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Abstract This paper studies a Geo/Geo/1+GI queue in which the abandonments
are endogenous. One crucial feature of this model is that the abandonment behav-
ior is affected by the system performance and vice versa. Our model captures this
interaction by developing two closely related models: an abandonment model and a
queueing model. In the abandonment model, customers take the virtual waiting time
distribution as given. They receive a reward r from service and incur a cost c per
period of waiting. Customers are forward-looking and maximize their expected dis-
counted utilities by making wait or abandon decisions dynamically as they wait in
the queue. The queueing model takes the customers’ abandonment time distribution
as an input and studies the resulting virtual waiting time distribution. In equilibrium,
the customers’ abandonment behavior and the system performance must be consis-
tent across the two models. Therefore, combining the two models and imposing this
consistency requirement, we show that there exists a unique equilibrium. Lastly, we
provide a computational scheme to calculate the equilibrium numerically.
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1 Introduction

Queueing models with abandonments have been studied extensively in the operations
research literature both fromperformance analysis and fromoptimization perspectives;
see [40] for a survey. The traditional approach endows customers with exogenous
patience time distributions, and a customer abandons when her waiting time exceeds
her patience time (abandonment time). Exact results are rare and require distributional
assumptions on the arrival, service and abandonment processes. Examples include [15,
20,22,38]; see [2,21] for overviews and other examples. Two important papers for our
analysis are [13,14]. They provide necessary and sufficient conditions for existence of
the steady-state virtual offered waiting time inG/G/s+GI systems. In addition, [13]
obtain a closed-form characterization of the (steady-state) distribution of the virtual
offered waiting time for the M/M/s + GI system. Because most queueing models
with abandonments are not amenable to exact analysis, the heavy traffic asymptotic
regime is often used for approximate analysis of such systems. For example, Ward and
Glynn [41] study the heavy traffic limit of the G/G/1+GI queue in the conventional
heavy traffic limit regime. Ata et al. [12] study a multiclass queue with abandonments
under nonlinear costs. Other examples include [11,18,31,34,35]. We refer readers to
[40] for a comprehensive survey of the approximate analysis of queueing systems with
abandonments.

In contrast, this paper assumes that customers make rational abandonment deci-
sions. Starting with [33], a large and growing literature studying rational customers in
queueing systems emerged. The decisions of arriving customers can include whether
to join the queue or balk (joining decision) and which queue to join (routing deci-
sion). After joining the queue, customers may decide whether to keep waiting in the
queue or leave (abandoning or reneging decision) and whether to switch to a different
queue (jockeying decision). These models use the equilibrium approach to study the
queueing system when customers make rational decisions on their own by impos-
ing consistency conditions on customers’ rational decisions. Hassin and Haviv [25]
provide a comprehensive survey of this literature.

Customers’ abandonment decisions and the resulting system characterization
depend on whether they can observe the system state or not; see Chapters 2 and 3
of [25] for a discussion of the observable and unobservable queues, respectively. In
the observable case, customers join a physical queue and observe the system state,
especially the queue length, and other customers’ abandonment decisions. There are
several papers studying customers’ rational abandonment behavior in the observable
case. For example, Afèche and Sarhangian [1] study the rational abandonment deci-
sions of customers in an observable two-class priority system, and pricing as a tool
to control this behavior. Other studies include [9,23,30]. In the unobservable setting,
customers cannot observe the queue length and other customers’ abandonment behav-
ior. A number of papers study how information about the system impacts customers’
abandonment behavior. For example, Armony et al. [8] study the system equilibrium
using a fluid model under delay announcements. Jennings and Pender [27] study a
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ticket queue in which a newly arriving customer cannot observe the queue length but
knows her ticket number. Moreover, the abandonment decisions are unobservable.
They compare this ticket queue with the observable queue and prove that they are
indistinguishable in heavy traffic. Kuzu et al. [28] examine customers’ abandonment
behavior in a ticket queue using a dataset of a Turkish bank. Their empirical study
reveals that customers update their forecast of the waiting time over time and adjust
their abandonment decisions accordingly. Aksin et al. [4] conduct an empirical study
of the impact of different delay announcements on system performance. Examples of
unobservable queues include virtual queues in call centers and waiting lists of patients
for organ transplant; see, for example, [11]. To the best of our knowledge, the first
papers in this literature are [24,26,32,37,43]. These papers assume that the customers
determine whether to join the queue and their abandonment time upon arrival. Hassin
and Haviv [24] consider a queue in which the reward from service reduces to zero
after a certain time and study the Nash equilibrium of customers’ strategies. Haviv and
Ritov [26] study the symmetric Nash equilibrium of customers’ abandonment strate-
gies for a queue in which customers have an increasing and convex waiting cost and a
fixed reward from service. In [43]’smodel, the customers’ abandonment time follows a
parametric distribution. The parametric distribution depends only on a single statistical
measure of the system performance, for instance the average anticipated waiting time.
Mandelbaum and Shimkin [32,37] analyze rational models of aMarkovian queue with
a general abandonment time distribution (an M/M/s+GI queue). In both papers, the
authors assume that the customers make a rational decision on when to abandon upon
arrival with the waiting cost and the service utility of the callers given. Callers abandon
the system if their actual waiting time exceeds their optimal abandonment time.

This paper studies the endogenous abandonment decisions of customers in the unob-
servable setting and incorporates such endogenous behavior for a Geo/Geo/1 + GI
queue. In contrast to the static abandonment models in the literature, we adopt the
dynamic abandonment model developed in [3]; see also [4]. In this model, customers
decidewhether or not to abandondynamicallywhile theywait in the queue tomaximize
their utilities. Customers’ utilities depend on the waiting costs, the reward from the
service and their idiosyncratic random shocks. Customers maximize their utilities by
solving an optimal stopping problem. Aksin et al. [3] apply this dynamic abandonment
model to the dataset of a US bank call center and study the customers’ abandonment
behavior in this call center. In equilibrium, customers’ belief of the waiting time dis-
tribution should be consistent with the actual waiting time distribution. Rather than
characterizing the system equilibrium analytically, [3] focus on estimating preference
parameters, i.e., the waiting costs and rewards of the customers. Themain contribution
of our paper is to propose a theoretical framework to study the system equilibrium and
the corresponding system performance under the aforementioned endogenous aban-
donment model. We show that there exists a unique equilibrium and we provide an
algorithm to compute it and illustrate its performance.

In particular, our framework for studying the system with endogenous abandon-
ments consists of two parts: an abandonment model and a queueing model. The
abandonment model assumes that customers make dynamic abandonment decisions to
maximize their expected discounted utility by solving an optimal stopping problem. In
particular, the abandonment model characterizes customers’ abandonment probability
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(as a function of how long they havewaited so far) given their beliefs of the system per-
formance. The queueing model studies the system dynamics and performance given
the customers’ abandonment behavior. To be specific, the queueing model character-
izes the steady-state distribution of the virtual offered waiting time (VOWT) given
customers’ abandonment behavior. We restrict our attention to a Geo/Geo/1 + GI
queue. This enables us to obtain a closed-form characterization of the steady-state
distribution of the VOWT. In equilibrium, customers’ abandonment behavior (as a
function of the system behavior) and the implied system behavior must be consistent
with each other; see Definition 1 for a formal definition of the equilibrium.

We show that there exists a unique equilibrium. Showing the existence essentially
boils down to invoking the Brouwer–Schauder fixed point theorem in the appropriate
space as we do in our analysis. Unfortunately, the existing literature does not provide a
satisfactory answer to the question of uniqueness,which is important for computational
schemes and also for studying system performance in practice. On the one hand, taking
a probabilistic approach, the abstract mathematical question studied in this paper can
be posed as one of proving existence and uniqueness of the steady-state distribution
of a self-interacting Markov chain (under suitable Markovian assumptions); see [19].
On the other hand, taking a purely analytical approach, it can be formulated as finding
the eigenvalues and eigenvectors of a nonlinear mapping which involves “nonlinear
Perron–Frobenius theory” [29]. To the best of our knowledge, the literature essentially
assumes uniqueness by relying on contraction mapping arguments. However, the fixed
point equation we derive to characterize the equilibrium is not a contraction mapping
in general. Hence, we establish the uniqueness from first principles.

Our proof of uniqueness is by contradiction. To this end, we first characterize the
equilibrium by an auxiliary two-dimensional dynamical system. Different equilibria
correspond to different solutions to the dynamical system.Next,wederive the recursive
equations that characterize the evolution of this dynamical system (as a function of
the waiting time). By studying these recursive equations, we show that they cannot
have multiple solutions by contradiction.

We also provide a computational scheme and illustrate the potential value of adopt-
ing the aforementioned equilibrium view versus the traditional approach of exogenous
modeling of abandonment. The equilibrium is approximated by a truncated one, where
the abandonment probabilities of customers who have waited longer than a certain
threshold are replaced by an upper bound. The truncated equilibrium converges to the
actual equilibrium as the truncation period goes to infinity. Thus, we can approximate
the actual equilibrium by the truncated one, which, in turn, is calculated by an iterative
algorithm.

The rest of this paper is organized as follows: Sect. 2 characterizes the equilibrium
of the Geo/Geo/1 + GI queue with endogenous abandonments and states the main
theorem at the end. Section 3 proves the main theorem establishing the existence and
uniqueness of the equilibrium. Section 4 provides a computational scheme to calculate
the equilibrium numerically. We then conduct a numerical study to analyze the impact
of modeling the abandonment decisions endogenously in Sect. 5. The appendices
are organized as follows: The proofs of the results in Sect. 2, the proofs of lemmas,
corollaries and the main theorem in Sect. 3, and the proofs of propositions in Sect. 4
are given in Appendix 1. The proof of a technical lemma that facilitates the proof of
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the uniqueness of the equilibrium is given in Appendix 2. A road map for the proof of
the uniqueness of the equilibrium is in Appendix 3.

2 Characterization of the equilibrium

This section introduces the framework to study a single-class queueing with endoge-
nous abandonments. Customers’ abandonment behavior is endogenous because their
abandonment decisions depend on the congestion in the system. Characterizing such
a system requires studying two closely related questions:

1. How do customers’ abandonment decisions impact system performance?
2. How does the congestion affect customers’ abandonment decisions?

We address the first question by studying a queueing model with abandonments. The
queueing model takes customers’ abandonment decisions as inputs and studies the
resulting waiting time distribution in steady state. We then introduce an abandonment
model of forward-looking customers who make abandonment decisions dynamically
to maximize their utilities given the underlying system dynamics. The abandonment
model takes the waiting time distribution (in steady state) as an input and studies the
resulting abandonment time distribution. Combining the queueing and abandonment
models gives rise to the framework for studying the single-class queue with endoge-
nous abandonments. To be more specific, we employ an equilibrium approach, which
imposes consistency conditions. Namely, it requires that the abandonment and waiting
time distributions of the two models must be consistent in equilibrium; see Defini-
tion 1. At the end of this section, we state the main theorem which establishes the
existence and uniqueness of the equilibrium.

2.1 The queueing model

The queueingmodel characterizes the systemperformance by taking the distribution of
customers’ abandonment time as given.We consider aGeo/Geo/1+GI queue inwhich
customers’ abandonment times follow a general distribution. In particular, we consider
a single-class queue with a single server1. In each period, a new customer arrives at
the system with probability a. We assume a non-idling service policy. Customers
are served in a first-come, first-served (FCFS) fashion. The service times follow a
geometric distribution with probability b. We consider only the underloaded case2,
i.e., a < b.

1 The single-server assumption eliminates the possibility of having multiple service completions in one
period, simplifying the characterization of the waiting time distribution significantly in our discrete-time
model. Under this assumption, the characterization of the hazard rate of the waiting time distribution is
a straightforward analogue of that of [13] in their continuous-time model. Their characterization of the
waiting time distribution is valid for multiserver queueing systems as well. This observation leads us to the
conjecture that our existence and uniqueness results can be extended to the multiserver setting as well.
2 Although we restrict attention to the underloaded case, i.e., a < b, we conjecture that the existence and
uniqueness results continue to hold in the general case when the stability condition a < bG(∞) holds; see
Eq. (1) for the definition ofG. The intuition for this stems from the fact that the proofs in Sect. 3 rely merely
on the properties of the abandonment decisions and performance metrics of the queue when the waiting
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A crucial feature of our model is that customers make real-time abandonment
decisions while waiting; a detailed description of that will be provided in the next
section. Until then, we assume the abandonment time follows a general distribution.
To be specific, a customer who has waited in the queue for w periods abandons with
probability q(w) for w ≥ 1.

A quantity of primary interest for us is β(w), the steady-state probability of entering
service in the next period for a customer who has been in the queue for w periods.
This is because the (steady-state) probability β of entering service is a key input of
customers’ abandonment decisions described in Sect. 2.2. We first study the virtual
offered waiting time (VOWT) process, denoted by {V (t) : t ≥ 1}, where V (t) is the
number of periods a customer arriving at time t has to wait if she does not abandon.
Then the (steady-state) probability β of entering service is the hazard rate of the
steady-state distribution of the VOWT.

Baccelli and Hebuterne [13] calculate the VOWT distribution of an M/M/s +GI
queue in closed form. The authors observe that the steady-state distributions of the
VOWT of the following two systems are equivalent, which is key to their analysis:

– (System 1) A customer calculates her VOWT upon arrival and balk if it exceeds
her patience time.

– (System 2) A customer joins the queue regardless and abandons when her patience
time expires.

The system of interest for us falls into the second case (System 2). Following this
observation, we can study the VOWT of System 2 by analyzing the VOWT of System
1. Baccelli andHebuterne [13] derive the generalized Lindley’s equation [13, Equation
2.1] to characterize the steady-state distribution of the VOWT (of System 1).We adapt
their approach to our discrete-time setting. To this end, letG(w) denote the probability
that a customer abandons the queue within w periods. Note that

G(w) = 1 −
w∏

i=1

(1 − q(i)), (1)

and let Ḡ(w) = 1−G(w). Conditioning on the service time of a (potential) customer
who arrives in period t , we write a recursive equation to characterize the dynamics
of the VOWT V (t) (for t ≥ 1). This equation is the discrete-time analogue of the
generalized Lindley’s equation in [13], which is given as follows: For m = 1, 2, . . .,

V (t + 1) =
{

(V (t) − 1)+, w.p. (1 − a) + aG(V (t)),
V (t) − 1 + m, w.p. a(1 − G(V (t)))(1 − b)m−1b.

(2)

Note that the VOWT V (t) is the sum of the service time of all customers (in System 1)
at the beginning of period t . Thus, if no customers enter the system in period t , the

Footnote 2 continued
time is large. Focusing on the underloaded case, i.e., a < b, relieves us from the burden of working with
different characterizations of the system as a function of the waiting time, and thus simplifies the proof of
the main result.
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VOWT decreases by one in a non-empty system. If the system is empty, the VOWT
remains zero. This happens either when no customer arrives (with probability 1 − a)
or when a customer arrives, finds that the VOWT exceeds her patience time (with
probability aG(V (t))), and balks. This gives the first case in Eq. 2. The second case
represents the scenario in which a customer arrives at the system and does not balk
(with probability a(1−G(V (t)))) in period t . Conditioning on the service time of this
arriving customer, we obtain that the VOWT V (t + 1) becomes V (t) − 1 + m (with
probability a(1 − G(V (t)))(1 − b)m−1b).

The system dynamics are fully characterized by the arrival probability a, the prob-
ability of service completion b and the abandonment probabilities q(·). Therefore,
we can characterize how the system evolves in steady state. By analyzing Eq. (2),
we obtain Proposition 1, that is, the discrete-time analogue of [13]’s result. It charac-
terizes the (steady-state) probability of entering service β(·) given the abandonment
probabilities q(·); see “Proofs of results in Sect. 2” in Appendix 1 for its proof.

Proposition 1 The probability of entering service afterwaiting forw periods in steady
state is given as follows:

β(w) =
(
1 +

∞∑

t=w+1

t∏

i=w+1

1 − b

1 − aḠ(i)

)−1

, w ≥ 1. (3)

The following recursive equation is immediate from Eq. (3):

1

β(w)
= 1 + 1 − b

1 − aḠ(w + 1)

1

β(w + 1)
. (4)

The queueing model characterizes the system performance as if the abandonment
probabilities q(·) were known. We complete the characterization of the system by
introducing a rational abandonment model in the next subsection. The abandonment
model takes the system performance (in steady state) as an input and gives the aban-
donment probabilities q(·) as the output.

2.2 An abandonment model with forward-looking customers

This section introduces the abandonment model, which builds on [3]. In our abandon-
ment model, customers make their abandonment decisions based on their beliefs of
the probability of entering service, which also characterizes the system performance.

We consider a dynamic abandonment model. In every period, customers waiting
in the queue decide to abandon or stay in the queue. Consider a customer who has
been waiting in the queue for w periods. Figure 1 shows the sequence of events
that she experiences during the next period. We denote her abandonment decision by
d ∈ {0, 1}; d = 0 corresponds to staying in the queue, whereas d = 1 corresponds
to abandoning. There is a random shock, denoted by ε(w, d) associated with each
action d. The random shock captures the changing and unknown factors that impact
customers’ abandonment decisions in each period. First, she learns the realizations of
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Fig. 1 Timeline of the events

the random shocks ε(w, d) and calculates her utility under each decision d ∈ {0, 1},
which we denote by u(w, d, ε(w, d)). Then she makes the abandonment decision
so as to maximize her utility. If she chooses to abandon (d = 1), she only incurs
the random shock ε(w, 1) and leaves the system. If she chooses to stay in the queue
(d = 0), then she incurs a waiting cost of c for that period as well as the shock
ε(w, 0). Moreover, she enters service at the end of the period with probability β(w) in
which case she receives a reward r from service. If she does not enter service in that
period (which happens with probability 1−β(w)), she remains in the queue and goes
through the same decision making process in the next period. In addition, assume that
the customer discounts the utility received in the next period by a factor α ∈ [0, 1).
In making her decision of whether to abandon or wait, she takes into account her
expected discounted future utility (or “value-to-go”), denoted by J (w + 1), as well.
In summary, the (expected) utility of the customer as a function of her action (at the
time of making her abandonment decision) is given as follows:

u(w, a, ε(w, d))=
{−c + α[β(w)r + (1 − β(w))J (w + 1)] + ε(w, 0), if d = 0,

ε(w, 1), if d = 1,
(5)

where J (w + 1) is the expected discounted future utility of waiting given that she has
waited for w + 1 periods. Note from Eq. (5) that the utility u merely depends on the
waiting cost c, reward r and the random shocks ε(w, d) for d = 0, 1. Thus, the ran-
dom shocks ε(·) correspond to the other factors that impact customers’ abandonment
decisions but are not captured by the waiting cost c and the reward d.

Equation (5) shows that customers’ abandonment decisions solve an optimal stop-
ping problem indeed. Thus, the expected discounted future utility J (·) of waiting is the
value function of this optimal stopping problem. To be specific, it is given as follows:

J (w) = Eε(w)

[
max

d∈{0,1} u(w, a, ε(w, d))

]
, (6)

where ε(w) = (ε(w, 0), ε(w, 1)) for w ≥ 1 and Eε is the expectation over the
distribution of ε. The customer’s optimal action d∗(w, ε(w)) is given by

d∗(w, ε(w)) = arg max
d∈{0,1} u(w, d, ε(w, d)). (7)

We make the following two assumptions on the idiosyncratic shocks.
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Assumption 1 The idiosyncratic shocks satisfy the following:

1. The idiosyncratic shocks are i.i.d. with zero mean for all w ≥ 1 and d ∈ {0, 1},
i.e., E[ε(w, d)] = 0;

2. The values −c and r are in the interior of the support of F(·), where F(·) is the
cumulative distribution function of ε(1, 1) − ε(1, 0). In addition, F(·) admits a
continuous and positive probability density function f (·) on [−c, r ].

For notational brevity, we suppress the dependence of idiosyncratic shocks on the
waiting time and write ε(d), d ∈ {0, 1}. By substituting (5) into (6), we obtain the
following Bellman equation:

J (w) = Eε [max{ε(1),−c + α[β(w)r + (1 − β(w))J (w + 1)] + ε(0)}] , w ≥ 1.
(8)

In light of (7), the probability that a customer abandons the queue after waiting for w

periods, q(w), is given as follows:

q(w) = P(d∗(w, ε) = 1) = P(u(w, 1, ε(1)) ≥ u(w, 0, ε(0))), w ≥ 1. (9)

The following lemma shows that the abandonment probability q(·) is uniquely char-
acterized by the expected discounted utility J (·) and vice versa; see “Proofs of results
in Sect. 2” in Appendix 1 for its proof.

Lemma 1 Given the expected discounted utility J (·), the abandonment probability
q(·) is given as follows:

q(w) = F̄ (−c + α {β(w)r + (1 − β(w))J (w + 1)}) , w ≥ 1, (10)

where F̄(·) = 1 − F(·). In addition, given the abandonment probability q(·), the
expected discounted utility J (·) is characterized by the following equation:

J (w) = Eε

[
F̄−1(q(w)) + ε(0) − ε(1)

]+
, w ≥ 1. (11)

In addition, we make the following assumption on the idiosyncratic shocks, the
service reward r and the per-period waiting cost c.

Assumption 2 Customers prefer receiving service immediately to waiting for one
period before entering service, i.e., r > Eε[max(ε(1),−c + αr + ε(0))].

The following proposition (see “Proofs of results in Sect. 2” in Appendix 1 for
its proof) shows that the expected value of waiting J (·), and thus the abandonment
probability q(·), is unique given the probability of entering service β(·).
Proposition 2 Given β(·), the expected value of waiting J (·) for a customer is the
unique solution to the Bellman Eq. (8). Moreover, the corresponding abandonment
probability q(·) is uniquely characterized by Eq. (10).

Building on Lemma 1, Proposition 2 and Assumptions 1 and 2, the following
corollary shows that for any given β, the abandonment probability is bounded away
from zero; see “Proofs of results in Sect. 2” in Appendix 1 for its proof.

123



150 Queueing Syst (2017) 86:141–212

Corollary 1 For any given β(·), we have that J (w) ≤ r for all w ≥ 1. Moreover,
q(w) ≥ q = F̄(r) > 0 for all w ≥ 1.

2.3 Existence and uniqueness of the system equilibrium

In an equilibrium, the probability of entering service β and the abandonment proba-
bility q must be consistent with each other. To facilitate the formal definition of the
equilibrium, let Ω = [0, 1]∞. Note that the probability of entering service β(w) and
the abandonment probability q(w) (for w ≥ 1) can be viewed as infinite-dimensional
vectors. Thus, β, q ∈ Ω . We let Φ : Ω → Ω denote the mapping from the vector q
of the abandonment probability to the vector β of the probability of entering service,
which is characterized by Proposition 1. Equations (8) and (10) provide the character-
ization of the mapping from the vector β of the probability of entering service to the
vector q of the abandonment probability. We denote that mapping by Γ : Ω → Ω .

The following definition of system equilibrium imposes the consistency require-
ment on customers’ abandonment probability q and their probability of entering
service β.

Definition 1 We say that e∗ = (β∗, q∗) is a system equilibrium (in steady state) if
the following conditions are both satisfied:

1. The customers make abandonment decisions with the (steady-state) probability of
entering service β∗, i.e., q∗ = Γ (β∗).

2. The (steady-state) probability of entering service β∗ is consistent with the actual
probability of entering servicewith abandonment probability q∗, i.e.,β∗ = Φ(q∗).

The definition of the system equilibrium requires that the customers’ beliefs on the
system performance, which is characterized by β, are consistent with the actual system
performance in steady state3. The following corollary, which combines the analysis
from the abandonment and queueing models, provides the characterization of the
system in equilibrium. It is immediate from Propositions 1 and 2.

Corollary 2 The equilibrium is characterized by Eqs. (1), (3), (8) and (10).

We end this section by stating our main result which establishes the existence and
uniqueness of the equilibrium. The next section proves this theorem.

Theorem 1 There exists a unique system equilibrium e∗.

3 Proof of Theorem 1

The proof of Theorem 1 includes two parts. Section 3.1 establishes the existence of the
equilibrium, building on several auxiliary lemmas. Section 3.2 proves the uniqueness.

3 The definition of the system equilibrium is a symmetric Nash equilibrium with infinitely many indistin-
guishable players; see 1.1 of Chapter 1 in [25] for a detailed discussion.
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3.1 The existence of the equilibrium

Let e∗ = (β∗, q∗) be an equilibrium. By definition of an equilibrium, the probability
β∗(·) of entering service is the solution to the fixed point problem β∗ = Φ(Γ (β∗)).
We use Brouwer–Schauder fixed point theorem to prove the existence the equilibrium.
We first state two lemmas in preparation for applying the fixed point theorem.We then
prove the existence result at the end of this subsection.

The following lemma provides an upper bound and a lower bound for the belief
β∗(·); see “Proofs of results in Sect. 3” in Appendix 1 for its proof.

Lemma 2 Given β(w) ∈ [0, b] for w ≥ 1, let β̃ = (β̃(w) : w ≥ 1) be defined as
β̃ = Φ(Γ (β)). Then β̃(w) is increasing in w and satisfies the following inequality:

b − a(1 − q)w+1

1 − a(1 − q)w+1 ≤ β̃(w) ≤ b for w ≥ 1, (12)

where q ∈ (0, 1) is the constant given in Corollary 1.

Since the probabilityβ∗(·)of entering service in equilibriumsatisfiesβ∗ = Φ(Γ (β∗)),
it also satisfies Eq. (12). To state the next lemma, define the set of infinite sequences
B as follows:

B =
{

β ∈ l∞ : b − a(1 − q)w+1

1 − a(1 − q)w+1 ≤ β(w) ≤ b, w ≥ 1

}
, (13)

where l∞ is the space of infinite sequences endowed with the topology induced by
the sup-norm. Lemma 3 shows that the fixed point problem β∗ = Φ(Γ (β∗)) satisfies
the conditions of the Brouwer–Schauder fixed point theorem; see “Proofs of results in
Sect. 3” in Appendix 1 for its proof.

Lemma 3 The set B is compact in l∞. In addition, the mapping Φ(Γ (·)) is contin-
uous.

Thus, we immediately obtain the existence result stated in the following proposition.

Proposition 3 There exists a system equilibrium e∗.

Proof By Lemma 2, we can restrict our attention to β ∈ B. By Lemma 3, the set B
is compact in l∞ and the mapping Φ(Γ (·)) is continuous. By the Brouwer–Schauder
fixed point theorem [42], the fixed point problemβ = Φ(Γ (β)) has a solutionβ∗ ∈ B.
Therefore, (β∗, Γ (β∗)) is a system equilibrium.

3.2 The uniqueness of the equilibrium

The uniqueness is proved by contradiction.We first state some properties of the proba-
bility β∗(·) of entering service and the abandonment probability q∗(·) in equilibrium.
We then assume that there exist multiple equilibria. We explore the properties of the
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difference of two different equilibria. The properties of the difference contradict the
other properties of β∗(·) and q∗(·) in equilibrium alluded to immediately above.

Intuitively, as a customer waits in the queue, there remain fewer customers ahead
of her both due to service completions and abandonments. Thus, her probability of
entering service in the next period increases with waiting time. Also, note that for a
customer at the head of the queue, β = b, which is formalized in the next corollary.

Corollary 3 In equilibrium, the probability β∗(w) of entering service (after waiting
for w periods) is increasing in w and satisfies inequality (12). Moreover, we have that

lim
w→∞ β∗(w) = b.

The next lemma shows the monotonicity of the expected value of waiting and aban-
donment probability in equilibrium.

Lemma 4 In equilibrium, the expected discounted utility of waiting J∗(w) is increas-
ing, whereas the abandonment probability q∗(w) is decreasing in the waiting time w.

Since the expected value of waiting J ∗ is increasing and bounded above by r , it
converges as w tends to infinity. Hence, we have the following corollary.

Corollary 4 There exist constants J∞ ≤ r and q∞ ≥ q such that

lim
w→∞ J ∗(w) = J∞ and lim

w→∞ q∗(w) = q∞,

where J∞ is the unique fixed point of following equation:

x = Eε[−c + α[br + (1 − b)x] − (ε(1) − ε(0))]+, (14)

and q∞ = F̄(−c + α[br + (1 − b)J∞]).
To construct the contradiction, we assume that there exist at least two different equi-

libria. Suppose e∗
1 and e

∗
2 are two different equilibria where e

∗
i (w) = (β∗

i (w), q∗
i (w))

for w ≥ 1 and i = 1, 2. Define

δβ(w) = β∗
1 (w)−β∗

2 (w), δq(w) = q∗
1 (w)−q∗

2 (w) and δḠ(w) = Ḡ∗
1(w)− Ḡ∗

2(w).

Recall from (1) that Ḡ∗
i (w) = ∏w

k=1(1−q∗
i (k)) forw ≥ 1 and i = 1, 2. It is immediate

from Corollaries 3 and 4 that

lim
w→∞ δβ(w) = 0 and lim

w→∞ δq(w) = 0. (15)

To reach a contradiction, we show that (15) cannot hold. Lemmas 5–8 facilitate
this contradiction argument. The following lemma proves an auxiliary relationship
between δḠ(w), δβ(w) and δq(w), which plays a key role in proving Lemmas 6–7.

123



Queueing Syst (2017) 86:141–212 153

Lemma 5 There exist two positive sequences g1(w) and g2(w) for w ≥ 1 with
limw→∞ gi (w) = 0 for i = 1, 2 such that

δḠ(w) = g1(w)δβ(w) + g2(w)δq(w). (16)

The proof of Lemma 5 is provided in Appendix 24.
The following lemma shows that e∗

1 and e∗
2 must be everywhere different.

Lemma 6 If e∗
1 �= e∗

2 are two different equilibria, then e
∗
1(w) �= e∗

2(w) for all w ≥ 1.

Proof We prove this lemma by contradiction. Suppose this is not true. Thus, there
exists n such that e∗

1(n) = e∗
2(n). We first show that e∗

1(w) = e∗
2(w) for w < n.

We then use the assumption e∗
1(n) = e∗

2(n) to show that e∗
1(w) = e∗

2(w) for w > n.
Combining these two results, we conclude that this contradicts the assumption that
e∗
1 �= e∗

2.
It follows from Eq. (16) that δḠ(n) = 0. In other words, Ḡ∗

1(n) = Ḡ∗
2(n). Note that

e∗
i (w) and Ḡ∗

i (w) for i = 1, 2 and w ≤ n can be computed recursively by Eqs. (4),
(10)–(11) and the following equation:

Ḡ∗
i (w − 1) = Ḡ∗

i (w)

1 − q∗
i (w)

,w ≤ n.

Thus, we have that

e∗
1(w) = e∗

2(w) and Ḡ∗
1(w) = Ḡ∗

2(w), w = 1, . . . , n.

In addition, by inverting Eqs. (1), (4) and (10)–(11), we can calculate β(w), q(w) and
Ḡ(w) for w > n by the following equations recursively: For w ≥ n,

q(w + 1) = F̄

[
H−1

(
F̄−1(q(w)) + c − αβ(w)r

α(1 − β(w))

)]
, (17)

Ḡ(w + 1) = Ḡ(w)(1 − q(w + 1)), (18)

β(w + 1) = 1 − b

1 − aḠ(w + 1)

β(w)

1 − β(w)
, (19)

where H(x) = ∫ x
−∞ F(y) dy for x ≥ 0. Thus, we have that e∗

1(w) = e∗
2(w) and

Ḡ∗
1(w) = Ḡ∗

2(w) for all w > n as well. This gives e∗
1 = e∗

2, which contradicts the
assumption that e∗

1 �= e∗
2.

4 Here is a brief outline of the proof in Appendix 2. To prove this result, we define an auxiliary function
fw(·) in “Definition of the auxiliary function fw(·)” in Appendix 2 implicitly and study its properties
(especially the monotonicity and convergence of its partial derivatives as w gets large). This function helps
characterize Ḡ in terms of β and q. We then apply the mean value theorem to fw(·) to establish the result
in Lemma 5.
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To facilitate the analysis to follow, let Mn denote the set of all n × n matrices, x =
(x1, . . . , xn)′ be a n-dimensional vector, and M = [mi j ] ∈ Mn . Also let || · ||∞ and
||| · |||∞ denote the vector and matrix norms, respectively, given by

||x ||∞ = max
1≤i≤n

|xi | and |||M |||∞ = max
1≤i≤n

n∑

j=1

|mi j |.

Building on Lemma 5, the next lemma characterizes the evolution of (δq(w), δβ(w))′
as w evolves.

Lemma 7 There exist a matrix A and a sequence of matrices B(w), w ≥ 1 such that
the following hold:

1. The sequence of vectors (δq(w), δβ(w))′ forw ≥ 1 satisfies the following recursive
equation: [

δq(w + 1)
δβ(w + 1)

]
= (A + B(w))

[
δq(w)

δβ(w)

]
. (20)

2. The two eigenvalues of the matrix A, denoted by λ1 and λ2, satisfy λ1 > λ2 > 1.
3. limw→∞ |||B(w)|||∞ = 0.

Proof To facilitate the proof, define the constants a1, a2, a3 as follows:

a1 = 1

α(1 − q∞)(1 − b)
, a2 = f (F̄−1(q∞))(F̄−1(q∞) + c − αβr)

α(1 − q∞)(1 − β)2
and

a3 = 1

1 − b
.

In addition, define the matrix A as follows:

A =
[
a1 a2
0 a3

]
.

Let [εq(w + 1), εβ(w + 1)]T denote the difference of two vectors given as follows:

[
εq(w + 1)
εβ(w + 1)

]
=
[

δq(w + 1)
δβ(w + 1)

]
− A

[
δq(w)

δβ(w)

]
, w ≥ 1. (21)

In addition, define the matrices B(w) as follows: For w ≥ 1,

B(w) =

⎡

⎢⎢⎣

εq(w + 1)

|δq(w)| + |δβ(w)| sign(δq(w))
εq(w + 1)

|δq(w)| + |δβ(w)| sign(δβ(w))

εβ(w + 1)

|δq(w)| + |δβ(w)| sign(δq(w))
εβ(w + 1)

|δq(w)| + |δβ(w)| sign(δβ(w))

⎤

⎥⎥⎦ ,

where sign(x) is the sign of x . It is easy to check that the matrices A and B(w) satisfy
Eq. (20).
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We complete the proof by showing that limw→∞ |||B(w)|||∞ = 0. That is, for any
ε > 0, there exists w0 such that for all w ≥ w0, |||B(w)|||∞ ≤ ε. Note that this is
equivalent to showing that for any ε > 0, there exists w0 such that, for all w ≥ w0,

|εq(w +1)| ≤ ε(|δq(w)|+ |δβ(w)|) and |εβ(w +1)| ≤ ε(|δq(w)|+ |δβ(w)|). (22)

The rest of the proof shows (22). Recall that H(x) = ∫ x
−∞ F(y) dy for x ≥ 0. To

facilitate the proof, define the functions ψ1(·, ·) and ψ2(·, ·) as follows:

ψ1(β, q) = F̄

[
H−1

(
F̄−1(q) + c − αβr

α(1 − β)

)]
,

ψ2(β, Ḡ) = 1 − b

1 − aḠ

β

1 − β
.

The partial derivatives of the functions ψ1(·, ·) and ψ2(·, ·) are given as follows:

∂ψ1(β, q)

∂β
= − f (F̄−1(ψ1(β, q))

1 − ψ1(β, q)

F̄−1(q) + c − αβr

α(1 − β)2
,

∂ψ1(β, q)

∂q
= f (F̄−1(ψ1(β, q)))

f (F̄−1(q))α(1 − β)(1 − ψ1(q, β))
,

∂ψ2(β, Ḡ)

∂β
= 1 − b

1 − aḠ

1

(1 − β)2
,

∂ψ2(β, Ḡ)

∂Ḡ
= (1 − b)β

1 − β

a

(1 − aḠ)2
.

It follows from Eqs. (17) to (19) that for w ≥ 1 and i = 1, 2,

q∗
i (w + 1) = ψ1(q

∗
i (w), β∗

i (w)) and β∗
i (w + 1) = ψ2(β

∗
i (w), Ḡ∗

i (w + 1)).

By the mean value theorem [7, Theorem 8.4], we have that (for w ≥ 1)

δq(w + 1) = ∂ψ1(β1(w), q1(w))

∂q
δq(w) + ∂ψ1(β1(w), q1(w))

∂β
δβ(w), (23)

δβ(w +1)= ∂ψ2(β2(w), Ḡ2(w+1))

∂Ḡ
δḠ(w + 1) + ∂ψ2(β2(w), Ḡ2(w + 1))

∂β
δβ(w),

(24)

where

(β1(w), q1(w)) = c1(w)(β∗
1 (w), q∗

1 (w)) + (1 − c1(w))(β∗
2 (w), q∗

2 (w)),

(β2(w), Ḡ2(w+1)) = c2(w)(β∗
1 (w), Ḡ∗

1(w+1)) +(1− c2(w))(β∗
2 (w), Ḡ∗

2(w + 1)),
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for some c1(w), c2(w) ∈ (0, 1). It follows from Corollaries 3 and 4 that for i = 1, 2,

β∗
i (w) → b, q∗

i (w) → q∞ and Ḡ∗
i (w) → 0 as w → ∞.

Since (β1(w), q1(w)) and (β2(w), Ḡ2(w + 1)) are convex combinations of the equi-
librium quantities, the following holds:

(β1(w), q1(w)) → (b, q∞) and (β2(w), Ḡ2(w + 1)) → (b, 0) as w → ∞.

Then it follows from the continuity of the partial derivatives of ψ1(·) and ψ2(·) that

lim
w→∞

∂ψ1(β1(w), q1(w))

∂q
= ∂ψ1(b, q∞)

∂q
= a1,

lim
w→∞

∂ψ1(β1(w), q1(w))

∂β
= ∂ψ1(b, q∞)

∂β
= a2,

lim
w→∞

∂ψ2(β2(w), Ḡ2(w + 1))

∂Ḡ
= ∂ψ2(b, 0)

∂Ḡ
= ab,

lim
w→∞

∂ψ2(β2(w), Ḡ2(w + 1))

∂β
= ∂ψ2(b, 0)

∂β
= a3.

Combining these with (23)–(24), we conclude that for any ε > 0, there exists w1 such
that for w ≥ w1,

∣∣δq(w + 1) − a1δq(w) − a2δβ(w)
∣∣ ≤ ε(|δq(w)| + |δβ(w)|), (25)

∣∣δβ(w + 1) − abδḠ(w + 1) − a3δβ(w)
∣∣ ≤ ε(|δq(w)| + |δβ(w)|). (26)

In particular, combining (25) with (21) yields that

|εq(w + 1)| = |δq(w + 1) − a1δq(w) − a2δβ(w)| ≤ ε(|δq(w)| + |δβ(w)|),

which gives the first inequality in (22).
To complete the proof, we now focus on the second inequality in (22). By Lemma 5,

there exists w2 ≥ w1 such that

|δḠ(w)| ≤ ε

2

(|δq(w)| + |δβ(w)|) for w ≥ w2. (27)

In addition, note that

|δq(w + 1)| = ∣∣δq(w + 1) − a1δq(w) − a2δβ(w) + a1δq(w) + a2δβ(w)
∣∣

≤ ∣∣δq(w + 1) − a1δq(w) − a2δβ(w)
∣∣ + ∣∣a1δq(w) + a2δβ(w)

∣∣

≤ ε(|δq(w)| + |δβ(w)|) + a1|δq(w)| + a2|δβ(w)|
≤ M1(|δq(w)| + |δβ(w)|),

(28)
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where M1 = max{a1, a2} + ε and the second inequality follows from (25). Since
Ḡ∗

1(w + 1) → 0 as w → ∞, there exists w3 ≥ w2 such that

Ḡ∗
1(w + 1) ≤ ε

2M1
for w ≥ w3. (29)

Combining Eqs. (28)–(29), we have the following inequality:

|Ḡ∗
1(w + 1)δq(w + 1)| ≤ ε

2
(|δq(w)| + |δβ(w)|) for w ≥ w3. (30)

Thus, by substituting (18) into the definition of δḠ , we have that for w ≥ w3,

|δḠ(w + 1)| = |Ḡ∗
1(w + 1) − Ḡ∗

2(w + 1)|
= |Ḡ∗

1(w)(1 − q∗
1 (w + 1)) − Ḡ∗

2(w)(1 − q∗
2 (w + 1))|

= |Ḡ∗
1(w)(1 − q∗

1 (w + 1)) − Ḡ∗
1(w)(1 − q∗

2 (w + 1))

+ Ḡ∗
1(w)(1 − q∗

2 (w + 1)) − Ḡ∗
2(w)(1 − q∗

2 (w + 1))|
= | − Ḡ∗

1(w)δq(w + 1) + (1 − q∗
2 (w + 1))δḠ(w)|

≤ |Ḡ∗
1(w)δq(w + 1)| + |(1 − q∗

2 (w + 1))δḠ(w)|
≤ |Ḡ∗

1(w)δq(w + 1)| + |δḠ(w)|
≤ ε

2
(|δq(w)| + |δβ(w)|) + ε

2
(|δq(w)| + |δβ(w)|)

= ε(|δq(w)| + |δβ(w)|).

(31)

The first inequality simply follows from | − a + b| ≤ |a| + |b| for any values a, b.
The second inequality holds because |1−q∗

2 (w + 1)| ≤ 1. The last inequality follows
from Eqs. (27) to (30). In summary, we can rewrite (31) as follows: For w ≥ w3,

|δḠ(w + 1)| ≤ ε(|δq(w)| + |δβ(w)|).

Then we observe the following for w ≥ w3,

∣∣δβ(w + 1) − a3δβ(w)
∣∣ = ∣∣δβ(w + 1) − a3δβ(w) − abδḠ(w + 1) + abδḠ(w + 1)

∣∣
≤ε(|δq(w)| + |δβ(w)|) + ab|δḠ(w + 1)|
≤2ε(|δq(w)| + |δβ(w)|),

(32)
where the first inequality follows from (26), while the last inequality follows because
ab ≤ 1. Thus, it follows from Eqs. (21) to (32) that

|εβ(w + 1)| = |δβ(w + 1) − a3δβ(w)| ≤ 2ε(|δq(w)| + |δβ(w)|),

which gives the second inequality in (22).

The following technical lemma facilitates the proof of uniqueness.
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Lemma 8 Let x(w) for w ≥ 1 be a sequence of vectors in R
n with x(w) �= 0 for all

w ≥ 1 such that
x(w + 1) = (A + B(w))x(w), (33)

where A ∈ Mn with eigenvalues λ1 > · · · > λn > 1 and B(w) ∈ Mn with
limw→∞ |||B(w)|||∞ = 0. Then x(w) cannot converge to zero, i.e., x(w) �→ 0 as
w → ∞.

Proof We can write (33) equivalently as

x(w) = (A + B(w))−1x(w + 1)

for w large enough because A + B(w) is invertible for large w. This is because the
eigenvalues of A are larger than one, and B(w) is negligible for large w. Defining

C(w) = (A + B(w))−1 − A−1, (34)

we first show that
|||C(w)|||∞ → 0 as w → ∞.

Note that for w ≥ 1,

C(w) = − A−1 + (A + B(w))−1

= − A−1
[
I − A(A + B(w))−1

]

= − A−1
[
(A + B(w))(A + B(w))−1 − A(A + B(w))−1

]

= − A−1(A + B(w) − A)(A + B(w))−1

= − A−1B(w)(A + B(w))−1.

(35)

Therefore, the following holds: For w ≥ 1,

|||C(w)|||∞ =|||A−1B(w)(A + B(w))−1|||∞
≤|||A−1|||∞|||B(w)|||∞|||(A + B(w))−1|||∞.

(36)

It follows from (35) that (A+ B(w))−1 = A−1− A−1B(w)(A+ B(w))−1. Therefore,
we have that (for w ≥ 1)

|||(A + B(w))−1|||∞ ≤|||A−1|||∞ + |||A−1B(w)(A + B(w))−1|||∞
≤||A−1|||∞ + |||A−1|||∞|||B(w)|||∞|||(A + B(w))−1|||∞.

By rearranging the terms, we obtain that (for w ≥ 1)

|||(A + B(w))−1|||∞ ≤ |||A−1|||∞
1 − |||A−1|||∞|||B(w)|||∞ .
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Substituting this inequality into (36), we have that (for w ≥ 1)

|||C(w)|||∞ ≤ |||A−1|||∞ |||A−1|||∞
1 − |||A−1|||∞|||B(w)|||∞ |||B(w)|||∞.

Since |||B(w)|||∞ → 0, we conclude that |||C(w)|||∞ → 0 as w → ∞.
Next, we show that x(w) �→ 0 by contradiction. Suppose that x(w) → 0. Note

that the eigenvalues of A−1 are λ−1
1 < · · · < λ−1

n < 1. Thus, A−1 is diagonalizable
and there exists a matrix S (of the eigenvectors) such that A−1 = S−1ΛS, where Λ is
a diagonal matrix with diagonal entries λ−1

1 , . . . , λ−1
n . Or, equivalently, we can write

that Λ = SA−1S−1. Define || · ||S and ||| · |||S as follows:

||x ||S = ||Sx ||∞ and |||M |||S = |||SMS−1|||∞.

Therefore, the following holds: For w ≥ 1,

|||A−1 + C(w)|||S =|||S(A−1 + C(w))S−1|||∞
=|||Λ + SC(w)S−1|||∞
≤|||Λ|||∞ + |||SC(w)S−1|||∞
≤λ−1

n + |||S|||∞|||S−1|||∞|||C(w)|||∞,

where the last inequality follows from |||Λ|||∞ = λ−1
n < 1. Since |||C(w)|||∞ → 0,

the second term on the right-hand side tends to zero as w → ∞. Thus, there exists w0
and ε > 0 such that for w ≥ w0,

||||A−1 + C(w)|||S ≤ λ−1
n + ε < 1.

Therefore, it follows from (34) that for w ≥ w0,

||x(w)||S =||(A + B(w))−1x(w + 1)||S
=||(A−1 + C(w))x(w + 1)||S
=||S(A−1 + C(w))S−1Sx(w + 1)||∞
≤|||S(A−1 + C(w))S−1|||∞||Sx(w + 1)||∞
=|||A−1 + C(w)|||S||x(w + 1)||S
≤(λ−1

n + ε)||x(w + 1)||S .

Weproceed by contradiction. Suppose x(w) → 0 asw → ∞. Denote d = ||x(w0)||S .
Since x(w0) �= 0 by assumption, it holds that d > 0. Moreover, since x(w0 + n) → 0
as n → ∞, there exists n0 such that ||x(w0 + n)||S < d for all n ≥ n0. Therefore, the
following holds:

d = ||x(w0)||S ≤ (λ−1
n + ε)n||x(w0 + n)||S ≤ (λ−1

n + ε)nd < d.
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This contradiction shows that x(w) cannot converge to zero as w → ∞.

It is immediate from Lemma 7 that our problem satisfies the conditions of Lemma 8
(for n = 2). This observation facilitates the uniqueness proof; see, the proof of Propo-
sition 4. Next we state the uniqueness result whose proof follows from Corollaries 3
and 4 and Lemmas 5–8.

Proposition 4 The system equilibrium e∗ is unique.

Proof We prove the uniqueness by contradiction. Suppose e∗
1 and e

∗
2 are two different

equilibria. On the one hand, by Corollaries 3 and 4, Eq. (15) holds. On the other hand,
the two eigenvalues of matrix A in Lemma 7 are (1−b)−1 and [α(1−q∞)(1−b)]−1,
which are different and strictly greater than 1. Thus, it follows from Lemmas 6 and 7
that the sequence (δq(w), δβ(w)) for w ≥ 1 satisfies the two conditions in Lemma 8.
By Lemma 8, either limw→∞ δβ(w) �= 0 or limw→∞ δq(w) �= 0, which contradicts
Eq. (15).

4 An algorithm to compute the equilibrium numerically

This section provides an algorithm to compute the equilibrium. To calculate the equi-
librium numerically, we introduce the notion of a truncated equilibrium in which the
abandonment decisions are only partially endogenous. The abandonment probability
of customers who have waited for more than N periods is given exogenously. They
make abandonment decisions as if they had waited in the system indefinitely. Cus-
tomers who have waited for less than N periods make their abandonment decisions
endogenously. Formally, the truncated equilibrium is defined as follows:

Definition 2 For N ≥ 1, we call eN = (βN , qN ) a truncated equilibrium if it satisfies
the following conditions:

1. βN (w) = b and qN (w) = q∞ for all w ≥ N .
2. βN (w) = Φ(qN )(w) and qN (w) = Γ (βN )(w) for all w < N ,

where Φ(·) and Γ (·) are the mappings given in Definition 1.

Given N , the truncated equilibrium eN is fully characterized if the values of βN (N ),
qN (N ) and ḠN (N ) are known,where ḠN (·) = 1−GN (·) andGN (·) is the cdf induced
by the abandonment probability qN (·); see Eq. (1). To be specific, recall from Eqs. (4)
and (10)–(11) that the probability of entering service βN (w) and the abandonment
probability qN (w), for all w = 1, . . . , N − 1, can be characterized by the following
equations recursively:

βN (w) =
(
1 + 1 − b

1 − aḠN (w + 1)

1

βN (w + 1)

)−1

, (37)

qN (w) = F̄ (−c + α {βN (w)r + (1 − βN (w))JN (w + 1)}) , (38)

where

JN (w + 1) = Eε

[
F̄−1(qN (w + 1)) + ε(0) − ε(1)

]+
, (39)
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and

ḠN (w) = ḠN (w + 1)

1 − qN (w + 1)
. (40)

By the definition of the truncated equilibrium, the values of βN (N ) and qN (N )

are given exogenously. Thus, characterizing the truncated equilibrium is equivalent
to determining the value of ḠN (N ). The following lemma shows that the truncated
equilibrium is unique; see “Proofs of the proposition and the lemma in Section 4” in
Appendix 1 for its proof.

Lemma 9 There exists a unique truncated equilibrium eN for N ≥ 1.

Corollaries 3 and 4 suggest that the exogenous abandonments in the truncated
equilibrium approximate the endogenous abandonment decisions in the (untruncated)
equilibrium well for large N . The following proposition verifies this intuition and
shows that the equilibrium can be approximated by the truncated one closely; see
“Proofs of the proposition and the lemma in Section 4” in Appendix 1 for its proof.

Proposition 5 The truncated equilibrium eN converges to the equilibrium e∗ uni-
formly as N → ∞.

Thus, we use the truncated equilibrium to approximate the equilibrium e∗. Fix-
ing the truncation period N , we next provide an algorithm to compute the truncated
equilibrium eN . As mentioned earlier, the term ḠN (N ) determines the truncated equi-
librium through Eqs. (37)–(40). Also note that wemust have ḠN (0) = 1 by definition.
The idea behind the algorithm is to start with a guess of ḠN (N ) and to recursively
calculate qN (w), βN (w) and ḠN (w) for w < N . If the guess of Ḡ(N ) is correct, then
the Ḡ(0) value calculated recursively must equal 1. Lemma 10 shows that ḠN (0) is a
monotone function of ḠN (N ) (see “Proofs of the proposition and the lemma in Sec-
tion 4” in Appendix 1 for its proof), and this observation leads to a simple algorithm.

Lemma 10 If Ḡ1
N (N ) > Ḡ2

N (N ), then Ḡ1
N (0) > Ḡ2

N (0), where Ḡ1
N (0) and Ḡ2

N (0)
are the values obtained from Eqs. (37) to (40) recursively by substituting ḠN (N ) =
Ḡ1

N (N ) and ḠN (N ) = Ḡ2
N (N ), respectively.

By Lemma 10, if ḠN (0) < 1, the true value of ḠN (N ) is greater than the guessed
value. So the initial guess must be increased. Otherwise, i.e., ḠN (0) > 1, we should
lower the initial guess. This observation is key to the algorithm provided in Table 1.

5 A numerical example

This section presents a numerical example to illustrate the effectiveness of the algo-
rithm proposed in Sect. 4. We first compare the result from the numerical computation
with the output of a simulation. In addition, we show the importance of modeling
abandonments endogenously by comparing the predictions of the model with endoge-
nous abandonments to those of the model with exogenous abandonments. We end
this section by studying how parameter changes impact the predictions of the system
performance.
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Table 1 The algorithm for calculating the truncated equilibrium

Algorithm 1: The truncated equilibrium in the single-class case.
1: Initialize: ḠN(N) ← g0 ∈ (0,1) and ḡ ← 1 and g ← 0.
2: Update the value of ḠN(N):
3: while ḡ−g> ε
4: Calculate βN(·), qN(·) and ḠN(·) via equations (37)-(40).
5: if ḠN(0) = 1
6: stop
7: else
8: if ḠN(0)> 1
9: ḡ ← ḠN(N)
10: else
11: g ← ḠN(N)
12: end if
13: end if
14: Pick g ∈ (g, ḡ) and ḠN(N) ← g
15: end while

5.1 The setup of the numerical example

Consider the Geo/Geo/1 queue in which customers make abandonment decisions to
maximize their utility. The probability of arrival a equals 0.5. In addition, the service
rate b equals 0.8. The per-period waiting cost of customers is c = 2, and the reward
from service is r = 6. The idiosyncratic shocks ε(0) and ε(1) both follow the type I
extremevalue distribution,whose cumulative distribution function is given as follows5:

Fε(0)(x) = Fε(1)(x) = ee
(−x)

, x ≥ 0.

We refer to this setting as the original system.
Suppose that the system then undergoes a change and the service rate is reduced

to b = 0.51. To predict the new system performance, and, in particular, the abandon-
ment behavior for the new system, we approximate the equilibrium by the truncated
one using the truncation period N = 30. In addition, in the model with exogenous
abandonments, we assume that the distribution of the abandonment times remains the
same as the one in the earlier system (with b = 0.8).

To compare the twomodels, we first simulate the system equilibrium corresponding
to b = 0.51 iteratively. In the simulation, we start by using the equilibrium probability
of entering service βN (·) and the probability of abandoning qN (·) computed via the
algorithm given in Table 1. The simulation gives an empirical distribution of the
VOWT. We use this empirical distribution as input and update the abandonment time
distribution using the model of Sect. 2.2. We then simulate the system again with the
updated distributions of the abandonment time and keep updating the distribution of
the abandonment times and the VOWT until the simulation converges numerically.

5 This distributional assumption is commonly made in models studying discrete consumer choice, cf. [6].
[3] also make this assumption.
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Table 2 The mean of the VOWT and abandonment time and the fractions of customers that abandon under
the simulation, the equilibrium computation and the exogenous model (a = 0.5, b = 0.51, c = 2, r = 6)

Simulation Eq. computation Error (%) Exogenous model Error (%)

VOWT 2.537 (0.055) 2.559 0.87 4.232 66.8

Mean abandonment time 5.68 (0.063) 5.79 1.9 13.79 142.7

Percentage abandoning 42.50% (1.6%) 42.59% 0.2 18.18% 57.22

The numbers in the parentheses are the standard deviation of the statistics

Fig. 2 The cumulative
distribution function of the
VOWT with new service rate
computed via the simulation, the
equilibrium computation and the
exogenous model (a = 0.5,
b = 0.51, c = 2, r = 6)

Table 2 shows the comparison of the means of the VOWT and abandonment time
as well as the fraction of customers that abandon in equilibrium calculated from the
simulation, the numerical computation and the exogenous model.

In addition, Fig. 2 shows the cumulative distribution function of theVOWTobtained
from the simulation, the equilibrium computation and the exogenous model.

Both Table 2 and Fig. 2 show that the exogenousmodel mistakenly predicts a longer
waiting time and a lower probability of abandoning the queue. This is mainly because
the model with exogenous abandonments ignores the impact of the service rate change
on the abandonment behavior. Under the original service rate (which is higher), the
customers are more patient because the probability of entering service is higher. When
the service rate drops, the customers are more likely to abandon the system. However,
the exogenous abandonment model does not capture this change in customers’ behav-
ior. In addition, the comparison of the simulation and the equilibrium computation
shows that the proposed truncated equilibrium approximates the equilibrium well in
all examples we tried. Thus, we only compare the predictions from the numerical
computation of the equilibrium and the exogenous model in the rest of this section.

5.2 A comparative statics analysis

We end the numerical study by a comparative statics analysis. To be specific, we study
the impact of the changes of the arrival rate a and the service rate b on the predictions
of the system performance.
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Impact of the arrival rate We first study the impact of the arrival rate a on the
predictions. We keep the service rate b the same as the original system, i.e., b = 0.8,
and increase the arrival rate a from 0.5 to 0.79 gradually. Figure 3 shows the numerical
characterization of the system equilibrium for three different arrival rates. Figure 3a
shows that the abandonment probability (as a function of the waiting time) increases
as the arrival rate increases. In other words, customers become more impatient when
the system becomes more congested. Since the exogenous model assumes that the
abandonment probability remains unchanged, it fails to capture the change in cus-
tomers’ abandonment behavior. Figure 3b shows the probability of entering service
in systems with different arrival rates. It shows that the probability of entering ser-
vice β(·) decreases as the arrival rate increases, though customers are more likely to
abandon. This is because the system becomes more congested when the arrival rate
increases. Figure 3b also shows that the exogenous model underestimates the proba-
bility of entering service. Amore comprehensive comparison between the equilibrium
model and the exogenous model is given in Fig. 4.

Figure 4 shows the comparison of the predictions of the system performance from
the equilibrium computation and the exogenous model. It shows that the prediction of
the average VOWT from the exogenous model is mistakenly higher when the arrival
rate is higher; see Fig. 4a. In addition, Fig. 4b shows that the variance of the VOWT
predicted using the exogenousmodel is higher as well. This is becausewhen the arrival
rate is higher, the system becomes more congested. Thus, the customers are more
likely to abandon in the more congested system; see Fig. 4c–e. The exogenous model
ignores the change in customer’s abandonment behavior. Therefore, it underestimates
the abandonments and thus results in a higher prediction of the VOWT.

Impact of the service rate Next, we study the impact of the service rate b on the
predictions of the system performance using a similar method. To be specific, we keep
the arrival rate a unchanged, i.e., a = 0.5, and reduce the service rate b from 0.8
to 0.51 gradually. Figure 5 shows the system equilibrium for different service rates
b. Figure 6 compares the predictions of the system performance for the equilibrium
computation and the exogenous model. This study also shows that the predictions
from the exogenous model are less accurate when the system is more congested, i.e.,
the service rate b is smaller.

Impact of both arrival and service rates The last comparative statics analysis com-
pares the predictions from both the equilibrium computation and the exogenous model
under different combinations of the arrival rates and the service rates. Figure 7 shows
that the difference of the predictions from the two models is most significant when the
arrival rate a = 0.5 and the service rate b = 0.51. This coincides with the scenario
when the system is most congested; see Fig. 7a. This study again emphasizes the
importance of the abandonment assumption in congested systems.

6 Concluding remarks

In this paper, we study a Geo/Geo/1+GI queue in which the abandonments are
endogenous. We characterize the equilibrium of the queue and prove existence and
uniqueness of the equilibrium.We also propose an algorithm that computes the system
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equilibrium. Our analysis points to several future research directions worth explor-
ing. One important question is how to characterize the equilibrium for systems with
multiple customer classes. As shown in the numerical system, the impact of the aban-
donment behavior is more significant when the system is heavily congested. Thus,
this problem is more interesting when the system is congested, which motivates the
study of the multiple-class system in heavy traffic. This is explored (in the conven-
tional heavy traffic regime) in [10]. Another important direction is to incorporate delay
announcements, which is left for future research.

Moreover, although we focus on a single-server queueing system, we conjecture
that our existence and uniqueness results will generalize to the multiserver setting.
To elaborate on the intuition, note that our single-server assumption eliminates the
possibility of having multiple service completions in one period, simplifying the char-
acterization of the waiting time distribution significantly in the discrete-time setting.
Under this assumption, the characterization of the hazard rate of the waiting time dis-
tribution is a straightforward analogue of that of [13] in their continuous-time model.
Their characterization of the hazard rate function of the waiting time distribution is
valid for the multiserver queueing systems as well, which motivates our conjecture.

Lastly, note that we assume a < b. However, we conjecture that the existence and
uniqueness results will generalize under the more general condition that a < bG(∞).
A close look at the proofs of the results in Sect. 3 shows that we merely use the
properties of various quantities for large waiting times, where the relevant condition is
a < bG(∞). We assume a < b because it leads to a much simpler analysis, relieving
us from the burden of working with different characterizations of the system as a
function of the waiting time.

Appendix 1: Proofs of Lemmas, Propositions, Corollary and Theorems
in the paper

Proofs of results in Sect. 2

Proof of Proposition 1 It follows from Eq. (2) that V (t) is a Markov process. Since
we only consider the underloaded case, i.e., a < b, there is a unique station-
ary distribution of V (t). Let v(w) denote the stationary distribution of V (t), i.e.,
v(w) = limt→∞ P(V (t) = w) for w ≥ 1. The flow balance equations of the Markov
process described in (2) are given as follows:

v(w) =
{∑w

i=0 v(i)aḠ(i)(1 − b)w−i b + v(w + 1)(1 − aḠ(w + 1)), w ≥ 1,
v(0)(1 − aḠ(0) + abḠ(0)) + v(1)(1 − aḠ(1)), w = 0,

(41)

where Ḡ(w) = 1 − G(w) for w ≥ 1. We simplify these equations by defining
r(w) = v(w)(1 − b)−w. By substituting the definition of v(w) into (41) for w = 0
and rearranging the terms, we have that

(1 − aḠ(1))r(1) − aḠ(0)r(0) = 0. (42)
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By substituting r(w) into (41), we obtain the following: For w ≥ 1,

r(w) =(1− b)−w

[
w∑

i=0

(1− b)wr(i)abḠ(i)+(1 − b)w+1r(w+1)(1− aḠ(w+1))

]

=
w∑

i=0

r(i)abḠ(i) + (1 − b)r(w + 1)(1 − aḠ(w + 1)).

Rearranging the terms for w = 1, we obtain that

(1 − b)[(1 − aḠ(2))r(2) − r(1)] = b[(1 − aḠ(1))r(1) − aḠ(0)r(0)] = 0, (43)

where the last equality follows from (42). Subtracting r(w) from r(w + 1), we obtain
that for w ≥ 1,

r(w + 1) − r(w) =(1 − b)(1 − aḠ(w + 2))h(w + 2) + r(w + 1)abḠ(w + 1)

− (1 − b)(1 − aḠ(w + 1))r(w + 1)

=(1 − b)(1 − aḠ(w + 2))r(w + 2)

− (1 − b − aḠ(w + 1))r(w + 1).

Rearranging the terms, we have that for w ≥ 1,

(1 − b)(1 − aḠ(w + 2))r(w + 2) − r(w + 1)

= [(1 − aḠ(w + 1))r(w + 1) − r(w)].

By substituting (43) into this equation recursively, we have that

(1 − aḠ(w + 1))r(w + 1) = r(w), w ≥ 1.

This gives that

r(w) = r(1)
w∏

i=2

(1 − aḠ(i))−1, w ≥ 2.

By substituting v(w) = (1 − b)wr(w) into this equation, we obtain the following:

v(w) = v(1)
w∏

i=2

(1 − b)

(1 − aḠ(i))
, w ≥ 2.

Let β(w) denote the probability of entering service in next period (in steady state)
after waiting for w periods. Thus, β(w) is given as follows: For w ≥ 1,
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β(w) = lim
t→∞P(V (t) = w|V (t) ≥ w)

= v(w)
∞∑

t=w

v(w)

=
v(1)

w∏

i=2

(1 − b)(1 − aḠ(i))−1

v(1)
∞∑

t=w

t∏

i=2

(1 − b)(1 − aḠ(i))−1

=
(
1 +

∞∑

t=w+1

t∏

i=w+1

(1 − b)(1 − aḠ(i))−1

)−1

.


�
Proof of Lemma 1 Substituting Eq. (5) into (9) yields the following: For w ≥ 1,

q(w) = P(ε(1) − ε(0) ≥ −c + α {β(w)r + (1 − β(w))J (w + 1)})
= F̄ (−c + α {β(w)r + (1 − β(w))J (w + 1)}) .

We now derive the equation that characterizes J (·) given q(·). By substituting
Eq. (10) into (5), the utility of staying in the queue can be written in terms of the
abandonment probability, i.e.,

u(w, 0, ε(w, 0)) = F̄−1(q(w)) + ε(0).

Substituting this into Eq. (6), we obtain that for w ≥ 1,

J (w) = Eε [max{u(w, 0, ε(w, 0)), u(w, 1, ε(w, 1))}]
= Eε

[
max{F̄−1(q(w)) + ε(0), ε(1)}

]

= Eε

[
F̄−1(q(w)) + ε(0) − ε(1)

]+ + Eε[ε(1)]

= Eε

[
F̄−1(q(w)) + ε(0) − ε(1)

]+
.

The last line follows from Assumption 1, i.e., Eε[ε(1)] = 0. 
�
Proof of Proposition 2 Fixing β(·), define Tβ : l∞ → l∞ as follows: For w ≥ 1,

Tβ x(w) = Eε[max{ε(1),−c + α[β(w)r + (1 − β(w))x(w + 1)] + ε(0)}]
= Eε[−c+ α[β(w)r+ (1− β(w))x(w + 1)] − (ε(1) − ε(0))]++Eε[ε(1)]
= Eε[−c + α[β(w)r + (1 − β(w))x(w + 1)] − (ε(1) − ε(0))]+,

(44)
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where l∞ is the space of bounded sequences of real numbers. The last equality follows
from Assumption 1 that Eε[ε(1)] = 0. Note that Tβ is the right-hand side of Eq. (8).
Therefore, the expected discounted utility function J is the fixed point of operator Tβ ,
i.e., J = Tβ J .

We use Blackwell’s sufficient conditions for a contraction [39, Theorem 3.3] to
show that the operator Tβ is a contraction6.

First, we check that if J 1(w) ≤ J 2(w) (for all w ≥ 1), then Tβ J 1k (w) ≤ Tβ J 2(w)

for all w ≥ 1. The following inequality holds: For all w ≥ 1,

(1 − β(w))J 1(w+1) ≤ (1 − β(w))J 2(w + 1),

because 1−β(w) ≥ 0 and J 1(w + 1) ≤ J 2(w + 1). Since the inequality is preserved
by the max operator and the expectation, it follows that Tβ J 1(w) ≤ Tβ J 2(w) for all
w ≥ 1.

Then we show that Tβ (J + e)(w) ≤ Tβ J (w) + αe for all e > 0 and w ≥ 1. It
follows that

Tβ (J + e)(w)

= Eε [max{ε(1),−c + α[β(w)r + (1 − β(w))[J (w + 1) + e]] + ε(0)}]
≤ Eε [max{ε(1),−c + α[β(w)r + (1 − β(w))J (w + 1)] + ε(0) + αe}]
≤ Eε [max{ε(1) + αe,−c + α[β(w)r + (1 − β(w))J (w + 1)] + ε(0) + αe}]
= Eε [max{ε(1),−c + α[β(w)r + (1 − β(w))J (w + 1)] + ε(0)}] + αe

= Tβ J (w) + αe.

The first inequality holds because (1 − β(w))e ≤ e. Hence, the two sufficient condi-
tions of Blackwell are satisfied, i.e., Tβ is a contraction mapping. It follows from the
Banach fixed point theorem that there exists a unique fixed point of x = Tβ x . Since
the solution to Eq. (8) is equivalent to the fixed point of J = Tβ J , the solution is
unique. 
�
Proof of Corollary 1 Fix β ∈ [0, 1]∞. Let V = {ν ∈ l∞ : ν(w) ∈ [0, r ], w ≥ 1}. In
addition, let Tβ : l∞ → l∞ be the operator defined in Eq. (44). For any J 0 ∈ V and
w ≥ 1, the following inequality holds:

Tβ J 0(w) =Eε

[
max{ε(1),−c + α[β(w)r + (1 − β(w))J 0k (w + 1)] + ε(0)}

]

≤Eε [max{ε(1),−c + αr + ε(0)}] ≤ r.

The first inequality holds because J 0 ∈ V . In particular, J 0(w + 1) ≤ r . The second
inequality follows from Assumption 2. In addition, it is immediate from (44) that
Tβ J 0(w) ≥ 0 for all w ≥ 1. Therefore, Tβ J 0 ∈ V . Since Tβ is a contraction
mapping and V is closed, J = limn→∞ T n

β J 0 ∈ V . In particular, J (w) ≤ r for
w ≥ 1.

6 Stokey et al. [39] state the result for subsets of Rn for some integer n. The result and proof can be
generalized to any subset of a Banach space, especially (l∞, || · ||∞).
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It follows from Eq. (10) to J (w + 1) ≤ r that

q(w) ≥ F̄(−c + αr) ≥ F̄(r), w ≥ 1.

Thus, we have that q(w) ≥ q = F̄(r). Lastly, we have that q > 0 because r is in the

interior of the support of F̄(·). 
�

Proofs of results in Sect. 3

Proof of Lemma 2 For a given β ∈ [0, 1]∞, let β̃ = Φ(Γ (β)). Note that the mapping
Φ(Γ (·)) is characterized by Eqs. (8), (10), (1) and (3).

Note from (1) that Ḡ(w) ≥ 0 for all w ≥ 1. Thus, it follows from Eq. (3) that for
w ≥ 1,

β̃(w) ≤
(
1 +

∞∑

i=1

(1 − b)i
)−1

= b.

This gives the upper bound of Eq. (12). In addition, it also follows from Eq. (3) that
for w ≥ 1,

β̃(w) =
(
1 +

∞∑

t=w+1

t∏

i=w+1

1 − b

1 − aḠ(i + 1)

)−1

≥
(
1 +

∞∑

i=1

(
1 − b

1 − aḠ(w + 1)

)i
)−1

=1 − 1 − b

1 − aḠ(w + 1)

=b − aḠ(w + 1)

1 − aḠ(w + 1)
.

(45)

The inequality follows from the fact that Ḡ(w) is non-increasing, i.e., Ḡ(i) ≤ Ḡ(w+1)
for all i ≥ w + 1; see (1) for its definition. It follows from Corollary 1 that q1(w) ≥
q̄ > 0 for all w ≥ 1. Thus, it follows from Eq. (1) that

Ḡ(w) =
w∏

i=1

(1 − q(i)) ≤ (1 − q)w, w ≥ 1.

Substituting this inequality into Eq. (45), we have that for w ≥ 1,

β̃(w) ≥1 − 1 − b

1 − a(1 − q)w+1 = b − a(1 − q)w+1

1 − a(1 − q)w+1 .

This shows the lower bound of β̃(w) provided in Eq. (12). We end the proof by
showing that β̃(w) is non-decreasing in w. Rearranging the terms in Eq. (4), we have
the following: For w ≥ 1,
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1

β̃(w + 1)
=
(

1

β̃(w)
− 1

)(
1 + b − aḠ(w + 1)

1 − b

)
.

Substituting this equation into the following, we obtain that for w ≥ 1,

1

β̃(w + 1)
− 1

β̃(w)
=
(

1

β̃(w)
− 1

)(
1 + b − aḠ(w + 1)

1 − b

)
− 1

β̃(w)

= 1

β̃(w)

b − aḠ(w + 1)

1 − b
− 1 − aḠ(w + 1)

1 − b

≤ 1 − aḠ(w + 1)

b − aḠ(w + 1)

b − aḠ(w + 1)

1 − b
− 1 − aḠ(w + 1)

1 − b
= 0.

The last inequality follows from (45). Thus, we have that β̃(w) ≤ β̃(w + 1) for all
w ≥ 1, i.e., β̃(w) is non-decreasing in w. 
�
Proof of Lemma 3 We first show that B is a compact set. Define a sequence xw as
follows:

xw = b − b − a(1 − q)w+1

1 − a(1 − q)w+1 , w ≥ 1.

Thus, it is equivalent to writingB as

B = {β ∈ l∞ : b − xw ≤ β(w) ≤ b, w ≥ 1}.

Note that xw → 0 as w → ∞. Thus, for any ε > 0, there exists n such that xw < ε

for w ≥ n. Define a setBn as follows:

Bn = {β ∈ R
n : b − xw ≤ β(w) ≤ b, w = 1, . . . , n}.

Since Bn is a compact set in R
n , it is totally bounded, i.e., it has a finite cover of

open balls of radius ε. In other words, there exist l and ν1, . . . , νl ∈ R
n such that

Bn ⊆ ∪l
i=1Bn(νi , ε), where Bn(νi , ε) is the open ball in R

n centered at νi and with
radius ε. Let wi = (νi , 0, . . .), i = 1, . . . , l. It is immediate that B is covered by
B(wi , ε), i = 1, . . . , l, where B(wi , ε) is the open ball in l∞ that centers at wi and
has a radius ε. Since ε is arbitrary,B is totally bounded. Since l∞ is a complete metric
space, the totally bounded subset B of l∞ is compact; see Theorem 3.28 in [5].

Next we show that Φ(Γ (·)) is continuous. Note that Φ(Γ (·)) is characterized by
Eqs. (8), (10), (1) and (3). Let βn, β ∈ B be sequences such that βn → β (under the
sup-norm). Let Jn , qn , Gn and β̃n and J , q, G and β̃ be the left-hand sides of Eqs. (8),
(10), (1) and (3) by substituting βn and β into Φ(Γ (·)), respectively. Thus, we have
that β̃n = Φ(Γ (βn)) and β̃ = Φ(Γ (β)). We need to show that β̃n → β̃ under the
sup-norm.

It follows from βn → β that for any ε > 0, there exists n1 such that |βn(w) −
β(w)| < ε for all n ≥ n1 andw ≥ 1. It follows from (8) that for allw ≥ 1 and n ≥ n1,
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|Jn(w) − J (w)|
= |Eε [max{ε(1),−c + α[βn(w)r + (1 − βn(w))Jn(w + 1)] + ε(0)}]

− Eε [max{ε(1),−c + α[β(w)r + (1 − β(w))J (w + 1)] + ε(0)}] |
= |Eε [−c + α[βn(w)r + (1 − βn(w))Jn(w + 1)] + ε(0) − ε(1)]+

− Eε [−c + α[βn(w)r + (1 − β(w))J (w + 1)] + ε(0) − ε(1)]+ |
≤ |Eε [α[βn(w)r+(1− βn(w))Jn(w +1)] − α[β(w)r + (1− β(w))J (w + 1)]] |
= α|(r − Jn(w + 1))(βn(w) − β(w)) − (1 − β(w))(Jn(w + 1) − J (w + 1))|
≤ αr |βn(w) − β(w)| + α|Jn(w + 1) − J (w + 1)|
≤ αrε + α|Jn(w + 1) − J (w + 1)|.

The equality in the third line follows from the fact that E[ε(1)] = 0. The inequality in
the fourth line follows from |x+

1 − x+
2 | ≤ |x1 − x2| for all x1, x2 ∈ R. It follows from

Corollary 1 that Jn(w), J (w) ∈ [0, r ] for all w ≥ 1. Thus, |Jn(w + 1) − J (w + 1)| is
bounded for all w ≥ 1. Thus, by applying this inequality recursively, we obtain that
for all w ≥ 1 and n ≥ n1,

|Jn(w) − J (w)| ≤ αrε
∞∑

i=0

αi = αrε

1 − α
. (46)

Let C0 = supx∈[−c,r ] f (x). It follows from Assumption 1 that f (·) is continuous.
Thus, C0 < ∞. Since F̄ ′(x) = − f (x), it holds that for any x1, x2 ∈ [−c, r ],

|F̄(x1) − F̄(x2)| ≤ C0|x1 − x2|. (47)

Since Jn(w) ≤ r and J (w) ≤ r for all w ≥ 1, we have that (for w ≥ 1)

− c ≤ −c + α(βn(w)r + (1 − βn(w))Jn(w + 1)) ≤ −c + αr ≤ r,

− c ≤ −c + α(β(w)r + (1 − β(w))J (w + 1)) ≤ −c + αr ≤ r.

Thus, it follows from (10) to (46) that for all n ≥ n1 and w ≥ 1,

|qn(w) − q(w)| ≤ C0|α[βn(w)r + (1 − βn(w))Jn(w + 1)]
−α[β(w) + (1 − β(w))J (w + 1)]|

= C0α|(r − Jn(w + 1))(βn(w) − β(w))

−(1 − β(w))(Jn(w + 1) − J (w + 1))|
≤ C0αr |βn(w) − β(w)| + cα|Jn(w + 1) − J (w + 1)|
≤ C0αrε + cα

αrε

1 − α

= C0αrε

1 − α
= C1ε,

where C1 = C0αr/(1 − α). The first inequality follows from (47) and the second
one follows from Jn(w + 1) ∈ [0, r ] and β(w) ∈ [0, 1]. The last inequality follows
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from the assumption that |βn(w) − β(w)| < ε for n ≥ n1 and (46). Substituting this
inequality into (1), we have that for all n ≥ n1 and w ≥ 1,

|Gn(w + 1) − G(w + 1)| =|Ḡn(w + 1) − Ḡ(w + 1)|
=|Ḡn(w)(1 − qn(w + 1)) − Ḡ(w)(1 − q(w + 1))|
≤Ḡn(w)|qn(w + 1) − q(w + 1)|

+ (1 − q(w + 1))|Ḡn(w) − Ḡ(w)|
≤(1 − q)wC1ε + (1 − q)|Ḡn(w) − Ḡ(w)|,

(48)
where the last inequality follows from Corollary 1 and Eq. (1) that

|1−q(w+1)| ≤ 1−q, 0 ≤ Ḡn(w) ≤ (1−q)w and 0 ≤ Ḡ(w) ≤ (1−q)w, w ≥ 1.
(49)

Applying (48) recursively, we obtain that for all w ≥ 1 and n ≥ n1,

|Gn(w) − G(w)| ≤
w−1∑

i=1

(1 − q)iC1ε + (1 − q)w−1|Ḡn(1) − Ḡ(1)|

≤
∞∑

i=1

(1 − q)iC1ε + (1 − q)w−1|qn(1) − q(1)|

≤C1ε

q
+ C1ε =

(
1 + 1

q

)
C1ε.

By letting C2 = (1 + 1/q)C1, we have that |Gn(w) − G(w)| ≤ C2ε for all w ≥ 1
and n ≥ n1. It follows from (4) that for w ≥ 1 and n ≥ n1,

|β̃n(w) − β̃(w)|
= β̃n(w)β̃(w)

∣∣∣∣
1

β̃n(w)
− 1

β̃(w)

∣∣∣∣

≤ b2
∣∣∣∣

1 − b

(1 − aḠn(w + 1))β̃n(w + 1)
− 1 − b

(1 − aḠ(w + 1))β̃(w + 1)

∣∣∣∣

= b2(1 − b)
|(1 − aḠn(w + 1))(β̃n(w + 1) − β̃(w + 1)) + aβ̃(w + 1)(Ḡn(w + 1) − Ḡ(w + 1))|

(1 − aḠn(w + 1))β̃n(w + 1)(1 − aḠ(w + 1))β̃(w + 1)

≤ b2(1 − b)
(1 − aḠn(w + 1))|β̃n(w + 1) − β̃(w + 1)| + aβ̃(w + 1)|Ḡn(w + 1) − Ḡ(w + 1)|

(1 − aḠn(w + 1))β̃n(w + 1)(1 − aḠ(w + 1))β̃(w + 1)

= b2(1 − b)|β̃n(w + 1) − β̃(w + 1)|
β̃n(w + 1)(1 − aḠ(w + 1))β̃(w + 1)

+ ab2(1 − b)|Ḡn(w + 1) − Ḡ(w + 1)|
(1 − aḠn(w + 1))β̃n(w + 1)(1 − aḠ(w + 1))

,

(50)
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where the first inequality follows from Lemma 2 that β̃n(w) ≤ b, β̃(w) ≤ b and (4).
Note that (b−a(1−q)w)/(1−a(1−q)w) → b asw → ∞. In addition, (1−q)w → 0
as w → ∞. Thus, there exists w1 such that for w ≥ w1,

(
b − a(1 − q)w

1 − a(1 − q)w

)2

(1 − a(1 − (1 − q)w)) ≥ b2
√
1 − b,

b − a(1 − q)w

1 − a(1 − q)w
(1 − a(1 − (1 − q)w))2 ≥ b

√
1 − b.

Substituting these two inequalities into (12) and (49), we have that for w ≥ w1 and
n ≥ n1,

β̃n(w + 1)(1 − aḠ(w + 1))β̃n(w + 1) ≥ b2
√
1 − b,

(1 − aḠn(w + 1))β̃n(w + 1)(1 − aḠ(w + 1)) ≥ b
√
1 − b.

Substituting these two inequalities into (50) yields that for w ≥ w1 and n ≥ n1

|β̃n(w) − β̃(w)| ≤√
1 − b|βn(w + 1) − β̃(w + 1)|

+ ab
√
1 − b|Ḡn(w + 1) − Ḡ(w + 1)|

≤√
1 − b|β̃n(w + 1) − β̃(w + 1)| + ab

√
1 − bC2ε.

Applying this inequality recursively, we have that for all w ≥ w1 and n ≥ n1,

|β̃n(w)− β̃(w)| ≤ ab
√
1 − bC2e

∞∑

i=1

(√
1 − b

)i−1 = ab
√
1 − bC2ε

1 − √
1 − b

= C3ε, (51)

where C3 = ab
√
1 − bC2/(1 − √

1 − b). It follows from (50) that for w < w1,

|β̃n(w) − β̃(w)|

≤ b2(1 − b)|βn(w + 1) − β ′(w + 1)|
β̃n(w + 1)(1 − aḠ(w + 1))β̃(w + 1)

+ ab2(1 − b)|Ḡn(w + 1) − Ḡ(w + 1)|
(1 − aḠn(w + 1))β̃n(w + 1)(1 − aḠ(w + 1))

≤ b2(1 − b)|β̃n(w + 1) − β̃(w + 1)|
(b − a)2(1 − a)

+ ab2(1 − b)C2ε

(1 − a)2(b − a)
.

(52)

The last inequality follows from Ḡn(w + 1) ≤ 1 and Ḡ(w + 1) ≤ 1 and from Lemma
2 that

β̃n(w) ≥ b − a(1 − q)w

1 − a(1 − q)w
≥ b − a and β̃(w) ≥ b − a.
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By applying (52) recursively, we have that for all w < w1 and n ≥ n1

|β̃n(w) − β̃(w)| ≤
(

b2(1 − b)

(b − a)2(1 − a)

)w1−w

|β̃n(w1) − β̃(w1)|

+ ab2(1 − b)C2ε

(1 − a)2(b − a)

w1−w−1∑

i=0

(
b2(1 − b)

(b − a)2(1 − a)

)i

≤
(

b2(1 − b)

(b − a)2(1 − a)

)w1−w

C3ε

+ ab2(1 − b)C2ε

(1 − a)2(b − a)

w1−w−1∑

i=0

(
b2(1 − b)

(b − a)2(1 − a)

)i

≤ c1ε,

(53)

where

c1 = sup
1≤w≤w1

(
b2(1 − b)

(b − a)2(1 − a)

)w1−w

C3

+ ab2(1 − b)C2

(1 − a)2(b − a)

w1−w−1∑

i=0

(
b2(1 − b)

(b − a)2(1 − a)

)i

.

Note that w1 is independent of ε. Thus, the constant c1 is independent of ε as well.
Combining Eqs. (51) and (53), we have that

|β̃n(w) − β̃(w)| ≤ c2ε, w ≥ 1 and n ≥ n1,

where c2 = max{C3, c1}. By letting ε → 0, we have that β̃(w) → β̃ uniformly. This
gives the continuity of Φ(Γ (·)). 
�
Proof of Corollary 3 Since β∗ is the solution to the fixed point problem β∗ =
Φ(Γ (β∗)), it is immediate from Lemma 2 that β∗(w) is increasing in w and sat-
isfies inequality (12) for all w ≥ 1. Note that the left-hand side of Eq. (12) converges
to b as w goes to infinity. Therefore, limw→∞ β∗(w) = b. 
�
Proof of Lemma 4 Let e∗ = (β∗, q∗) be an equilibrium. Let J ∗ be the expected utility
associated with q∗. It follows from Proposition 2 that J ∗ = Tβ∗ J ∗, where Tβ∗ is given
by (44). Let V = {J ∈ l∞ : J (w1) ≤ J (w2) ≤ r, 1 ≤ w1 ≤ w2}. We first show that
for any J0 ∈ V , J = Tβ∗ J 0 ∈ V . It follows from (44) that for w ≥ 1,

J (w) = Eε max{ε(1),−c + α[β∗(w)r + (1 − β∗(w))J 0(w + 1)] + ε(0)}
≤ Eε max{ε(1),−c + α[β∗(w + 1)r + (1 − β∗(w + 1))J 0(w + 1)] + ε(0)}
≤ Eε max{ε(1),−c + α[β∗(w + 1)r + (1 − β∗(w + 1))J 0(w + 2)] + ε(0)}
= J (w + 1).

(54)
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The first inequality follows from Corollary 3 and the assumption that J0 ∈ V . In
particular, β∗(w) ≤ β∗(w + 1) and J0(w + 1) ≤ r . The second inequality follows
from the assumption that J 0(w + 1) ≤ J 0(w + 2). In addition, the following holds:
For w ≥ 1,

J (w) = Eε max{ε(1),−c + α[β∗(w)r + (1 − β∗(w))J 0(w + 1)] + ε(0)}
≤ Eε max{ε(1),−c + αr + ε(0)} ≤ r,

(55)

where the first inequality follows from J0(w + 1) ≤ r and the second inequality
follows from Assumption 2. Therefore, it follows from (54) to (55) that J ∈ V . We
have shown in the proof of Proposition 2 that T is a contraction mapping. Since V is a
closed set, we have that J ∗ = limn→∞ T n

β∗ J 0 ∈ V . In particular, J ∗(w) is increasing
in w and bounded above by r .

In addition, it follows from (10) that for w ≥ 1,

q∗(w) =F̄(−c + α[β∗(w)r + (1 − β∗(w))J ∗(w + 1)])
≥F̄(−c + α[β∗(w + 1)r + (1 − β∗(w + 1))J ∗(w + 2)])
=q∗(w + 1).

The inequality follows fromCorollary 3 thatβ∗(w) ≤ β∗(w+1) and themonotonicity
of J ∗, i.e., J ∗(w + 1) ≤ J ∗(w + 2) ≤ r . Thus, q∗(w) is decreasing in w. 
�
Proof of Corollary 4 It follows from Lemma 4 and Corollary 1 that J ∗(w) is
increasing in w and bounded above by r . Thus, there exists J ′∞ ≤ r such that
limw→∞ J ∗(w) = J ′∞.

Note that the right-hand side of (14) equals κ(b, x), where κ(·) is defined in (95).
It follows from Lemma 19 that the fixed point of (14) is unique. Let J∞ = j (b) be
the fixed point of (14), where j (·) is given in Lemma 19.

Next, we show that J ′∞ = J∞. We first show that J ′∞ ≤ J∞. Let β1(w) = b and
J1(w) = J∞ for all w ≥ 1. It is immediate that J1 is a fixed point of J = Tβ1 J ,
where the operator Tβ1 is given by (44). As shown in the proof of Proposition 2 that
Tβ1 is a contraction mapping, this fixed point is unique. Substituting the inequalities
β∗(w) ≤ β1(w) = b and J ∗(w) ≤ r into (44), we have that

J ∗(w) = Tβ∗ J ∗(w) ≤ Tβ1 J
∗(w), w ≥ 1.

Substituting this inequality recursively into (44), we have that J ∗(w) ≤ T n
β1

J ∗(w)

for all n, w. Thus, the following holds:

J ∗(w) ≤ lim
n→∞ T n

β1
J ∗(w) = J1(w) = J∞, w ≥ 1. (56)

Letting w go to infinity, we have that J ′∞ = limw→∞ J ∗(w) ≤ J∞.
Next we show that J ′∞ ≥ J∞. It follows from Corollary 3 that β∗(w) → b. Thus,

fixing ε > 0, there exists w1 such that β∗(w) ≥ b − ε for all w ≥ w1. Let β2(w) =
β∗(w + w1) and β3(w) = b− ε for w ≥ 1. In addition, let J2(w) = J ∗(w + w1) and
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J3(w) = j (b − ε), where j (·) is given in Lemma 19. It is immediate that Ji is the
unique fixed point of J = Tβi J , i = 2, 3. Since β2(w) ≥ β3(w) for all w ≥ 1, we
can repeat the proof of (56) and show that J2(w) ≥ J3(w) = j (b − ε) for all w ≥ 1.
Letting w go to infinity, we obtain that

J ′∞ = lim
w→∞ J ∗(w) = lim

w→∞ J2(w) ≥ j (b − ε).

By letting ε → 0, it follows from the continuity of j (·) (cf. Lemma 20) that J ′∞ ≥
j (b) = J∞. Thus, we conclude that limw→∞ J ∗(w) = J ′∞ = J∞.
It follows fromLemma 4 andCorollary 1 that q∗(w) is decreasing inw and bounded

above from q . Thus, there exists a constant q∞ such that limw→∞ q∗(w) = q∞. In
addition, it follows from (10) that

q∞ = lim
w→∞ q∗(w) = lim

w→∞ F̄(−c + α[β∗(w)r + (1 − β∗(w))J ∗(w + 1)])
=F̄(−c + α(br + (1 − b)J∞)).

The last inequality follows from the continuity of F̄(·) and that β∗(w) → b and
J ∗(w) → J∞ as w → ∞. 
�

Proofs of the Proposition and the Lemma in Section 4

Proof of Lemma 9 Fixing N and comparing (37)–(40) and (70)–(72), we have that

(eN (w), ḠN (w)) = h(eN (w + 1), ḠN (w + 1)), w < N . (57)

Note that the truncation in (72) is immaterial in this case because ḠN (w) ≤ 1 for
w ≥ 1. Fixing w = N and substituting z(N ) = (βN (N ), qN (N ), ḠN (N )) into
Eq. (83), we have that the resulting z(1) = (βN (1), qN (1), ḠN (1)) satisfies (84). In
particular, ḠN (1) = 1 − qN (1). Thus, it follows from the definition of the function
fN (·) that

ḠN (w) = fw(eN (w)),w ≥ N . (58)

In particular, ḠN (N ) = fN (eN (N )). In other words, the value of ḠN (N ) is uniquely
determined. Since the truncated equilibrium is fully characterized by ḠN (N ), we
conclude that the truncated equilibrium is unique. 
�
Proof of Proposition 5 To facilitate the analysis to follow, we define a function h̃ =
(h̃1, h̃2) as follows: For w ≥ 1 and (β, q) ∈ Z1(w) × Z2(w) ⊆ (0, b] × [q∞, 1),

h̃i (β, q;w) = h(β, q, fw(β, q)), i = 1, 2,

where the functions h(·) and fw(·) are defined in (70)–(72) and (82)–(84) andZ1(w)×
Z2(w) is given in (101). Define a matrix Dh̃(β1, q1, β2, q2;w) as follows: For w ≥ 1
and (β1, q1), (β2, q2) ∈ Z1(w) × Z2(w),
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Dh̃(β1, q1, β2, q2;w) =
[
Dh11(β1, q1;w) Dh12(β1, q1;w)

Dh21(β2, q2;w) Dh22(β2, q2;w)

]
,

where

Dh̃11(β, q;w) = ∂h1(β, q, fw(β, q))

∂z1
+ ∂h1(β, q, fw(β, q))

∂z3

∂ fw(β, q)

∂β
,

Dh̃12(β, q;w) = ∂h1(β, q, fw(β, q))

∂z2
+ ∂h1(β, q, fw(β, q))

∂z3

∂ fw(β, q)

∂q
,

Dh̃21(β, q;w) = ∂h2(β, q, fw(β, q))

∂z1
+ ∂h2(β, q, fw(β, q))

∂z3

∂ fw(β, q)

∂β
,

Dh̃22(β, q;w) = ∂h2(β, q, fw(β, q))

∂z2
+ ∂h2(β, q, fw(β, q))

∂z3

∂ fw(β, q)

∂q
.

It is immediate that Dh̃(β, q, β, q;w) is the Jacobian matrix of h̃(β, q). In addition,
define a constant matrix Dh0 as follows:

Dh̃0 =
⎡

⎢⎣

∂h1(z0)

∂z1

∂h1(z0)

∂z2
∂h2(z0)

∂z1

∂h2(z0)

∂z2

⎤

⎥⎦

=
[

1 − b 0
− f (F̄−1(q∞))α(r − J∞)(1 − b) α(1 − q∞)(1 − b)

]
,

where z0 = (β, q∞, 0). It is immediate that the eigenvalues of Dh̃0 are 1 − b and
α(1 − q∞)(1 − b). Thus, there exists an invertible matrix S such that the following
holds: [

1 − b 0
0 α(1 − q∞)(1 − b)

]
= S(Dh̃0)S

−1.

Define a vector norm|| · ||S and a matrix norm ||| · |||S as follows: For x ∈ R
2 and

M ∈ M2,
||x ||S = ||Sx ||∞ and |||M |||S = |||SMS−1|||∞.

It is immediate that |||Dh̃0|||S = 1 − b. Define a sequence aw as follows:

aw = sup
{
|||Dh̃(β1, q1, β2, q2;w)|||S : (β1, q1), (β2, q2)∈Z1(w)×Z2(w)

}
, w≥1.

(59)
We then show that aw → |||Dh̃0|||S = 1 − b as w → ∞. It follows from Lemma 16
that

sup {| fw(β, q)| : (β, q) ∈ Z1(w) × Z2(w) ⊆ (0, b] × [q∞, 1)} → 0 as w → ∞.

It follows from Lemma 21 and Eq. (101) that

sup {|β − b| + |q − q∞| : (β, q) ∈ Z1(w) × Z2(w)} → 0 as w → ∞.
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Thus, it follows from the continuity of the partial derivatives of h(·) (see (73)–(81))
that for i = 1, 2,

sup(β,q)∈Z1(w)×Z2(w)

∣∣∣∣
∂hi (β, q, fw(β, q))

∂z j
− ∂hi (b, q∞, 0)

∂z j

∣∣∣∣ → 0 as w → ∞.

(60)
In addition, it follows from Lemma 24 that as w → ∞,

sup(β,q)∈Z1(w)×Z2(w)

∣∣∣∣
∂ fw(β, q)

∂β

∣∣∣∣→0 and sup(β,q)∈Z1(w)×Z2(w)

∣∣∣∣
∂ fw(β, q)

∂q

∣∣∣∣→0.

(61)
Substituting (60)–(61) into Dh̃(·), we have that

sup(β1,q1),(β2,q2)∈Z1(w)×Z2(w)

∣∣∣Dh̃(β1, q1, β2, q2;w) − Dh̃0
∣∣∣ → 0 as w → ∞.

By the continuity of the norm ||| · |||S , we have that
lim

w→∞ aw = lim
w→∞ sup {|||Dh(β1, q1, β2, q2;w)|||S : (β1, q1),

(β2, q2)∈Z1(w)×Z2(w)}
=|||Dh̃0|||S = 1 − b.

Thus, there exists w1 ≥ 1 such that

aw ≤ 1 − b/2 < 1, w ≥ w1. (62)

Next we show that eN → e∗ uniformly. Define the difference of the truncated
equilibrium and the equilibrium as follows:

δNβ (w) = βN (w) − β∗(w) and δNq (w) = qN (w) − q∗(w), N , w ≥ 1.

To show that eN → e∗ uniformly, we need to show that

sup
w≥1

δNβ (w) → 0 and sup
w≥1

δNq (w) → 0 as N → ∞.

This is equivalent to showing that

sup
w≥1

||δN (w)||S → 0 as N → ∞, (63)

where δN (w) = [δNβ (w), δNq (w)]T for all N , w ≥ 1. The rest of this proof shows that
(63) holds. It follows from Corollaries 3–4 that β∗(w) → b and q∗(w) → q∞ as
w → ∞. Note that βN (w) = b and qN (w) = q∞ for w ≥ N . Thus, for any ε > 0,
there exists N1 ≥ w1 such that

||δN (w)||S < ε, w ≥ N ≥ N1. (64)
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It follows from (57) to (58), Lemma 25 and Corollary 5 that for N > w ≥ 1,

(βN (w), qN (w)) = h̃(βN (w + 1), qN (w + 1)) and

(β∗(w), q∗(w)) = h̃(β∗(w + 1), q∗(w + 1)).

Thus, it follows from the mean value theorem that for N > w ≥ 1,

δN (w) = h̃(βN (w + 1), qN (w + 1)) − h̃(βN (w + 1), qN (w + 1))

= Dh̃(w + 1;βN
1 (w + 1), qN

1 (w + 1), βN
2 (w + 1), qN

2 (w + 1))δN (w + 1),
(65)

where

(βN
i (w + 1), qN

i (w + 1))

= cNi (w+1)(βN (w+1), qN (w+1)) + (1 − cNi (w + 1))(β∗(w + 1), q∗(w + 1))

for some cNi (w + 1) ∈ (0, 1), i = 1, 2. Note that

(βN (N ), qN (N )) = (b, q∞) ∈ Z1(N ) × Z2(N ).

In addition, it follows from Lemma 26 that (β∗(N ), q∗(N )) ∈ Z1(N ) × Z2(N ). It
follows from Lemma 22 and the convexity of Z1(w) × Z2(w) that

(βN
i (w+1), qN

i (w+1)) ∈ Z1(w+1)×Z2(w+1), w = 1, . . . , N−1, and i = 1, 2.

Thus, it follows from (59) that for w = 1, . . . , N − 1,

|||Dh̃(βN
1 (w + 1), qN

1 (w + 1), βN
2 (w + 1), qN

2 (w + 1);w + 1)|||S ≤ aw+1.

By taking the norm of the both sides of (65), we obtain that, for w = 1, . . . , N − 1,

||δN (w)||S ≤ |||Dh̃(w + 1;βN
1 (w + 1), qN

1 (w + 1), βN
2 (w + 1),

× qN
2 (w + 1))|||S||δN (w + 1)||S

≤ aw+1||δN (w + 1)||S .
(66)

Substituting (62) and (64) into (66) yields that for N ≥ N1 and w = w1, . . . , N ,

||δN (w)||S ≤
(
1 − 1

2
b

)
||δN (w + 1)||S ≤ · · · ≤

(
1 − 1

2
b

)N−w

||δN (N )||S < ε.

(67)
In addition, it follows from (66) that for N ≥ N1 and w = 1, . . . , w1 − 1,

||δN (w)||S ≤
(

w1∏

i=w+1

ai

)
||δN (w1)||S < āε,w < w1, (68)
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where

ā = max

⎧
⎨

⎩ sup
i∈{1,...,w1−1}

w1∏

j=i+1

a j , 1

⎫
⎬

⎭ .

Thus, we conclude from (64), (67)–(68) that ||δN (w)||S < āε for all N ≥ N1 and
w ≥ 1. By letting ε → 0, Eq. (63) holds. 
�
Proof of Lemma 10 We show by induction that for w = 1, . . . , N ,

β1
N (w) ≤ β2

N (w), q1N (w) ≥ q2N (w) and Ḡ1
N (w) > Ḡ2

N (w). (69)

This is true for w = N by assumption. As the inductive assumption, suppose (69) is
true for w, then we argue that it is also true for w − 1. It follows from Eq. (37) and the
inductive assumption that β1

N (w − 1) ≤ β2
N (w − 1). Similarly, it follows from (38)

to (40) that

q1N (w − 1) ≥ q2N (w − 1) and Ḡ1
N (w − 1) > Ḡ2

N (w − 1).

In particular, both of the following must be true:

q1N (1) ≥ q2N (1) and Ḡ1
N (1) > Ḡ2

N (1).

Thus, the following holds:

Ḡ1
N (0) = Ḡ1

N (1)

1 − q1N (1)
> Ḡ2

N (0) = Ḡ2
N (1)

1 − q2N (1)
.


�

Appendix 2: Technical lemmas characterizing the equilibrium quantities
in discrete time

This section proves Lemma5 that facilitates the proof of uniqueness of the equilibrium.
To prove this result, we define an auxiliary function fw(·) implicitly and study its
properties (especially the monotonicity and convergence of its partial derivatives as w

gets large). The function helps characterize Ḡ in terms of β and q. We then apply the
mean value theorem to fw(·) to establish the result in Lemma 5.

Definition of the auxiliary function fw(·)

The function fw(·) is constructed such that for an equilibrium, the following holds:

Ḡ∗(w) = fw(β∗(w), q∗(w)), w ≥ 1.
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We establish this relationship in “Characterizing the equilibriumquantitieswith fw(·)”
in Appendix 2. As a preliminary, we first define a function h(·). The function fw(·) is
then defined implicitly as the value satisfying a set of equations characterized by h(·)
recursively.

To facilitate the analysis to follow, we define a function h = (h1, h2, h3) : Z → R
3

as follows7:

h1(z) =
(
1 + 1 − b

1 − az3

1

z1

)−1

, (70)

h2(z) = F̄

(
−c + α

[
h1(z)r + (1 − h1(z))

∫ F̄−1(z2)

−∞
F(x) dx

])
, (71)

h3(z) = min

(
z3

1 − z2
, 1

)
, (72)

where z = (z1, z2, z3) and Z = (0, b] × [q∞, 1) × [0, 1] ⊆ R
3, where q∞ is the

constant defined in Corollary 4. The following lemma shows that h(·) maps Z to Z .

Lemma 11 We have that h(z) ∈ Z for all z ∈ Z . In addition, the following inequality
holds for all z ∈ Z:

∫ F̄−1(z2)

−∞
F(x) dx = E[F̄−1(z2) − (ε(1) − ε(0))]+ ≤ J∞ ≤ r,

where J∞ is the constant defined in Corollary 4.

Proof For any z ∈ Z , it is straightforward that h1(z) > 0. Since h1(·) is increasing in
z1 and decreasing in z3, h1(z) ≤ (1 + (1 − b)/b)−1 = b. Thus, h1(z) ∈ (0, b].

Recall that the cdf F(·) is the distribution function of the difference of the idiosyn-
cratic shocks ε(1) − ε(0). It follows from integration by parts that

E[F̄−1(z2) − (ε(1) − ε(0))]+ =
∫ F̄−1(z2)

−∞

(
F̄−1(z2) − x

)
dF(x)

=(F̄−1(z2) − x)F(x)|F̄−1(z2)−∞

−
∫ F̄−1(z2)

−∞
F(x) d

(
F̄−1(z2) − x

)

=
∫ F̄−1(z2)

−∞
F(x) dx .

7 We truncate the value of h3(z) by one to ensure that h3(z) ∈ [0, 1] for all z ∈ Z . In the following analysis,
we are only interested in z ∈ Z that satisfies certain conditions. For those z of interest, the truncation is
immaterial; see Lemma 15.
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By substituting the definitions of J∞ and q∞ (in Corollary 4) into the right-hand side,
the following inequality holds: For any z2 ∈ [q∞, 1),

∫ F̄−1(z2)

−∞
F(x) dx ≤

∫ F̄−1(q∞)

−∞
F(x) dx

= E[F̄−1(q∞) − (ε(1) − ε(0))]+
= E[−c + α[br + (1 − b)J∞] − (ε(1) − ε(0))]+
= J∞ ≤ r.

The second inequality holds by the definition of q∞, i.e., q∞ = F̄(−c+ α[br + (1−
b)J∞]). The third equality follows from Eq. (14). This proves that for any z ∈ Z ,

∫ F̄−1(z2)

−∞
F(x) ≤ J∞.

Substituting this inequality into (71), we obtain that for z ∈ Z ,

h2(z) = F̄

(
−c + α

[
h1(z)r + (1 − h1(z))

∫ F̄−1(z2)

−∞
F(x) dx

])

≥ F̄ (−c + α(h1(z)r + (1 − h1(z))J∞))

≥ F̄ (−c + α(br + (1 − b)J∞))

= q∞,

where the last inequality follows from h1(z) ∈ (0, b]. In addition, h2(z) ≤ F̄(−c) < 1.
Thus, h2(z) ∈ [q∞, 1) for any z ∈ Z . Since z3 ≥ 0 and z2 < 1, it follows from (72)
that h3(z) ∈ [0, 1]. Thus, h(z) ∈ Z . 
�

The following lemma shows the elements of the Jacobian matrix of h(·) and the
sign of each element.

Lemma 12 The partial derivatives of h(·) are given as follows:

∂h1
∂z1

= h21(z)

z21

1 − b

1 − az3
> 0, (73)

∂h1
∂z2

= 0, (74)

∂h1
∂z3

= − ah21(z)

(1 − az3)2
1 − b

z1
< 0, (75)

∂h2
∂z1

= − f (F̄−1(h2(z)))α

(
r −

∫ F̄−1(z2)

−∞
F(x) dx

)
h21(z)

z21

1 − b

1 − az3
< 0, (76)

∂h2
∂z2

= α(1 − h1(z))(1 − z2)
f (F̄−1(h2(z)))

f (F̄−1(z2))
> 0, (77)
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∂h2
∂z3

= f (F̄−1(h2(z))α

(
r −

∫ F̄−1(z2)

−∞
F(x) dx

)
ah21(z)

(1 − az3)2
1 − b

z1
> 0, (78)

∂h3
∂z1

= 0, (79)

∂h3
∂z2

=
{ z3

(1 − z2)2
≥ 0, if z3 < 1 − z2,

0, if z3 > 1 − z2,
(80)

∂h3
∂z3

=
⎧
⎨

⎩

1

1 − z2
> 1, if z3 < 1 − z2,

0, if z3 > 1 − z2.
(81)

Proof Since h(·) is given explicitly by Eqs. (70)–(72), the partial derivatives of h(·)
are immediate. The signs of Eqs. (76) and (78) follow from Lemma 11. To be specific,

r −
∫ F̄−1(z2)

−∞
F(x) dx ≥ 0, z2 ∈ [q∞, 1).

The signs of other equations are immediate.

In addition, the following lemma will be useful in the analysis to follow.

Lemma 13 We have that h3(z) ≥ z3 for all z ∈ Z.

Proof For all z ∈ Z , the following inequality holds:

h3(z) = min

(
z3

1 − z2
, 1

)
≥ min (z3, 1) = z3.

For every w ≥ 1, we define an implicit function fw(β, q) : (0, b] × [q∞, 1) →
[0, 1] through the set of equations immediately below. Namely, for (β, q) ∈ (0, b] ×
[q∞, 1), fw(β, q) and z(k) for k = w, . . . , 1 are defined implicitly by Eqs. (82)–(84).

z(w) = (β, q, fw(β, q)), (82)

z(k − 1) = h(z(k)) for k = w, . . . , 2, (83)

z2(1) = 1 − z3(1). (84)

Intuitively, given (β, q) and an initial guess of fw(β, q), z(w) is defined by (82) and
z(k) (for k = 1, . . . , w − 1) are well-defined by (83) and Lemma 11. The essence
of what the next lemma shows is that there is a unique value of fw(·) such that the
boundary condition (84) is satisfied.

Lemma 14 The function fw(·) is well-defined for all w ≥ 1. In addition, fw(β, q) ∈
(0, 1) for all (β, q) ∈ (0, b] × [q∞, 1).
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Proof Note that given z(w) = (β, q, fw(β, q)), Eq. (83) defines z(k) for k =
1, . . . , w − 1. However, the resulting z values must also satisfy the boundary con-
dition (84). In other words, we need to show that for any (β, q) ∈ (0, b] × [q∞, 1),
there exists a unique value fw(β, q) such that the resulting z(k), k = 1, . . . , w, satisfy
(82)–(84).

We first show that there exists a value of fw(β, q) = η such that (82)–(84) are
satisfied. To this end, we view z(k) for k = 1, . . . , w − 1 as functions of η, denoted
by z(k; η) for η ∈ [0, 1]. In addition, we define a function φ(η) as follows:

φ(η) = z2(1; η) − (1 − z3(1; η)).

Note that z3(1; 0) = 0 which follows from Eq. (72) inductively. It follows from
Lemma 11 by induction that z2(1; η) ∈ [q∞, 1) for all η. In particular, z2(1; 0) < 1,
so φ(0) = z2(1; 0) − 1 < 0. Next, we argue that φ(1) > 0. To see this, note that for
any η ∈ [0, 1],

1 ≥ z3(1; η) ≥ z3(2; η) ≥ · · · ≥ z3(w; η) = η ≥ 0, (85)

which follows from Lemma 13 inductively. Note from Eq. (85) that z3(1; 1) = 1.
Thus, φ(1) = z2(1; 1) ≥ q∞ > 0.
Since h(·) is continuous,φ(·) is continuous aswell. Combining the facts thatφ(0) <

0 and φ(1) > 0, we conclude that there exists η ∈ (0, 1) such that φ(η) = 0, i.e.,
condition (84) is satisfied. For such η, the resulting vectors z(k; η), k = 1, . . . , w
satisfy conditions (82)–(84).

For η such that φ(η) = 0, z3(1; η) = 1 − z2(1; η) < 1. It follows from Eq. (85)
that z3(k; η) < 1. Substituting the definition of h3(·) into the inequality z3(k; η) < 1,
we argue that for such η, the following holds:

z3(k; η) = z3(k + 1; η)

1 − z2(k + 1; η)
, k = 1, . . . , w, (86)

because z3(k; η) cannot take the value 1. In otherwords, the truncationby1on the right-
hand side of (72) is immaterial for solutions of fw(β, q) and z(k) for k = 1, . . . , w−1
defined through (82)–(84).

We conclude the proof by showing that there exists a unique η satisfying conditions
(82)–(84). Suppose there are multiple values of fw(β, q), say η �= η̃, satisfying the
conditions (82)–(84). Without loss of generality, assume η > η̃. Next, we show by
induction that for k = 1, . . . , w,

z1(k; η) ≤ z1(k; η̃), z2(k; η) ≥ z2(k; η̃) and z3(k; η) > z3(k; η̃). (87)

This is true for k = w by assumption. Suppose it is true for k, then we argue that
it is also true for k − 1. Note that z1(k − 1; η) = h1(z(k; η)) and z1(k − 1; η̃) =
h1(z(k; η̃)). Since h1(·) is decreasing in its first argument, whereas increasing in its
last two arguments, we conclude that z1(k − 1; η) ≤ z1(k − 1; η̃). Similarly, because
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h2(·) is decreasing in the first argument, whereas increasing in its last two arguments,
we conclude that

z2(k − 1; η) = h2(z(k; η)) ≥ h2(z(k; η̃)) = z2(k − 1; η̃).

Also, it follows from Eq. (86) that

z3(k − 1; η) = z3(k; η)

1 − z2(k; η)
>

z3(k; η̃)

1 − z2(k; η̃)
= z3(k − 1; η̃).

In particular, both of the following must be true:

z3(1; η) > z3(1; η̃) and z2(1; η) ≥ z2(1; η̃).

However, by Eq. (84), we conclude that

z2(1; η) = 1 − z3(1; η) < 1 − z3(1; η̃) = z̃2(1; η̃),

which is a contraction. Therefore, there exists at most one value of fw(β, q) satisfying
conditions (82)–(84).

Partial derivatives of the auxiliary function fw(·)

This subsection characterizes the partial derivatives of fw(·) and establishes themono-
tonicity of fw(·).

To facilitate the analysis to follow, fix w ≥ 1 and denote by z(k;w, β, q) (for
k = 1, . . . , w) the z(k) defined by substituting z(w) = (β, q, fw(β, q)) into Eq. (83).
The following lemma shows that in this construction, the truncation by 1 in defining
h3(·) is immaterial, cf. Eq. (72).

Lemma 15 For w ≥ 1 and (β, q) ∈ (0, b] × [q∞, 1), the following holds:

z3(k;w, β, q) = h3(z(k+1;w, β, q)) = z3(k + 1;w, β, q)

1 − z2(k + 1;w, β, q)
, k = 1, . . . , w−1.

Proof It follows from Lemma 13 inductively that

z3(1;w, β, q) ≥ z3(2;w, β, q) ≥ · · · ≥ z3(w;w, β, q) = fw(β, q) > 0.

In addition, condition (84) ensures that z3(1;w, β, q) = 1 − z2(1;w, β, q) ≤ 1 −
q∞ < 1. Combining these inequalities with Eq. (72) yields the following: For k =
1, . . . , w − 1,

1 > z3(k;w, β, q) = h3(z(k + 1;w, β, q)) = min

(
1,

z3(k + 1;w, β, q)

1 − z2(k + 1;w, β, q)

)
.

Since z3(k;w, β, q) cannot take the value 1, the result follows.
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The following lemma provides an upper bound of z3(k;w, β, q) for w ≥ 1.

Lemma 16 Forw ≥ 1and (β, q) ∈ (0, b]×[q∞, 1), wehave the following inequality:

z3(k;w, β, q) ≤ (1 − q∞)k, k = 1, . . . , w.

In particular, fw(β, q) ≤ (1 − q∞)w for w ≥ 1.

Proof We proceed by induction. On the induction basis, it follows from Eq. (84) that
for k = 1,

z3(1;w, β, q) = (1 − z2(1;w, β, q)) ≤ 1 − q∞,

where the inequality follows because z2(1;w, β, q) ∈ [q∞, 1) by construction.
By the induction hypothesis, suppose that the statement is true for k. Then note

from Lemma 15 that

z3(k + 1;w, β, q) = z3(k;w, β, q)(1 − z2(k + 1;w, β, q)) ≤ (1 − q∞)k+1,

where the inequality follows from the induction hypothesis and that z2(k +
1;w, β, q) ∈ [q∞, 1).

In addition, it follows from (82) that

fw(β, q) = z3(w;w, β, q) ≤ (1 − q∞)w.

The following lemma characterizes the partial derivatives of fw(·) recursively.
Lemma 17 The partial derivatives of fw(·) with respect to β and q for w ≥ 1 and
(β, q) ∈ (0, b] × [q∞, 1) are given as follows: For w = 1, we have that

∂ f1(β, q)

∂β
= 0 and

∂ f1(β, q)

∂q
= −1. (88)

In addition, we have the following recursive characterization for w ≥ 1:

∂ fw+1(β, q)

∂β
= −

∂ fw(e(w))

∂β

∂h1(z(w + 1))

∂z1
+ ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z1
∂ fw(e(w))

∂β

∂h1(z(w + 1))

∂z3
+ ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z3
− ∂h3(z(w + 1))

∂z3

,

(89)

∂ fw+1(β, q)

∂q
= −

∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z2
− ∂h3(z(w + 1))

∂z2
∂ fw(e(w))

∂β

∂h1(z(w + 1))

∂z3
+ ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z3
− ∂h3(z(w + 1))

∂z3

,

(90)

where z(k) = z(k;w + 1, β, q) for k = w,w + 1, and e(w) = (z1(w), z2(w)).
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Proof Note that f1(β, q) = 1 − q. Hence, Eq. (88) is immediate.
Fixing w ≥ 1 and (β, q) ∈ (0, b] × [q∞, 1), we want to characterize the partial

derivatives of fw+1(·)with respect to β and q. Recall that forw+1, z(w;w+1, β, q)

is computed by substituting z(w+1) = (β, q, fw+1(β, q)) into Eq. (83). In particular,
we rewrite Eq. (83) that derives z(w;w + 1, β, q) as follows:

zi (w;w + 1, β, q) = hi (β, q, fw+1(β, q)). (91)

Moreover, by substituting z(w) = z(w;w + 1, β, q) into Eq. (83) for w, we find that
condition (84) (for w) is satisfied. In other words, solutions of (82)–(84) for different
w’s are consistent provided thatβ, q’s are chosen consistently for eachw. In particular,
the following holds:

fw(z1(w;w + 1, β, q), z2(w;w + 1, β, q)) = z3(w;w + 1, β, q). (92)

Substituting Eq. (91) into (92), we obtain the following identity:

fw(h1(β, q, fw+1(β, q)), h2(β, q, fw+1(β, q))) = h3(β, q, fw+1(β, q)). (93)

Both the left-hand side and the right-hand side of Eq. (93) are functions of (β, q).
Since we focus our analysis on the derivation forw+1 with fixed initial values (β, q),
we write z(k) = z(k;w + 1, β, q) in short.

First, we take the partial derivative of both sides of Eq. (93) with respect to β

by the chain rule and evaluate the function at point (β, q). It follows from Eq. (92)
that the partial derivatives of fw(·) are evaluated at (z1(w), z2(w)). Since z(w +
1) = (β, q, fw+1(β, q)), the partial derivatives of hi (·) are evaluated at z(w + 1) for
i = 1, 2, 3 . Thus, we obtain the following equation:

∂ fw(e(w))

∂β

∂h1(z(w + 1))

∂z1
+ ∂ fw(e(w))

∂β

∂h1(z(w + 1))

∂z3

∂ fw+1(β, q)

∂β

+ ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z1
+ ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z3

∂ fw+1(β, q)

∂β

= ∂h3(z(w + 1))

∂z1
+ ∂h3(z(w + 1))

∂z3

∂ fw+1(β, q)

∂β
,

where e(w) = (z1(w), z2(w)). Note that ∂h3/∂z1 = 0 by (74). Thus, we can drop the
first term on the right-hand side. Rearranging the terms yields Eq. (89).

Taking the partial derivative of both sides of Eq. (93)with respect toq and evaluating
the function at value (β, q), we obtain the following equation:

∂ fw(e(w))

∂β

∂h1(z(w + 1))

∂z2
+ ∂ fw(e(w))

∂β

∂h1(z(w + 1))

∂z3

∂ fw+1(β, q)

∂q

+ ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z2
+ ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z3

∂ fw+1(β, q)

∂q

= ∂h3(z(w + 1))

∂z2
+ ∂h3(z(w + 1))

∂z3

∂ fw+1(β, q)

∂q
.
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It follows from (79) that ∂h1/∂z2 = 0. Thus, we can drop the first term on the left-hand
side. Rearranging the terms yields Eq. (90).

The following lemma shows the monotonicity of fw(·).
Lemma 18 fw is non-decreasing in β and non-increasing in q. That is, for all w ≥ 1
and (β, q) ∈ (0, b] × [q∞, 1),

∂ fw(β, q)

∂β
≥ 0 and

∂ fw(β, q)

∂q
≤ 0. (94)

Proof Recall that f1(β, q) = 1 − q. Thus, (94) is immediate for w = 1.
We proceed by induction: Suppose (94) holds for k = 1, . . . , w, and we next show

that it holds for k = w + 1. Note from Eqs. (73) to (81) that

∂h1
∂z1

,
∂h2
∂z3

,
∂h3
∂z3

> 0 and
∂h2
∂z1

,
∂h1
∂z3

< 0.

Consider the formula for ∂ fw+1/∂β given in Eq. (89). Every term in the numerator is
positive, whereas every term in the denominator is negative so that

∂ fw+1(β, q)

∂β
≥ 0.

Next, consider ∂ fw+1/∂q. It follows from Eqs. (73) to (81) that

∂h2
∂z2

> 0 and
∂h3
∂z2

≥ 0.

Every term in both the numerator and the denominator of Eq. (90) is negative. Thus,
we conclude that

∂ fw+1(β, q)

∂q
≤ 0.

Properties of fw(·) on a restricted set

This subsection studies the partial derivatives of fw(β, q) asw gets large. To facilitate
this analysis, we define subsetsZ1(w)×Z2(w) for w ≥ 1 such that for any potential
equilibrium (β∗(w), q∗(w)) ∈ Z1(w)×Z2(w) for allw ≥ 1. Restricting our analysis
to the casewhere (β, q) ∈ Z1(w)×Z2(w) ⊆ (0, b]×[q∞, 1), we establish the desired
convergence results for the partial derivatives of fw(β, q). (Note from Corollaries 3
and 4 that (β∗(w), q∗(w)) → (b, q∞) as w → ∞ for any potential equilibrium. We
define Z1(w) × Z2(w) such that they shrink to the point (b, q∞) as w → ∞. )

To facilitate the analysis to follow, we first define a function κ(x, y) : [0, 1] ×
[0, r ] → R as follows:

κ(x, y) = E[−c + α[xr + (1 − x)y] − (ε(1) − ε(0))]+. (95)
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The following lemma shows the properties of κ .

Lemma 19 The function κ(x, y) has the following properties:

(i) For any (x, y) ∈ [0, 1] × [0, r ], κ(x, y) ∈ [0, r).
(ii) For any fixed x ∈ [0, 1], κ(x, y) is a contraction mapping. In particular,

|∂κ(x, y)/∂y| ≤ α < 1 for all x ∈ [0, 1].
(iii) For any fixed x ∈ [0, 1], there exists a unique j (x) ∈ [0, r) satisfying j (x) =

κ(x, j (x)).

Proof The following inequality shows that (i) holds: For any (x, y) ∈ [0, 1] × [0, r ],

κ(x, y) = E[−c + α[xr + (1 − x)y] − (ε(1) − ε(0))]+
≤ E[−c + α[xr + (1 − x)r ] − (ε(1) − ε(0))]+
= E[−c + αr − (ε(1) − ε(0))]+
= E[max{ε(1),−c + αr + ε(0)}] < r.

(96)

The first inequality follows from y ≤ r . The equality in the fourth line holds because
E[ε(1)] = 0. The last equality follows fromAssumption 2. In addition, it is immediate
that κ(x, y) ≥ 0 for all (x, y) ∈ [0, 1] × [0, r ]. Thus, we have that κ(x, y) ∈ [0, r).

We can write κ(x, y) in integral form and use integration by parts to arrive at the
following:

κ(x, y) = E[−c + α[xr + (1 − x)y] − (ε(1) − ε(0))]+

=
∫ −c+α[xr+(1−x)y]

−∞
(−c + α[xr + (1 − x)y] − u) dF(u)

=
∫ −c+α[xr+(1−x)y]

−∞
F(u) du,

(97)

where the last inequality follows from integration by parts. Thus, the partial derivative
of κ(x, y) with respect to y is given as follows:

∂κ(x, y)

∂y
= ∂(

∫ −c+α[xr+(1−x)y]
−∞ F(u) du)

∂y

= α(1 − x)F(−c + α[xr + (1 − x)y]) ∈ [0, α].

Therefore, for any fixed x ∈ [0, 1], the following inequality holds:

∣∣∣∣
∂κ(x, y)

∂y

∣∣∣∣ ≤ α < 1, y ∈ [0, r ].

Thus, (ii) holds, i.e., κ(x, y) is a contraction mapping for any fixed x ∈ [0, 1].
It follows from properties (i)–(ii) that for any fixed x ∈ [0, 1], κ(x, y) is a contrac-

tion mapping from [0, r ] to [0, r). By the Banach fixed point theorem, there exists a
unique fixed point j (x) ∈ [0, r ] such that j (x) = κ(x, j (x)). It follows from (96) that
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κ(x, r) < r . Thus, j (x) �= r , which leads to j (x) ∈ [0, r). In other words, property
(iii) holds.

The following lemma shows useful properties of the function j (·).
Lemma 20 The function j (·) is increasing and differentiable.

Proof The function j (x) is defined implicitly as follows:

κ(x, j (x)) − j (x) = 0, x ∈ [0, 1]. (98)

Note that κ is continuously differentiable byEq. (97). By the implicit function theorem,
j (x) is differentiable; see Theorem 9.28 of [36]. It follows from (97) that

∂κ(x, y)

∂x
=α(r − y)F(−c + α[xr + (1 − x)y])
≥α(r − y)F(−c) > 0, (x, y) ∈ [0, 1] × [0, r),

where the last inequality holds because y < r and −c is in the interior of the support
of F(·) by Assumption 1. For any fixed x ∈ [0, 1], taking the derivative of both sides
of the equation j (x) = κ(x, j (x)) yields the following equation:

j ′(x) = ∂κ(x, j (x))

∂x
+ ∂κ(x, j (x))

∂y
j ′(x).

Rearranging the terms, we have that

j ′(x) = ∂κ(x, j (x))

∂x

/(
1 − ∂κ(x, j (x))

∂y

)
> 0, x ∈ [0, 1],

where the inequality follows from the fact that ∂κ(x, y)/∂x > 0 and property (ii) in
Lemma 19. Therefore, j (x) is increasing.

To facilitate the definition ofZ1 andZ2, the sequence β(w) is defined as follows:

β(w) = b − a(1 − q∞)w

1 − a(1 − q∞)w
, w ≥ 1.

Since b > a, we have that β(w) > 0 for all w ≥ 1. Then we define J (w) = j (β(w)).
By substituting Eqs. (95) and (98) into the definition of J (w), we have that

J (w) = E

[
−c + α[β(w)r + (1 − β(w))J (w)] − (ε(1) − ε(0))

]+
, w ≥ 1. (99)

In addition, define8

q̄(w) = F̄(−c + α[β(w)r + (1 − β(w))J (w)]), w ≥ 1. (100)

8 The sequence β(w) provides a lower bound of β∗(w), while q̄(w) is an upper bound of q∗(w) in any
potential equilibrium.
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The following lemma shows the properties of the sequences β(w), J (w) and q̄(w) for
w ≥ 1.

Lemma 21 The sequences β(w), J (w) and q̄(w) for w ≥ 1 have the following
properties:

(i) β(w) and J (w) are increasing, whereas q̄(w) is decreasing in w.
(ii) limw→∞ β(w) = b, limw→∞ J (w) = J∞ and limw→∞ q̄(w) = q∞, where J∞

and q∞ are constants defined in Corollary 4.

(iii) J (w) = ∫ F̄−1(q̄(w))

−∞ F(x) dx.

Proof Wefirst show (i). It is immediate that β(w) is increasing. Thus, J (w) is increas-
ing in w by Lemma 20. It follows from property (iii) of Lemma 19 that j (x) ∈ [0, r)
for all x ∈ [0, 1]. Thus, J (w) < r for w ≥ 1. It follows from Eq. (100) that q̄(w) is
decreasing in w because β(w) and J (w) are non-increasing in w and J (w) < r .

Next we show that (ii) holds. Clearly, limw→∞ β(w) = b. It follows from Lemma
19 that j (x) is a differentiable function and thus is continuous. Therefore, the following
equation holds:

lim
w→∞ J (w) = lim

w→∞ j
(
β(w)

)
= j

(
lim

w→∞ β(w)
)

= j (b) = J∞,

where the last inequality follows from (14) that J∞ = j (b). It follows from the
continuity of F̄ that

lim
w→∞ q̄(w) = lim

w→∞ F̄
(
−c + α[β(w)r + (1 − β(w))J (w)]

)

=F̄ (−c + α[br + (1 − b)J∞]) = q∞.

The last equality follows from the definition of q∞ in Corollary 4.
Lastly, we show that (iii) holds. It follows from Eqs. (99) to (100) that for w ≥ 1,

J (w) =E

[
−c + α[β(w)r + (1 − β(w))J (w)] − (ε(1) − ε(0))

]+

=E

[
F̄−1(q̄(w)) − (ε(1) − ε(0))

]+

=
∫ F̄−1(q̄(w))

−∞
F(x) dx .

To facilitate the analysis, define

Z1(w) = [β(w), b] and Z2(w) = [q∞, q̄(w)], w ≥ 1. (101)

It follows from properties (i)–(ii) of Lemma 21 that β(w) < b and q̄(w) ≥ q∞. Thus,
both Z1(w) and Z2(w) are non-empty for all w ≥ 1. Since we only consider the
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underloaded case, i.e., b > a, we have that β(w) > 0 for all w ≥ 1. In addition, it

follows from (100) that q̄(w) < F̄(r) ≤ 1, which gives that

Z1(w) × Z2(w) ⊆ (0, b] × [q∞, 1), w ≥ 1.

Next, we study the properties of fw(β, q) when (β, q) ∈ Z1(w) × Z2(w).

Lemma 22 For any w ≥ 1, if (β, q) ∈ Z1(w) × Z2(w), then

(z1(k;w, β, q), z2(k;w, β, q)) ∈ Z1(k) × Z2(k), k = 1, . . . , w. (102)

Proof Fix w ≥ 1. We proceed by induction. For k = w, (102) holds by assumption.
By the induction hypothesis, suppose (102) holds for l = k + 1, . . . , w − 1, w.

That is,

β(l) ≤ z1(l;w, β, q) ≤ b and q∞ ≤ z2(l;w, β, q) ≤ q̄(l), l = k + 1, . . . , w.

Next, we show that (102) holds for l = k. The following holds:

z1(k;w, β, q) = h1(z(k + 1;w, β, q))

=
(
1 + 1 − b

1 − az3(k + 1;w, β, q)

1

z2(k + 1;w, β, q)

)−1

>

(
1 + 1 − b

1 − a(1 − q∞)k+1

1 − a(1 − q∞)k+1

b − a(1 − q∞)k+1

)−1

=
(
1 + 1 − b

b − a(1 − q∞)k+1

)−1

>

(
1 + 1 − b

b − a(1 − q∞)k

)−1

= b − a(1 − q∞)k

1 − a(1 − q∞)k
= β(k).

The first inequality follows from Lemma 16 and that z2(k + 1;w, β, q) > β(k + 1).
Thus, z1(k;w, β, q) ∈ Z1(k). Combining the two cases, z1(k;w, β, q) ∈ Z1(k).

Moreover, it follows from Eq. (71) that

z2(k;w, β, q) = h2(z(k + 1;w, β, q))

= F̄

[
−c + α

(
z1(k;w, β, q)r + (1 − z1(k;w, β, q))

∫ F̄−1(z2(k+1;w,β,q))

−∞
F(x) dx

)]

≤ F̄

[
−c + α

(
β(k)r + (1 − β(k))

∫ F̄−1(q̄(k+1))

−∞
F(x) dx

)]
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≤ F̄

[
−c + α

(
β(k)r + (1 − β(k))

∫ F̄−1(q̄(k))

−∞
F(x) dx

)]

= F̄
[
−c + α

(
β(k)r + (1 − β(k))J (k)

)]
= q̄(k).

The first inequality follows from z1(k;w, β, q) ≥ β(k) and the assumption that z2(k+
1;w, β, q) ≤ q̄(k + 1) and Lemma 11 that the integral is less than r . The second
inequality follows from Lemma 21 that q̄(k + 1) < q̄(k) and the last two equalities
follow from property (iii) of Lemma 21 and (100). Since z2(k;w, β, q) ≥ q∞ by
construction, z2(k;w, β, q) ∈ Z2(k).

The following lemma shows the properties of the partial derivatives of h(·) for
values in the set Z1(w + 1) × Z2(w + 1).

Lemma 23 For any ε > 0, there exist w0, M ≥ 0 such that the following holds for
w ≥ w0 and (β, q) ∈ Z1(w + 1) × Z2(w + 1):

∂h2(z)

∂z2
≤ 1,

∂h3(z)

∂z2
≤ ε

2
q∞,

∂h1(z)

∂z1
≤ 1 and − ∂h2(z)

∂z1
≤ M, (103)

where z = z(w + 1;w + 1, β, q) = (β, q, fw+1(β, q)).

Proof We show that the four inequalities hold for w large enough one by one.
We first show that ∂h2/∂z2 ≤ 1 for w large. Recall from Eq. (77) that for z ∈ Z ,

∂h2(z)

∂z2
=α(1 − β)(1 − q)

f [F̄−1(h2(z))]
f (F̄−1(q))

≤ α(1 − q∞)
f [F̄−1(h2(z))]
f (F̄−1(q))

, (104)

where the inequality follows because q ≥ q∞ and β ∈ Z1(w + 1) ⊆ (0, 1].
By continuity of f (·) and F̄−1(·) at q∞, there exists δ1 > 0 such that for all x such

that |x − q∞| < δ1, the following holds:

f (F̄−1(q∞))
√
1 − q∞ ≤ f (F̄−1(x)) ≤ 1√

1 − q∞
f (F̄−1(q∞)). (105)

It follows from Lemma 21 that q̄(w) → q∞ as w → ∞. Thus, there exists w1 ≥ 1
such that |q̄(w) − q∞| < δ1 for w ≥ w1. In particular,

|q̄(w + 1) − q∞| < δ1 and |q̄(w) − q∞| < δ1, w ≥ w1. (106)

It follows from (83) that h2(z) = z2(w;w + 1, β, q). We have that h2(z) ∈ Z2(w) =
[q∞, q̄(w)] by Lemma 22. In addition, by assumption, q ∈ Z2(w+1) = [q∞, q̄(w+
1)]. Thus, it follows from (106) that forw ≥ w1 and (β, q) ∈ Z1(w+1)×Z2(w+1),

|q − q∞| < δ1 and |h2(z) − q∞| < δ1.
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By Eq. (105), we have that for w ≥ w1 and (β, q) ∈ Z1(w + 1) × Z2(w + 1),

f [F̄−1(h2(z))]
f (F̄−1(q))

≤ 1

1 − q∞
.

Substituting this inequality into Eq. (104), we obtain the following:

∂h2(z)

∂z2
≤ α ≤ 1 for w ≥ w1 and (β, q) ∈ Z1(w + 1) × Z2(w + 1),

where z = (β, q, fw+1(β, q)) = z(w + 1;w + 1, β, q).
Next we show that ∂h3/∂z2 ≤ εq∞/2 for w large. It follows from Eq. (80) that

∂h3(z)

∂z2
= z3(w + 1;w + 1, β, q)

(1 − q)2
≤ (1 − q∞)w+1

(1 − q)2
≤ (1 − q∞)w

(1 − q̄(w1))2
, (107)

where the first inequality follows from Lemma 16. Recall from Lemma 21 that q̄(w)

is decreasing. Thus, the second inequality holds because

q ≤ q̄(w + 1) ≤ q̄(w1), w ≥ w1.

Since 1 − q∞ < 1, there exists a constant w2 ≥ w1 such that

(1 − q∞)w ≤ ε

2
q∞(1 − q̄(w1))

2, w ≥ w2.

Substituting this inequality into (107), we have the following:

∂h3(z)

∂z2
≤ ε

2
q∞ for w ≥ w2 and (β, q) ∈ Z1(w + 1) × Z2(w + 1).

We then show that ∂h1/z1 ≤ 1 for w large enough. Recall from Eq. (73) that for
w ≥ w2,

0 ≤ ∂h1(z)

∂z1
= h21(z)

β2

1 − b

1 − az3(w + 1;w + 1, β, q)
≤ h21(z)

β2

1 − b

1 − a(1 − q∞)w+1 ,

(108)
where the inequality follows from Lemma 16. Note by assumption that β ∈ Z1(w +
1) = [β(w + 1), b] and Lemma 22 that h1(z) = z1(w;w + 1, β, q) ∈ Z1(w) =
[β(w), b]. In other words, the following holds:

β(w + 1) ≤ β ≤ b and β(w) ≤ h1(z) ≤ b.

It follows from Lemma 21 that β(w) → b as w → ∞. In addition, 1 − a(1 −
q∞)w+1 → 1 as w → ∞. Thus, there exists w3 ≥ w2 such that

b

β(w + 1)
≤ 1

4
√
1 − b

and 1 − a(1 − q∞)w+1 >
4
√
1 − b, w ≥ w3.
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Substituting these two inequalities into (108), we have that for w ≥ w3 and (β, q) ∈
Z1(w + 1) × Z2(w + 1),

0 ≤ ∂h1(z)

∂z1
≤ h21(z)

β2

1 − b

1 − a(1 − q∞)w+1

≤ b2

β2(w + 1)

1 − b

1 − a(1 − q∞)w+1 ≤ 4
√
1 − b < 1.

Lastly, we show that there existsM ≥ 0 such that ∂h2/∂z1 ≤ M forw large enough.
It follows from Eq. (76) that for all w ≥ w3 and (β, q) ∈ Z1(w + 1) × Z2(w + 1),

−∂h2(z)

∂z1
= f (F̄−1(h2(z)))α

(
r −

∫ F̄−1(q)

−∞
F(x) dx

)
∂h1(z)

∂z1

≤ f (F̄−1(h2(z))αr
∂h1(z)

∂z1
≤ f (F̄−1(h2(z))αr.

(109)

The first inequality follows from Lemma 11. The second inequality follows from
the first inequality in (103). It follows from the continuity of f (·) and F̄−1(·) that
f (F̄−1(x)) is bounded on [q∞, q̄(w3)]. Recall that h2(z) ∈ Z2(w) = [q∞, q̄(w)].
Since q̄(w) is decreasing in w by Lemma 21, it follows that

q∞ ≤ h2(z) ≤ q̄(w) ≤ q̄(w3), w ≥ w3 and (β, q) ∈ Z1(w + 1) × Z2(w + 1).

Thus, the right-hand side of the third line in Eq. (109) is bounded. Letting M denote
one such bound completes the proof.

In summary, letting w0 = w3, the four inequalities in (103) hold for all w ≥ w0
and (β, q) ∈ Z1(w + 1) × Z2(w + 1)

The next lemma is key to proving Lemma 5.

Lemma 24 The following holds:

lim
w→∞ sup

{∣∣∣∣
∂ fw(β, q)

∂β

∣∣∣∣ : (β, q) ∈ Z1(w) × Z2(w)

}
= 0, (110)

lim
w→∞ sup

{∣∣∣∣
∂ fw(β, q)

∂q

∣∣∣∣ : (β, q) ∈ Z1(w) × Z2(w)

}
= 0. (111)

Proof We first show (110). To facilitate the analysis to follow, define a sequence yw
for w ≥ 1 as follows:

yw = sup

{
−∂ fw(β, q)

∂q
: (β, q) ∈ Z1(w) × Z2(w)

}
. (112)
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It follows from Eq. (94) that yw ≥ 0 for allw ≥ 1. In addition, it follows from Eq. (90)
that for any (β, q) ∈ Z1(w + 1) × Z2(w + 1) and w ≥ 1,

− ∂ fw+1(β, q)

∂q
=

∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z2
− ∂h3(z(w + 1))

∂z2
∂ fw(e(w))

∂β

∂h1(z(w + 1))

∂z3
+ ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z3
− ∂h3(z(w + 1))

∂z3

=
− ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z2
+ ∂h3(z(w + 1))

∂z2

− ∂ fw(e(w))

∂β

∂h1(z(w + 1))

∂z3
− ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z3
+ ∂h3(z(w + 1))

∂z3

≤
(

− ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z2
+ ∂h3(z(w + 1))

∂z2

)/
∂h3(z(w + 1))

∂z3

≤
(
yw

∂h2(z(w + 1))

∂z2
+ ∂h3(z(w + 1))

∂z2

)/
∂h3(z(w + 1))

∂z3
, (113)

where z(k) = z(k;w+1, β, q) for k = w,w+1 and e(w) = (z1(w), z2(w)). We flip
the signs of the terms in the second line of the right-hand side. Thus, it follows from
Lemma 12 that every term in both the numerator and the denominator (of the right-
hand side of the third line) is positive. This leads to the inequality in the fourth line.
The last inequality follows fromEq. (112) because (z1(w), z2(w)) ∈ Z1(w)×Z2(w),
which in turn follows from Lemma 22.

Rewriting Eq. (113) gives

−∂ fw+1(β, q)

∂q
≤
(
yw

∂h2(z(w + 1))

∂z2
+ ∂h3(z(w + 1))

∂z2

)/
∂h3(z(w + 1))

∂z3
.

Taking the supremum of both sides over (β, q) ∈ Z1(w + 1) × Z2(w + 1) gives the
following:

yw+1 ≤ sup(β,q)∈Z 1(w+1)×Z 2(w+1)

[(
yw

∂h2(z(w + 1))

∂z2
+ ∂h3(z(w + 1))

∂z2

)/
∂h3(z(w + 1))

∂z3

]

≤ sup(β,q)∈Z 1(w+1)×Z 2(w+1)(1 − q∞)

(
yw

∂h2(z(w + 1))

∂z2
+ ∂h3(z(w + 1))

∂z2

)
, (114)

where the last inequality follows from Eq. (81) and that q ∈ [q∞, q̄(w + 1)]. In
particular,

∂h3(z(w + 1))

∂z3
= 1

1 − z2(w + 1)
= 1

1 − q
≥ 1

1 − q∞
. (115)

Substituting the first two inequalities in Eqs. (103) into (114) yields the following:

yw+1 ≤ (1 − q∞)
(
yw + ε

2
q∞

)
for w ≥ w0,
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where w0 is as in Lemma 23. By induction, we obtain the following inequality: For
all w ≥ w0 and n ≥ 1,

yw+n ≤(1 − q∞)yw+n−1 + ε

2
q∞(1 − q∞)

≤(1 − q∞)2yw+n−2 + ε

2
q∞(1 − q∞)2 + ε

2
q∞(1 − q∞)

≤ · · · ≤ (1 − q∞)n yw + ε

2
q∞

n∑

i=1

(1 − q∞)i

=(1 − q∞)n yw + ε

2
.

Now fix w = w0. There exists n1 such that for all n ≥ n1, (1 − q∞)n yw0 < ε/2.
That is, for any w ≥ w0 +n1, yw < ε. Therefore, yw → 0, as w → ∞. Since yw ≥ 1
for all w ≥ 1, we deduce Eq. (110).

Next, we prove (111) in a similar fashion. Define a sequence xw as follows:

xw = sup

{
∂ fw(β, q)

∂β
: (β, q) ∈ Z1(w) × Z2(w)

}
, w ≥ 1.

It follows from Eq. (94) that xw ≥ 0 for allw ≥ 1. In addition, it follows from Eq. (89)
that the following holds: For any w ≥ 1 and (β, q) ∈ Z1(w + 1) × Z2(w + 1)

∂ fw+1(β, q)

∂β
= −

∂ fw(e(w))

∂β

∂h1(z(w + 1))

∂z1
+ ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z1
∂ fw(e(w))

∂β

∂h1(z(w + 1))

∂z3
+ ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z3
− ∂h3(z(w + 1))

∂z3

=
∂ fw(e(w))

∂β

∂h1(z(w + 1))

∂z1
+ ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z1

− ∂ fw(e(w))

∂β

∂h1(z(w + 1))

∂z3
− ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z3
+ ∂h3(z(w + 1))

∂z3

≤
(

∂ fw(e(w))

∂β

∂h1(z(w + 1))

∂z1
+ ∂ fw(e(w))

∂q

∂h2(z(w + 1))

∂z1

)/
∂h3(z(w + 1))

∂z3

≤
(
xw

∂h1(z(w + 1))

∂z1
+ yw

(
− ∂h2(z(w + 1))

∂z1

))/
∂h3(z(w + 1))

∂z3
.

The first inequality holds because every term in both the numerator and denominator
of the right-hand side of the second line is positive. The last inequality holds because
(z1(w), z2(w)) ∈ Z1(w) ×Z2(w). Taking the supremum of both sides over (β, q) ∈
Z1(w + 1) × Z2(w + 1) yields the following: For w ≥ 1,

xw+1 ≤ sup(β,q)∈Z 1(w+1)×Z 2(w+1)

(
xw

∂h1(z(w + 1))

∂z1
− yw

∂h2(z(w + 1))

∂z1

)/
∂h3(z(w + 1))

∂z3
.

Substituting the last two inequalities in Eqs. (103) and (115) into this inequality yields
the following:

xw+1 ≤ (1 − q∞)(xw + Myw) for w ≥ w0.
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We have just shown that yw → 0 as w → ∞. Therefore, for ε > 0, there exists
w1 ≥ w0 such that yw < q∞ε/2M for w ≥ w1. Thus, the following holds:

xw+1 ≤ (1 − q∞)
(
xw + ε

2
q∞

)
for w ≥ w1.

Fixing w = w1, we have that

xw1+n ≤(1 − q∞)xw1+n−1 + ε

2
q∞(1 − q∞)

≤(1 − q∞)2xw1+n−2 + ε

2
q∞(1 − q∞)2 + ε

2
q∞(1 − q∞)

≤ · · · ≤ (1 − q∞)nxw1 + ε

2
q∞

n∑

i=1

(1 − q∞)i

≤(1 − q∞)nxw1 + ε

2
.

There exists n2 such that for n ≥ n2, (1 − q∞)nxw1 < ε/2. Thus, for w ≥ w1 + n2,
xw < ε. Since xw ≥ 1, we have that limw→∞ xw = 0, which gives (111).

Characterizing the equilibrium quantities with fw(·)

This subsection relates the equilibriumquantities to fw(·). The following lemma shows
that the equilibrium e∗ can be characterized by h(·).
Lemma 25 For any equilibrium e∗, the following holds:

(β∗(w), q∗(w), Ḡ∗(w)) = h(β∗(w + 1), q∗(w + 1), Ḡ∗(w + 1)), w ≥ 1.

Proof It follows from (4) to (70) that β∗(w) = h1(β∗(w+1), q∗(w+1), Ḡ∗(w+1))
for w ≥ 1.

It follows from Eq. (11) that

J ∗(w) =Eε[F̄−1(q∗(w)) − (ε(1) − ε(0))]+ =
∫ F̄−1(q∗(w))

−∞
F(x) dx .

Substituting this equation and β∗(w) = h1(β∗(w + 1), q∗(w + 1), Ḡ∗(w + 1)) into
(10) and comparing it with (71), we have that

q∗(w) =F̄

(
−c + α

{
β∗(w)r + (1 − β∗(w))

∫ F̄−1(q∗(w))

−∞
F(x) dx

})

=h2(β
∗(w + 1), q∗(w + 1), Ḡ∗(w + 1)).
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In addition, it follows from Eqs. (1) to (72) that

Ḡ∗(w) = Ḡ∗(w + 1)

1 − q∗(w + 1)
= min

(
1,

Ḡ∗(w + 1)

1 − q∗(w + 1)

)

= h3(β
∗(w + 1), q∗(w + 1), Ḡ∗(w + 1)),

where the second equality holds because Ḡ∗(w) = ∏w
i=1(1 − q∗(i)) ≤ 1.

Thus, it is immediate that fw(·) characterizes Ḡ∗(w) in terms of β∗(w) and q∗(w),
which is formalized in the following corollary.

Corollary 5 We have that Ḡ∗(w) = fw(e∗(w)) for all w ≥ 1.

Proof Fixing aw ≥ 1 and substituting z(w) = (β∗(w), q∗(w), Ḡ∗(w)) into Eq. (83),
by applying Lemma 25 inductively we have that z(1) = (β∗(1), q∗(1), Ḡ∗(1)). Note
that the resulting z(1) = (β∗(1), q∗(1), Ḡ∗(1)) satisfies condition (84). In particular,
Ḡ∗(1) = 1 − q∗(1). Thus, it follows from the definition of the function fw(·) that
Ḡ∗(w) = fw(e∗(w)) for all w ≥ 1.

The following lemma shows that the equilibrium quantities live in the setZ1(w)×
Z2(w).

Lemma 26 For any equilibrium e∗ = (β∗, q∗), we have that

e∗(w) = (β∗(w), q∗(w)) ∈ Z1(w) × Z2(w), w ≥ 1.

Proof By Lemma 4 and Corollaries 3–4, β∗(w) ≤ b and q∗(w) ≥ q∞. Thus, it
suffices to show that β∗(w) ≥ β(w) and q∗(w) ≤ q̄(w) for all w ≥ 1.

We first show that β∗(w) ≥ β(w). It follows from Proposition 1 that

β∗(w) =
(
1 +

∞∑

t=w

t∏

i=w

1 − b

1 − aḠ∗(i + 1)

)−1

≥
(
1 +

∞∑

t=w

t∏

i=w

1 − b

1 − aḠ∗(w)

)−1

=
(
1 +

∞∑

i=1

(
1 − b

1 − aḠ∗(w)

)i
)−1

=1 − 1 − b

1 − aḠ∗(w)

≥1 − 1 − b

1 − a(1 − q∞)w
= b − a(1 − q∞)w

1 − a(1 − q∞)w
= β(w),

where the first inequality follows from

Ḡ∗(i + 1) = Ḡ∗(w)

i+1∏

j=w+1

(1 − q∗( j)) ≤ Ḡ∗(w), i ≥ w,
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and the last inequality follows from Lemma 16. In particular, it follows from

Ḡ∗(w) = z3(w;w, β∗(w), q∗(w)) ≤ (1 − q∞)w.

Therefore, we have that β∗(w) ∈ Z1(w).
We then prove that q∗(w) ∈ Z2(w). We first show that J ∗(w) ≥ J (w) for all

w ≥ 1 by contradiction, where J ∗(w) is the expected discounted utility of waiting.
Suppose this is not true and there exists w0 such that J ∗(w0) < J (w0).

We first show by induction that J ∗(w) < J (w0) for all w ≥ w0. It is true for w0 by
assumption. By the induction hypothesis, suppose it is true for k = w. In particular,
J ∗(w) < J (w0). We then show that J ∗(w + 1) < J (w0). Substituting Eq. (8) and
J (w0) = κ(β(w0), J (w0)) into J ∗(w) < J (w0), we obtain that

E[−c + α[β∗(w)r + (1 − β∗(w))J ∗(w + 1)] − (ε(1) − ε(0))]+
= E[max{ε(1),−c + α[β∗(w)r + (1 − β∗(w))J ∗(w + 1)] + ε(0)}]
= J ∗(w) < J (w0)

= E[−c + α[β(w0)r + (1 − β(w0))J (w0)] − (ε(1) − ε(0))]+,

where the first equality holds because E[ε(1)] = 0. Comparing the first line and
right-hand side of the last line, we conclude that the following inequality holds:

β∗(w)r + (1 − β∗(w))J ∗(w + 1)

< β(w0)r + (1 − β(w0))J (w0)

= β∗(w)r + (1 − β∗(w))J (w0) + (β(w0) − β∗(w))(r − J (w0)).

Rearranging the terms, we have that

J ∗(w + 1) < J (w0) + (β(w0) − β∗(w))(r − J (w0))

1 − β∗(w)
. (116)

Note that the last term on the right-hand side of Eq. (116) is non-positive. To see this,
recall that we have shown β∗(w) ≥ β(w) at the beginning of this proof. It follows
from property (i) of Lemma 21 that β(w) ≥ β(w0) for w ≥ w0. Combining the two
inequalities, we have that β(w0)−β∗(w) ≤ 0. In addition, it follows from Lemma 21

that r − J (w0) ≥ 0. Since 1− β̂∗(w) > 0, we have that the last term on the right-hand
side of Eq. (116) is non-positive.

By dropping the non-positive term on the right-hand side of (116), we have that
J ∗(w+1) < J (w0), which completes the induction argument. In summary, J ∗(w) <

J (w0) for all w ≥ w0.
On the one hand, by the induction argument, we prove that J ∗(w) < J (w0) for all

w ≥ w0. Thus, it follows from Corollary 4 that J∞ = limw→∞ J ∗(w) ≤ J (w0). On
the other hand, it follows from properties (i)–(ii) in Lemma 21 that J (w0) < J∞. This
leads to a contradiction. Therefore, there exists no w0 such that J ∗(w0) < J (w0). In
other words, J ∗(w) ≥ J (w) for all w ≥ 1.
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We complete the proof by showing q∗(w) ≤ q̄(w) for w ≥ 1. It follows from
Eq. (11) that

J ∗(w) = Eε[F̄−1(q∗(w)) − (ε(1) − ε(0))]+ =
∫ F̄−1(q∗(w))

−∞
F(x) dx .

In addition, recall from Lemma 21 that

J (w) =
∫ F̄−1(q̄(w))

−∞
F(x) dx .

By comparing these two equations, we can conclude that q∗(w) ≤ q̄(w) because
J ∗(w) ≥ J (w) for w ≥ 1. 
�

Proof of Lemma 5

It follows from Corollary 5 that

Ḡ∗
i (w) = fw(β∗

i (w), q∗
i (w)), i = 1, 2 and w ≥ 1.

Applying the mean value theorem for multivariable functions to fw(·), the following
holds: For w ≥ 1,

δḠ(w) = fw((β∗
1 (w), q∗

1 (w))) − fw((β∗
2 (w), q∗

2 (w)))

=∂ fw(ẽ(w))

∂q
δq(w) + ∂ fw(ẽ(w))

∂β
δβ(w),

(117)

where ẽ(w) = C(w)e∗
1(w) + (1 − C(w))e∗

2(w) for some C(w) ∈ (0, 1). It follows
from Lemma 26 that e∗

1(w), e∗
2(w) ∈ Z1(w) × Z2(w). Since Z1(w) × Z2(w) is

convex, ẽ(w) ∈ Z1(w) × Z2(w) for all w ≥ 1. It follows from Lemma 24 that

lim
w→∞

∂ fw(ẽ(w))

∂q
= 0 and lim

w→∞
∂ fw(ẽ(w))

∂β
= 0.

Thus, we conclude that for any ε > 0, there exists a nonnegative constant w1 such
that the following inequalities are satisfied:

∣∣∣∣
∂ fw(ẽ(w))

∂q

∣∣∣∣ ≤ ε and

∣∣∣∣
∂ fw(ẽ(w))

∂β

∣∣∣∣ ≤ ε, w ≥ w1.

Substituting the two inequalities into Eq. (117), we obtain that

|δḠ(w)| ≤ ε(|δβ(w)| + |δq(w)|), w ≥ w1.


�
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Appendix 3: The road map for the proof of uniqueness

This appendix provides a detailed road map of the uniqueness proof (Proposition 4).
The proof is done by contradiction. In what follows, we first provide an overview of
the key steps that lead to the contradiction using various auxiliary lemmas (see Fig. 8).
We then summarize the key steps to proving Lemma 5 provided in Appendix 2, which
is an important technical lemma for the uniqueness proof. Two auxiliary functions,
denoted by h(·) and fw(·), and several lemmas in Appendix 2 facilitate the proof of
Lemma 5. Figure 9 provides a diagram to show how the lemmas in Appendix 2 are
used to prove Lemma 5.

The proof (of uniqueness) by contradiction proceeds as follows: Suppose that there
are two different equilibria and define their difference as (δβ, δq). The contradiction is
built on the limiting properties of the difference (δβ(w), δq(w)) as w tends to infinity.
Figure 8 shows how the contradiction is constructed.

On the one hand, Corollaries 3–4 provide the limits of equilibrium quantities (in
any potential equilibrium). It is immediate from these two corollaries that the differ-
ence of the equilibrium quantities (of two different equilibria) vanishes as w goes to
infinity, i.e.,

(δβ(w), δq(w)) → 0 as w → ∞.

On the other hand, Lemmas 7 and 8 show that this convergence cannot hold.
Lemma 7 shows that the difference of the equilibrium quantities (δβ(w), δq(w)),
w ≥ 0, is characterized by a dynamical system. To be more specific, the function
characterizing the evolution of this dynamical system has two parts: a constant matrix
A with a special structure and a matrix function B(·). In addition, the perturbation
function B(w) vanishes as w goes to infinity, i.e., |||B(w)|||∞ → 0 as w → ∞. This
property is proved with the help of the technical Lemma 5. Then Lemma 8 shows
that the dynamical system given in Lemma 7 cannot converge to zero. Combining
Lemmas 7 and 8, we conclude that the difference (δβ(w), δq(w))) cannot converge to
zero, which leads to the contradiction.

The rest of this section summarizes the critical steps in Appendix 2 to prove the
technical Lemma 5, which characterizes δḠ(w) in terms of δβ(w) and δq(w) for
w ≥ 0 using the functions g1(·) and g2(·). Figure 9 illustrates how various lemmas
are used (and relate to one another) to prove Lemma 5. To be specific, “Definition of
the auxiliary function fw(·),” “Partial derivatives of the auxiliary function fw(·)” and
“Properties of fw(·) on a restricted set” inAppendix 2 construct two auxiliary functions
h(·) and fw(·) and provide various properties of these two functions. “Characterizing
the equilibrium quantities with fw(·)” in Appendix 2 shows the characterization of
the equilibrium quantities using the auxiliary functions h(·) and fw(·). Thus, the
properties of the auxiliary functions provided in “Definition of the auxiliary function
fw(·),” “Partial derivatives of the auxiliary function fw(·),” and “Properties of fw(·) on
a restricted set” in Appendix 2 are applicable to the equilibrium quantities. Appendix
2 proves Lemma 5.

The proof of Lemma 5 in Appendix 2 includes two parts. The first part constructs
the functions g1(·) and g2(·) in two steps. In the first step, we use the auxiliary func-
tion fw(·) defined in “Definition of the auxiliary function fw(·)” in Appendix 2 to
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characterize Ḡ(w) in terms of β(w) and q(w), i.e., Ḡ = fw(β(w), q(w)) for w ≥ 0;
see Corollary 5 in “Characterizing the equilibrium quantities with fw(·)” in Appendix
2. In the second step, we apply the mean value theorem and construct the functions g1
and g2 using the partial derivatives of the function fw(·); see Eq. (117).

The second part of the proof of Lemma 5 shows that the two functions g1(w) and
g2(w) converge to zero as w → ∞. To show this, it is sufficient to show that the
supremum norm of the partial derivatives of the function fw(·) converges to zero as
w → ∞; see Eq. (117). However, this statement is not true in general, but is valid if
we restrict the arguments of the function fw(·) to be in the setL1(w)×L2(w) defined
in “Properties of fw(·) on a restricted set” in Appendix 2. The convergence result of
the partial derivatives of the function fw(·) restricted in the set L1(w) × L2(w) is
given by Lemma 24. In addition, Lemma 26 ensures that the equilibrium quantities
lie in the L1(w) × L2(w). Thus, applying Lemma 24 completes the second part of
the proof of Lemma 5.

“Definition of the auxiliary function fw(·),” “Partial derivatives of the auxiliary
function fw(·),” and “Properties of fw(·) on a restricted set” in Appendix 2 are dedi-
cated to proving Lemma 24 using the auxiliary functions h(·) and fw(·). To be specific,
“Definition of the auxiliary function fw(·)” in Appendix 2 defines the auxiliary func-
tions h(·) and fw(·). “Partial derivatives of the auxiliary function fw(·)” in Appendix
2 provides the recursive equations to characterize the partial derivatives of the function
fw(·) and the signs of the partial derivatives. “Properties of fw(·) on a restricted set” in
Appendix 2 constructs the restricted setL1(w) ×L2(w) and proves the convergence
of the partial derivatives of the function fw(·) in the restricted set.

The auxiliary function fw(β, q) is defined implicitly through Eqs. (82)–(84), which
are rewritten for convenience as follows:

z(w) = (β, q, fw(β, q)),

z(k − 1) = h(z(k)) for k = w, . . . , 2,

z2(1) = 1 − z3(1).

Lemma 14 ensures that the function fw(β, q) is well-defined. In order to make sense
of this definition of the implicit function fw(·), the auxiliary function h(·) needs to
be introduced. The function h(·) is constructed such that it characterizes the time-
reversed evolution of the equilibrium quantities; see Lemma 25 in “Characterizing
the equilibrium quantities with fw(·)” in Appendix 2. This immediately leads to the
observation that if we substitute the equilibrium quantities at time w into z(w) in
Eq. (82), i.e., z(w) = (β∗(w), q∗(w), Ḡ∗(w)), then the values of z(k) (for k =
w − 1, . . . , 1) in Eq. (83) equal the equilibrium quantities as well, i.e.,

z(k) = (β∗(k), q∗(k), Ḡ∗(k)) for k = w − 1, . . . , 1.

In addition, the condition in Eq. (84) is automatically satisfied by the definition of
Ḡ in Eq. (1). Therefore, the function fw(·) is the implicit function that charac-
terizes the equilibrium quantity Ḡ∗(w) in terms of β∗(w), q∗(w), i.e., Ḡ∗(w) =
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fw(β∗(w), q∗(w)), w ≥ 0; see Corollary 5 in “Characterizing the equilibrium quan-
tities with fw(·)” in Appendix 2.

Lemma 24 provides the convergence property of the partial derivatives of the
implicit function fw(·). In order to prove this lemma, we first provide a recursive
characterization of the partial derivatives of the implicit function fw(·). Since the
function fw(·) is defined implicitly by using the function h(·) recursively, the partial
derivatives of the implicit function fw(·) are characterized using the partial derivatives
of the function h(·) (provided in Lemma 12) recursively; see Lemma 17. By analyzing
the partial derivatives of the functions fw(·) and h(·) (provided in Lemmas 12 and
17), we provide useful properties of the partial derivatives. These properties eventually
lead to the convergence property in Lemma 24; see Fig. 9.

We end this section by providing a comment on Lemma 23. Lemma 23 provides
critical bounds of the partial derivatives of the function h(·) to prove Lemma 24.
However, these bounds only hold after we restrict the arguments of the function h(·)
to the setL1(w)×L2(w). The setL1(w)×L2(w) is carefully constructed to satisfy
two conditions. First, the set is narrow enough such that the bounds in Lemma 23 hold.
Second, the set is wide enough to ensure that the equilibrium quantities lie in the set;
see Lemma 26.
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