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Abstract— Infinite-horizon average-cost Markov decision
processes are of interest in many scenarios. A dynamic pro-
gramming algorithm, called the relative value iteration, is
used to compute the optimal value function. For large state
spaces, this often runs into difficulties due to its computational
burden. We propose a simulation-based dynamic program
called empirical relative value iteration (ERVI). The idea is very
simple: replace the expectation in the Bellman operator with
a sample average estimate, and then use projection to ensure
boundedness of the iterates. We establish that the ERVI iterates
converge to the optimal value function in the span-seminorm
in probability as the number of samples taken goes to infinity.
Simulation results show remarkably good performance even
with a small number of samples.

I. INTRODUCTION

Markov decision processes are popular models for se-
quential decision-making under uncertainty [1], [2]. Using
Bellman’s ‘principle of optimality’ [3] for such settings,
one can devise dynamic programming (DP) algorithms for
finding optimal policies. This transforms the sequential
decision-making problem into a fixed point problem, where
we look for a fixed point of the Bellman operator. For the
infinite-horizon discounted cost case, two examples of DP
algorithms are value and policy iteration [1]. It is well-
known that these and other DP algorithm suffer from the
“curse of dimensionality” [3], [2], [4], i.e., the computational
complexity increases exponentially in state space size. In
fact, it has been shown to be PSPACE-hard [5].

This has led to a slew of work on approximate methods for
dynamic programming [6], [2]. The first idea is to approxi-
mation value functions by a finite basis or kernel of functions
[7], [2]. While very useful, this approach is model-dependent
and not universal. The second class of approximate DP
algorithms is based on stochastic approximation schemes.
For example, Q-learning was introduced in [8] and has led
to development of a whole class of reinforcement learning
algorithms that are widely used. Unfortunately, it is well-
known that such schemes have very slow convergence.

In [9], an alternative idea called ‘empirical dynamic
programming’ (for discounted MDPs) was introduced. This
involved replacing the expectation in the Bellman operator in
value iteration by a sample-average approximation obtained
by one-step simulation of the next state in each iteration.
The idea is very simple and a natural way of doing dynamic
programming by simulation. It was shown that while using
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a finite number of samples in each iteration may not yield
convergence to the optimal value function, nevertheless, it
yielded estimates having small error with high probability,
even with a very small number of samples. Moreover, a
formal convergence result was established that guarantees
that such ‘empirical’ algorithms yield estimates having small
error with high probability. The numerical performance is
surprising, as we see that even with as few as 5-10 samples
per iteration, we get to small error at almost the same rate as
exact DP algorithms at a fraction of the computational cost.

In this paper, we develop similar ideas for the infinite-
horizon average-cost case. The difficulty is that unlike the
discounted case, the Bellman operator is non-contractive.
Thus, value iteration with the ‘average-Bellman operator’ is
not guaranteed to converge. Instead, relative value iteration
is used wherein at each iteration, a normalization is done
by subtracting the value iterate at a reference state from the
value iterate itself. This makes it a ‘relative’ value iteration
algorithm, which converges under a seminorm. Unfortu-
nately, due to this last step, devising a simulation-based or
‘empirical’ variant of the algorithm becomes difficult.

In this paper, we take a different perspective of relative
value iteration for average-cost MDPs. We view it as iteration
of the average-Bellman operator on a quotient space that we
introduce here. On this space, the operator is still a con-
traction, and by standard results about contracting operators,
convergence is implied. We then introduce an ‘empirical’
variant of the relative value iteration algorithm. To ensure
boundedness of the iterates, we apply a projection operator at
each step of the iteration. We can then show that the iterates
of the empirical relative value iteration (EVRI) algorithm
converge to zero in the span seminorm as the number of
samples and iterations goes to infinity. One difficulty with
proving convergence is that each iteration of the algorithm is
noisy, as we are basically iterating using a random operator.
However, in [9], we developed a fairly general framework
for convergence analysis of iteration of random operators via
stochastic dominance argument. In particular, we construct
a sequence of Markov chains that stochastically dominate
the value iterates of the ERVI algorithm. As the number of
samples goes to infinity, we can show that the measure of the
sequence of Markov chains concentrates at zero, thus proving
convergence. Numerical simulations show very competitive
performance even with a small number of samples and a
finite number of iterations. In fact, in practice, the projection
is never needed.
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II. AVERAGE-COST MDPS: AN OVERVIEW

A. Preliminaries

Consider a Markov decision process (MDP) on a finite
state space S and a finite action space A. The state evolution
is determined by a probability transition kernel p(St+1 =
j|st, at) which yields the distribution over the next state St+1

given action at is taken in current state st. We can write the
state evolution as

St+1 = f(St, At,Wt),

where {Wt} is an i.i.d. sequence of random noise, which
(without much loss of generality) we can assume to be
uniformly distributed over [0, 1]. Let A(s) denote the set
of permissible actions in state s. The set K ⊂ S×A denotes
the set of all permissible state-action pairs. We will denote
a policy by πt : S → A which yields a permissible action in
each state. If this is invariant over time, we call it stationary.

Let c : S ×A → R denote a cost function which we will
assume is bounded. For a stationary policy π, the expected
average-cost can be expressed as

J(π, s) = lim sup
T→∞

1

T
E

[
T∑
t=1

c(st, π(st))

∣∣∣∣∣s0 = s

]
.

We would like to find the optimal stationary policy that
minimizes the expected average-cost J given the initial
state s, i.e., J(π?, s) ≤ J(π, s). We make the following
assumption on the MDP.

Assumption 1 (MDP is Unichain): (i) The MDP
is unichain, i.e., for every stationary policy
π : S → A, the resulting Markov chain {Sπt }∞t=1,
defined as Sπt+1 = f(Sπt , π(Sπt ),Wt) is unichain.
(ii)

∑
j∈S min

{
p(j|s, a), p(j|s′, a′)

}
> 0 for any

(s, a), (s′, a′) ∈ K.
The following result is then well-known.
Theorem 1 ([1]): Consider an average-cost MDP that

satisfies Assumption 1. Then, there exists a value function
v? : S → R and a unique gain g? ∈ R such that

v?(s) + g? = min
a∈A(s)

(
c(s, a) + E [v?(f(s, a,W )]

)
(1)

for all s ∈ S. Moreover, the optimal stationary policy π? for
the MDP is given by

π?(s) ∈ arg min
a∈A(s)

(
c(s, a) + E [v?(f(s, a,W )]

)
, ∀ s ∈ S.

One can check that if v? satisfies (1), then v? + λ1|S|
also satisfies (1), where λ ∈ R and 1|S| denotes a constant
function f : S → {1}. Thus, v? is not unique, but
g? is unique. Because of this property, the value iteration
algorithm does not converge, but a variant of it, called
the relative value iteration algorithm, converges to v?. We
describe this algorithm in the next subsection. Furthermore,
once we compute v?, then we can also compute the optimal
stationary policy for the average-cost MDP.

B. Relative Value Iteration

We now present the well-known relative value iteration
algorithm. We first introduce the space of value functions
over the state space S and the classical Bellman operator
over this space. Let V := R|S| denote the space of value
functions. Let the (exact) Bellman operator T : V → V be
defined as

Tv(s) = min
a∈A(s)

(
c(s, a) + E [v(f(s, a,W )]

)
, (2)

where the expectation is taken with respect to the distribution
of W . It is easy to check that the operator T is not a
contraction for most norms on the space V . However, it is a
contraction with respect to the span semi-norm on the space
V , which is defined as follows. Define the span of a value
function v ∈ V as

span(v) := max
s∈S

v(s)−min
s∈S

v(s).

This is a semi-norm1. We know from [1, Proposition 6.6.1]
that the Bellman operator T satisfies

span(Tv1 − Tv2) ≤ α span(v1 − v2),

where α is given by

α := 1− min
(s,a),(s′,a′)∈K

∑
j∈S

min
{
p(j|s, a), p(j|s′, a′)

}
.

Since Assumption 1 (ii) holds and K is a finite set, we
naturally have α < 1.

We now describe relative value iteration algorithm. Sup-
pose that the MDP satisfies Assumption 1. Start with any v0,
say v0 = 0. We compute relative value iterates {vk} in the
following way:

ṽk+1 = Tvk, (3)

vk+1 = ṽk+1 −
(

min
s∈S

ṽk+1(s)
)
1|S|. (4)

We stop when span(vk) becomes smaller than some ε > 0.
This will happen since T is a contraction over the span semi-
norm due to Assumption 1.

The above algorithm asymptotically converges to the opti-
mal value function v? under Assumption 1. The proof can be
found in Section 8.5.5 of [1]. Moreover, it is easy to check
that span(v?) ≤ ‖c‖∞1−α , where ‖c‖∞ is defined as

‖c‖∞ = max
(s,a)∈K

|c(s, a)|.

One computational difficulty in the above algorithm is that
in evaluating the operator T in (2), we need to evaluate the
expectation for every (s, a) pair. This can be computationally
expensive or even infeasible if the state space is very large.
Instead, we could replace this expectation with a sample
average estimate from simulation. We explore this next.

1In particular, it is not positive definite, that is, if v1 = z+ v2 for some
scalar z, then span(v1 − v2) = 0.
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III. EMPIRICAL RELATIVE VALUE ITERATION

We now describe a simulation-based algorithm for ap-
proximate relative value iteration. The idea is simple and
natural – replace the expectation in the Bellman operator
by its estimate. This can be done by generating n i.i.d.
sample W1, . . . ,Wn, and doing one step simulation of the
next state. When we plug the estimate for the expectation
into the Bellman operator, we get the following empirical
Bellman operator

T̂nv(s) = min
a∈A(s)

(
c(s, a) +

1

n

n∑
i=1

v(f(s, a,Wi))

)
. (5)

Note that T̂n is a random operator, since it depends on
the realizations of W1, . . . ,Wn. The next iterate we get
after applying T̂n on the current iterate is therefore random.
Furthermore, although the exact Bellman operator T is
a contraction over the semi-normed space (V, span), the
empirical Bellman operator T̂n may not be a contraction.

Thus, we introduce a projection operator P : V → V
defined as follows:

Pv(s) =


(
v(s)−minj∈S v(j)

)
if span(v) ≤ ‖c‖∞1−α(

v(s)−minj∈S v(j)
)

span(v) otherwise.

This operator P first translates a value function so that the
minimum of the function is zero, and then scales it so that
span(Pv) ≤ ‖c‖∞1−α

2.
The ERVI algorithm consists essentially of the same steps

as in exact relative value iteration, except that we plug
in an estimate from simulation for the expectation in the
operator T . However, since T̂n is not guaranteed to be a
contraction, we add a projection step using the P operator
that ensures boundedness of all iterates. The algorithm is
formally described above.

Algorithm 1 Empirical Relative Value Iteration (ERVI)

Input: Number of iterations K ∈ N, v0 ∈ R|S|, sample size
n ≥ 1. Set counter k = 0.

1) Sample n uniformly distributed random variables
{Wi}ni=1 from [0, 1], and compute

ṽk+1 = T̂nv̂k

2) v̂k+1 = P ṽk+1

3) If k ≥ K, then stop. Else k ← k+ 1 and go to Step 1.

A natural question now is how good is the solution found
by the empirical RVI algorithm and whether we can provide
any guarantees on the quality of the solution. Let v̂nK denote
the outcome of the ERVI algorithm, where we use n samples
in each iteration and do K iterations. We can establish the
following.

2We need to know the value of α in order to use the projection operator
during the simulation. For some special cases, α can be bounded from above
easily even when the state space is large. For example, if we know that there
is a state s0 ∈ S such that p(s0|s, a) ≥ η for all (s, a) ∈ K for some
constant η > 0, then α ≤ 1−η. We thank the referee for pointing this out.

Theorem 2: Consider an MDP that satisfies Assumption
1 with an average-cost criterion. Let v̂nK be the iterate from
the ERVI algorithm with n samples in each iteration and K
iterations. Then, for any ε > 0,

lim
n→∞

lim sup
K→∞

P
{

span(v? − v̂nK) > ε
}

= 0.

This implies that as the number of samples and iterations go
to infinity, the value function computed by ERVI converges
in probability to the optimal value function v? in the span
seminorm. This assures us that with finite n and for finite
K, ERVI will return a value function that is close (in the
span seminorm) to the optimal value function with high
probability.

Note that the guarantee on the quality of the solution
by ERVI is weaker than what stochastic approximation-
based algorithms such as Q-learning for average-cost MDPs
give. However, we get a faster convergence rate and lower
computational complexity than both exact and reinforcement
learning algorithms.

To prove this result, we introduce a quotient space (V/ ∼
, span) by defining functions in space V to be in the same
equivalence class if they differ by a constant function: For a
function v ∈ V , an element [v] ∈ V/ ∼ is defined as

[v] =
{
ṽ ∈ V : ṽ − v is a constant function

}
=
⋃
λ∈R
{v + λ1|S|}.

Thus, [v1] = [v2] if and only if v1 − v2 is a function with
equal entries. Also, note that for v1, v2 ∈ V ,

[v1] + [v2] = [v1 + v2]. (6)

We also have span([v]) = span(v) = span(w) for any w ∈
[v]. Thus,

span([v1] + [v2]) = span([v1 + v2]) = span(v1 + v2).

For more information on the span seminorm and the resulting
quotient space, we refer the reader to Appendix I. We
extend the Bellman operator, the empirical Bellman operator,
and the projection operator on space V to corresponding
operators over the quotient space V/ ∼. Then, we study
probabilistic convergence properties of the extended opera-
tors, and use a result of [9] to conclude Theorem 2.

IV. CONVERGENCE ANALYSIS OF ERVI

In this section, we present a proof of Theorem 2. For this
purpose, we leverage some results about iteration of random
operators over Banach spaces from [9]. There, it was shown
that if a non-linear operator and corresponding sequence
of random operators satisfy four simple conditions, then
iterations using random operators converges to a fixed point
which is close to the fixed point of the non-linear operator
with high probability. We restate the result in slightly easier
form to facilitate understanding our result.

Theorem 3 (Theorem 4.3, [9]): Let X be a complete
normed vector space, F : X → X be a contraction operator
with a fixed point x?, and F̂n : X → X be a random operator
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approximating the operator F using n i.i.d. samples of some
random variable. Suppose that the following conditions hold:

1) F is a contraction with coefficient α < 1.
2) There exists κ > 0 such that ‖x?‖X ≤ κ and
‖F̂ kn0‖X ≤ κ for all k ∈ N almost surely.

3) For any ε > 0 and n ∈ N, there exists constant p1, p2 >
0 such that we have

P
{
‖Fx− F̂nx‖X > ε

}
≤ p1 exp

(
−p2ε

2n

‖x‖2X

)
.

4) We have

P
{

lim
n→∞

F̂nx = Fx
}

= 1.

Then, for any ε > 0,

lim
n→∞

lim sup
k→∞

P
{
‖F̂ knx− x?‖X > ε

}
= 0.

In the problem we consider here, we are approximating
operator T by T̂n. Both operators are defined over the
semi-normed space (V, span), which, unfortunately, is not a
Banach space. However, by reformulating the convergence
problem over the quotient space (V/ ∼, span) (and by
extending the operators), we show that the setting considered
in Theorem 3 can be applied.

A. Bellman and Empirical Operators over Quotient Space

We first note the following property of the projection
operator.

Lemma 4: For any v1, v2 ∈ V , span(Pv1 − Pv2) ≤
span(v1 − v2). Consequently, span(Pv1 − Pv2) ≤ 2‖v1 −
v2‖∞.
Proof: Consider the operator ΛP : V/ ∼→ V/ ∼ obtained
by defining

ΛP [v] = [Pv].

Since ΛP is simply a projection operator on V/ ∼, the result
follows.

We now extend the operators PT : V → V and PT̂n :
V → V to the quotient space V/ ∼ as follows:

Λ[v] := [PTv], Λ̂n[v] = [PT̂nv].

We immediately conclude that for any v ∈ V ,

Λ[v]− Λ̂n[v] = [PTv − PT̂nv]

=⇒ span
(

Λ[v]− Λ̂n[v]
)
≤ 2‖Tv − T̂nv‖∞, (7)

where we used Lemma 4.

B. Properties of the Empirical Operator Λ̂n

We first study the relationship between T and T̂n. Pick any
v ∈ V . The strong law of large numbers [10] then implies

P
{

lim
n→∞

T̂nv = Tv
}

= 1

⇔ P
{

lim
n→∞

‖T̂nv − Tv‖∞ = 0
}

= 1.

Hoeffding inequality [11], [12] implies

P
{
‖Tv − T̂nv‖∞ ≥ ε

}
≤ 2|K| exp

(
− 2ε2n

‖v‖2∞

)
.

With these two results, we can now state the relationship
between Λ and Λ̂n.

Lemma 5: For any v ∈ V with span(v) ≤ κ := ‖c‖∞
1−α ,

we have

P
{

lim
n→∞

span
(

Λ̂n[v]− Λ[v]
)

= 0
}

= 1, and

P
{

span
(

Λ̂n[v]− Λ[v]
)
≥ ε
}

≤ 2|K| exp

(
−2(ε/2)2n

κ2

)
.

Proof: Equation (7) yields both the results.
1) Let Ω0 ⊂ [0, 1]N be the set of {wi}i∈N ∈ [0, 1]N such

that

lim
n→∞

T̂nv = Tv.

We know from the strong law of large numbers that
P {Ω0} = 1. Since (7) holds, we know that for every
{wi}i∈N ∈ Ω0, we have

lim
n→∞

span
(

Λ[v]− Λ̂n[v]
)

≤ lim
n→∞

2‖Tv − T̂nv‖∞ = 0.

Thus, we get

P
{

lim
n→∞

span
(

Λ̂n[v]− Λ[v]
)

= 0
}
≥ P {Ω0} = 1.

This completes the proof of the first result.
2) By (7), we immediately conclude

P
{

span
(

Λ̂n[v]− Λ[v]
)
≥ ε
}

≤ P
{

2‖Tv − T̂nv‖∞ ≥ ε
}

≤ 2|K| exp

(
−2(ε/2)2n

κ2

)
.

In the next lemma, we prove that if T is a contraction,
then so is Λ.

Lemma 6: If T is a contraction with coefficient α < 1
over the semi-normed space (V, span), then Λ : V/ ∼→
V/ ∼ is also a contraction with coefficient α.
Proof: We have

span(Λ[v1]− Λ[v2]) = span(PTv1 − PTv2),

≤ span(Tv1 − Tv2),

≤ α span(v1 − v2),

= α span([v1]− [v2]),

where the first inequality follows from Lemma 4 and the
second inequality follows from the hypothesis.

Remark 1: Recall that the projection operator is used in
Step 2 of empirical relative value iteration algorithm. As a
result of the projection, we always have span(Λ̂kn[0]) ≤ ‖c‖∞1−α
almost surely. �
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Theorem 7: Consider an average cost MDP that satisfies
Assumption 1. Then, for any ε > 0

lim
n→∞

lim sup
k→∞

P
{

span
(

Λ̂kn[0]− v?
)
> ε
}

= 0.

Proof: Notice that V/ ∼ is a complete normed vector
space. Lemmas 5 and 6 and Remark 1 imply that Λ and Λ̂n
satisfy the hypotheses of Theorem 3. The result then follows
immediately from Theorem 3.

The result above implies Theorem 2. Thus, one can get
an approximately optimal solution of the average cost MDP
with empirical relative value iteration with high probability.
The sample complexity for this problem is summarized in
the following theorem.

Theorem 8: Given ε, δ > 0, pick δ1, δ2 > 0 such that
δ1 + 2δ2 ≤ δ. Define

η =

⌈
2

1− α

⌉
, M =

⌈
2ηκ

ε

⌉
,

pn = 1− 2|K| exp

(
− ε2n

2η2κ2

)
,

µn(η) = pM−η−1n , µn(M) =
1− pn
pn

,

µn(j) = (1− pn)pM−j−1n , η < j < M, j ∈ N.

Then, the sample complexity is given by

N(ε, δ) =
2κ2η2

ε2
log

(
2|K|
δ1

)
,

K(ε, δ, n) = log

(
1

δ2µ?n

)
,

where µ?n = minη≤j≤M µn(j). Moreover, for every n ≥
N(ε, δ), we get

sup
k≥K(ε,δ,n)

P
{

span
(

Λ̂kn[0]− v?
)
> ε
}
≤ δ.

Proof: The proof follows immediately from [9, Theorem
3.1, p. 6].

V. NUMERICAL PERFORMANCE

We now present numerical performance results for the
ERVI algorithm. For this purpose, we consider an MDP
with 100 states and 5 actions, and generated the transition
probability matrix randomly. We also ran the exact rela-
tive value iteration (RVI) algorithm on the same MDP for
comparison purposes. ERVI was run with 20, 40 and 200
samples. In each case, 200 simulation runs were conducted
and the normalized error

‖v̂k − v?‖∞
‖v?‖∞

× 100%.

averaged over these runs.
As can be seen in Figure 1, exact RVI converges in

3 iterations for this MDP. ERVI with 20 samples settles
down to about 15% normalized error in the same number
of iterations. As we increase the number of samples, this
decreases and for n = 200, we get less than 5% normalized
error in 3 iterations.

Iteration number
0 2 4 6 8 10

%
 N

or
m

al
iz

ed
 E

rr
or

0

20

40

60

80

100
|S| = 100, |A| = 5

Exact RVI
Empirical RVI N =20
Empirical RVI N =40
Empirical RVI N =200

Fig. 1. Average normalized error vs. iteration number for N = 20, 40, 200
using empirical relative value iteration.

We also note that in these simulations, the projection
operation was not needed at all. Our proof depends on
the projection step in the algorithm, but we conjecture that
convergence holds without it as well.

VI. CONCLUSION

In this paper, we introduced a simulation-based approx-
imate dynamic programming algorithm called ‘empirical
relative value iteration’ for average-cost Markov decision
processes. Although the idea behind proposing this algorithm
is simple and natural, proving convergence is rather non-
trivial. We are able to cast relative value iteration as value
iteration on a quotient space over which the extended Bell-
man operator is a contraction. In fact, we can view empirical
relative value iteration as empirical value iteration on the
quotient space. Thus, we are able to leverage results about
the convergence analysis of iteration of random operators
that was developed in [9] to prove the convergence of the
relative value iterates of ERVI in probability. One of the most
interesting conclusions about the empirical algorithm in this
paper (and about empirical dynamic programming, in gen-
eral) is that it has surprisingly good numerical performance
for all practical purposes; in fact, the convergence is faster
than even reinforcement learning algorithms. In the future,
we will prove convergence without requiring the projection
step in the algorithm. We will also extend this framework to
infinite state spaces.
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APPENDIX I
QUOTIENT SPACE AND OPERATORS OVER THE QUOTIENT

SPACE

In this section, we study the span semi-norm over the space
V . First, let us show that span is a semi-norm.

1) Let v ∈ V ∼= R|S|. Then, span(v) = maxs∈S v(s) −
mins∈S v(s) ≥ 0. Span of a function v is zero if and
only if it is of the form v = λ1|S| for some λ ∈ R.

2) For any constant λ ∈ R, we have span(λv) =
|λ|span(v).

3) For any v1, v2 ∈ V , span(v1 + v2) ≤ span(v1) +
span(v2). We can prove it as follows:

span(v1 + v2) = max
s∈S

(
v1(s) + v2(s)

)
−min

s∈S

(
v1(s) + v2(s)

)
≤max

s∈S
v1(s) + max

s∈S
v2(s)

−min
s∈S

v1(s)−min
s∈S

v2(s)

=span(v1) + span(v2),

where the inequality follows from the properties of
minimum and maximum.

Therefore, span is a semi-norm on V and not a norm,
because it does not satisfy positive definiteness. Our goal
now is to prove that the normed space (V/ ∼, span) is in fact
a Banach space. To prove this result, we need the following
lemma.

Lemma 9: Let V0 ⊂ V be the subset of functions in
which at least one of the entries is 0. For every s ∈ S and
v ∈ V0, |v(s)| ≤ span(v).
Proof: Fix s0 ∈ S. Assume that v(s0) ≥ 0. We have

max
s
v(s) ≥ 0 ≥ min

s
v(s) and v(s0) ≤ max

s
v(s)

=⇒ v(s0) ≤ max
s
v(s)−min

s
v(s) = span(v).

Now, if v(s0) < 0, then apply the above approach to −v.
We get −v(s0) ≤ span(−v) = span(v). In other words,
|v(s)| ≤ span(v) for all s ∈ S. The proof is thus complete.

Lemma 10: (V/ ∼, span) is a Banach space.
Proof: Consider a Cauchy sequence {[vn]}n∈N ⊂ V/ ∼
such that for every ε > 0, there exists Nε such that
span([vn]− [vm]) < ε for every n,m ≥ N .

Fix s0 ∈ S . Pick wn ∈ [vn] such that wn(s0) = 0 for all
n ∈ N. Then, for any m,n ∈ N, we have wn(s0)−wm(s0) =
0, or wn − wm ∈ V0 (see Lemma 9). By Lemma 9, we get
that for every s ∈ S,

|wn(s)− wm(s)| ≤ span(wn − wm) = span([vn]− [vm]).

We next claim that for every s ∈ S, {wn(s)}n∈N ⊂ R is a
Cauchy sequence in R. Fix ε > 0. For every m,n ≥ Nε, we
get

|wn(s)− wm(s)| < ε,

which implies that {wn(s)}n∈N is a Cauchy sequence, and
therefore converges. Define w∞(s) = limn→∞ wn(s), and
define [v∞] = [w∞].

We next claim that [v∞] is the limit of {[vn]}n∈N, which
establishes the result. Indeed,

lim
n→∞

span([vn]− [v∞]) = lim
n→∞

span(wn − w∞) = 0.

This completes the proof of the lemma.

We now consider operators over this quotient space. Let
L : V → V be any operator such that L(v + λ1|S|) =
Lv + λ1|S|

3. This operator can be extended to an operator
ΛL : V/ ∼→ V/ ∼ as follows:

ΛL([v]) = [Lv]. (8)

Note that with the above definition, if w ∈ [v], then
ΛL([w]) = ΛL([v]). Thus, it does not matter which rep-
resentative element of [v] we pick for computing ΛL([v]).

Suppose that L1 and L2 are two operators such that Li(v+
λ1|S|) = Liv + λ1|S| for i ∈ {1, 2}. Then, for any v ∈ V ,
the following hold:

ΛL1
[v]− ΛL2

[v] = [L1v − L2v], (9)
ΛL1

ΛL2
[v] = ΛL1

[L2v] = [L1L2v]. (10)

3One can immediately recognize that Bellman operator T , empirical
Bellman operator T̂N , and projection operator P satisfy this condition.
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