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This article is concerned with the estimation of α = E{r(Z)}, where Z is a random vector and the function
values r(z) must be evaluated using simulation. Estimation problems of this form arise in the field of Bayesian
simulation, where Z represents the uncertain (input) parameters of a system and r(z) is the expected
performance of the system when Z = z. Our approach involves obtaining (possibly biased) simulation
estimates of the function values r(z) for a number of different values of z, and then using a (possibly weighted)
average of these estimates to estimate α. We start by considering the case where the chosen values of z are
independent and identically distributed observations of the random vector Z (independent sampling). We
analyze the resulting estimator as the total computational effort c grows and provide numerical results.
Then we show that improved convergence rates can be obtained through the use of techniques other than
independent sampling. Specifically, our results indicate that the use of quasi-random sequences yields a
better convergence rate than independent sampling, and that in the presence of a suitable special structure,
it may be possible to use other numerical integration techniques (such as Simpson’s rule) to achieve the best
possible rate c−1/2 as c → ∞. Finally, we present and analyze a general framework of estimators for α that
encompasses independent sampling, quasi-random sequences, and Simpson’s rule as special cases.
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1. INTRODUCTION

Consider the task of designing a manufacturing facility that can be modeled as a net-
work of queues. Suppose that each of the interarrival and processing time distributions
underlying the queueing network is assumed to be gamma. In this case, the network is
characterized (statistically) by a parameter vector θ consisting of the scale and shape
parameters for each of the underlying distributions.
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10:2 S. Andradóttir and P. W. Glynn

Let Cθ (t) be the cost of running this facility over the time interval [0, t] under θ . If
the system is regenerative, then, in great generality, we have that

Cθ (t)
t

⇒ Eθ {Y }
Eθ {τ } as t → ∞,

where ⇒ denotes weak convergence and Eθ {Y } and Eθ {τ } are, respectively, the expected
total cost (associated with running the facility) and the expected total time duration of
a regenerative cycle under θ . The limit Eθ {Y }/Eθ {τ } is, of course, the long-run average
cost per unit time associated with the facility having distributions determined by θ .

It is frequently the case that the exact value of θ is unknown prior to the operation
of the facility. However, historical and subjective information often exists, permitting
one to compute (using Bayesian methods) a (prior or posterior) distribution for θ . Given
such a Bayesian framework, it is natural to wish to compute the mean steady-state
cost, given by

α = E{r(θ )}, (1)

where r(θ ) = Eθ {Y }/Eθ {τ } and the expectation appearing in Equation (1) corresponds
to an integration with respect to the distribution for θ .

This article is concerned with the efficient computation of expectations like that
appearing in Equation (1). More generally, we will be concerned with the efficient
numerical computation, via simulation, of expectations that can be expressed in the
form

α = E{r(Z)}, (2)

where Z is a random vector taking values in a set Z and having distribution μ, and
the function r(·) is evaluated using simulation. Note that our motivating example in
Equation (1) is precisely of this form, since the steady-state limit r(θ ) is most naturally
computed via a steady-state simulation of the network associated with the parameter
vector θ . However, our problem formulation in Equation (2) is quite general and is
not restricted to regenerative systems. In fact, the use of Bayesian methods in a wide
variety of stochastic modeling environments leads naturally to problems of the form
given in Equation (2), because it is typically the case that the performance measure
r(·) of interest cannot be expressed in closed form and can only be computed via a
simulation of the underlying system.

However, it should be pointed out that Equation (2) also arises in other application
settings. For example, suppose that it is of interest to compute α = E{g(P(t))}, where
P(t) is the price at time t of a (derivative) option on some underlying security. The
theory of option pricing asserts that, under quite general conditions, the price P(t) can
be expressed as a conditional expectation under an “equivalent martingale measure”
in which the conditioning occurs with respect to the price X(t) of the underlying asset
at time t; see, for example, Duffie [1996]. Thus, g(P(t)) may be re-expressed in the form
r(X(t)). Of course, the function r(·) involves a conditional expectation that may be im-
possible to compute analytically. Repeated sampling under the equivalent martingale
measure offers the opportunity to compute r(·) via simulation. Thus, this problem is a
special case of our general framework in Equation (2).

Finally, note that the equality E{X} = E{E{X | Z}} implies that any estimation prob-
lem of the form α = E{X} can be converted into an estimation problem of the form given
in Equation (2) by defining r(Z) = E{X | Z}. In the simulation literature, conditioning
in this manner is generally used as a variance reduction technique, assuming that the
conditional expected values E{X | Z} can be computed exactly (or can be estimated more
efficiently than through straightforward simulation). For an overview of the use of con-
ditioning as a variance reduction technique, see, for example, Section 2.6 of Bratley
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et al. [1987], Section 11.6 of Law and Kelton [2000], and Section V.4 of Asmussen and
Glynn [2007].

For estimation problems of the form given in Equation (2), it is natural to estimate α
by generating observations Z1, . . . , Zm of Z from μ; using simulation to estimate r(Zi),
where i = 1, . . . , m; and finally averaging the m resulting estimates (possibly using
different weights on the various estimates). For more discussion of this (nested, two-
level, Bayesian) simulation approach, see, for example, Andradóttir and Bier [2000],
Chick [2006], Lee and Glynn [2003], Steckley and Henderson [2003], Sun et al. [2011],
and Zouaoui and Wilson [2003], and the references therein. Recently, this simulation
approach has been used for various finance applications; see, for example, Broadie et al.
[2011], Gordy and Juneja [2010], Lan et al. [2010], and the references therein.

In this article, we determine the asymptotic behavior of the resulting estimator of
α as the total available computational budget c grows, with focus on situations where
the simulation estimates of the function values r(Z1), . . . , r(Zm) have some bias. Our
motivation for allowing the estimates of the function values r(Z1), . . . , r(Zm) to be biased
comes from quantile estimation problems and steady-state simulation problems (like
the one described at the beginning of this section) with uncertain input parameters.
We are particularly interested in determining the asymptotic convergence rate of the
resulting estimator and in investigating when it is possible to achieve the fastest
possible convergence rate c−1/2 in the expended computational effort c (this is the hoped-
for convergence rate because we estimate r(Z1), . . . , r(Zm) via simulation). Our proof
approach will involve decomposing the error in our estimator into three components:

(i) the noise associated with estimating r(Z1), . . . , r(Zm) via simulation;
(ii) the bias in the estimators of r(Z1), . . . , r(Zm); and

(iii) the error associated with the uncertainty about the value of Z, which is addressed
by estimating α with a (possibly weighted) average of r(Z1), . . . , r(Zm).

We will identify the rate of convergence of each error component. The overall conver-
gence rate will then be determined by the slowest of the convergence rates of the three
error components.

The remainder of this article is organized as follows. In Section 2, we present heuris-
tic arguments that illustrate our main results. In Section 3, we consider independent
sampling where the quantities Z1, . . . , Zm generated to estimate α are independent and
identically distributed (i.i.d.) observations of the random variable Z. Both theoretical
and numerical results about the asymptotic behavior of the resulting estimator are pro-
vided. In Section 4, we show that improved convergence rates can be achieved (relative
to independent sampling) by using other approaches (specifically quasi-random num-
bers and Simpson’s rule) to generate Z1, . . . , Zm. In Section 5, we present and analyze a
broad framework for estimating α via simulation that contains independent sampling,
quasi-random numbers, and Simpson’s rule as special cases. Finally, Section 6 contains
some concluding remarks. For related research on confidence interval estimation, see,
for example, Lan et al. [2010] and the references therein. An earlier version of this
article can be found in Andradóttir and Glynn [2002].

Although the focus of this article is on situations where the estimates of the values of
the function r are obtained using simulation (see Sections 3 and 4), it is also possible to
use other numerical integration techniques (besides simulation) to estimate the values
of the function r. The techniques used in this article can be used to consider such
approaches, but this is outside the scope of the present article.

2. HEURISTIC ARGUMENTS

We want to estimate α = E{r(Z)}, where r(·) is smooth and must be estimated by simu-
lation for any given realization of Z, and Z has distribution μ. In the great majority of
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the applications we have in mind, the (outer) “integration” over Z is low dimensional,
whereas the (inner) “integration” (i.e., number of random variables needed to estimate
r(·)) is high dimensional. Therefore, although we only consider doing the inner integra-
tion by (Monte Carlo) simulation, the outer integration can be done by Monte Carlo or
non-Monte Carlo methods. A key methodological contribution of our article is that our
theory shows that the low-dimensional integration over Z should be done by non-Monte
Carlo methods when the problem at hand is sufficiently smooth.

We start by considering the case where we use Monte Carlo to sample Z values from
μ and r(·) can be evaluated without error. Then we can compute α using the unweighted
estimator

1
m

m∑
i=1

r(Zi) � α + σ W
m1/2 ,

where σ is the standard deviation of r(Z) and W is a zero-mean, unit-variance normal
random variable.

Turning next to the case in which r(z) is to be estimated via a Monte Carlo estimator
r̂t(z), our estimator of α takes the form

α̂(c) = 1
m

m∑
i=1

r̂t(Zi),

where c denotes the available computer budget and t denotes the computational effort
used to estimate r(Zi) for each i. We assume throughout that c = m × t, so that the
computational effort involved in obtaining Z1, . . . , Zm and other overhead is negligible
relative to the effort associated with generating the estimates r̂t(Zi) for i = 1, . . . , m.
The resulting dependence of the parameters m and t on c is implicit in this “heuristic
arguments” section but will be made explicit in the rigorous derivations in subsequent
sections. Suppose now that

r̂t(z) � r(z) + σ (z)G(z)
tη

+ b(z)
tγ

(3)

for all z ∈ Z, where G(·) is a mean-zero, unit-variance random field, independent of
W , with G(z) being independent of G(z′) for z �= z′, σ (·) and b(·) are functions, and
η ≤ 1/2. (Typically, η = 1/2. The possibility that η < 1/2 would arise, e.g., when the
inner integration involves a stochastic differential equation, as in the finance setting;
see Duffie and Glynn (1995) for the appropriate convergence rates.) Then

α̂(c) � 1
m

m∑
i=1

r(Zi) + 1
mtη

m∑
i=1

σ (Zi)G(Zi) + 1
mtγ

m∑
i=1

b(Zi)

� α + σ W
m1/2 + 1

mtη

√√√√ m∑
i=1

σ 2(Zi)G + b
tγ

= α + σ W
m1/2 +

√√√√ 1
m

m∑
i=1

σ 2(Zi)
G

m1/2tη
+ b

tγ

� α + σ W
m1/2 + σG

m1/2tη
+ b

tγ
,

where b = E{b(Z)}, σ 2(·) = [σ (·)]2, and G is a zero-mean, unit-variance normal random
variable independent of W . If m is of order cw and t is of order c1−w, then the rate of
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convergence of α̂(c) is c−ρ , where

ρ = min(w/2, w/2 + (1 − w)η, (1 − w)γ ). (4)

In the most common case, γ = 1 and η = 1/2, so the minimum rate is ρ∗ = 1/3, which
is attained when w = 2/3.

We now consider the case where α = ∫
r(z) f (z)dz; f is the density of Z and is assumed

to be known; the functions r, σ , b, and f are smooth; and the outer integral is to be
evaluated using non-Monte Carlo methods. If we could evaluate r(·) without error, we
could compute the outer integral for α via a sum of the form

m∑
i=1

w(zi)r(zi) f (zi)

for some sequence of points (z1, . . . , zm). The particular points z1, . . . , zm could depend
on m (as in a quadrature rule) or z1, . . . , zm could be the first m points in an infinite
sequence (which would be more natural when one is sequentially refining the estimator
to achieve a given accuracy). The points z1, . . . , zm could be selected randomly (in
which case we would denote them typically by Z1, . . . , Zm) or they could be selected
nonrandomly. The “weights” w(zi) could be identically equal to 1/m or they could be
nonconstant; when the weights are nonconstant, they would typically depend on m.

Suppose that we know that for the particular non-Monte Carlo integration rule
(characterized by the weights and points) and for suitably “smooth” (or “regular”)
integrands r(·) f (·), the estimate of α satisfies

m∑
i=1

w(zi)r(zi) f (zi) = α + Em,

where Em is the error. For quasi-random methods, the weights are 1/m and Em is gen-
erally of order [log m]ι/mβ , where ι, β ∈ IR+. For quadrature methods with r sufficiently
smooth, Em would typically be of order 1/mp, where p ∈ IR+; the weights would be of
order 1/m.

Turning next to the case in which r(z) is to be estimated via a Monte Carlo estimator
r̂t(z), our estimator takes the form

α̂(c) =
m∑

i=1

w(zi)r̂t(zi) f (zi).

Then,

α̂(c) �
m∑

i=1

w(zi)r(zi) f (zi) + 1
tη

m∑
i=1

w(zi)σ (zi) f (zi)G(zi) + 1
tγ

m∑
i=1

w(zi)b(zi) f (zi)

� α + Em + 1
tη

√√√√ m∑
i=1

w(zi)2σ 2(zi) f (zi)2G + b
tγ

+ E′
m

tγ

� α + Em +
√√√√m

m∑
i=1

w(zi)2σ 2(zi) f (zi)2 G
m1/2tη

+ b
tγ

= α + Em + Im + b
tγ

, (5)
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where E′
m is the error in the integration rule for b. (The approximation uses the fact

that E′
m is always smaller than at least one of the terms preceding and so will never

determine the rate of convergence.)
So if we use quasi-random methods with m of order cw and t of order c1−w, the

weights are all equal to 1/m and we obtain that Em is of order [log c]ι/cwβ , Im is of order
1/cw/2+(1−w)η, and the final term in Equation (5) is of order 1/c(1−w)γ . Up to logarithmic
terms, the rate of convergence of α̂(c) equals c−ρ , where

ρ = min(wβ,w/2 + (1 − w)η, (1 − w)γ ). (6)

In the classical case where β = 1, γ = 1, and η = 1/2, the minimum rate is ρ∗ = 1/2
(up to logarithmic terms) if w = 1/2, so we get the canonical Monte Carlo rate of
convergence. Hence, we definitely do not want to sample the outer integral.

For a quadrature method with weights of order 1/m and rate of convergence 1/mp,
if m is of order cw and t is of order c1−w, we have that Em is of order 1/cwp, Im is of
order 1/cw/2+(1−w)η, and the final term in Equation (5) is of order 1/c(1−w)γ . The rate of
convergence of α̂(c) is clearly given by c−ρ , where

ρ = min(wp, w/2 + (1 − w)η, (1 − w)γ ). (7)

(The previous case corresponds to p = β − ε for all ε > 0.) If p = 4 (for example), γ = 1,
and η = 1/2, the minimum rate is ρ∗ = 1/2 (with w between 1/8 and 1/2). Here, the
rate is faster by a logarithmic factor, and the range of good w values does not contract
to a single value (unlike the classical case considered in the previous paragraph, where
only w = 1/2 yielded the rate 1/2 up to logarithmic terms).

The previous discussion of quasi-random and quadrature methods assumed that Z
has a known density f . If f is unknown, then quadrature rules cannot be used, but
quasi-random methods can be used to sample the outer integral. Under appropriate
smoothness assumptions, the rate of convergence for the known f case still applies, so
again it is better to use quasi-random numbers on the outer integral.

Note that the first, second, and third terms in Equations (4), (6), and (7) correspond
to the error associated with the uncertainty about the value of Z, the noise associ-
ated with estimating r(Z1), . . . , r(Zm) via simulation, and the bias in the estimators of
r(Z1), . . . , r(Zm), respectively; see items (iii), (i), and (ii) in Section 1. Clearly, if there
is no uncertainty about the value of Z (as would be the case in a typical steady-state
simulation), then the first term vanishes. Similarly, if the values of r(Z1), . . . , r(Zm) can
be estimated without noise or without bias, then the second or third terms vanish.

We would like to point out that our results hold when α = E{g(r(Z))}, where g is
a known, smooth function; just put r′(z) = g(r(z)) and apply our theory. This will, for
example, allow us to estimate expected values of functions of steady-state performance
under parameter uncertainty. Moreover, when smoothness in g is violated, some of
our assumptions can break down. Such an example (of practical interest) is when g is
an indicator function, say the indicator of the interval (−∞, x]. One key element that
breaks down is the bias expansion for E{g(r(Z))} (see Equation (3)); note that for z with
r(z) = x, the bias is of order 1. So, our article does not cover such examples; a different
theory is needed (see, e.g., Lee and Glynn [2003]).

In the remainder of this article, we will fill in the rigorous details of the previous
heuristic arguments and provide more thorough analysis and discussion of our results.
We will start by considering some special cases in Sections 3 and 4, and then analyze
a general framework in Section 5.

3. INDEPENDENT SAMPLING

In this section, we analyze the estimator of the unknown quantity α obtained by gen-
erating i.i.d. samples of the random vector Z and averaging simulation estimates of
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the values of the function r at the sampled values of Z. Given a total available compu-
tational budget c ∈ IR+, let m(c) ∈ IN be the number of different values of the random
vector Z used in the estimation of α, and let t(c) ∈ IR+ be the (constant) computational
effort expended to obtain the estimate r̂t(c)(Zi) of r(Zi) for each i = 1, . . . , m(c). As in
Section 2, we assume that c = m(c) × t(c), and the resulting dependence of m(c) and
t(c) on c is now indicated explicitly. (Note that the processes r̂t(·), where t ≥ 0, may
also depend on i. However, we believe that the fact that our notation does not explicitly
show this dependence will not confuse the reader.) Our estimator of α obtained with
the computational budget c is then given by

α̂(c) = 1
m(c)

m(c)∑
i=1

r̂t(c)(Zi), (8)

where Z1, . . . , Zm(c) are independent observations of the random variable Z.
This section is organized as follows. We first analyze the asymptotic behavior of the

estimator in Equation (8) as the computational budget c grows in Section 3.1. We then
study the behavior of the estimator in Equation (8) for finite computational budgets c
in Section 3.2.

3.1. Theoretical Results

In this section, we study the asymptotic behavior of the estimator α̂(c) defined in
Equation (8) as c → ∞ when Z1, . . . , Zm(c) are independent observations of the random
vector Z. We first show that in order for α̂(c) to be an asymptotically unbiased and
consistent estimator of α as c → ∞, we generally need both t(c) → ∞ and m(c) → ∞
as c → ∞ (Propositions 3.1 and 3.2 and Theorem 3.3). Then we present the main
result in this section (Theorem 3.4), which identifies the convergence rate of α̂(c) to
α as c → ∞ as a function of the respective growth rates of t(c) and m(c) with c. The
following assumption describes more precisely the situation considered in this section.

ASSUMPTION 3.1. Assume that:

(i) The random variable r(Z) is integrable (implying that |α| < ∞).
(ii) For all c ∈ IR+, the parameters m(c) and t(c) satisfy c = m(c) × t(c).

(iii) The random variables Zi, where i ∈ IN, are independent observations of the random
variable Z.

(iv) For all t ∈ IR+, the random variables r̂t(Zi), where i ∈ IN, are independent obser-
vations of the random variable r̂t(Z).

(v) For all t ∈ IR+ and m ∈ IN, the random numbers used to generate the estimators
r̂t(Z1), . . . , r̂t(Zm) are independent of the values of Z1, . . . , Zm.

For all x ∈ IR, let �x denote the integer part of x. The following two propositions are
concerned with the bias and consistency of α̂(c) as c → ∞ and either t(c) or m(c) remains
constant. The proofs of these propositions are straightforward and are omitted.

PROPOSITION 3.1. Suppose that Assumption 3.1 holds, that t(c) = t > 0 for all c ≥ 0
and that |E{r̂t(Z)}| < ∞. Then m(c) = �c/t for all c ≥ 0, E{α̂(c)} = E{r̂t(Z)} for all c ≥ 0,
and α̂(c) → E{r̂t(Z)} almost surely as c → ∞.

PROPOSITION 3.2. Suppose that Assumption 3.1 holds, that m(c) = m > 0 for all c ≥ 0,
and that r̂t(z) ⇒ r(z) as t → ∞ for all z ∈ Z. Then t(c) = c/m for all c ≥ 0, E{α̂(c)} =
E{r̂c/m(Z)} for all c ≥ 0, and α̂(c) ⇒ ∑m

i=1 r(Zi)/m as c → ∞, where Z1, . . . , Zm are
independent observations of the random variable Z. If also the set of random variables
{r̂c/m(Z) : c ≥ 0} is uniformly integrable, then E{α̂(c)} → E{r(Z)} = α as c → ∞.
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10:8 S. Andradóttir and P. W. Glynn

Propositions 3.1 and 3.2 show that in order for α̂(c) to be a consistent estimator
for α as c → ∞, it is generally necessary to have that as c → ∞, both t(c) → ∞
and m(c) → ∞. We now turn our attention to this case. For all z ∈ Z and t ≥ 0, let
rt(z) = E{r̂t(z)} = E{r̂t(Z)|Z = z} (see part (v) of Assumption 3.1). We will need the
following assumption:

ASSUMPTION 3.2. Assume that:

(i) The set of random variables {[r̂t(Z) − rt(Z)]2 : t ≥ 0} is uniformly integrable.
(ii) The random variables r̂t(z) satisfy r̂t(z) ⇒ r(z) as t → ∞ for all z ∈ Z.

(iii) The function rt satisfies rt(z) = r(z) + b(z)/tγ + e(z)o(1/tγ ) as t → ∞ for all z ∈ Z,
where b(z), e(z) ∈ IR for all z ∈ Z, γ > 0, and the o(1/tγ ) term is uniform in z ∈ Z.

(iv) The random variables b(Z) and e(Z) are integrable.

The following result is concerned with the bias and consistency of the estimator α̂(c)
when both t(c) → ∞ and m(c) → ∞ as c → ∞.

THEOREM 3.3. Suppose that Assumption 3.1 and parts (ii), (iii), and (iv) of As-
sumption 3.2 hold, that the set of random variables {r̂t(Z) − rt(Z) : t ≥ 0} is uni-
formly integrable, and that as c → ∞, both m(c) → ∞ and t(c) → ∞. Then
E{α̂(c)} = E{r̂t(c)(Z)} → E{r(Z)} = α and α̂(c) → α in probability as c → ∞.

PROOF. It is clear that by part (v) of Assumption 3.1, parts (ii) and (iii) of Assump-
tion 3.2, and the fact that t(c) → ∞ as c → ∞, we have that r̂t(c)(Z) − rt(c)(Z) ⇒ 0 as
c → ∞. Therefore, part (iv) of Assumption 3.1; parts (iii) and (iv) of Assumption 3.2;
the uniform integrability of the random variables r̂t(Z) − rt(Z), where t ≥ 0; and the
fact that t(c) → ∞ as c → ∞ give that

E{α̂(c)} − α = E{r̂t(c)(Z) − rt(c)(Z)} + E{rt(c)(Z) − r(Z)} → 0

as c → ∞. In the remainder of the proof, we show that α̂(c) → α in probability as
c → ∞.

For all c ≥ 0, we clearly have that

α̂(c) − α = α̂1(c) + α̂2(c) + α̂3(c), (9)

where

α̂1(c) = 1
m(c)

m(c)∑
i=1

[r̂t(c)(Zi) − rt(c)(Zi)],

α̂2(c) = 1
m(c)

m(c)∑
i=1

[rt(c)(Zi) − r(Zi)], and

α̂3(c) = 1
m(c)

m(c)∑
i=1

[r(Zi) − α].

By parts (i) and (iii) of Assumption 3.1, the strong law of large numbers, and the fact
that m(c) → ∞ as c → ∞, it is clear that α̂3(c) → 0 almost surely as c → ∞. Moreover,
part (iii) of Assumption 3.2 implies that

α̂2(c) = 1
m(c)t(c)γ

m(c)∑
i=1

[b(Zi) + e(Zi)o(1)]. (10)

Part (iii) of Assumption 3.1, parts (iii) and (iv) of Assumption 3.2, the strong law of large
numbers, and the facts that γ > 0 and as c → ∞, both m(c) → ∞ and t(c) → ∞, now
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imply that α̂2(c) → 0 almost surely as c → ∞. Finally, note that Markov’s inequality
and parts (iii) and (v) of Assumption 3.1 imply that for all ε > 0,

P{|α̂1(c)| > ε} ≤ 1
ε

× E{|α̂1(c)|} ≤ 1
ε

× E{|r̂t(c)(Z) − rt(c)(Z)|}.
The facts that t(c) → ∞ as c → ∞, that the random variables r̂t(Z)−rt(Z) are uniformly
integrable, and that r̂t(c)(Z) − rt(c)(Z) ⇒ 0 as c → ∞ yield that α̂1(c) → 0 in probability
as c → ∞. The result now follows from Equation (9).

In the proof of Theorem 3.3, note that the terms α̂1(c), α̂2(c), and α̂3(c) in the de-
composition in Equation (9) of the error in the estimator α̂(c) correspond to the noise
associated with estimating r(Z1), . . . , r(Zm) via simulation, the bias in the estimators
of r(Z1), . . . , r(Zm), and the error associated with the uncertainty about the value of Z,
respectively; see items (i), (ii), and (iii) in Section 1.

We are now ready to present the main result in this section. Let b = E{b(Z)}, where
the function b(·) is defined in part (iii) of Assumption 3.2 (see also Equation (3)).
Moreover, for all x, y ∈ IR, let N(x, y2) denote the normal distribution with mean x
and variance y2 (if y = 0, then N(x, y2) equals x). Theorem 3.4 establishes that as
the total available computational effort c grows, the estimator α̂(c) is asymptotically
normal. Theorem 3.4 also provides the rate at which the estimator α̂(c) converges to α
as c → ∞ for different growth rates of m(c) with c.

THEOREM 3.4. Suppose that Assumptions 3.1 and 3.2 hold and that the random
variable Z satisfies σ 2 = Var{r(Z)} < ∞. Then, the following statements hold:

(a) Assume that when c → ∞, we have that m(c)/c2γ /(2γ+1) → ∞. Then

t(c)γ (α̂(c) − α) ⇒ b as c → ∞.

(b) Assume that when c → ∞, we have that m(c)/c2γ /(2γ+1) → 0. Then

m(c)1/2(α̂(c) − α) ⇒ N(0, σ 2) as c → ∞.

(c) Assume that when c → ∞, we have that m(c)/c2γ /(2γ+1) → �, where 0 < � < ∞. Then

cγ /(2γ+1)(α̂(c) − α) ⇒ N(�γ b, σ 2/�) as c → ∞.

PROOF. For all c ≥ 0, let α̂1(c), α̂2(c), and α̂3(c) be defined as in the proof of Theorem 3.3.
Let ε > 0. Observe that parts (iii) and (iv) of Assumption 3.1 give that

m(c)E{(α̂1(c))2} = E{[r̂t(c)(Z) − rt(c)(Z)]2}. (11)

We start by considering part (a). By Markov’s inequality, we have

P{|t(c)γ α̂1(c)| > ε} ≤ t(c)2γ

ε2m(c)
× m(c)E{(α̂1(c))2}.

Equation (11), part (i) of Assumption 3.2, and the facts that c = m(c) × t(c) and
m(c)/c2γ /(2γ+1) → ∞ as c → ∞ now show that t(c)γ α̂1(c) → 0 in probability as c → ∞.
Moreover, from Equation (10), the strong law of large numbers, part (iii) of Assump-
tion 3.1, parts (iii) and (iv) of Assumption 3.2, and the fact that m(c) → ∞ as c → ∞, it
is clear that t(c)γ α̂2(c) → b almost surely as c → ∞. Finally, part (iii) of Assumption 3.1
and the facts that σ 2 < ∞ and m(c) → ∞ as c → ∞ clearly imply that

m(c)1/2α̂3(c) ⇒ N(0, σ 2) as c → ∞. (12)

Together with the facts that c = m(c) × t(c) and m(c)/c2γ /(2γ+1) → ∞ as c → ∞, this
shows that t(c)γ α̂3(c) ⇒ 0 as c → ∞. Equation (9) now gives the result of part (a).
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Since t(c) → ∞ as c → ∞ in parts (b) and (c), it follows from Assumptions 3.1 and 3.2
that [r̂t(c)(Z) − rt(c)(Z)]2 ⇒ 0 as c → ∞ (see the proof of Theorem 3.3 for a similar
argument). Hence, part (i) of Assumption 3.2 and Equation (11) yield that

m(c)E{(α̂1(c))2} → 0 as c → ∞. (13)

We now consider part (b). Note that Markov’s inequality gives

P{|m(c)1/2α̂1(c)| > ε} ≤ 1
ε2 × m(c)E{(α̂1(c))2}.

Equation (13) now shows that m(c)1/2α̂1(c) → 0 in probability as c → ∞. Moreover, from
Equation (10), the strong law of large numbers, parts (ii) and (iii) of Assumption 3.1,
parts (iii) and (iv) of Assumption 3.2, and the fact that m(c)/c2γ /(2γ+1) → 0 as c → ∞, it
is clear that m(c)1/2α̂2(c) → 0 almost surely as c → ∞. Putting the this together with
Equations (9) and (12) gives the result of part (b).

Finally, for part (c), note that Markov’s inequality gives

P{|cγ /(2γ+1)α̂1(c)| > ε} ≤ c2γ /(2γ+1)

ε2m(c)
× m(c)E{(α̂1(c))2}.

Equation (13) and the fact that m(c)/c2γ /(2γ+1) → � > 0 as c → ∞ now show that
cγ /(2γ+1)α̂1(c) → 0 in probability as c → ∞. Moreover, from Equation (10), the strong
law of large numbers, parts (ii) and (iii) of Assumption 3.1, parts (iii) and (iv) of
Assumption 3.2, and the fact that m(c)/c2γ /(2γ+1) → � > 0 as c → ∞, it is clear
that cγ /(2γ+1)α̂2(c) → �γ b almost surely as c → ∞. Finally, Equation (12) and the
facts that c = m(c) × t(c) and m(c)/c2γ /(2γ+1) → � > 0 as c → ∞ also show that
cγ /(2γ+1)α̂3(c) ⇒ N(0, σ 2/�) as c → ∞. Putting this together with Equation (9) gives the
result of part (c).

Remark 3.5. If in part (a) of Theorem 3.4 we let t(c) = κcδ for all c ≥ 0, where
κ, δ > 0, then the facts that c = m(c) × t(c) and m(c)/c2γ /(2γ+1) → ∞ as c → ∞ imply
that δ < 1/(2γ + 1). Similarly, if in part (b) of Theorem 3.4 we let m(c) = �κcδ for all
c ≥ 0, where κ, δ > 0, then the fact that m(c)/c2γ /(2γ+1) → 0 as c → ∞ implies that
δ < 2γ /(2γ + 1). Therefore, Theorem 3.4 shows that the best convergence rate for the
estimator α̂(c) is of the order of 1/cγ /(2γ+1), with m(c) growing at the rate c2γ /(2γ+1) and
t(c) growing at the rate c1/(2γ+1) as c → ∞. Note that γ /(2γ +1) < 1/2 for all γ > 0, that
γ /(2γ + 1) increases with γ , and that γ /(2γ + 1) → 1/2 as γ → ∞ (i.e., as the bias in
the estimators r̂t(z), where t ≥ 0, and z ∈ Z is reduced; see part (iii) of Assumption 3.2).
Finally, note that as long as γ > 1/2 (as would typically be the case in practice), the
maximum convergence rate 1/cγ /(2γ+1) is obtained by letting m(c) grow at a faster rate
than t(c) as c → ∞.

Remark 3.6. It is frequently the case that simulation estimators obtained from a
sample path of length t have a principal bias term of the order 1/t; see, for example,
Glynn and Heidelberger [1992] and Awad and Glynn [2007] for conditions that guar-
antee this. This suggests that the special case when γ = 1 is of particular interest.
We have shown that when γ = 1, the best possible convergence rate of α̂(c) to α is
1/c1/3, which is a considerably slower convergence rate than 1/c1/2, the best possible
convergence rate expected in a simulation environment. However, better convergence
rates can be obtained through the use of bias reduction techniques such as jackknif-
ing that remove the highest-order bias term; see, for example, Section 2.7 of Bratley
et al. [1987], Appendix 9A of Law and Kelton [2000], and Glynn and Heidelberger
[1992] for an introduction to the jackknifing bias reduction technique, and Awad and
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Glynn [2007] for a discussion of low-bias steady-state estimators. The use of these tech-
niques with a sample path of length t would typically yield simulation estimates with
a principal bias term of the order 1/t2, corresponding to γ = 2. Our results then show
that the best possible convergence rate of α̂(c) to α is 1/c2/5, which is a considerable
improvement over the convergence rate 1/c1/3 obtained previously, but nevertheless
substantially worse than the desired convergence rate 1/c1/2. In Section 4, we discuss
other estimation techniques than can achieve the desired convergence rate 1/c1/2 even
when γ = 1.

3.2. Numerical Results

In this section, we provide insights into the behavior of the independent-sampling
estimator α̂(c) given in Equation (8) for finite computational budgets c. The specific
example that we consider involves an autoregressive process {Xn} of order one with
an unknown multiplier Z that is believed to be uniformly distributed on the interval
[0.1, 0.5]. More specifically, suppose that

Xn+1 = Z × Xn + εn

for all n ≥ 0, where X0 ∈ {0.1, 1, 10, 100} is a scalar, Z is uniformly distributed on the
interval [0.1, 0.5], and ε1, ε2, . . . are N(0, 1) random variables that are independent of
each other and of Z. We are interested in estimating the steady-state mean α = E{r(Z)},
where for all z ∈ [0.1, 0.5], we have r(z) = z + r′(z), and r′(z) is the steady-state mean
of the autoregressive process {Xn} given that Z = z. It is clear that both the functions
r(·) and r′(·), and hence also the scalar α, can be computed analytically. In particular,
r′(z) = 0 and r(z) = z for all z ∈ [0.1, 0.5], and hence α = 0.3. This facilitates using this
example to illustrate the approach and results discussed in Section 3.1.

For all z ∈ [0.1, 0.5], let {Xn(z)} represent the autoregressive process {Xn} given that
Z = z, and let the total computational budget c be measured in terms of the maximum
number of normal random variables that can be generated in the numerical experi-
ment. Consider estimators α̂(c) = α̂υ,�(c) of α of the form given in Equation (8), where
Z1, . . . , Zm(c) are sampled at random from the uniform distribution with range [0.1, 0.5];
r̂t(z) = z + ∑t

n=0 Xn(z)/t for all z ∈ [0.1, 0.5] and t ∈ IN; c satisfies c = c′×1,000,000
with c′ ∈ {10, 20, 50, 100, 200, 300, . . . , 1000}; and m(c) = �cυ and t(c) = c1−υ/�, where
0 < υ < 1 and � > 0. Then it is clear that parts (i) through (iii) of Assumption 3.1
are satisfied, and we conduct the simulation in such a way that parts (iv) and (v) of
Assumption 3.1 hold. Moreover, it is not difficult to show that

rt(z) = E{r̂t(z)} = z + X0

t
× 1 − zt+1

1 − z
(14)

for all z ∈ [0.1, 0.5] and t ∈ IN, so that parts (iii) and (iv) of Assumption 3.2 are satisfied
with γ = 1 and b(z) = −e(z) = X0/(1 − z) for all z ∈ [0.1, 0.5]. Finally, it is also not
difficult to show that for all z ∈ [0.1, 0.5] and t ∈ IN,

r̂t(z) = rt(z) + Yt(z),

where Yt(z) has a N(0, σ 2
t (z)) distribution with

σ 2
t (z) ≤ 1

t
×

(
1 − zt

1 − z

)2

.

This implies that parts (i) and (ii) of Assumption 3.2 hold. Since σ 2 = Var{r(Z)} =
Var{Z} = 1/75 < ∞, Theorem 3.4 now shows that the best asymptotic convergence
rate (as c → ∞) is obtained with υ = υ∗ = 2γ /(2γ + 1) = 2/3. Therefore, we consider
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υ ∈ ϒ , where ϒ = {15/30, 16/30, . . . , 24/30}. Similarly, the value of � that minimizes
the mean-squared error of the asymptotic distribution N(�γ b, σ 2/�) when γ = 1 is

�∗ =
(

σ 2

2b2

)1/3

=
(

0.42

150 × X2
0 × [ln(1.8)]2

)1/3

=
(
937.5 × X2

0 × [ln(1.8)]2
)−1/3

.

Therefore, we consider � satisfying �/�∗ ∈ L, where L = {0.01, 0.1, 0.2, 0.5, 1, 2, 5,
10, 100}. (The expressions for m(c) and t(c) are not necessarily integer valued. Therefore,
in our numerical experiments, we let m(c) = ��cυ and t(c) = �c/m(c), unless this leads
to the number c − m(c) × t(c) of unused normal random variables being greater than or
equal to t(c), in which case we let t(c) = �c1−υ/� and m(c) = �c/t(c).)

We conducted two sets of numerical experiments. In the first set of experiments, we
used the asymptotically optimal multiplier �∗ and identified the (empirically) optimal
rate (OR) υ ∈ ϒ for each initial state X0 and computational budget c. In the second
set of experiments, we used the asymptotically optimal rate υ∗ and identified the
(empirically) optimal multiplier (OM) �/�∗ ∈ L for each X0 and c. In both cases, the
objective was to minimize the mean-squared error (MSE) of the estimator of α. In all
cases, our results were obtained by replicating the estimation process 100 times using
common random numbers for different X0, c, υ, and � values.

The results of our first set of numerical experiments are shown in Table I. For each
choice of X0 and c, we show the (empirically) OR (i.e., the υ ∈ ϒ with the smallest
average [α̂υ,�∗ (c) − α]2), and also the absolute and relative differences (AD and RD)
between the MSE obtained with the observed optimal rate and with the best asymptotic
rate υ∗ = 2/3. The results of our second set of numerical experiments are shown in Table
II. Similar to Table I, for each X0 and c, we show the (empirically) OM (i.e., the �/�∗ with
the smallest average [α̂υ∗,�(c)−α]2), and also the AD and RD between the MSE obtained
with the observed optimal multiplier and with the best asymptotic multiplier �∗.

Tables I and II show that for finite c, the number m(c) of values of Z that yields the
smallest MSE is usually strictly larger than that predicted by the asymptotic theory.
In particular, the best choice of υ ∈ ϒ in Table I (OR) is in general larger than the
asymptotically optimal υ∗ = 20/30, and the best choice of �/�∗ ∈ L in Table II is mostly
larger than the asymptotically optimal �/�∗ = 1. However, the difference between the
empirically optimal and asymptotically optimal parameter choices is not large (i.e., no
larger than 2/30 in Table I and no larger than 4 in Table II).

Tables I and II also show that the behavior of the independent-sampling estimator
α̂υ,�(c) depends heavily on the choice of the initial state X0. When X0 is small, the
observed optimal rate and multiplier are close to the optimal asymptotic rate and mul-
tiplier, sometimes coincide with the optimal values, and occasionally are smaller than
optimal. On the other hand, for larger X0, the observed optimal rate and multiplier are
usually larger than optimal, occasionally optimal, but not smaller than optimal. These
results are reasonable because we do not perform any truncation to remove initial-
ization bias while estimating the steady-state mean r′(z) of the autoregressive process
{Xn(z)}, where z ∈ [0.1, 0.5]. Therefore, X0 has a heavy influence on the bias in the
estimator of α (see also Equation (14)), and longer sample path lengths are required to
reduce the bias for large X0 than for small X0 (in other words, the asymptotical results
derived in Section 3.1 come into play for larger values of c when X0 is large than when X0
is small). Tables I and II also show that the rate at which the observed OR and OM ap-
proach the asymptotically optimal rate and multiplier is slow, reflecting the slow growth
rate of the best asymptotic sample path length t(c) � c1−υ∗ = c1/3 with respect to c.

We conclude this section by showing the behavior of the MSE of the estimator α̂υ,�∗ (c)
as a function of the growth rate υ ∈ ϒ , and the behavior of the MSE of the estimator
α̂υ∗,�(c) as a function of the multiplier �/�∗ ∈ L. The results are provided for X0 = 1 and
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Fig. 1. Performance of the independent-sampling estimator α̂υ,�∗ (c) for X0 = 1, υ ∈ ϒ .

c = c′× 1,000,000, where c′ ∈ {100, 500, 900}, and are shown on a logarithmic scale in
Figures 1 and 2, respectively.

Figures 1 and 2 show that the MSE of the estimator depends heavily on the choice
of the parameters υ and �, and that this sensitivity is larger when the computational
budget c is large. Specifically, in Figure 1, the difference in MSE from using a subopti-
mal rate υ can be almost two orders of magnitude for c = 100,000,000 and almost three
orders of magnitude for c = 900,000,000. Similarly, in Figure 2, the difference in MSE
from using a suboptimal multiplier � can be almost three orders of magnitude for c =
100,000,000 and almost four orders of magnitude for c = 900,000,000.

4. EXAMPLE PROCEDURES WITH BETTER CONVERGENCE RATES

In this section, we show that improved convergence rates can be achieved (relative to
the independent sampling approach considered in Section 3) by using other methods
to generate the sampled values of the random variable Z; see Equation (2). More
specifically, in Section 4.1, we analyze the case where Zi = zi = h(ui), for i = 1, . . . , m(c),
and {un} is a quasi-random sequence defined on [0, 1]d. In Section 4.2, we discuss how
modest improvements in the convergence rate (over the rates given in Section 4.1)
sometimes can be obtained by using numerical integration techniques that exploit
special structure, and illustrate this idea using Simpson’s rule.

4.1. Quasi-Random Numbers

In this section, we determine the asymptotic behavior of the estimator α̂(c) defined
in Equation (8) as c → ∞ when Z1 = z1, . . . , Zm(c) = zm(c) are generated using a
quasi-random sequence. As in Section 3.1, we first show that in order for α̂(c) to be
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Fig. 2. Performance of the independent-sampling estimator α̂υ∗,�(c) for X0 = 1, �/�∗ ∈ L.

asymptotically unbiased and consistent, we generally need both t(c) → ∞ and m(c) →
∞ as c → ∞ (Propositions 4.2 and 4.3 and Theorem 4.5). Then we present the main
result in this section (Theorem 4.9), which identifies the convergence rate of α̂(c) to α
as c → ∞. We will be using the following assumption throughout this section.

ASSUMPTION 4.1. Assume that:

(i) The random variable r(Z) is integrable.
(ii) For all c ∈ IR+, the parameters m(c) and t(c) satisfy c = m(c) × t(c).

(iii) The random vector Z can be expressed as Z = h(U ), where U is a uniformly
distributed random vector on the set [0, 1]d, where d ∈ IN, and h : [0, 1]d → Z is a
known function.

(iv) The sequence {un} is a deterministic (quasi-random) sequence taking values in
[0, 1]d with the (star) discrepancy of u1, . . . , uN being of order O([log N]ι/Nβ) for
all N ∈ IN, where ι, β ∈ IR+ (see, e.g. Niederreiter [1992], page 14, for the definition
of the star discrepancy of a sequence of points).

(v) For all t ∈ IR+, the random variables r̂t(zi), where zi = h(ui) and i ∈ IN, are
independent.

Remark 4.1. For results that can be used to show that part (iv) of Assumption 4.1
holds with β = 1, see, for example, Theorems 3.6 and 3.8 of Niederreiter [1992].
Note that the sequences {un} and {zn} defined in parts (iv) and (v) of Assumption 4.1,
respectively, may depend on the value of c ∈ IR+ (this would, e.g., be the case when
Theorem 3.8 of Niederreiter [1992] is used to generate the sequence {un} and m(c) is not
constant in c ∈ IR+), although we suppress this in our notation. There is an extensive
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literature on the development and analysis of quasi- and randomized quasi-Monte
Carlo sequences, including measures of discrepancy other than the star discrepancy
we consider here (see part (iv) of Assumption 4.1); see, for example, L’Ecuyer [2009] for
a recent review.

As in Section 3.1, we start by analyzing the bias and consistency of the estimator
α̂(c) defined in Equation (8). Let α̂1(c), α̂2(c), and α̂3(c) be defined as in Equation (9) for
all c ∈ IR+. We first consider the case where c → ∞ and t(c) remains constant.

PROPOSITION 4.2. Suppose that Assumption 4.1 holds, that t(c) = t > 0 for all c ≥ 0,
that the function rt defined by r′

t(u) = rt(h(u)) for all u ∈ [0, 1]d is Riemann integrable,
and that supi∈IN E{[r̂t(zi) −rt(zi)]2} < ∞, where the sequence {zn} is defined in part (v) of
Assumption 4.1. Then m(c) = �c/t for all c ≥ 0, E{α̂(c)} = ∑m(c)

i=1 rt(zi)/m(c) → E{r̂t(Z)}
as c → ∞, and α̂(c) → E{r̂t(Z)} in probability as c → ∞, where Z is defined in part
(iii) of Assumption 4.1 and the random numbers used to generate r̂t(Z) are independent
of the value of Z.

PROOF. From Equation (8), parts (ii) and (iv) of Assumption 4.1, the fact that the
function r′

t is Riemann integrable, and pages 14 and 17 of Niederreiter [1992], it is clear
that

E{α̂(c)} − E{r̂t(Z)} = 1
m(c)

m(c)∑
i=1

rt(zi) − E{r̂t(Z)} → 0 as c → ∞. (15)

Moreover,
α̂(c) = α̂1(c) + E{α̂(c)}. (16)

Let ε > 0. By Markov’s inequality and part (v) of Assumption 4.1, we have that

P{|α̂1(c)| > ε} ≤ E{[α̂1(c)]2}
ε2 = 1

ε2m(c)2

m(c)∑
i=1

E{[r̂t(zi) − rt(zi)]2}.

Therefore, part (ii) of Assumption 4.1 and the fact that supi∈IN E{[r̂t(zi) − rt(zi)]2} < ∞
imply that α̂1(c) → 0 in probability as c → ∞. The convergence in probability of α̂(c) to
E{r̂t(Z)} now follows from Equations (15) and (16).

We now consider the case when c → ∞ and m(c) remains constant. The proof of the
following proposition is straightforward, and is omitted.

PROPOSITION 4.3. Suppose that Assumption 4.1 holds, that m(c) = m > 0 for all c ≥ 0,
that the values of the sequence {un} defined in part (iv) of Assumption 4.1 do not depend
on c ∈ IR+, and that r̂t(zi) ⇒ r(zi) as t → ∞ for i = 1, . . . , m. Then t(c) = c/m for all
c ≥ 0, E{α̂(c)} = ∑m

i=1 rc/m(zi)/m for all c ≥ 0, and α̂(c) ⇒ ∑m
i=1 r(zi)/m as c → ∞. If

also the sets of random variables {r̂c/m(zi) : c ≥ 0}, where i = 1, . . . , m, are uniformly
integrable, then E{α̂(c)} → ∑m

i=1 r(zi)/m as c → ∞.

Propositions 4.2 and 4.3 show that when {zn} is generated using a quasi-random
sequence, we generally need to have that as c → ∞, both t(c) → ∞ and m(c) → ∞ in
order for α̂(c) to be a consistent estimator for α as c → ∞ (this is consistent with the
results obtained earlier for independent sampling; see Section 3.1). We now turn our
attention to this case. For all c ∈ IR+ and i ∈ IN, let Yi(c) = √

t(c)(r̂t(c)(zi)−rt(c)(zi)), where
the quantities z1, . . . , zm(c) are defined in part (v) of Assumption 4.1. Furthermore, let
the symbol ◦ denote the composition of two functions and let IA denote the indicator of
the set A for all A. The results given in the remainder of this section will require some
(or all) the parts of the following assumption.
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ASSUMPTION 4.2. Assume that:

(i) For all z ∈ Z, the random variables r̂t(z), where t ≥ 0, satisfy E{t[r̂t(z) − rt(z)]2} →
σ 2(z) uniformly in z ∈ Z as t → ∞, where σ 2(z) ∈ IR+.

(ii) For all ε > 0, the random variables Yi(c), where i ∈ IN and c ∈ IR+, satisfy

lim
c→∞

m(c)∑
i=1

1
s2

c
E{[Yi(c)]2 I{|Yi(c)|≥εsc}} = 0,

where s2
c = ∑m(c)

i=1 E{[Yi(c)]2} for all c ∈ IR+.
(iii) The function σ 2 ◦ h : [0, 1]d → IR+ is Riemann integrable, where the function σ 2 is

defined in part (i) of this assumption and the function h is defined in part (iii) of
Assumption 4.1.

(iv) The function rt satisfies rt(z) = r(z) + b(z)/tγ + e(z)o(1/tγ ) as t → ∞ for all z ∈ Z,
where γ > 0, b(z), e(z) ∈ IR for all z ∈ Z, and the o(1/tγ ) term is uniform in z ∈ Z.

(v) The function b ◦ h : [0, 1]d → IR is Riemann integrable, where the function b is
defined in part (iv) of this assumption.

(vi) The function e ◦ h : [0, 1]d → IR is Riemann integrable, where the function e is
defined in part (iv) of this assumption.

(vii) The function r ◦ h : [0, 1]d → IR has bounded variation in the sense of Hardy
and Krause (see, e.g., Niederreiter [1992], page 19, for the definition of bounded
variation in the sense of Hardy and Krause), where the function r is defined in
Section 1.

Remark 4.4. Note that part (ii) of Assumption 4.2 holds if for each c ∈ IR+, the
random variables Yi(c), where i ∈ IN, are identically distributed with finite and pos-
itive variance. Part (ii) of Assumption 4.2 also holds if there exists ε > 0 such that
supi,c E{[Yi(c)]2+ε} < ∞ and parts (ii) and (iv) of Assumption 4.1, parts (i) and (iii) of
Assumption 4.2, and Assumption 4.3 hold (note that s2

c /m(c) → σ 2 as c → ∞ under
these conditions; see the proof of Lemma 4.6 in the Online Appendix).

We have:

THEOREM 4.5. Suppose that Assumption 4.1 and parts (iv), (v), (vi), and (vii) of
Assumption 4.2 hold; that

lim
t→∞ sup

i∈ IN
E{|r̂t(zi) − rt(zi)|} = 0; (17)

and that as c → ∞, both m(c) → ∞ and t(c) → ∞. Then E{α̂(c)} = ∑m(c)
i=1 rt(c)(zi)/m(c) →

E{r(Z)} = α and α̂(c) → α in probability as c → ∞.

PROOF. From part (iv) of Assumption 4.2, we have

E{α̂(c)} = 1
m(c)

m(c)∑
i=1

r(zi) + 1
t(c)γ

(
1

m(c)

m(c)∑
i=1

[b(zi) + e(zi)o(1)]

)
.

By part (iv) of Assumption 4.1; parts (v), (vi), and (vii) of Assumption 4.2; the Koksma-
Hlawka inequality (see, e.g., Theorem 2.11 in Niederreiter [1992]); pages 14 and 17 of
Niederreiter [1992]; and the fact that as c → ∞, both m(c) → ∞ and t(c) → ∞, the
first term in the previous expression converges to α = E{r(Z)} and the second term
converges to zero. This shows that E{α̂(c)} → α as c → ∞.
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Let ε > 0. Markov’s inequality gives that

P{|α̂1(c)| > ε} ≤ 1
εm(c)

m(c)∑
i=1

E{|r̂t(c)(zi) − rt(c)(zi)|}.

Therefore, Equation (17) and the fact that t(c) → ∞ as c → ∞ imply that α̂1(c) → 0
in probability as c → ∞. Equation (16) now gives that α̂(c) → α in probability as
c → ∞.

In the remainder of this section, we will use the following assumption:

ASSUMPTION 4.3. For all c ≥ C, where C ∈ IR+, assume that the parameter m(c)
satisfies m(c) = �κcδ, where κ > 0 and 0 < δ < 1.

We are now ready to study the rate of convergence of α̂(c) to α as c → ∞. Let
σ 2 = E{σ 2(Z)} and e = E{e(Z)}, and recall that b = E{b(Z)} (note that part (iii) of
Assumption 4.1 and parts (iii), (v), and (vi) of Assumption 4.2 imply that the random
variables b(Z), e(Z), and σ 2(Z) are integrable). Recall that the functions α̂1(c), α̂2(c), and
α̂3(c) are defined in the proof of Theorem 3.3. We will need the following three lemmas
whose proofs are provided in the Online Appendix to this article.

LEMMA 4.6. Suppose that Assumptions 4.1 and 4.3 and parts (i), (ii), and (iii) of
Assumption 4.2 hold. Then

√
cα̂1(c) ⇒ N(0, σ 2) as c → ∞.

LEMMA 4.7. Suppose that Assumptions 4.1 and 4.3 and parts (iv), (v), and (vi) of
Assumption 4.2 hold. Then

α̂2(c) = bκγ

cγ (1−δ)
+ o

(
1

cγ (1−δ)

)
as c → ∞.

LEMMA 4.8. Suppose that Assumptions 4.1 and 4.3 and part (vii) of Assumption 4.2
hold. Then

|α̂3(c)| ≤ O
(

[log c]ι

cδβ

)
as c → ∞.

We now present the main result in this section. The following theorem specifies the
rate at which the estimator α̂(c) converges to α as c → ∞ as a function of the choice of
the parameter δ (see Assumption 4.3).

THEOREM 4.9. Suppose that Assumptions 4.1, 4.2, and 4.3 hold. Then, the following
statements hold:

(a) If δ > γ/(γ + β) and γ (1 − δ) > 1/2, then
√

c(α̂(c) − α) ⇒ N(0, σ 2) as c → ∞.

(b) If δ > γ/(γ + β) and γ (1 − δ) = 1/2, then
√

c(α̂(c) − α) ⇒ N(bκγ , σ 2) as c → ∞.

(c) If δ > γ/(γ + β) and γ (1 − δ) < 1/2, then

cγ (1−δ)(α̂(c) − α) ⇒ bκγ as c → ∞.

(d) If δ ≤ γ /(γ + β) and δ > 1/(2β), then
√

c(α̂(c) − α) ⇒ N(0, σ 2) as c → ∞.
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(e) If δ ≤ γ /(γ + β) and δ ≤ 1/(2β), then

cδβ |α̂(c) − α|/[log c]ι ≤ X(c) + O(1) as c → ∞,

where X(c) ⇒ 0 as c → ∞.

PROOF. Note that δ > γ/(γ + β) if and only if δβ > γ (1 − δ). The result now follows
from Equation (9); Lemmas 4.6, 4.7, and 4.8; and the continuous mapping theorem
(see, e.g., Theorems 4.4 and 5.1 of Billingsley [1968]).

Remark 4.10. The specific convergence rates provided by part (iv) of Assumption 4.1
and by the Koksma-Hlawka inequality are needed only for Lemma 4.8 and part (e) of
Theorem 4.9. Also, in Theorem 4.5, part (vii) of Assumption 4.2 can be replaced by the
assumption that the function r ◦ h : [0, 1]d → IR is Riemann integrable.

Remark 4.11. Consider the classical case where β = 1. From parts (a), (b), and (d)
of Theorem 4.9, it is clear that when 1/2 < δ ≤ (2γ − 1)/(2γ ) and Assumptions 4.1,
4.2, and 4.3 hold, the estimator α̂(c) converges to α at the rate c−1/2 as c → ∞. This is
an improvement over the convergence rate obtained using independent sampling; see
Remark 3.5. However, it is only possible to select δ in this range when γ > 1. When γ = 1
and δ > 1/2, part (c) of Theorem 4.9 gives that the estimator α̂(c) converges to α at the
rate cδ−1 as c → ∞, and when γ = 1 and δ ≤ 1/2, part (e) of Theorem 4.9 gives that the
estimator α̂(c) converges to α at the rate [log(c)]ι/cδ as c → ∞. By choosing δ = 1/2 when
γ ≥ 1, it is again clear that we get a computational improvement by generating {zn}
using a quasi-random sequence {un}, relative to the situation considered in Section 3.
However, this improvement is achieved using additional assumptions, including the
smoothness assumptions in parts (iii), (v), (vi), and (vii) of Assumption 4.2, which
may be difficult to verify in practice. Moreover, this improvement is asymptotic and
need not be observed in practice for realistic computational budgets c, especially if the
dimension d is large; see, for example, L’Ecuyer [2009] for additional details. Note that
when δ = 1/2, m(c) and t(c) will grow at the same rate as c increases. Thus, when
quasi-random numbers are used, it is not necessary to let m(c) grow as rapidly as when
independent sampling is used; see Theorem 3.5 and Remark 3.5.

4.2. Other Numerical Integration Techniques

As is clear from Theorem 4.9 and Remark 4.11, and given that the estimates r̂t(c)(zi)
of r(zi), where i = 1, . . . , m(c), are generated using simulation (so that one would
expect c−1/2 to be the best possible convergence rate), there is not much room for
improving the rate at which the estimator α̂(c) defined in Equation (8) converges to
the quantity of interest α as the total computational budget c grows, relative to the
convergence rate obtained when the sequence {zn} is generated using a quasi-random
sequence {un}. However, in the presence of some special structure, it is sometimes
possible to use numerical integration techniques other than the ones considered in
Sections 3 and 4.1 (i.e., other than independent sampling and quasi-random sequences)
to obtain a (slightly) better rate of convergence results than Theorem 4.9. We illustrate
this approach by analyzing a single other numerical integration technique, namely,
Simpson’s rule (see, e.g., Davis and Rabinowitz [1984], Section 2.2).

More specifically, in this section, we assume that the underlying integration problem
is one-dimensional (i.e., Z=h(U), where U is uniformly distributed on [0, 1]) and smooth
(in a sense that is specified in the Online Appendix). In this case, we can use Simpson’s
rule to improve upon Theorem 4.9. This involves using an estimator of the form

α̃(c) =
m(c)∑
i=1

wi(c)r̂t(c)(zi(c)), (18)
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where c ∈ IR+, to estimate α. Details on how z1(c), . . . , zm(c)(c) and the weights
w1(c), . . . , wm(c)(c) are selected are provided in the Online Appendix to this article,
together with our analysis of the estimator in Equation (18). The main conclusion is
that the estimator in Equation (18) converges to α at the rate c−1/2 as c → ∞ when
1/8 ≤ δ ≤ (2γ − 1)/(2γ ) under the assumptions stated in the Online Appendix. More-
over, the interval [1/8, (2γ −1)/(2γ )] is nonempty for all γ ≥ 4/7 and includes the value
δ = 1/2 for all γ ≥ 1 (as would typically be the case in practice). This is an improvement
over the rate of convergence results obtained in Sections 3.1 and 4.1; see Remarks 3.5
and 4.11.

5. GENERAL FRAMEWORK

In Sections 3 and 4, we studied three specific methods for estimating the quantity
α defined in Equation (2). In all cases, we provided theoretical results specifying the
rate of convergence of the estimator under consideration to α as the total available
computational budget c grows. In this section, we present a unified framework for
proving such rate of convergence results for a broad class of estimators that includes the
estimators in Equations (8) and (18) considered in Sections 3 and 4.1 and in Section 4.2,
respectively, as special cases. However, as the form of the general estimator and the
associated analysis are relatively abstract, we believe it is of value to include the
analysis of the specific estimators of Sections 3 and 4 as well.

More specifically, in this section, the estimator of α obtained with the computational
budget c is given by

ᾱ(c) =
m(c)∑
i=1

Wi(c)r̂t(c)(Zi(c)),

where Z1(c), . . . , Zm(c)(c) are the different (and possibly random) values (locations)
of the random vector Z used in the estimation of α, r̂t(c)(Z1(c)), . . . , r̂t(c)(Zm(c)(c)) are
the estimates of r(Z1(c)), . . . , r(Zm(c)(c)) obtained using the computational effort t(c),
and W1(c), . . . , Wm(c)(c) are the (possibly random) weights given to the estimates
r̂t(c)(Z1(c)), . . . , r̂t(c)(Zm(c)(c)), respectively.

Let F denote the σ -algebra generated by the locations Z1(c), . . . , Zm(c)(c) and weights
W1(c), . . . , Wm(c)(c), for all c ∈ IR+, and let Ft(z, x) = P{r̂t(z) ≤ x} for all z ∈ Z, t ≥ 0,
and x ∈ IR. The following assumption describes more precisely the framework for
estimating α considered in this section.

ASSUMPTION 5.1. Assume that:

(i) For all c ∈ IR+, the parameters m(c) and t(c) satisfy c = m(c) × t(c).
(ii) The parameter m(c) satisfies m(c)/cδ → d as c → ∞, where d ∈ IR+ and 0 < δ < 1.

(iii) For all c ∈ IR+, the random variables r̂t(c)(Z1(c)), . . . , r̂t(c)(Zm(c)(c)) satisfy

P{r̂t(c)(Zi(c)) ≤ xi,∀i = 1, . . . , m(c)|F} =
m(c)∏
i=1

Ft(c)(Zi(c), xi)

for all x1, . . . , xm(c) ∈ IR.
(iv) The weights W1(c), . . . , Wm(c)(c) satisfy

∑m(c)
i=1 Wi(c) ⇒ 1 as c → ∞ and l ≤ m(c)Wi(c)

≤ u for all i = 1, . . . , m(c) and c ∈ IR+, where l and u are positive constants.

For all z ∈ Z and t ≥ 0, let rt(z) = E{r̂t(z)}. Moreover, for all z ∈ Z and t ≥ 0, let
Yt(z) = √

t[r̂t(z) − rt(z)]. The results given in the remainder of this section will require
some (or all) the parts of the following technical assumption.
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ASSUMPTION 5.2. Assume that:

(i) There exists a function σ 2 : Z → IR+ such that for all z ∈ Z, the random variables
Yt(z), where t ≥ 0, satisfy E{[Yt(z)]2} → σ 2(z) uniformly in z ∈ Z as t → ∞, where
inf z∈Z σ 2(z) > 0.

(ii) There exists ε > 0 such that the random variables Yt(z), where z ∈ Z and t ≥ 0,
satisfy supz∈Z,t≥0 E{[Yt(z)]2+ε} < ∞.

(iii) There exist functions b : Z → IR and e : Z → IR such that the function rt satisfies
rt(z) = r(z) + b(z)/tγ + e(z)o(1/tγ ) as t → ∞ for all z ∈ Z, where γ > 0 and the
o(1/tγ ) term is uniform in z ∈ Z.

(iv) The locations Z1(c), . . . , Zm(c)(c), weights W1(c), . . . , Wm(c)(c), and function r satisfy

m(c)∑
i=1

Wi(c)r(Zi(c)) = α + X3(c)
g(c)

,

where g : IR+ → IR+ is a deterministic function, X3(c) ⇒ X3 as c → ∞, and X3 is a
(proper) random variable.

(v) The locations Z1(c), . . . , Zm(c)(c); weights W1(c), . . . , Wm(c)(c); and functions σ 2, b,
and e defined in parts (i) and (iii) of this assumption satisfy

∑m(c)
i=1 Wi(c)σ 2(Zi(c)) ⇒

E{σ 2(Z)}, ∑m(c)
i=1 Wi(c)b(Zi(c)) ⇒ E{b(Z)}, and

∑m(c)
i=1 Wi(c)e(Zi(c)) ⇒ E{e(Z)} as c →

∞.

Note that the function g in part (iv) of Assumption 5.1 is not uniquely defined. As
will become clear later (see Theorem 5.4), it is best to define g such that g(c) grows as
rapidly as possible with c, so that X3 is different from zero with positive probability.

As in Equation (9), it will be useful to express the estimate ᾱ(c) as follows:

ᾱ(c) − α = ᾱ1(c) + ᾱ2(c) + ᾱ3(c), (19)

where

ᾱ1(c) =
m(c)∑
i=1

Wi(c)[r̂t(c)(Zi(c)) − rt(c)(Zi(c))],

ᾱ2(c) =
m(c)∑
i=1

Wi(c)[rt(c)(Zi(c)) − r(Zi(c))], and

ᾱ3(c) =
m(c)∑
i=1

Wi(c)r(Zi(c)) − α

for all c ≥ 0. Define σ 2 = E{σ 2(Z)} and b = E{b(Z)}. We will need the following two
lemmas.

LEMMA 5.1. Suppose that Assumption 5.1 and parts (i), (ii), and (v) of Assumption 5.2
hold. Then, for all c ∈ R+, there exist random variables X1(c) and ᾱ′

1(c) such that

√
cᾱ1(c) = X1(c) × ᾱ′

1(c),
√

l ≤ X1(c) ≤ √
u, and ᾱ′

1(c) ⇒ Y ∼ N(0, σ 2) as c → ∞.

Moreover, (ᾱ′
1(c), X3(c)) ⇒ (Y, X3) as c → ∞, where Y and X3 are independent.
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PROOF. For all c ≥ 0, define

Ŝ2
c =

m(c)∑
i=1

[Wi(c)]2 E{[Yt(c)(Zi(c))]2|F},

S̃2
c =

m(c)∑
i=1

Wi(c)E{[Yt(c)(Zi(c))]2|F},

and X1(c) = √
m(c)Ŝc/S̃c. We have

S̃2
c = σ 2 +

(
m(c)∑
i=1

Wi(c)σ 2(Zi(c)) − σ 2

)
+

m(c)∑
i=1

Wi(c)
[
E{[Yt(c)(Zi(c))]2|F} − σ 2(Zi(c))

]
.

It now follows from parts (iii) and (iv) of Assumption 5.1, parts (i) and (v) of Assump-
tion 5.2, and the converging together lemma (see, e.g., Theorem 25.4 of Billingsley,
1995) that S̃2

c ⇒ σ 2 as c → ∞. Moreover, part (iv) of Assumption 5.1 implies that
l ≤ [X1(c)]2 ≤ u.

From part (i) of Assumption 5.1, we have that for all c ≥ 0,
√

cᾱ1(c) = X1(c) × ᾱ′
1(c),

where

ᾱ′
1(c) = S̃c ×

∑m(c)
i=1 Wi(c)Yt(c)(Zi(c))

Ŝc
.

It follows from parts (i), (ii), (iii), and (iv) of Assumption 5.1 and part (i) of Assump-
tion 5.2 that there exists C > 0 such that

Ŝ2
c ≥ l2

m(c)
× inf z∈Z σ 2(z)

2
> 0

for all c ≥ C. Therefore, parts (iii) and (iv) of Assumption 5.1 and part (ii) of Assump-
tion 5.2 imply that

0 ≤
m(c)∑
i=1

[Wi(c)]2+ε E{[Yt(c)(Zi(c))]2+ε |F}
Ŝ2+ε

c

≤
(

2u2

l2 inf z∈Z σ 2(z)

)1+ε/2

× supz∈Z,t≥0 E{[Yt(z)]2+ε}
[m(c)]ε/2 ,

for all c ≥ C, and hence that

lim
c→∞

m(c)∑
i=1

[Wi(c)]2+ε E{[Yt(c)(Zi(c))]2+ε |F}
Ŝ2+ε

c
= 0

by part (ii) of Assumption 5.1. By part (iii) of Assumption 5.1 and Lindeberg’s theo-
rem (see, e.g., Theorems 27.2 and 27.3 of Billingsley [1995]), we now have that the
conditional distribution of the term

∑m(c)
i=1 Wi(c)Yt(c)(Zi(c))/Ŝc given F always converges

to the standard normal distribution N(0, 1) as c → ∞ (for all possible locations and
weights). The weak convergence of ᾱ′

1(c) to Y ∼ N(0, σ 2) as c → ∞ now follows from
the continuous mapping theorem, the bounded convergence theorem (see, e.g., Theo-
rem 16.5 of Billingsley [1995]), and the fact that S̃2

c ⇒ σ 2 as c → ∞. Similarly, the
asymptotic independence of ᾱ′

1(c) and X3(c) now follows from the bounded convergence
theorem.
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Remark 5.2. If (X1(c), X3(c)) ⇒ (X1, X3) as c → ∞, then the bounded convergence
theorem can be used to show that (ᾱ′

1(c), X1(c), X3(c)) ⇒ (Y, X1, X3) as c → ∞, where Y
and (X1, X3) are independent (see the proof of Lemma 5.1 for a similar argument).

LEMMA 5.3. Suppose that parts (i) and (ii) of Assumption 5.1 and parts (iii) and (v)
of Assumption 5.2 hold. Then

ᾱ2(c) = X2(c)/[t(c)]γ , where X2(c) ⇒ b as c → ∞.

PROOF. By part (iii) of Assumption 5.2, we clearly have that

ᾱ2(c) = b
[t(c)]γ

+ 1
[t(c)]γ

[
m(c)∑
i=1

Wi(c)b(Zi(c)) − b

]
+ o

(
1

[t(c)]γ

) m(c)∑
i=1

Wi(c)e(Zi(c))

as c → ∞. The result now follows from parts (i) and (ii) of Assumption 5.1 and part (v)
of Assumption 5.2.

The following theorem specifies the rate at which ᾱ(c) converges to α as c → ∞ as a
function of the choice of the parameter δ (see part (ii) of Assumption 5.1).

THEOREM 5.4. Suppose that Assumptions 5.1 and 5.2 hold. Then the following state-
ments hold:

(a) When δ < (2γ − 1)/(2γ ), there are two cases:
(i) If

√
c/g(c) → g as c → ∞, where g ∈ IR, then

√
c(ᾱ(c) − α) = X1(c)ᾱ′

1(c) + gX3(c) + ε(c),

where
√

l ≤ X1(c) ≤ √
u for all c ∈ IR+, (ᾱ′

1(c), X3(c)) ⇒ (Y, X3) as c → ∞ with Y
and X3 being independent, and ε(c) ⇒ 0 as c → ∞.

(ii) If
√

c/g(c) → ∞ as c → ∞, then

g(c)(ᾱ(c) − α) ⇒ X3 as c → ∞.

(b) When δ = (2γ − 1)/(2γ ), there are two cases:
(i) If

√
c/g(c) → g as c → ∞, where g ∈ IR, then

√
c(ᾱ(c) − α) = X1(c)ᾱ′

1(c) + bdγ + gX3(c) + ε(c),

where
√

l ≤ X1(c) ≤ √
u for all c ∈ IR+, (ᾱ′

1(c), X3(c)) ⇒ (Y, X3) as c → ∞ with Y
and X3 being independent, and ε(c) ⇒ 0 as c → ∞.

(ii) If
√

c/g(c) → ∞ as c → ∞, then

g(c)(ᾱ(c) − α) ⇒ X3 as c → ∞.

(c) When δ > (2γ − 1)/(2γ ), there are two cases:
(i) If cγ (1−δ)/g(c) → g as c → ∞, where g ∈ IR, then

cγ (1−δ)(ᾱ(c) − α) ⇒ bdγ + gX3 as c → ∞.

(ii) If cγ (1−δ)/g(c) → ∞ as c → ∞, then

g(c)(ᾱ(c) − α) ⇒ X3 as c → ∞.

PROOF. Note that Equation (19), Lemmas 5.1 and 5.3, part (i) of Assumption 5.1, and
part (iv) of Assumption 5.2 imply that

ᾱ(c) − α = X1(c)ᾱ′
1(c)√

c
+ X2(c)

cγ (1−δ)
×

(
m(c)
cδ

)γ

+ X3(c)
g(c)
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for all c ∈ IR+. Moreover, it is clear that γ (1 − δ) > 1/2 if and only if δ < (2γ − 1)/(2γ ).
The result now follows from Lemmas 5.1 and 5.3, part (ii) of Assumption 5.1, part (iv)
of Assumption 5.2, and the continuous mapping theorem.

Remark 5.5. It is clear from Theorem 5.4 and its proof that when Assumptions 5.1
and 5.2 hold with b �= 0, then δ ≤ (2γ − 1)/(2γ ) is a necessary condition for the
estimator ᾱ(c) to converge to α at the best possible rate c−1/2, and δ ≤ (2γ −1)/(2γ ) and√

c/g(c) → g as c → ∞, where g ∈ IR, is a sufficient condition for this result. Also, it is
frequently the case that simulation estimators obtained from a sample path of length t
have a principal bias term of the order 1/t (see Remark 3.6), and hence the special case
when γ = 1 is of particular interest. In this case, the necessary condition for obtaining
the best possible convergence rate c−1/2 is given by δ ≤ 0.5, implying that ᾱ(c) will only
converge to α at the best possible rate when the number of locations m(c) grows no
faster than the computational effort t(c) used to estimate the value of the function r at
each location. This is consistent with Theorems 4.9 and B.4; see Remarks 4.11 and B.5
(Theorem B.4 and Remark B.5 are provided in the Online Appendix to this article).

6. CONCLUSION

The use of Bayesian methods to determine the expected performance of a stochastic
system often requires the computation of the quantity α = E{r(Z)}, where the vector Z
represents the uncertain (input) parameters of the system and the function values r(z)
represent the expected performance of the system when Z = z. We have studied the
bias, consistency, and rate of convergence of three classes of simulation estimators for
α as the total computational effort c grows. We have also provided a general framework
for estimating α and have characterized the convergence rate of the resulting estimator.

The three specific classes of estimators we consider all involve using simulation to
estimate the function values r(z) for a number of different values z of the random vector
Z. The primary difference between the three approaches lies in the choice of the values
z of Z for which the function values r(z) are estimated. The first approach generates
these values using independent sampling, the second approach uses a quasi-random
sequence, and the third approach is based on Simpson’s numerical integration rule. We
show that the estimators based on Simpson’s rule have the best possible convergence
rate c−1/2 and that the use of a quasi-random sequence leads to a better convergence
rate than the use of independent sampling. Other specific methods could of course be
used to choose the values of Z (e.g., stratification, Latin hypercube sampling, etc.). The
study of these methods is a valuable direction for future work but is outside the scope
of the current article.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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