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ABSTRACT

This paper briefly reviews the regenerative method for steady-state simulation, and then shows how
regenerative structure can be used computationally to develop new estimators for the spectral density,
moments of hitting times, and both discounted and average reward value functions. All our estimators
typically exhibit the Monte Carlo method’s usual “square root” convergence rate. This is in contrast to
the usual sub-square root rate exhibited by, for example, spectral density estimators in the absence of
regenerative structure.

1 INTRODUCTION

In this paper, we discuss the use of regenerative structure in the construction of efficient simulation-based
algorithms for computing various functionals that arise in stochastic modeling and statistics. Our starting
point is that of steady-state simulation. In particular, suppose that Y = (Y (t) : t ≥ 0) is a real-valued
stochastic process representing the output of a simulation, for which three exists a (deterministic) constant
α such that

Ȳ (t),
1
t

∫ t

0
Y (s)ds⇒ α (1)

as t → ∞, where ⇒ denotes weak convergence. The steady-state simulation problem is concerned with
the efficient computation of α , and with the development of associated confidence intervals for α . (We
phrase our results in this paper in continuous time only for notational convenience. To handle discrete time
sequences (Yn : n≥ 0), we can always embed in continuous time via the relation Y (t), Ybtc for t ≥ 0.)

To construct confidence intervals for α , the standard starting point is a central limit theorem (CLT) for
Ȳ (t), in which one strengthens (1) to the limit theorem

t
1
2 (Ȳ (t)−α)⇒ σN(0,1) (2)

as t→ ∞, for some (deterministic) constant α , where N(0,1) is a normal random variable (rv) with mean
0 and unit variance. The quantity σ2 is called the time-average variance constant (TAVC) associated with
Y . Hence, if one can construct an estimator s(t) from the simulation output collected up to time t for which

s(t)⇒ σ (3)

as t→ ∞, it follows that [
Ȳ (t)− z

s(t)√
t
,Ȳ (t)+ z

s(t)√
t

]
is an asymptotic 100(1−δ )% confidence interval for α , provided that σ2 > 0 and that we select z so that
P(−z≤ N(0,1)≤ z) = 1−δ .
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Unfortunately, constructing such estimators s(t) is not easy in general. In particular, it is usual that
when (1) and (2) hold, then

(Y (t +u) : u≥ 0)→ (Y ∗(u) : u≥ 0)

as t → ∞, where (Y ∗(u) : u ≥ 0) is a stationary process known as the “stationary version” of Y . (The
convergence in (4) is usually stated in terms of total variation convergence; see Chapter 5 of Thorisson
(2000) for such results.) This suggests that for t large,

t
1
2 (Ȳ (t)−α)

D
≈ t

1
2

(
1
t

∫ t

0
Y ∗(s)ds−α

)
,

where
D
≈ denotes “has approximately the same distribution as” (and is intended to have no rigorous meaning).

This, in turn, suggests that

σ
2 = lim

t→∞

1
t
Var

(∫ t

0
Y ∗(s)ds

)
= 2

∫
∞

0
Cov(Y ∗(0),Y ∗(s))ds (4)

The formula (4) for the TAVC σ2 can be rigorously verified in many different settings: see, for example,
Meyn and Tweedie (2009), p.422; the same result shows that α = EY ∗(t).

The challenge in (4) is that while Cov(Y ∗(0),Y ∗(t)) can typically be easily estimated for each fixed
t, computing the integrated covariance quantity σ2, as given by (4), is statistically hard. The TAVC
σ2 is intimately connected to spectral density estimation for the stationary process Y ∗ = (Y ∗(t) : t ≥ 0).
Specifically, σ2 = 2π f (0), where f (·) is the spectral density of Y ∗. In general, the best spectral density
estimators converge at rates slower than of order t−

1
2 in the simulated time horizon t; see Anderson (1971),

Chapter 9. This “sub square root” convergence rate reflects the fact that infinitely many covariance terms
must be summed together to compute σ2.

The regenerative method for TAVC estimation takes advantage of the presence of regenerative structure
in Y to obtain an estimator s(t) for σ that converges at a rate of order t−

1
2 . This beautiful idea, due

independently to Fishman (1974) and Crane and Iglehart (1974), exploits the independent and identically
distributed (iid) cycle structure of (classically) regenerative processes, so that one can efficiently truncate
the integral appearing in (4) to include only covariance effects between Y ∗ values collected within the
same cycle. This leads to estimation algorithms for σ2 that converge much more rapidly than do those
associated with general spectral density estimation theory or other related statistical procedures.

This paper is organized as follows. Section 2 reviews the key facts about regenerative methodology in
its historical setting of steady-state simulation. Regenerative methodology is then extended in Section 3
to cover spectral density estimation, where appropriate estimators and associated confidence intervals are
developed. Section 4 discusses new regenerative estimators for higher order moments of hitting times (e.g.
the variance), while Section 5 deals with new regenerative representations and related estimators for value
functions in both the discounted and average reward settings. Finally, Section 6 provides a brief discussion
of computational results obtained for the spectral density estimator of Section 3.

2 APPLICATION 1: ESTIMATING THE TAVC

Given that the estimation of the TAVC σ2 is the classical problem to which regenerative methodology
has been applied within the setting of simulation-based algorithms, we start with a brief review of this
estimation domain. We presume that Y = (Y (t) : t ≥ 0) is a non-delayed classically regenerative process.
More precisely, we assume that there exist random times 0 = T (0) < T (1) < · · · such that the cycles
(Wi : i≥ 1) are iid, where Wi , (Y (T (i−1)+ s) : 0≤ s < τi) and τi , T (i)−T (i−1) for i≥ 1.
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It is known that if Y is non-negative and Eτ1 < ∞ (so that Y is positive recurrent), then

Ȳ (t)⇒ α (5)

for a finite α as t→ ∞ if and only if E
∫ T (1)

0 Y (s)ds < ∞, in which case

α =
E
∫ T (1)

0 Y (s)ds
Eτ1

; (6)

see Glynn and Whitt (1993). In addition,

t
1
2 (Ȳ (t)−α)⇒ σN(0,1) (7)

as t→ ∞ holds if and only if E
(∫ T (1)

0 Yc(s)ds
)2

< ∞, where Yc(s), Y (s)−α , in which case

σ
2 =

E
(∫ T (1)

0 Yc(s)ds
)2

Eτ1
; (8)

see Glynn and Whitt (2002). In some sense, the representation (8) truncates the covariance integral (4)
according to the “cycle boundary” T (1), as suggested in the Introduction. In view of (7), the natural
estimator for σ2 is then

s2(t) =
1
t

N(t)

∑
i=1

(∫ T (i)

T (i−1)
(Y (s)− Ȳ (t))ds

)2

,

where N(t) = max(n≥ 0 : T (n)≤ t) is the number of regenerative cycles completed by time t. It turns out
that s2(t)⇒ σ2 as t → ∞, precisely when (7) holds; see Glynn and Iglehart (1993). In other words, the
regenerative method for estimating σ2 is consistent under the weakest possible conditions. Furthermore,
s(t) converges to σ at rate t−

1
2 under modest additional conditions; see Glynn and Iglehart (1987).

The above theory covers classically regenerative processes. From a modeling viewpoint, this allows
one to easily apply the regenerative method to irreducible positive recurrent discrete state space Markov
chains and processes. For such examples, the T (i)’s are typically defined as the consecutive times at which
the underlying Markov chain process enters some fixed (regeneration) state, say z.

But some modeling environments require that one develop steady-state simulation methodology for
continuous state space examples. Regenerative methods apply there, as well, at a significant level of
generality. In particular, a large class of such models form either Harris recurrent Markov chains (when
formulated in discrete time) or Harris recurrent Markov processes (when formulated in continuous time).

Consider first the case of a Harris recurrent Markov chain X = (Xn : n≥ 0), in which case we presume
that Yn = h(Xn) for some non-negative h (see Meyn and Tweedie (2009) for a complete discussion of this
class of chains.) In this setting, Y = (Y (t) : t ≥ 0) can always be simulated as a non-delayed wide-sense
regenerative process, so that there exist random times 0 = T (0)< T (1)< · · · such that:

i) (τi : i≥ 1) is an iid sequence;
ii) T (i) is independent of (Y (T (i)+u) : u≥ 0) for i≥ 0;

iii) (Y (T (i)+u) : u≥ 0) D
= (Y (u) : u≥ 0) for i≥ 0 (where D

= denotes equality in distribution).

It is then easily seen that if (5) holds, then α is given by (6). With the identity (6) in place, one has
now reduced α to a “finite horizon” computation, in the sense that α can be computed by generating iid
copies (β1,τ1),(β2,τ2), ... of (β ,τ), where τ = T (1) and β =

∫ T (1)
0 Y (s)ds, and forming the sample mean

estimator
β̄n

τ̄n
=

∑
n
i=1 βi/n

∑
n
i=1 τi/n

.
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If E(β 2
1 + τ2

1 )< ∞, then

n
1
2

(
β̄n

τ̄n
−α

)
⇒

√
E(β1−ατ1)2

(Eτ1)2 N(0,1) (9)

as n→ ∞, and

s2
n ,

1
n

n

∑
i=1

(
βi−

(
β̄n

τ̄n

)
τi

)2

/τ̄n
2→ E(β1−ατ1)

2

(Eτ1)2 a.s. (10)

as n→ ∞. Again, confidence intervals for α can be easily constructed, given the above results.
To handle the Harris recurrent Markov process setting, we appeal to the fact that if Y (t) = h(X(t)) for

some non-negative h, then Y = (Y (t) : t ≥ 0) can be simulated as a non-delayed one-dependent regenerative
process, so that there exist random times 0 = T (0)< T (1)< · · · such that:

i) (Wi : i≥ 1) is an identically distributed sequence;
ii) (Wi : i≥ 1) is a one-dependent sequence, so that (Wn+ j : j ≥ 2) is independent of (Wi : i≤ n) for

each n≥ 1.

As observed in Glynn (1994), (5) implies that (6) holds in this setting, so that confidence intervals for α

can again be constructed via (9) and (10).
It is important to recognize that the estimator β̄n/τ̄n does not in general have the same distribution as

Ȳ (T (n)), as occurs when Y is classically regenerative. In the classical setting, simulating n iid copies of a
cycle is equivalent to simulating Y to time T (n). On the other hand, the correlation structure of the cycles
associated with both wide-sense regenerative and one-dependent regenerative processes is more complex
than in the classical case, so that simulating n iid copies of (β1,τ1) does not yield the path of the original
process Y to time T (n). This does not affect the validity of (9) and (10), but it does mean that we can not
use such simulations to simultaneously compute (for example) transient quantities, since the iid structure
of the (βi,τi)’s may result in modification of the marginal distributions of Y (t) for t ≥ 0.

3 APPLICATION 2: THE SPECTRAL DENSITY

As noted in Section 2, the TAVC constant σ2 is a special case of a spectral density computation. Specifically,
if Y ∗ = (Y ∗(t) : t ≥ 0) is a real-valued stationary process for which∫

∞

0
|Cov(Y ∗(0),Y ∗(t))|dt < ∞, (11)

the spectral density f (·) is defined by

f (λ ) =
1

2π

∫
∞

−∞

eiλ tCov(Y ∗(0),Y ∗(t))dt;

Note that the TAVC can be recovered from f (·) via the relation σ2 = 2π f (0) (Compare with (4)). The
spectral density plays a fundamental role in many different applications areas, and is a key concept in the
statistical analysis of time series. In general, estimating f (λ ) is statistically difficult, and (nonparametric)
spectral density estimators exhibit a sub-square root convergence rate in the sampling effort t. However,
we will now show how classical regenerative structure can be exploited to obtain an estimator for f (λ )
having square root convergence rate.

Let Y = (Y (t) : t ≥ 0) be a non-delayed classically regenerative process with Eτ1 < ∞. Then, there
exists a unique stationary version Y ∗ of Y for which

P(Y ∗ ∈ ·) =
E
∫ T (1)

0 I(Ys ∈ ·)ds
Eτ1

, (12)
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where Ys = (Y (s+u) : u≥ 0); see, for example, p.342 Thorisson (2000). The following result provides a
regenerative representation for f (·). Recall that a rv is spread-out if its n-fold convolution has a density
component for some n≥ 1.
Theorem 1 Suppose that T (1) is a spread-out random variable and

E
((

max
0≤s≤T (1)

|Y (s)|2 +T (1)2+p
)

T (1)
)
< ∞, (13)

for some p > 0. Then, for λ 6= 0,

2π f (λ ) =
E
∫ T (1)

0
∫ T (1)

s Yc(s)Yc(t)
(
eiλ (t−s)+ e−iλ (t−s)

)
dtds

Eτ1

+
E
∫ T (1)

0 Yc(s)eiλ (T (1)−s)ds
Eτ1

·
E
∫ T (1)

0 eiλ tYc(t)dt
1−EeiλT (1)

+
E
∫ T (1)

0 Yc(s)e−iλ (T (1)−s)ds
Eτ1

·
E
∫ T (1)

0 e−iλ tYc(t)dt
1−Ee−iλT (1) ,

whereas for λ = 0,

π f (0) =
E
∫ T (1)

0
∫ T (1)

s Yc(s)Yc(t)dtds
Eτ1

.

Proof. We start by verifying that (11) holds, so that f (·) is well-defined. Set Y ∗c (t) = Y ∗(t)−α and

Cov(Y ∗(0),Y ∗(t)) = EY ∗c (0)Y
∗
c (t)

= EY ∗c (0)Y
∗
c (t)I(T

∗(0)> t)+
∫
[0,t]

EY ∗c (0)I(T
∗(0) ∈ ds)EYc(t− s), (14)

Recalling that T (1) is the first regeneration time for the non-delayed process Y , (12) implies that,∫
∞

0
E|Y ∗c (0)Y ∗c (t)|I(T ∗(0)> t)dt = E

∫ T (1)

0
|Yc(s)|

∫ T (1)

s
|Yc(t)|dtds/Eτ1

=
1
2

E
(∫ T (1)

0
|Yc(s)|ds

)2

/Eτ1 < ∞, (15)

in view of (13). Also, (12) yields∫
∞

0

∫
[0,t]

E|Y ∗c (0)|I(T ∗(0) ∈ ds)|EYc(t− s)|dt =
∫
[0,∞)

E|Y ∗c (0)|I(T ∗(0) ∈ ds) ·
∫

∞

0
|EYc(t)|dt

= E|Y ∗c (0)|T ∗(0) ·
∫

∞

0
|EYc(t)|dt

=
E
∫ T (1)

0 |Yc(s)|(T (1)− s)ds
Eτ1

·
∫

∞

0
|EYc(t)|dt, (16)

which (13) establishes is finite, provided that we show that
∫

∞

0 |EYc(t)|dt < ∞.
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Since T (1) is spread-out with ET (1)< ∞, Yc(·) can be coupled to its stationary version Y ∗c (·). Conse-
quently, if β is the associated coupling time,

EY (t)−α = E(Y (t)−Y ∗(t))I(β ≤ t)+E(Y (t)−Y ∗(t))I(β > t)

= E(Y (t)−Y ∗(t))I(β > t)

≤ 2E
1
2
(
Y 2(t)+Y ∗(t)2)P

1
2 (β > t)

= 2
(
EY 2(t)+EY ∗(0)2) 1

2 o(t−2−p)
1
2

= 2

(
EY 2(t)+

E
∫ T (1)

0 Y (s)2ds
Eτ1

) 1
2

o(t−1− p
2 )

≤ 2

(
EY 2(t)+

E max0≤s≤T (1)Y 2(s) ·T (1)
Eτ1

) 1
2

o(t−1− p
2 ) (17)

as t→ ∞, where we used the fact that P(β > t) = o(t−2−p) as t→ ∞ when ET (1)3+p < ∞; see p.417 of
Thorisson (2000). Hence, |EYc(·)| is integrable, provided we show that EY 2(·) is a bounded function.

Note that if a(t), EY 2(t), a(·) satisfies the renewal equation

a(t) = EY 2(t)I(T (1)> t)+
∫
[0,t]

a(t− s)P(T (1) ∈ ds).

Since EY 2(t)I(T (1) > t) ≤ E max0≤s≤T (1)Y 2(s)I(T (1) > t) and this upper bound is non-increasing and
integrable (due to 13), the renewal theorem establishes that EY 2(t) converges to a finite limit as t → ∞;
see p.147 of Asmussen (2003). So, EY 2(·) is bounded, and (14)-(17) imply (11) is satisfied.

We now turn to verifying the regenerative representation for f (·). We focus on λ 6= 0, since λ = 0 is
exactly the identity (8). In view of (14), we see that∫

∞

−∞

eiλ tCov(Y ∗(0),Y ∗(t))dt

=
∫

∞

0
(eiλ t + e−iλ t)EY ∗c (0)Y

∗
c (t)I(T

∗(0)> t)+
∫

∞

0

∫
[0,t]

EY ∗c (0)I(T
∗(0) ∈ ds)eiλ sEYc(t− s)eiλ (t−s)dt

+
∫

∞

0

∫
[0,t]

EY ∗c (0)I(T
∗(0) ∈ ds)e−iλ sEYc(t− s)e−iλ (t−s)dt

= EY ∗c (0)
∫ T ∗(0)

0
(eiλ t + e−iλ t)Y ∗c (t)dt +EY ∗c (0)e

iλT ∗(0) ·
∫

∞

0
EYc(t)eiλ tdt

+EY ∗c (0)e
−iλT ∗(0) ·

∫
∞

0
EYc(t)e−iλ tdt

=
E
∫ T (1)

0 Yc(s)
∫ T (1)

s

(
eiλ (t−s)+ e−iλ (t−s)

)
Yc(t)dtds

Eτ1
+

E
∫ T (1)

0 Yc(s)eiλ (T (1)−s)ds
Eτ1

·
∫

∞

0
EYc(t)eiλ tdt

+
E
∫ T (1)

0 Yc(s)e−iλ (T (1)−s)ds
Eτ1

·
∫

∞

0
EYc(t)e−iλ tdt,

where (12) was again used for the final step.
Finally, if ã(t), EYc(t),

ã(t) = EYc(t)I(T (1)> t)+
∫
[0,t]

ã(t− s)P(T (1) ∈ ds)
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so ∫
∞

0
EYc(t)eiλ tdt =

∫
∞

0
eiλ tEYc(t)I(T (1)> t)dt +

∫
[0,∞)

eiλ sP(T (1) ∈ ds) ·
∫

∞

0
eiλ t ã(t)dt

= E
∫ T (1)

0
eiλ tYc(t)dt +EeiλT (1) ·

∫
∞

0
eiλ t ã(t)dt

and hence ∫
∞

0
EYc(t)eiλ tdt =

E
∫ T (1)

0 eiλ tYc(t)dt
1−EeiλT (1) .

In the last step, we take advantage of the fact that |E exp(iλT (1))|< 1 for λ 6= 0 when T (1) is spread-out;
see p.170 of Chung (1979). This completes the proof.

In view of Theorem 1, we can write the spectral density f (λ ) for λ 6= 0 as

f (λ ) =
1

2π

(
EA1(λ )

Eτ1
+

EB1(λ )EC1(λ )

Eτ1ED(λ )
+

EB1(−λ )EC1(−λ )

Eτ1ED(−λ )

)
where

Ai(λ ) =
∫ T (i)

T (i−1)

∫ T (i)

s
Yc(s)Yc(t)

(
eiλ (t−s)+ e−iλ (t−s)

)
dtds,

Bi(λ ) =
∫ T (i)

T (i−1)
Yc(s)eiλ (T (i)−s)ds,

Ci(λ ) =
∫ T (i)

T (i−1)
Yc(s)eiλ (s−T (i−1))ds,

Di(λ ) = 1− eiλτi .

Of course, these rv’s involve Yc(·), which depends on the unknown “nuisance parameter” α . Hence, in
estimating f (λ ), we replace Ai(λ ), Bi(λ ) and Ci(λ ) with

Ai(λ , t) =
∫ T (i)

T (i−1)

∫ T (i)

s
(Y (s)− Ȳ (t))(Y (u)− Ȳ (t))

(
eiλ (u−s)+ e−iλ (u−s)

)
duds,

Bi(λ , t) =
∫ T (i)

T (i−1)
(Y (s)− Ȳ (t))eiλ (T (i)−s)ds,

Ci(λ , t) =
∫ T (i)

T (i−1)
(Y (s)− Ȳ (t))eiλ (s−T (i−1))ds.

Then, if we set Ā(λ , t) = ∑
N(t)
i=1 Ai(λ , t)/t, B̄(λ , t) = ∑

N(t)
i=1 Bi(λ , t)/t, C̄(λ , t) = ∑

N(t)
i=1 Ci(λ , t)/t and D̄(λ ) =

∑
N(t)
i=1 Di(λ )/t, our estimator for f (λ ) is defined via

2π f̂t(λ ) = Ā(λ , t)+ B̄(λ , t)
C̄(λ , t)
D̄(λ )

+ B̄(−λ , t)
C̄(−λ , t)
D̄(−λ )

. (18)

To obtain confidence intervals for f (λ ), we need a CLT. To develop a CLT for f̂t(λ ), note that

2π f̂t(λ )−2π f (λ ) = 2π f̂t(λ )−
1
t

N(t)

∑
j=1

(
EA1(λ )

Eτ1
+

EB1(λ )EC1(λ )

Eτ1ED1(λ )
+

EB1(−λ )EC1(−λ )

Eτ1ED1(−λ )

)
τ j +op(t−

1
2 )
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as t→ ∞, where op(t−
1
2 ) denotes a stochastic process for which t

1
2 op(t−

1
2 )⇒ 0 as t→ ∞. Suppose that

E
(∫ T (1)

0
(|Y (s)|+1)ds

)4

< ∞. (19)

Then, it is easily seen that

Ā(λ , t)− 1
t

N(t)

∑
j=1

EA1(λ )

Eτ1
τ j

=
1
t

N(t)

∑
j=1

[
A j(λ )−

EA1(λ )

Eτ1
τ j

]
− (Ȳ (t)−α)

1
t

N(t)

∑
j=1

∫ T ( j)

T ( j−1)

∫ T ( j)

s
(Y (u)+Y (s))

·
(

eiλ (u−s)+ e−iλ (u−s)
)

duds+op(t−
1
2 )

=
1
t

N(t)

∑
j=1

[
A j(λ )−

EA1(λ )

Eτ1
τ j−Z j

EÃ1(λ )

Eτ1

]
+op(t−

1
2 )

as t→ ∞, where Z j =
∫ T ( j)

T ( j−1)Y (s)ds−ατ j and

Ã j(λ ) =
∫ T ( j)

T ( j−1)

∫ T ( j)

s
(Y (u)+Y (s))

(
eiλ (u−s)+ e−iλ (u−s)

)
duds.

Similarly,

B̄(λ , t)− 1
t

N(t)

∑
j=1

EB1(λ )

Eτ1
τ j =

1
t

N(t)

∑
j=1

[
B j(λ )−

EB1(λ )

Eτ1
τ j−Z j

EB̃1(λ )

Eτ1

]
+op(t−

1
2 ),

C̄(λ , t)− 1
t

N(t)

∑
j=1

EC1(λ )

Eτ1
τ j =

1
t

N(t)

∑
j=1

[
C j(λ )−

EC1(λ )

Eτ1
τ j−Z j

EC̃1(λ )

Eτ1

]
+op(t−

1
2 ),

and

1
D̄(λ )

− 1
t

N(t)

∑
j=1

Eτ1

ED(λ )
τ j =−

(
Eτ1

ED1(λ )

)2 1
t

N(t)

∑
j=1

[
D j(λ )−

ED1(λ )

Eτ1
τ j

]
+op(t−

1
2 ),

Consequently,

2π f̂t(λ )−2π f (λ ) =

(
Ā(λ , t)− 1

t

N(t)

∑
j=1

EA1(λ )

Eτ1
τ j

)
+

EB1(−λ )

ED1(−λ )

(
C̄(−λ , t)− 1

t

N(t)

∑
j=1

EC1(−λ )

Eτ1
τ j

)

+
EB1(λ )

ED1(λ )

(
C̄(λ , t)− 1

t

N(t)

∑
j=1

EC1(λ )

Eτ1
τ j

)
− EB1(λ )EC1(λ )

(ED1(λ ))
2

(
D̄(λ )− 1

t

N(t)

∑
j=1

ED1(λ )

Eτ1
τ j

)

+
EC1(−λ )

ED1(−λ )

(
B̄(−λ , t)− 1

t

N(t)

∑
j=1

EB1(−λ )

Eτ1
τ j

)
+

EC1(λ )

ED1(λ )

(
B̄(λ , t)− 1

t

N(t)

∑
j=1

EB1(λ )

Eτ1
τ j

)

− EB1(−λ )EC1(−λ )

(ED1(−λ ))2

(
D̄(−λ )− 1

t

N(t)

∑
j=1

ED1(−λ )

Eτ1
τ j

)
+op(t−

1
2 )

=
1
t

N(t)

∑
j=1

W1(λ )+op(t−
1
2 )
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as t→ ∞, where

Wj(λ ) =

(
A j(λ )−Z j

EÃ1(λ )

Eτ1

)
+

EC1(λ )

ED1(λ )

(
B j(λ )−Z j

EB̃1(λ )

Eτ1

)
− EB1(−λ )EC1(−λ )

(ED1(−λ ))2 D j(−λ )

− EB1(λ )EC1(λ )

(ED1(λ ))
2 D j(λ )+

EC1(−λ )

ED1(−λ )

(
B j(−λ )−Z j

EB̃1(−λ )

Eτ1

)
+

EB1(λ )

ED1(λ )

(
C j(λ )−Z j

EC̃1(λ )

Eτ1

)
+

EB1(−λ )

ED1(−λ )

(
C j(−λ )−Z j

EC̃1(−λ )

Eτ1

)
−2π f (λ )τ j

and

B̃ j(λ ) =
∫ T ( j)

T ( j−1)
eiλ (T ( j)−s)ds, C̃ j(λ ) =

∫ T ( j)

T ( j−1)
eiλ (s−T ( j−1))ds.

Under (19), EWj(λ ) = 0 and Var(Wj(λ )) < ∞.The CLT for sums of iid rv’s, in combination with the
random time change theorem (see, for example, p.144 of Billingsley (1968)), yields our next result.
Theorem 2 Under (19),

t
1
2
(

f̂t(λ )− f (λ )
)
⇒ 1

2π

√
EW1(λ )2

Eτ1
N(0,1)

as t→ ∞.
Note that Theorem 2 asserts that f̂t(λ ) converges to f (λ ) at “square root convergence rate”; see Brockwell

and Davis (1991) for a discussion of the “sub-square root” rate associated with conventional spectral
density estimation in the non-regenerative setting. We also observe that EW1(λ )

2/Eτ1 can be estimated in
a straightforward fashion, in order to produce asymptotically valid confidence intervals for f (λ ) based on
the normal approximation associated with Theorem 2. In particular, while Wi(λ ) contains the “nuisance
parameters” f (λ ), EÃ1(λ ), Eτ1, EB1(λ ), EB̃1(λ ), EC1(λ ), EC̃1(λ ), ED1(λ ), EB1(−λ ), EB̃1(−λ ),
EC1(−λ ), EC̃1(−λ ) and ED1(−λ ), each of these nuisance quantities can be replaced by their corresponding
sample means, thereby obtaining Wi(λ , t). We then estimate EW1(λ )

2/Eτ1 via ∑
N(t)
j=1 Wj(λ , t)2/t.

Furthermore, we observe that f̂t(·) is differentiable. In this context, we expect that f ′t (λ )→ f ′(λ )
almost surely as t → ∞, so our spectral density estimator will typically be well-behaved as a function of
λ , leading to good global estimators of the spectral density function.

4 REGENERATIVE ESTIMATION FOR HITTING TIME EXPECTATIONS

We next discuss the use of regenerative methods in efficiently computing moments of hitting times. In
particular, given an S-valued classically regenerative process X = (X(t) : t ≥ 0), let T = inf{t ≥ 0 : X(t)∈ A}
be the “hitting time” of the set A⊆ S. Our goal here is to compute ET k for some integer moment index k.
Such hitting times are of interest in many applications settings. For example, in the dependability modeling
context, the time to system failure is a key performance measure, while in the queueing context, the time
to buffer overflow is of interest; such random times can obviously be represented as hitting times.

We note that if X is non-delayed, then the cycle independence implies that

E exp(θT ) = E exp(θT )I(T < τ1)+E exp(θτ1)I(T ≥ τ1) ·E exp(θT ). (20)

For θ ∈ R+, set ϕ(θ) = E exp(θT ), η(θ) = E exp(θT )I(T < τ1) and v(θ) = E exp(θτ1)I(T ≥ τ1). If
ϕ(θ)< ∞, then η(θ) is finite-valued also, and η(θ)> 0 implies v(θ)< 1, so that

ϕ(θ) =
η(θ)

1− v(θ)
. (21)
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Furthermore, ϕ(·), η(·), and v(·) are then infinitely differentiable at 0, and (20) implies that

ϕ
(k)(0) = η

(k)(0)+
k

∑
j=0

(
k
j

)
v( j)(0)ϕ(k− j)(0).

It follows that

ET k =
1

P(T < τ1)

(
E(τ1∧T )k +

k−1

∑
j=1

(
k
j

)
Eτ

j
1I(T ≥ τ1)ET k− j

)
; (22)

where a∧b = min(a,b). (If we use a direct argument to establish (22) that avoids E exp(θT ), one finds
that (22) holds whenever ET k < ∞.) Specializing (22) to k = 1,2, we find that

ET =
E(τ1∧T )
P(T < τ1)

,

ET 2 =

(
E(τ1∧T )2 +Eτ1I(T ≥ τ1)

E(τ1∧T )
P(T < τ1)

)
1

P(T < τ1)
.

When A is “rare” (so that P(T < τ1) is small), one can use (22) in combination with importance sampling to
obtain significant variance reductions. In particular,we would estimate the terms E(T ∧τ1)

j and Eτ
j

1I(T ≥ τ1)
for 1≤ j ≤ k from their sample means obtained by repeatedly sampling (X(s) : 0≤ s≤ T ∧ τ1) (without
importance sampling), but estimate P(T < τ1) by sampling (X(s) : 0≤ s≤ T ∧ τ1) under an appropriately
chosen importance distribution.

This idea has been used with great success when k = 1; see, for example, Glynn et al. (1993). Our
contribution here is to show how it easily extends to k > 1 in the presence of regenerative structure.
Furthermore, it should be noted that it is straightforward to extend this approach to delayed regenerative
processes, in which case the identity

E exp(θT ) = E exp(θT )I(T < T (0))+E exp(θT )I(T > T (0))
E exp(θ T̃ )I(T̃ < τ1)

1−E exp(θτ1)I(T̃ > τ1)

replaces (21), where T̃ = inf{t ≥ 0 : X(T (0)+ t) ∈ A}.

5 COMPUTING VALUE FUNCTIONS

Suppose that X = (X(t) : t ≥ 0) is an irreducible positive recurrent Markov process taking values in a
discrete state space S. In numerically calculating optimal controls for such an S via Monte Carlo, a key
issue that arises is the computation of the “value function” associated with a given policy. One important
class of control problems concerns optimization for infinite-horizon discounted reward/cost, in which case
the value function takes the form

v(x), Ex

∫
∞

0
exp
(
−
∫ t

0
g(X(s))ds

)
h(X(t))dt, (23)

where h : S→ R+ and g(x) is the instantaneous discount rate associated with state x. Here, Ex(·) ,
E(·|X(0) = x). We note that the rv appearing in (23) involves simulating X over an infinite time horizon,
so direct sampling is infeasible.
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To compute v(·) via regenerative methods, let τ(x) = inf{t ≥ 0 : X(t) = x,X(t−) 6= x} be the first entry
time into state x. Then, because τ(z) is a regeneration time for X ,

v(x) = Ex

∫
τ(z)

0
exp
(
−
∫ t

0
g(X(s))ds

)
h(X(t))dt

+Ex exp
(
−
∫

τ(z)

0
g(X(s))ds

)∫
∞

τ(z)
exp
(
−
∫ t

τ(z)
g(X(s))ds

)
h(X(t))dt

= Ex

∫
τ(z)

0
exp
(
−
∫ t

0
g(X(s))ds

)
h(X(t))dt

+Ex exp
(
−
∫

τ(z)

0
g(X(s))ds

)
Ez

∫
∞

0
exp
(
−
∫ t

0
g(X(s+ τ(z)))ds

)
h(X(t + τ(z)))dt

= Ex

∫
τ(z)

0
exp
(
−
∫ t

0
g(X(s))ds

)
h(X(t))dt +Ex exp

(
−
∫

τ(z)

0
g(X(s))ds

)
v(z)

, Exβ (z)+ExΓ(z) · v(z) (24)

so that

v(z) =
Ezβ (z)

1−EzΓ(z)

whenever v(z)< ∞. The quantity v(z) can then be computed by generating iid copies of (β (z),1−Γ(z))
conditional on X(0) = z, followed by forming the corresponding ratio estimator; confidence intervals can
then be obtained through the standard methodology available for ratio estimators, as in Section 2.

To compute v(·) at multiple points x1,x2, · · · ,xm, we can either use the above ratio estimation methodology
at each of the m points, or we can fix z ∈ S, and note that (23) implies that

v(xi) = Exiβ (z)+ExiΓ(z)v(z).

Hence, by simulating (β (z),Γ(z)) conditional on X(0) = xi (1≤ i≤m) and combining this with our above
estimator for v(x), we obtain estimators for the v(xi)

′s. We can additionally stratify our sampling, so as
to optimize the proportion of simulation effort expended on runs starting from the xi’s versus the effort
expended on simulation effort starting from z; see (Fox and Glynn 1989) for details.

In some applications, a steady-state formulation is more appropriate. In such settings, the analog to
(23) is the “relative value” function defined by

w(x),
∫

∞

0
Exhc(X(t))dt, (25)

where hc(x) = h(x)−Eh(X(∞)) and X(∞) is a rv having the stationary distribution of X . When |S|< ∞,
there exists a function k (solving Poisson’s equation) such that

k(X(t))+
∫ t

0
hc(X(s))ds

is a martingale, so that

Exk(X(t))+Ex

∫ t

0
hc(X(s))ds = k(x). (26)

If X is aperiodic in discrete time or is a Markov jump process in continuous time, Exk(X(t))→ Ek(X(∞)),
where X(∞) has the stationary distribution of X . Sending t → ∞ in (26), we conclude that w(x) =
k(x)−Ek(X(∞)). But applying optional sampling to the martingale yields the identity

k(z)+Ex

∫
τ(z)

0
hc(X(s))ds = k(x). (27)
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Hence, applying (12), we find that

Ek(X(∞)) =
Ez
∫ τ(z)

0 k(X(s))ds
Ezτ(z)

=
Ez
∫ τ(z)

0
∫

τ(z)
s hc(X(u))duds

Ezτ(z)
+ k(z)

=
Ez
∫ τ(z)

0 uhc(X(u))du
Ezτ(z)

+ k(z)

and consequently

w(x) = Ex

∫
τ(z)

0
hc(X(s))ds−

Ez
∫ τ(z)

0 uhc(X(u))du
Ezτ(z)

. (28)

The above expression includes the nuisance parameter Eh(X(∞)), so this needs to be separately estimated
(within the runs starting from z) using the ideas of Section 1. The estimation of this nuisance parameter
then affects the resulting CLT for the estimator of w(X) (as in our spectral density analysis).

We further note that (27) proves that w differs from k̃ and l̃ by an additive constant, where

k̃(x) = Ex

∫
τ(z)

0
hc(X(s))ds,

l̃(x) =−Ez

∫
τ(x)

0
hc(X(s))ds. (29)

So, one has two different estimation approaches (one based on k̃ and one based on l̃) for approximating
w(·) at multiple points x1,x2, · · · ,xm (up to an additive constant); see Glynn and Meyn (1996) for an earlier
derivation of k̃(·) Presumably, because z can be chosen to be a state to which X is naturally attracted,
building an estimation methodology for w(·) on the basis of k̃ is typically better. Again, as elsewhere in
this paper, confidence intervals can be constructed by taking advantage of the CLT.

6 A NUMERICAL EXAMPLE

In this section, we present a brief account of the numerical performance of our regenerative estimator for
the spectral density (18). Consider an M/M/1/m queue with capacity m = 50 and service rate µ = 2. We
implement two systems with arrival rates 1 and 1.8. Y (·) denotes the number-in-system process. For each
system, we simulate 100 replications of 50000 simulated time units. Within each replication, we compute a
regenerative point estimator, the jack-knife estimator for the associated variance, and a corresponding 95%
confidence interval (CI) based on our CLT. In the table, the “Ave. Est.” stands for the average of all estimators
over 100 replications; the “Half-width of CI” stands for the average confidence interval half-width; and
“Coverage” stands for the fraction of CIs that cover the true value of the spectral density. The true values
are computed numerically using methods in Glynn (1984). We provide additional numerical examples on
regenerative estimators of value functions and hitting time expectations as an online supplement.

Table 1: Regenerative estimator for spectral density.

Arrival/Service Rate Ratio λ True Value of f (λ ) Ave. Est. Half-width of CI Coverage
ρ = 0.5 0.5 3.3424 3.3392 0.0692 97/100

4 0.1148 0.1147 0.0010 93/100
ρ = 0.9 0.5 12.9117 13.2338 0.4822 97/100

4 0.2217 0.2197 0.0067 99/100
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