform convergence, but together with finite covers for the function class, uniform
convergence can be established by checking pointwise convergence.

Generally, it is not possible to obtain a central limit theorem for
√

n(PnΦ̂
( j)
n,α −PΦ

( j)
α ) = GnΦ̂

( j)
n,α +

√
n(PΦ̂

( j)
n,α −PΦ

( j)
α ), j = 1,2, without imposing additional conditions. One such condition is A3.
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Theorem 4 For quantile sensitivity estimator (4) of form M1 under conditions A1 and A3 and form M2
under conditions A2 and A3,

√
n(PnΦ̂

( j)
n,α −PΦ

( j)
α )

d→ N(0,σ2
0 ), j = 1,2,

where

σ
2
0 =Var(Φ( j)

α )+
(1−α)

f (qα)

∂PΦ|γ
∂γ

∣∣∣∣
γ=qα

 α

f (qα)

∂PΦ( j)|γ
∂γ

∣∣∣∣∣
γ=qα

−2PΦ
( j)
α

 ,

and Var(Φ( j)
α )

.
=Var(Φ( j)(X ,qα)).

Proof. With condition A3, by the delta method and the central limit theorem for the quantile estimator
(see Chapters 3 and 21 of Van der Vaart 2000), we have

√
n(PΦ̂

( j)
n,α −PΦ

( j)
α ) =GnΠ

( j)|γ=qα
+op(1),

where

Π
( j)(x,γ) .

=−
∂PΦ( j)|γ

∂γ

1{h(x)≤ γ}−α

f (γ)
.

Since the property of Glivenko-Cantelli or Donsker for a function class would not change after adding a
finite number of functions satisfying the corresponding integrability condition, applying conclusion (ii) of
Theorem 3 to

(
Φ̂

( j)
n,α ,Π

( j)|γ=qα

)
, we have

Gn

(
Φ̂

( j)
n,α ,Π

( j)|γ=qα

)
d→GP(Φ

( j)
α ,Π( j)|γ=qα

) .

Notice that √
n(PnΦ̂

( j)
n,α −PΦ

( j)
α ) =GnΦ̂

( j)
n,α +GnΠ

( j)|γ=qα
+op(1) .

By the continuous mapping theorem (see Van der Vaart (2000)), the conclusion in the theorem follows
immediately.

Theorem 4 establishes a central limit theorem for the numerator and denominator in the quotient in (4)
by using the results in Theorems 2 and 3, together with the central limit theorem for the quantile itself and the
delta method. Theorems 2, 3 and 4 imply strong consistency and a central limit theorem for the quotient in (4).

Proof. of Theorem 1. From conclusion (i) of Theorems 2 and 3,

PnΦ̂
(1)
n,α → PΦ

(1)
α , PnΦ̂

(2)
n,α → PΦ

(2)
α a.s., n→ ∞ .

With condition A0, we know f (·) is strictly positive at qα . Therefore, conclusion (i) in the corollary is
proved. With the conditions assumed in the theorem,

√
n
(

D̂n−
dqα(θ)

dθ

)
=−
√

n

(
PnΦ̂

(1)
n,α

PnΦ̂
(2)
n,α

− PΦ
(1)
α

PΦ
(2)
α

)

=− 1

PnΦ̂
(2)
n,αPΦ

(2)
α

{
PΦ

(2)
α (GnΦ̂

(1)
n,α +GnΠ

(1)|γ=qα
)

−PΦ
(1)
α (GnΦ̂

(2)
n,α +GnΠ

(2)|γ=qα
)+op(1)

}
.
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Applying Theorems 2 and 3 to
(

Φ̂
(1)
n,α ,Π

(1)|γ=qα
,Φ̂

(2)
n,α ,Π

(2)|γ=qα

)
, conclusion (ii) of the corollary follows

immediately by noticing Γ = ηV ′, where

η
.
=

(
1

PΦ
(2)
α

,
1

PΦ
(2)
α

,−PΦ
(1)
α

PΦ
(2)
α

,−PΦ
(1)
α

PΦ
(2)
α

)
,

V .
=

Φ
(1)
α ,−

∂γPΦ
(1)
α |γ1{Z(θ)≤ qα(θ)}

PΦ
(2)
α

,
Φ

(2)
α

PΦ
(2)
α

,−
∂γPΦ

(2)
α |γ1{Z(θ)≤ qα(θ)}(

PΦ
(2)
α

)2

 .

Remark. For the quantile sensitivity estimators in Fu et al. (2009) and Lei et al. (2017), we have
PΦ(1)|γ = ∂F(γ;θ)/∂γ and PΦ(2)|γ = f (γ), so the asymptotic results of CMC and GLR can be directly
established by Corollary 1. For the KB estimator in Liu and Hong (2009), there is a bandwidth (tuning
parameter) δ in the estimator, and limδ→0 PΦ(1)|γ = ∂F(γ;θ)/∂γ and limδ→0 PΦ(2)|γ = f (γ). Without
considering the bias, the asymptotic results in Corollary 1 also directly apply to the estimator in Liu and
Hong (2009). To establish asymptotic unbiasedness, Liu and Hong (2009) let δn go to zero as n goes to
infinity, and impose requirements on the rate at which δn decreases with respect to n. With some additional
regularity conditions, the asymptotic results in Liu and Hong (2009) can be significantly streamlined based
on an analysis similar to Corollary 1.

4 NUMERICAL RESULTS

In the numerical experiment, we test the performances of the CMC, KB, and GLR estimators on a linear
Gaussian model, i.e. Z(θ) = h(X ;θ) = η +θζ , where X = (η ,ζ ) and η ,ζ ∼ N(0,1) are independent. For
this model, the quantile sensitivity can be calculated analytically as ∂qα(θ)/∂θ = zαθ/

√
θ 2 +1, where

zα is the α-quantile of the standard normal distribution.
In this example, the CMC estimator is given by

∑
n
i=1 ζiφ(Zdαne:n−θζi)

∑
n
i=1 φ(Zdαne:n−θζi)

,

where φ(·) is the density of the standard normal distribution, the KB estimator is given by

∑
n
i=1 ζiφ

(
(Zdαne:n−Zi)/δn

)
∑

n
i=1 φ

(
(Zdαne:n−Zi)/δn

) ,

and the GLR estimator is given by

∑
n
i=1 1{Zi ≤ Zdαne:n}

(
ηiζi +ζ 2

i −1
)

∑
n
i=1 1{Zi ≤ Zdαne:n}(ηi +ζi)

.

GLR estimators for ∂θ F(x;θ), f (x;θ), ∂xxF(x;θ), and ∂xθ F(x;θ) are, respectively,

1
n

n

∑
i=1

1{Zi ≤ x}ζiηi, −1
n

n

∑
i=1

1{Zi ≤ x}ηi,
1
n

n

∑
i=1

1{Zi ≤ x}(η2
i −1),

1
n

n

∑
i=1

1{Zi ≤ x}ζi(1−η
2
i ) .

For the numerical results, we estimate the median sensitivity, i.e. α = 0.5, where the true value is
∂q0.5(θ)/∂θ = 0. For the number of replications in the experiments, we take n = 104,105,106. The
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n = 104 n = 105 n = 106

CMC −1.1×10−4 ± 1.3×10−4 (90%) −1.6×10−6 ± 4.2×10−5 (90%) −1.9×10−8 ± 1.3×10−5 (90%)
KB 1.0×10−4 ± 2.1×10−4 (89%) −2.8×10−5 ± 7.6×10−5 (90%) 3.7×10−6 ± 3.0×10−5 (89%)

GLR 1.1×10−4 ± 2.3×10−4 (88%) −3.7×10−5 ± 7.3×10−5 (88%) 3.4×10−6 ± 2.3×10−5 (89%)

Table 1: 0.5-quantile sensitivity of a linear Gaussian model based on 104 independent macro simulations:
mean ± std err (actual coverage of 90% confidence interval).

statistics are estimated based on 10000 macro simulations. For KB, we set the bandwidth to δn = n−1/5

recommended in Liu and Hong (2009). In Table 1, we can see that CMC has the lowest variance; the
standard deviations of both CMC and GLR decrease at rate n−1/2, which matches the theoretical result,
while the standard deviation of KB decreases at rate slightly slower than n−1/2, which is caused by the
decreasing of bandwidth; the actual coverage rates of the confidence intervals of CMC, KB, and GLR are
very close to the target 90% level.

5 CONCLUSION

We use an empirical process technique to deal with the dependence issue in asymptotic analysis for quantile
sensitivity estimation, which offers both succinct proofs in a single framework and stronger results for
various non-batched quantile sensitivity estimators.

Acknowledgments.

This work was supported in part by the National Science Foundation (NSF) under Grants CMMI-1362303
and CMMI-1434419, by the National Science Foundation of China (NSFC) under Grants 71571048,
by the Air Force of Scientific Research (AFOSR) under Grant FA9550-15-10050, by the Science and
Technology Agency of Sichuan Province under Grant 2014GZX0002, by the Program for Professor of
Special Appointment (Eastern Scholar) at Shanghai Institution of Higher Learning, and by the China
Postdoctoral Science Foundation under Grant 2015M571495.

REFERENCES

David, H. A., and H. N. Nagaraja. 1970. Order Statistics. Wiley Online Library.
Fu, M. C., B. Heidergott, H. Lam, and Y. Peng. 2017. “Maximum likelihood estimation by Monte Carlo

simulation”. working paper.
Fu, M. C., L. J. Hong, and J.-Q. Hu. 2009. “Conditional Monte Carlo estimation of quantile sensitivities”.

Management Science 55 (12): 2019–2027.
Glasserman, P. 2004. Monte Carlo Methods in Financial Engineering. Springer.
Glynn, P., L. Fan, M. C. Fu, J.-Q. Hu, and Y. Peng. 2017. “Technical note — Central limit theorems for

estimated functions at estimated points”. submitted to Management Science.
Heidergott, B., and W. Volk-Makarewicz. 2009. “Quantile sensitivity estimation”. In International Confer-

ence on Network Control and Optimization, 16–29. Springer.
Heidergott, B., and W. Volk-Makarewicz. 2016. “A measure-valued differentiation approach to sensitivity

analysis of quantiles”. Mathematics of Operations Research 41 (1): 293–317.
Heidergott, B., W. Volk-Makarewicz, and F. J. Vázquez-Abad. 2014. “Gradient estimation for quantiles of

stationary waiting times”. In Proceedings of IEEE International Workshop on Discrete Event Systems,
241–246.

Hong, L. J. 2009. “Estimating quantile sensitivities”. Operations Research 57 (1): 118–130.
Hong, L. J., Z. Hu, and G. Liu. 2014. “Monte Carlo methods for value-at-risk and conditional value-at-risk:

A review”. ACM Transactions on Modeling and Computer Simulation 24 (4): 1–37.



Peng, Fu, Glynn and Hu

Hong, L. J., and G. Liu. 2009. “Simulating sensitivities of conditional value at risk”. Management Science 55
(2): 281–293.

Jiang, G., and M. C. Fu. 2015. “Technical note — On estimating quantile sensitivities via infinitesimal
perturbation analysis”. Operations Research 63 (2): 435–441.

Jiang, G., M. C. Fu, and C. Xu. 2014. “Bias reduction in estimating quantile sensitivities”. IFAC Proceedings
Volumes 47 (3): 10463–10468.

Jin, X., M. C. Fu, and X. Xiong. 2003. “Probabilistic error bounds for simulation quantile estimators”.
Management Science 49 (2): 230–246.

Jorion, P. 2007. Value at Risk: The New Benchmark for Managing Financial Risk, Volume 2. McGraw-Hill,
New York.

Lei, L., Y. Peng, M. C. Fu, and J.-Q. Hu. 2017. “Applications of generalized likelihood ratio method to distri-
bution sensitivities and steady-state simulation”. Journal of Discrete Event Dynamic Systems:accepted.

Liu, G., and L. J. Hong. 2009. “Kernel estimation of quantile sensitivities”. Naval Research Logistics 56
(6): 511–525.

Peng, Y., M. C. Fu, J.-Q. Hu, and B. Heidergott. 2017. “A new unbiased stochastic derivative estimator for
discontinuous sample performances with structural parameters”. submitted to Operations Research.

Serfling, R. J. 2009. Approximation Theorems of Mathematical Statistics. John Wiley & Sons.
Van der Vaart, A. W. 2000. Asymptotic Statistics, Volume 3. Cambridge University Press.
Volk-Makarewicz, W., and B. Heidergott. 2015. “Sensitivity analysis of ranked data: from order statistics

to quantiles”. Discrete Event Dynamic Systems 25 (4): 453–495.

AUTHOR BIOGRAPHIES

YIJIE PENG is a Research Assistant Professor in the Department of Systems Engineering and Operations
Research at George Mason University. His research interests lie in sensitivity analysis, and ranking and
selection in simulation optimization field. His email address is ypeng10@gmu.edu.

MICHAEL C. FU holds the Smith Chair of Management Science in the Robert H. Smith School of
Business, with a joint appointment in the Institute for Systems Research and affiliate faculty appointment
in the Department of Electrical and Computer Engineering, all at the University of Maryland. His research
interests include simulation optimization and applied probability, with applications in supply chain manage-
ment and financial engineering. He served as WSC2011 Program Chair, NSF Operations Research Program
Director, Management Science Stochastic Models and Simulation Department Editor, and Operations Re-
search Simulation Area Editor. He is a Fellow of INFORMS and IEEE. His email address is mfu@umd.edu.

PETER W. GLYNN is the Thomas Ford Professor in the Department of Management Science and Engi-
neering (MS&E) at Stanford University. He is a Fellow of INFORMS and of the Institute of Mathematical
Statistics, has been co-winner of Best Publication Awards from the INFORMS Simulation Society in
1993, 2008, and 2016, and was the co-winner of the John von Neumann Theory Prize from INFORMS
in 2010. In 2012, he was elected to the National Academy of Engineering. His research interests lie in
stochastic simulation, queueing theory, and statistical inference for stochastic processes. His email address
is glynn@stanford.edu.

JIAN-QIANG HU is a Professor with the Department of Management Science, School of Management,
Fudan University. He was an Associate Professor with the Department of Mechanical Engineering and
the Division of Systems Engineering at Boston University before joining Fudan University. His research
interests include discrete-event stochastic systems, simulation, queueing network theory, stochastic control
theory, with applications towards supply chain management, risk management in financial markets and
derivatives, and communication networks. His e-mail addresses is hujq@fudan.edu.cn.

mailto://ypeng10@gmu.edu
mailto://mfu@umd.edu
mailto://glynn@stanford.edu
mailto://hujq@fudan.edu.cn

	INTRODUCTION
	QUANTILE SENSITIVITY ESTIMATION
	ASYMPTOTIC ANALYSIS
	Empirical Processes
	Main Results

	NUMERICAL RESULTS
	CONCLUSION

