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Abstract Let X be a Lévy process and V the reflection at boundaries 0 and b > 0. A
number of properties of V are studied, with particular emphasis on the behaviour at
the upper boundary b. The process V can be represented as solution of a Skorokhod
problem V.t/ D V.0/CX.t/CL.t/�U.t/where L;U are the local times (regulators)
at the lower and upper barrier. Explicit forms of V in terms of X are surveyed as
well as more pragmatic approaches to the construction of V , and the stationary
distribution � is characterised in terms of a two-barrier first passage problem. A key
quantity in applications is the loss rate `b at b, defined as E�U.1/. Various forms of
`b and various derivations are presented, and the asymptotics as b ! 1 is exhibited
in both the light-tailed and the heavy-tailed regime. The drift zero case EX.1/ D 0

plays a particular role, with Brownian or stable functional limits being a key tool.
Further topics include studies of the first hitting time of b, central limit theorems
and large deviations results for U, and a number of explicit calculations for Lévy
processes where the jump part is compound Poisson with phase-type jumps.
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1 Introduction

This article is concerned with a one-dimensional Lévy process X D ˚
X.t/

�
t�0

reflected at two barriers 0; b and is a mixture of a literature survey and new results
or proofs.

We denote the two-sided reflected process by V D ˚
V.t/

�
t�0 (or Vb, when the

dependence on b needs to be stressed). The discrete time counterpart of V is a two-
sided reflected random walk

�
Vn W n D 0; 1; 2; : : :

�
defined by

Vn D min
�
b;max.0;Vn�1 C Yn/

�
(1)

where Y1;Y2; : : : are i.i.d. (with common distribution say F) and initial condition
V0 D v for some v 2 Œ0; b�; the role of the Lévy process X is then taken by the
random walk Xn D Y1 C � � � C Yn.

The study of such processes in discrete or continuous time has a long history and
numerous applications. For a simple example, consider the case X.t/ D PN.t/

1 Zi �
ct of a compound Poisson process with drift, where N is Poisson.�/ and the Zi

independent of N, i.i.d. and non-negative. Here one can think of V as the amount of
work in a system with a server working at rate c, jobs arriving at Poisson rate � and
having sizes Z1;Z2; : : : ; and finite capacity b of storage. If a job of size y > b � x
arrives when the content is x, only b � x of the job is processed and x C y � b is
lost. One among many examples is a data buffer, where the unit is number of bits
(discrete in nature, but since both b and a typical job size z are huge, a continuous
approximation is motivated).

Studies of systems with such finite capacity are numerous, and we mention
here waiting time processes in queues with finite capacity [25, 48–50], and a finite
dam or fluid model [11, 113, 132]. They are used in models of network traffic or
telecommunications systems involving a finite buffer [79, 95, 144], and they also
occur in finance, e.g. [60, 63]. In the queueing context, it should be noted that even
if in the body of literature, there is no upper bound b on the state space, the reason is
mainly mathematical convenience: the analysis of infinite-buffer systems is in many
respects substantially simpler than that of finite-buffer systems. In real life, infinite
waiting rooms or infinite buffers do not occur, so that the infinite-buffer assumption
is really just an approximation.

In continuous time, there is no obvious analogue of the defining Eq. (1). We
follow here the tradition of representation as solution of a Skorokhod problem

V.t/ D V.0/C X.t/C L.t/ � U.t/ (2)
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Fig. 1 The processes X (blue), V (blue), L (green), U (red)

where L;U are non-decreasing right-continuous processes such that

Z 1

0

V.t/ dL.t/ D 0 ;

Z 1

0

�
b � V.t/

�
dU.t/ D 0 : (3)

In other words, L can only increase when V is at the lower boundary 0, and U only
when V is at the upper boundary b. Thus, L represents the ‘pushing up from 0’ that
is needed to keep V.t/ � 0 for all t, and U represents the ‘pushing down from b’
that is needed to keep V.t/ � b for all t. An illustration is given in Fig. 1, with the
unreflected Lévy process in the upper panel, whereas the lower panel has the two-
sided reflected process V (blue) in the middle subpanel, L (red) in the lower and U
(green) in the upper. Questions of existence and uniqueness are discussed in Sects. 3
and 4.

As usual in applied probability, a first key question in the study of V is the long-
run behavior. A trivial case is monotone sample paths. For example if in continuous
time the underlying Lévy process X has non-decreasing and non-constant sample
paths, then V.t/ D b for all large t. Excluding such degenerate cases, V regenerates
at suitable visits to 0 (see Sect. 5.1 for more detail), and a geometric trial argument
easily gives that the mean regeneration time is finite. Thus by general theory [11], a
stationary distribution � D �b exists and

1

N C 1

NX

nD0
f .Vn/ ! �.f / ;

1

T

Z T

0

f .Vt/ dt ! �.f / (4)

a.s. in discrete, resp. continuous time whenever f is (say) bounded or non-negative.
A further fundamental quantity is the overflow or loss at b which is highly relevant
for applications; in the dam context, it represents the amount of lost water and in the
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data buffer context the number of lost bits. The loss at time n is .Yn CVn�1�b/C and
so by a suitable LLN (e.g. [11, VI.3]) the long-run behavior of the loss in discrete
time is given by

1

N

NX

nD1
.Yn C Vn�1 � b/C !

Z b

0

�.dx/
Z 1

b�x
.y C x � b/C F.dy/ ; (5)

as follows by conditioning on Yn D y and using (4).
We denote by ` D `b the limit on the r.h.s. of (5) and refer to it as the loss rate.

For example, in data transmission models the loss rate can be interpreted as the bit
loss rate in a finite data buffer.

The form of � in the general continuous-time Lévy case is discussed in Sect. 5.
In general, � is not explicitly available (sometimes the Laplace transform is). The
key result for us is a representation as a two-sided exit probability,

�Œx;1/ D �Œx; b� D P
�
V
�
�Œx � b; x/

� � x
�

(6)

where �Œy; x/ D inf
˚
t � 0 W X.t/ 62 Œy; x/�, y � 0 � x.

In continuous time, the obvious definition of the loss rate is ` D E�U.1/ D
E�U.t/=t. However, representations like (5) are not a priori obvious, except for
special cases as X being compound Poisson where

` D
Z b

0

�.dx/
Z 1

b�x
.x C y � b/�G.dy/ ;

where � is the Poisson rate and G the jump size distribution. To state the main result,
we need to introduce the basic Lévy setup:

X.t/ D ct C �B.t/C J.t/ ;

where B is standard Brownian motion and J an independent jump process with Lévy
measure � and jumps of absolute size � 1 compensated. That is, the Lévy exponent

�.˛/ D logEe˛X.1/ D 1

t
logEe˛X.t/

(defined when Ee<.˛/X.1/ < 1) is given by

�.˛/ D c˛ C �2˛2=2C
Z 1

�1
�
e˛y � 1 � y�.jyj � 1/

�
�.dy/ ; (7)
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and one often refers to .c; �2; �/ as the characteristic triplet of X (see the end of the
section for further detail and references). We further write

m D EX.1/ D EX.t/=t D �0.0/ D c C
Z

jyj>1
y �.dy/

for the mean drift of X.

Theorem 1.1 Assume that m is well-defined and finite. Then

`b D 1

2b

(

2mE�V C �2 C
Z b

0

�.dx/
Z 1

�1
'.x; y/�.dy/

)

;

where

'.x; y/ D

8
ˆ̂
<

ˆ̂
:

�.x2 C 2xy/ if y � �x;

y2 if � x < y < b � x;

2y.b � x/� .b � x/2 if y � b � x:

Theorem 1.1 first appears in Asmussen and Pihlsgård [16], with a rather intricate
and lengthy proof. Section 6 contains a more direct and shorter proof originating
from Pihlsgård and Glynn [118]. In Sect. 8, we summarize the original approach
of [16], and in Sect. 15, some new representations of `b are presented using yet
another approach. Whereas the method in Sect. 8 uses asymptotic expansions of
identities obtained by martingale optional stopping, the ones in Sects. 6 and 15
contain stochastic calculus as a main ingredient.

Fig. 2 The function '.x; y/ plotted for b D 5, 0 � x � b, �5 � y � 5



72 L.N. Andersen et al.

The form of the function '.x; y/ is illustrated in Fig. 2. Starting from Theo-
rem 1.1, it is fairly straightforward to derive an alternative formula for `b, which
can be convenient (note that the form (6) for the tail probability �Œx; b� has a nicer
form than the one for �.dx/ that follows by differentiation).

Corollary 1.2 The loss rate `b can be written

`b D 1

2b

(

2mEV C �2 C
Z b

0

y2�.dy/C
Z 1

b
.2yb � b2/�.dy/

� 2

Z b

0

(Z �x

�1
.x C y/�.dy/C

Z 1

b�x
.x C y � b/�.dy/

)

�Œx; b�dx

)

:

Similar discussion applies to the underflow of 0, but for obvious symmetry
reasons, it suffices to consider the situation at the upper barrier. One should note,
however, that with `0 D E�L.1/ one has

0 D m C `0 � `b : (8)

Thus, `0 is explicit in terms of `b. Relation (8) follows by a rate conservation
principle, since in order for X C L � U to preserve stationarity, the drift must be
zero. One may note that no moment conditions on X are needed for the existence of
a stationary version of V . However, if EjX.1/j D 1, then one of `b or `0 is infinite
(or both are).

In many applications, the upper buffer size b is large. This motivates that instead
of going into the intricacies of exact computation of quantities like the loss rate
`b, one may look for approximate expression for b ! 1. Early references in this
direction are Jelenković [79] who treated the random walk case with heavy tails, and
Kim and Shroff [95], who considered the light-tailed case but only gave logarithmic
asymptotics. Exact asymptotics for the light-tailed case is given in Asmussen and
Pihlsgård [16] and surveyed in Sect. 10, whereas asymptotics for the heavy-tailed
Lévy case first appears in Andersen [5] and is surveyed in Sect. 11. We assume
negative drift, i.e. m D EX.1/ < 0, but by (8), the results can immediately be
translated to positive drift. Note, however, that with negative drift one has `b ! 0

as b ! 1 (the results of Sects. 10 and 11 give the precise rates of decay), whereas
with positive drift `b ! m (thus, (8) combined with Sects. 10 and 11 gives the
convergence rate). The case of zero drift m D 0 has specific features as studied
in Andersen and Asmussen [4], see Sect. 12; the key tool is here a functional limit
theorem with either a Brownian or a stable process limit.

Going one step further in the study of the loss rate, one may ask for transient
properties. One question is properties of the overflow time infft > 0 W Vb.t/ D bg
where one possible approach is regenerative process theory, Sect. 13 and another
integro-differential equations, Sect. 14.2. Another question is properties of U.t/ for
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t < 1. From the above, U obeys the LLN EU.t/=t ! ` as t ! 1. Obvious
questions are an associated CLT,

p
t
�
U.t/� `

� ! N.0; �2/

for some suitable �2, and large deviations properties like the asymptotics of

P
�
U.t/ > t.1C "/`

�
and P

�
U.t/ < t.1 � "/`

�
:

These topics are treated (for the first time) in Sects. 14.3 and 14.4.
Finally, the paper contains a number of explicit calculations for the special

case where the jump part is compound Poisson with phase-type jumps. There
is a considerable literature on this or closely related models. and we refer to
Asmussen [12] for a survey and references. We have also included some material
on one-sided reflection (Sect. 2) and two-sided reflection in discrete time (Sect. 3),
which should serve both as a background and to give an understanding of the special
problems that arise for the core topic of the paper, two-sided reflection in continuous
time.

We conclude this introduction with some supplementary comments on the set-up
on the Lévy model. Classical general references are Bertoin [28] and Sato [129], but
see also Kyprianou [104] and Applebaum [7].

A simple case is jumps of bounded variation, which occurs if and only ifR1
�1 jxj �.dx/ < 1. Then the expression (7) can be rewritten

�.˛/ D Qc˛ C �2˛=2 C
Z 1

�1
.e˛y � 1/ �.dy/ ; (9)

where

Qc D c �
Z 1

�1
y �.dy/ ; m D Qc C

Z 1

�1
y �.dy/ : (10)

With infinite variation, the integrals in (9) diverge, so that one needs the form (7).
To avoid trivialities, we assume throughout that the sample paths of X are non-

monotone; in terms of the parameters of X, this means that either

(a) �2 > 0,
(b) �2 D 0 and X is of unbounded variation (i.e.

R jyj �.dy/ D 1),
(c) �2 D 0, X is of bounded variation, and the Lévy measure � has support both in

.�1; 0/ and .0;1/,
(d) �2 D 0, X is of bounded variation, and either the Lévy measure � has support

in .�1; 0/ and Qc > 0 in (9), or � has support in .0;1/ and Qc < 0 in (9).
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2 One-Sided Reflection

Consider first the discrete time case and let Xn D Y1 C � � � C Yn where Y1;Y2; : : :
are i.i.d. (with common distribution say F) so that X is a random walk. The random
walk one-sided reflected at 0 (i.e., corresponding to b D 1) is then defined by the
recursion

V1n D .V1n�1 C Yn/
C D max

�
0;V1n�1 C Yn

�
(11)

starting from V10 � 0. The process V1 also goes under the name a Lindley process
(see [11, III.6] for a survey and many facts used in the following) and is a Markov
chain with state space Œ0;1/.

For the following, it is important to note that the recursion (11) is explicitly
solvable:

V1n D max
�
V10 C Xn;Xn � X1; : : : ;Xn � Xn�1; 0

�
(12)

(for a proof, one may just note that the r.h.s. of (12) satisfies the recursion (11)).
Reversing the order of Y1; : : : ;Yn yields

V1n
DD max

�
V10 C Xn;Xn�1; : : : ;X1

�
: (13)

This shows in particular that V1n is increasing in stochastic order so that a limit in
distribution V11 exists. By a standard random walk trichotomy [11, VIII.2], one of
the following possibilities arises:

(a) Xn ! 1 so that V11 D 1 a.s.;
(b) lim supn!1 Xn D 1, lim infn!1 Xn D �1 so that max

�
V0 C

Xn;Xn�1; : : : ;X1
� ! 1 and V11 D 1 a.s.;

(c) Xn ! �1 so that V1 < 1 a.s.

For our purposes, it is sufficient to assume EjYj < 1, and letting m D EY, the three
cases then correspond to m > 0, m D 0, resp. m < 0, or, in Markov chain terms,
roughly to the transient, null recurrent, resp. positive recurrent (ergodic) cases.

Consider from now on the ergodic case m < 0 (and, to avoid trivialities, assume
that P.Y > 0/ > 0). Define M D maxn�0 Xn. Since Xn ! �1, V10 C Xn in (13)
vanishes eventually, and letting n ! 1 yields

V11
DD M : (14)

It is often convenient to rewrite this in the form

�1.x/ D P.V11 > x/ D P
�
�.x/ < 1�

; (15)

where �.x/ D inffn W Xn > xg and �1 is the distribution of V11 .



Lévy Processes with Two-Sided Reflection 75

Explicit or algorithmically tractable forms of �1 can only be found assuming
some special structure, mainly skip-free properties or phase-type (or, more gener-
ally, matrix-exponential) forms, see [11, VIII.5]. Therefore asymptotics is a main
part of the theory. The two main results are:

Theorem 2.1 (Light-Tailed Case) Assume m < 0, that F is non-lattice and that
there exists 	 > 0 with Ee	Y D 1, E

�
Ye	Y

�
< 1. Then there exists 0 < C < 1

such that

�1.x/ D P.V11 > x/ � Ce�	x ; x ! 1: (16)

Theorem 2.2 (Heavy-Tailed Case) Assume m < 0, that

FI.x/ D
Z 1

x
F.y/ dy

is a subexponential tail1 and that F is long-tailed in the sense that F.xCx0/=F.x/ !
1 for any x0. Then

�1.x/ D P.V11 > x/ � 1

jmjFI.x/ ; x ! 1: (17)

Sketch of Proof of Theorem 2.1 We use a standard exponential change of measure
technique [11, Ch. XIII]. Let QP; QE refer to the case where X has c.d.f.

QF.x/ D E
�
e	XI X � x

�

rather than F.x/. Using (15) and standard likelihood ratio identities gives

�1.x/ D P
�
�.x/ < 1� D QE�e�	X�.x/ I �.x/ < 1� D e�	x QEe�	
.x/ ; (18)

where 
.x/ D X�.x/�x is the overshoot. Thus, the result follows with C D Ee�	
.1/
once it is shown that 
.x/ has a proper limit 
.1/ in distribution. This in turn follows
by renewal theory by noting that 
.x/ has the same distribution as the time until the
first renewal after x in a renewal process with interarrivals distributed as 
.0/ (the
first ladder height). That 
.0/ is non-lattice follows from F being so, and QE
.0/ < 1
follows from EŒXe	X� < 1. We omit the easy details. �

The computation of C D Ee�	
.1/ is basically of the same level of difficulty as
the computation of �1 itself and feasible in essentially the same situations. Results

1By this we mean that there exists a subexponential distribution G such that FI.x/ D G.x/ for
all large x. For background on heavy-tailed distributions, see e.g.[13, X.1], [62] and the start of
Sect. 3.
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of type Theorem 2.1 commonly go under the name Cramér-Lundberg asymptotics,
and the equation Ee	Y D 1 is the Lundberg equation.

Discussion of Proofs of Theorem 2.2 The form of the result can be understood from
the ‘one big jump’ heuristics, stating that large values of sums and random walks
arise as consequence of one big Yi, while the remaining Yj are ‘typical’; in particular,
Xi�1 D Pi�1

jD1 Yj � im for large i. Splitting up after the value of i and noting that the
contribution from a finite segment 1; : : : ; i0 is insignificant, we therefore get

P.M > x/ D
1X

iD1
P
�
�.x/ D i

� �
1X

iD1
E
�
Xi�1 � im;Yi > x � im

�

�
1X

iD1
P.Yi > x � im/ D

1X

iD1
F.x � im/

�
Z 1

0

F.x � tm/ dt D 1

jmj
Z 1

x
F.u/ du D 1

jmjFI.x/ :

The rigorous verification of (17) traditionally follows a somewhat different line
where the essential tool is ladder height representations. The first step is to show
that the first ladder height X�.0/ has a tail asymptotically proportional to FI , and
next one uses the representation of M as a geometric sum of ladder heights to get
the desired result. The details are not really difficult but too lengthy to be given
here. See, e.g., [11, X.9] or [13, X.3]. A more recent proof by Zachary [140] (see
also Foss et al. [62]) is, however, much more in line with the above heuristics. �

We next turn to continuous time where X is a Lévy process. There is no recursion
of equal simplicity as (11) here, so questions of existence and uniqueness have to be
treated by other means.

One approach simply adapts the representation (12) by rewriting the r.h.s. as

.V10 C Xn/ _ max
iD0;:::;n.Xn � Xi/ D Xn C max

�
V10 ;� min

iD0;:::;n Xi

�
:

One then defines the continuous-time one-sided reflected process in complete
analogue with the discrete case by

V1.t/ D X.t/C L.t/ (19)

where

L.t/ D max
�

V1.0/;� min
0�s�t

X.s/
�
: (20)

(this can be motivated for example by a discrete skeleton approximation). Here L is
often denoted the local time at 0, though this terminology is somewhat unfortunate
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because ‘local time’ in used in many different meanings in the probability literature.
Often also the term regulator is used.

The second approach uses the Skorokhod problem: in (20), take L as a non-
decreasing right-continuous process such that

Z 1

0

V1.t/ dL.t/ D 0 : (21)

In other words, L can only increase when V1 is at the boundary 0. Thus, L
represents the ‘pushing up from 0’ that is needed to keep V1.t/ � 0 for all t.

It is readily checked that the r.h.s. of (20) represents one possible choice of L.
Thus, existence is clear. Uniqueness also holds:

Proposition 2.3 Let
˚
L�.t/

�
be any nondecreasing right-continuous process such

that (a) the process
˚
V�.t/

�
given by V�.0/ D V.0/, V�.t/ D Xt C L�.t/ satisfies

V�.t/ � 0 for all t, (b) L� can increase only when V� D 0, i.e.
R T
0

V�.t/ dL�.t/ D 0

for all T. Then L�.t/ D L.t/, V�.t/ D V1.t/.

Proof Let D.t/ D L.t/ � L�.t/, �D.s/ D D.s/ � D.s�/. The integration-by-parts
formula for a right-continuous process of bounded variation gives

D2.t/ D 2

Z t

0

D.s/dD.s/�
X

s�t

�
�D.s/

�2

D 2

Z t

0

�
L.s/ � L�.s/

�
dL.s/� 2

Z t

0

�
L.s/ � L�.s//dL�.s/ �

X

s�t

�
�D.s/

�2

D 2

Z t

0

�
V1.s/� V�.s/

�
dL.s/ � 2

Z t

0

�
V1.s/� V�.s/

�
dL�.s/ �

X

s�t

�
�D.s/

�2

D �2
Z t

0

V�.s/ dL.s/ � 2

Z t

0

V1.s/dL�.s/ �
X

s�t

�
�D.s/

�2
:

Here the two first integrals are nonnegative since V�.s/ and V1.s/ are so, and also
the sum is clearly so. Thus D.t/2 � 0, which is only possible if L.t/ � L�.t/. �

Define M D max0�t<1 X.t/ and assume m D EX.1/ < 0. The argument
for (14) then immediately goes through to get the existence of a proper limit V1.1/

of V1.t/ and the representation

V1.1/
DD M : (22)

Equivalently,

�1.x/ D P.V1.1/ > x/ D P
�
�.x/ < 1�

; (23)
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where �.x/ D infft > 0 W X.t/ > xg and �1 is the distribution of V.1/.
The loss rate ` D `b is undefined in this setting since b D 1. A closely related

quantity is `0 D E�1L.1/ and one has

`0 D �m : (24)

This follows by a conservation law argument: in (19), take t D 1, consider the
stationary situation and take expectations to get2

E�1V.1/ D E�1V.0/C E�1X.1/C E�1L.1/ D E�1V.1/C m C `0 :

For an example of the relevance of `0, consider the M/G/1 workload process. Here
`0 can be interpreted as the average unused capacity of the server or as the average
idle time.

We next consider analogues of the asymptotic results in Theorems 2.1 and 2.2.
The main results are the following two theorems (for a more complete treatment,
see [13, XI.2]):

Theorem 2.4 (Light-Tailed Case) Assume m < 0, that X is not a compound
Poisson process with lattice support of the jumps, and that there exists 	 > 0 with
�.	/ D 0, �0.	/ < 1. Then there exists 0 < C < 1 such that

�1.x/ D P
�
V1.1/ > x

� � Ce�	x ; x ! 1: (25)

Theorem 2.5 (Heavy-Tailed Case) Assume m < 0, that

�.x/ D
Z 1

x
�.dy/

is a subexponential tail and that � is long-tailed in the sense that �.xCx0/=�.x/ ! 1

for any x0. Then

�1.x/ D P
�
V1.1/ > x

� � 1

jmj�I.x/ ; x ! 1; (26)

where �I.x/ D
Z 1

x
�.y/ dy.

Sketch of Proof of Theorem 2.4 The most substantial (but small) difference from the
proof of Theorem 2.1 is the treatment of the overshoot process 
 which has no longer
the simple renewal process interpretation. However, the process 
 is regenerative
with regeneration points !.1/; !.2/; : : : where one can take

!.k/ D infft > !.k � 1/C Uk W 
.t/ D 0g ;

2Strictly speaking, the argument requires E�1V.0/ < 1 which amounts to a second moment
assumption. For the general case, just use a truncation argument.
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where U1;U2; : : : are independent uniform.0; 1/ r.v.’s. One can then check that the
non-compound Poisson property suffices for 


�
!.1/

�
to be non-lattice and that

�0.x/ < 1 suffices for E

�
!.1/

�
< 1. These two facts entail the convergence

in distribution of 
.t/ to a proper limit. �

As in discrete time, C can only be evaluated in special cases; general expressions
are in Bertoin and Doney [29] but require the full (spatial) Wiener-Hopf factor-
ization, a problem of equal difficulty. However, if X is upward skipfree (i.e., � is
concentrated on .�1; 0/), then C D 1 as is clear from 
.x/ � 0. See also [13,
XI.2] for the downward skipfree case as well as for related calculations, and [12]
for the compound Poisson phase-type case.

For the proof of Theorem 2.5, we need a lemma:

Lemma 2.6 P
�
X.1/ > x

� � �.x/ .

Proof Write X D X0 C X00 C X000 where the characteristic triplets of X0;X00;X000 are
.c; �2; �0/, .0; 0; �00/ and .0; 0; �000/, resp., with �0; �00; �000 being the restrictions of �
to Œ�1; 1�, .�1;�1/ and .1;1/, respectively.

With ˇ000 D �.1/, the r.v. X.1/000 is a compound Poisson sum of r.v.’s, with Poisson
parameter ˇ000 and distribution �000=ˇ000. Standard heavy-tailed estimates (e.g. [13,
X.2]) then give

P.X000.1/ > x/ � ˇ000
�000.x/
ˇ000

D �.x/ ; x > 1:

The independence of X00.1/ and X000.1/ > 0 therefore implies

P
�
X00.1/C X000.1/ > x

� � �.x/ ;

cf. the proof of [13, X.3.2]. It is further immediate that �0.r/ < 1 for all r. In
particular, X0.1/ is light-tailed, and the desired estimate for X.1/ D X0.1/CX00.1/C
X000.1/ then follows by [13, X.1.11]. �
Proof of Theorem 2.5 Define

Md D sup
nD0;1;2;:::

X.n/ :

Then

P.Md > u/ � 1

jEX.1/j
Z 1

u
�.y/ dy (27)

by Theorem 2.4 and Lemma 2.6. Also clearly P.Md > u/ � P.M > u/ D  .u/.
Given " > 0, choose a > 0 with P

�
inf0�t�1 X.t/ > �a

� � 1 � ". Then

P.Md > u � a/ � .1 � "/P.M > u/ :
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But by subexponentiality, P.Md > u � a/ � P.Md > u/. Putting these estimates
together completes the proof. �

The proof of Theorem 2.5 is basically a special case of what is called reduced
load equivalence. This principle states that if X has negative drift and X D X1 C X2,
where X1 has heavy-tailed increments and X2 has increments with lighter tails, then
M D supt X.t/ has the same tail behavior as supt

�
X1.t/ C EX2.t/

�
. For precise

versions of the principle, see e.g. Jelenković et al. [80].

3 Loss Rate Asymptotics for Two-Sided Reflected Random
Walks

We recall from Sect. 1 that a two-sided reflected random walk fVngnD0;1;2;::: is
defined by the recursion

Vn D min
�
b;max

�
0;Vn�1 C Yn

��
(28)

where Y1;Y2; : : : are i.i.d. (with common distribution say F) and initial condition
V0 D v for some v 2 Œ0; b�. Let Xn D Y1 C � � � C Yn so that X is a random walk.

Existence of V is not an issue in discrete time because of the recursive nature
of (28). Recall from (6) that the stationary distribution �b can be represented in
terms of two-sided exit probabilities as

P.V � x/ D �bŒx;1/ D �bŒx; b� D P
�
X�Œx�b;x/ � x

�
(29)

where V is a r.v. having the stationary distribution and �Œy; x/ D inf
˚
k � 0 W Xk 62

Œy; x/
�
, y � 0 � x (we defer the proof of this to Sect. 5).

The loss rate in discrete time as defined as the limit in (5) may be written as

`b D E.V C Y � b/C D Emax.V C Y � b; 0/ (30)

where V is the stationary r.v. For later use we note the alternative form

`b D E.Y � b/C C
Z b

0

P.Y > b � y/ �.y/ dy; (31)

which follows by partial integration in (30).
From now on we assume that �1 < m D EY < 0. The following two results on

the asymptotics of `b are close analogues of Theorems 2.1 and 2.2:

Theorem 3.1 Under the assumptions on Y and 	 in Theorem 2.1,

`b � De�	b; b ! 1;

where D is a constant given in (34) below.
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Theorem 3.2 Let Y1;Y2; � � � be an i.i.d. sequence with mean m < 0 and let `b be
the loss rate at b of the associated random walk Xn D Y1 C � � � C Yn, reflected in 0
and b. Assume F.x/ � B.x/ for some distribution B 2 S �. Then

`b � FI.b/; b ! 1; where FI.b / D
Z 1

b
F.y/ dy D E.Y � b/C:

We used here the standard notation for the classes L ;S and S � of heavy-tailed
distributions (see e.g. [97] or [13]): If B is a distribution on Œ0;1/ we have B 2 L
(B is long-tailed) iff

lim
x!1

B.x C y/

B.x/
D 1; for all y ;

where B.x/ D 1 � B.x/. The class S of subexponential distributions is defined by
the requirement

lim
x!1

B�n.x/

B.x/
D n n D 2; 3; � � �

where B�n denotes the nth convolution power of B. A subclass of S is S �, where
we require that the mean �B of B is finite and

lim
x!1

Z x

0

B.x � y/

B.x/
B.y/ dy D 2�B:

The classes are related by S � 	 S 	 L . More generally, we will say a measure �
belongs to, say, S if it is tail equivalent to a distribution in S , that is �.Œx;1// �
B.x/ for some B in S .

Theorem 3.1 is from Pihlsgård [117]. Theorem 3.2 was originally proved
in Jelenković [79], but we provide a shorter proof by taking advantage of the
representation of the stationary distribution provided by (6).

3.1 Proof of Theorem 3.1 (Light Tails)

We introduce the following notation (standard in random walk theory):

M D supk�0 Xk.
� sC.u/ D inffk � 1 W Xk > ug; �wC.u/ D inffk � 1 W Xk � ug; u � 0.
GC.x/ D P.X� s

C
.u/ � x/; GwC.x/ D P.X�w

C
.u/.u// � x/.

� s�.�u/ D inffk � 1 W Xk < �ug; u � 0.
The overshoot of level u, B.u/ D X� s

C
.u// � u; u � 0.
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The weak overshoot of level u, Bw.u/ D X�w
C
.u/ � u; u � 0.

B.1/, a r.v. having the limiting distribution (if it exists) of B.u/ as u ! 1.
Bw.1/, a r.v. having the limiting distribution (if it exists) of Bw.u/ as u ! 1.

Recall that �.˛/ D logEe˛Y1 and that 	 > 0 is the root of the Lundberg equation
�.˛/ D 0 with �0.	/ < 1. We let PL and EL correspond to a measure which is
exponentially tilted by 	 , i.e.,

P.G/ D ELŒe�	X� I G� (32)

when � is a stopping time w.r.t. fF.n/ D �.Y1;Y2; : : : ;Yn/g and G 2 F.�/, G 	
f� < 1g where F.�/ is the stopping time �-field. Note that ELY D �0.	/ > 0 by
convexity.

Lemma 3.3 Assume that Y is non-lattice. Then, for each v � 0,

P
�
� s�.�v/ > �wC.u/

� � e�	u
ELe�	B.1/

PL
�
� s�.�v/ D 1/

�
; u ! 1:

Proof We first note that �wC.u/ is a stopping time w.r.t. F.n/ and that f� s�.�v/ >
�wC.u/g 2 F.�wC.u//. Then (32) gives

P
�
�s�.�v/ > �wC.u/

� D EL
�
e�	Z.�w

C
.u//I �s�.�v/ > �wC.u/

�

D e�	u
EL
�
e�	B.u/I �s�.�v/ > �sC.u/

�
PL
�
�wC.u/ D �sC.u/

�

C e�	u
PL
�
�s�.�v/ > �wC.u/

ˇ
ˇ �wC.u/ ¤ �sC.u/

�
PL
�
�wC.u/ ¤ �sC.u/

�
:

Since Y is non-lattice, it follows that GwC is so (see [11, Lemma 1.3, p. 222]) and then
the renewal theorem (see [11, Theorem 4.6, p. 155]) applied to the renewal process
governed by GwC, in which the forward recurrence time process coincides with the

overshoot process Bw D Bw.u/, yields Bw.u/
D! Bw.1/ w.r.t. PL where Bw.1/ has

a density. Thus 0 is a point of continuity of Bw.1/ and we then get that PL.�
wC.u/ ¤

� sC.u// D PL.Bw.u/ D 0/ ! 0 and PL.�
wC.u/ D � sC.u// ! 1; u ! 1. We now

use that B.u/ ! B.1/, f� s�.�v/ > �wC.u/g " f� s�.�v/ D 1g in PL-distribution
and apply the argument used in the proof of Corollary 5.9, p. 368 in [11] saying that
B.u/ and f� s�.�v/ > �wC.u/g are asymptotically independent. ut

In the representation of `b in (31), It follows from the assumption �0.	/ < 1
that E.Y � b/C D o.e�	b/. In the second term we make the change of variables
v D b � y and get

Z b

0

P.Y > b � y/�.y/dy D
Z 1

0

�.v � b/P.Y > v/P
�
� s�.�v/ > �wC.b � v/�dv

D e�	b
Z 1

0

e	v�.v � b/P.Y > v/e	.b�v/P
�
� s�.�v/ > �wC.b � v/

�
dv: (33)
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Further, we have that P.� s�.�v/ > �wC.b � v// � P.M � b � v/ � e�	.b�v/ (the last
inequality is just a variant of Lundberg’s inequality), so

e	v�.v � b/P.Y > v/e	.b�v/P
�
� s�.�v/ > �wC.b � v/

� � e	vP.Y > v/

and since
R1
0

e	vP.Y > v/dv < 1, the assertion follows with

D D ELe�	B.1/
Z 1

0

e	vP.Y > v/PL.�
s�.�v/ D 1/ dv (34)

by (33), Lemma 3.3 and dominated convergence. ut
Remark 3.4 The constants occurring in D and above are standard in Wiener-Hopf
theory for random walks. Note that alternative expressions for D are in [117].

3.2 Proof of Theorem 3.2 (Heavy Tails)

By (31), we need to prove that

lim sup
b!1

I.b/ D 0 where I.b/ D
Z b

0

P.Y > b � y/�b.y/

FI.b/
dy : (35)

For any A > 0

lim sup
b!1

Z A

0

P.Y > b � y/�b.y/

FI.b/
dy � lim sup

b!1
P.Y > b � A/

FI.b/

Z A

0

�b.y/ dy D 0

so therefore

lim sup
b!1

Z b

0

I.b/ D lim sup
b!1

Z b

A

P.Y > b � y/�b.y/

FI.b/
dy : (36)

Define mC D R1
0

P.Y > t/ dt and Fe.y/ D .1=mC/
R x
0
P.Y > t/ dt. According

to (17) we have �1.y/jmj � FI.y/ so that for large A and y > A

�1.y/ � 2FI.y/=jmj D 2mCFe.y/=jmj :

From Proposition 11.6 in Sect. 11 (proved there for Lévy processes but valid also
for random walks as it only relies on the representation (29) of � as a two-barrier
passage time probability),

0 � �1.x/ � �b.x/ � �1.b/ : (37)
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Using this, we have:

lim sup
b!1

Z b�A

A

P.Y > b � y/�b.y/

FI.b/
dy � 2 lim sup

b!1

Z b�A

A

mCP.Y > b � y/Fe.y/

jmjFI.b/
dy

D 2 lim sup
b!1

Z b�A

A

P.Y > b � y/Fe.y/

jmjFe.b/
dy

D 2 lim sup
b!1

F
�2

e .b/

Fe.b/

Z b�A

A

P.Y > b � y/Fe.y/

jmjF�2e .b/
dy

D 4 lim sup
b!1

Z b�A

A

P.Y > y/Fe.b � y/

jmjF�2e .b/
dy

D 4 lim sup
b!1

mC

jmj P.A < U � b � A j U C V > b/

D 2mC

jmj Fe.A/ :

where U and V are independent with U
DD V

DD Fe and we have used that for i.i.d.
random variables in S

P.A < Y1 < b � A j Y1 C Y2 > b/ ! 1

2
F.A/; b ! 1

(cf. [13, pp. 294, 296], slightly adapted). By combining the result above with (36)
we have

lim sup
b!1

I.b/ � 2mC

jmj Fe.A/C lim sup
b!1

Z b

b�A

P.Y > b � y/�b.y/

FI.b/
dy : (38)

Here the integral equals

lim sup
b!1

Z A

0

P.Y > y/�b.b � y/

FI.b/
dy � lim sup

b!1
�b.b � A/

FI.b/

Z A

0

P.X > y/ dy :

If we define �A D inffn � 0 j Xn < �Ag, Mn D maxk�n Xk and use the
representation (29) of the stationary distribution we have:

�b.b � A/ D P.M�A > b � A/ :

By Theorem 1 of [61] we have P.M�A > b � A/ � E�AF.b/ and therefore
�b.b � A/=FI.b/ ! 0 since the tail of F is lighter than that of the integrated tail.
Using (38) it thus follows that we can bound lim sup I.b/ by 2mCFe.A/=jmj. Letting
A ! 1 completes the proof.
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4 Construction and the Skorokhod Problem

In discrete time, the definition of the two-sided reflected process V D Vb is
straightforward via the recursion (1). In this section, we consider how to rigorously
proceed in continuous time.

First, we note that there is a simple pragmatic solution: Let y 2 Œ0; b� be the
initial value. For y < b, take the segment up to the first hitting time �.b/ of b as the
initial segment of V1 (the one-sided reflected process started from y) until .b;1/

is hit; we then let V
�
�.b/

� D b. For y D b, we similarly take the segment up to the
first hitting time ��.0/ of 0 by using the one-sided reflection operator (with the sign
reversed and change of origin) as constructed in Sect. 2; at time ��.0/ where this
one-sided reflected (at b) process hits .�1; 0�, we let V

�
��.0// D 0. The whole

process V is then constructed by glueing segments together in an obvious way.
Glueing also local times together, we obtain the desired solution of the Skorokhod
problem. Uniqueness of this solution may be established using a proof nearly
identical to that of Proposition 2.3.

Before we proceed to a more formal definition of V we restate the Skorokhod
problem: Given a cadlag process fX.t/g we say a triplet .fV.t/g ; fL.t/g ; fU.t/g/ of
processes is the solution to the Skorokhod problem on Œ0; b� if V.t/ D X.t/C L.t/�
U.t/ 2 Œ0; b� for all t and

Z 1

0

V.t/ dL.t/ D 0 and
Z 1

0

.b � V.t// dU.t/ D 0 :

Note that the Skorokhod problem as introduced above is a purely deterministic
problem. We refer to the mapping which associates a triplet .fV.t/g ; fL.t/g ; fU.t/g/
to a cadlag process X.t/ as the Skorokhod map.

Remark 4.1 The Skorokhod problem on Œ0; b� is a particular case of reflection
of processes in convex regions of R

n, which is treated in Tanaka [136] where a
proof of existence and uniqueness is provided given that the involved processes are
continuous or step functions. This is extended in [6] to include cadlag processes,
which covers what is needed in this article. Apart from the generalizations to larger
classes of functions, other papers have focused on more general domains than
convex subsets of Rn, e.g. Lions and Snitzman [110] and Saisho [126]. The case of
Brownian motion in suitable regions has received much attention in recent decades,
see e.g. Harrison and Reiman [74] and Chen and Yao [43]. In [73, Chap. 2, Sect. 4],
the Skorokhod problem on Œ0; b� is introduced as the two-sided regulator and is
used to treat Brownian motion with two-sided reflection; another early reference
on two-sided reflection problems is Chen and Mandelbaum [42]. A comprehensive
treatment of the Skorokhod map and its continuity properties, as well as other
reflection mappings and their properties, is given in Whitt [138].

Various formulas for the Skorokhod map have appeared in the literature, among
them Cooper et al. [49]. See [101] for a survey of these formulas and the relation
between them. An alternative approach to estimation of stationary quantities is to
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take advantage of the integral representation of the one-dimensional Skorokhod
reflection, see Konstantopoulos and Last [99], Anantharam and Konstantopou-
los [2], and Buckingham et al. [40]. This is applicable when considering processes
of finite variation, so that we can write S.t/ D A.t/CB.t/ for non-decreasing cadlag
processes A and B. It is then possible to write V.t/ as an integral with respect to
A.dt/. This representation can for example be used to derive the Laplace transform
of V in terms of the Palm measure. �

As described in Sect. 2, specifically (19) and (20), an explicit expression for V.t/
is available when one is concerned with one-sided reflection. This is also the case
when dealing with Skorokhod problem on Œ0; b�. Indeed, from Kruk et al. [101] we
have:

Vb.t/ D X.t/�
�
.V.0/� b/C ^ inf

u2Œ0;t�X.u/
�

_ sup
s2Œ0;t�

�
.V.0/� b/ ^ inf

u2Œs;t�X.u/
�
:

(39)

We shall assume V.0/ D 0 a.s and in this case we have following simplification,
which was originally proved in [5].

Theorem 4.2 If V.0/ D 0, then

Vb.t/ D sup
s2Œ0;t�

��
X.t/� X.s/

� ^ inf
u2Œs;t�

�
b C X.t/ � X.u/

��
: (40)

Remark 4.3 Before we provide a rigorous proof, we note the following intuitive
explanation for the expression (40): For v > 0 consider the process fVv.t/gt>v
obtained by reflecting Xv.t/ D X.t/ � X.v/ at b from below (in terms of recursions
like (11)) this is Vv

n D b _ .Vv
n�1 C Yn/ applied to the increments with n > v and

with Vv
v D 0). Similarly to (19) and (20) we obtain Vv.t/ D Xv.t/ ^ infv<u<t.b C

Xv.t/ � Xv.u//. Then obviously Vv.t/ � V.t/ but since Vv.t�/ D V.t�/ for
t� D sup0<u<t V.u/ D 0, we have V.t/ D sup0<v<t Vv.t/. �

The proof of (40) proceeds as follows: First we prove Proposition 4.4 and 4.5 which
are the discrete time equivalents of (39) and (40). Then we prove Lemma 4.6, which
states that the implied mapping of X.t/ in (40) is Lipschitz-continuous in the J1
topology which is combined with an piecewise constant approximation to obtain
the equivalence of (40) and (39). To emphasize the deterministic nature of the
Skorokhod problem and for explicit treatment of the involved mappings, we switch
notation and let y D fyng1nD1 be a sequence in R

1 and consider the sequences
x and v obtained by respectively taking cumulative sums of y and applying two-
sided reflection, that is xn D y1 C � � � C yn and vn D min.b;max.0; vn�1 C yn/

with x0 D v0 D 0. We let 
0;b denote the two-sided reflection mapping, that is

0;b.x/ D v.
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Proposition 4.4 The solution of the two-sided reflection is given by


0;b.x/.n/ D max
k2f0;��� ;ng

	
min

j2fk;��� ;ng
.xn � xk; b C xn � xj/



: (41)

Proof We prove the claim by induction. The case n D 1 is trivial, so we assume (41)
holds for some n, and consider the cases ynC1 � 0 and ynC1 > 0 separately. For the
former case we have


0;b.x/.n C 1/ D vnC1 D 0 _ .vn C ynC1/ ^ b D 0 _ .vn C ynC1/

D 0 _
	

max
k2f0;��� ;ng

	
min

j2fk;��� ;ng
.xn � xk; b C xn � xj/



C ynC1




D 0 _
	

max
k2f0;��� ;ng

	
min

j2fk;��� ;ng
.xnC1 � xk; b C xnC1 � xj/




: (42)

Since ynC1 � 0, we have

min
j2fk;��� ;nC1g

xnC1 � xj D min
j2fk;��� ;ng

xnC1 � xj;

so that (42) equals

0 _
	

max
k2f0;��� ;ng

	
min

j2fk;��� ;nC1g
.xnC1 � xk; b C xnC1 � xj/





D max
k2f0;��� ;nC1g

	
min

j2fk;��� ;nC1g
.xnC1 � xk; b C xnC1 � xj/



; (43)

as desired. The case ynC1 > 0 is similar:

vnC1 D 0 _ .vn C ynC1/ ^ b D .vn C ynC1/ ^ b

D
	

max
k2f0;��� ;ng

	
min

j2fk;��� ;ng
.xn � xk; b C xn � xj/



C ynC1



^ b

D max
k2f0;��� ;ng

	
min

j2fk;��� ;ng
.xnC1 � xk; b C XnC1 � xj/ ^ b



;

which equals (43) as well. This completes the proof. �

Proposition 4.4 provides the discrete-time analogue of (40). Next, we provide the
discrete-time analogue for (39), in the case v0 D 0.

Proposition 4.5 The solution of the two-sided reflection is given by


0;b.x/.n/ D min
k2f0;:::;ng

�	
.xn � xk C b/ ^ max

i2f0;:::;ng
.xn � xi/



_ max

i2fk;:::;ng
.xn � xi/

�
:

(44)
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Proof The proof is again by induction and again the case n D 1 is straightforward,
so we assume the stated holds for some n. Then we have


0;b.x/.n C 1/ D 0 _ .vn C ynC1/ ^ b

D 0 _
	

min
k2f0;:::;ng

�	
.xn � xk C b/ ^ max

i2f0;:::;ng
.xn � xi/



_ max

i2fk;:::;ng
.xn � xi/

�
CynC1



^b

D 0 _min
k2f0;:::;ng

�	
.xnC1 � xk C b/ ^ max

i2f0;:::;ng
.xnC1 � xi/



_ max

i2fk;:::;ng
.xnC1 � xi/

�
^ b

Dmin
k2f0;:::;ng

�	
.xnC1�xk C b/ ^ max

i2f0;:::;ng
..xnC1 � xi/ _ 0/



_ max

i2fk;:::;ng
..xnC1�xi/ _ 0/

�
^b

Dmin
k2f0;:::;ng

�	
.xnC1 � xkCb/ ^ max

i2f0;:::;nC1g
.xnC1 � xi/



_ max

i2fk;:::;nC1g
.xnC1 � xi/

�
^ b:

(45)

We notice that
	
.xnC1 � xk C b/ ^ max

i2f0;:::;nC1g
.xnC1 � xi/



_ max

i2fk;:::;nC1g
.xnC1 � xi/

D



maxi2f0;:::;nC1g.xnC1 � xi/ if k D 0

maxi2f0;:::;nC1g.xnC1 � xi/ ^ b if k D n C 1,

so that (45) equals

min
k2f0;:::;nC1g

�	
.xnC1 � xk C b/ ^ max

i2f0;:::;nC1g
.xnC1 � xi/



_ max

i2fk;:::;nC1g
.xnC1 � xi/

�
:

This proves the claim. �

We now proceed to the proof of (40). Let  2 D Œ0;1/. From [101] we have:


0;b. /.t/ D  .t/ � sup
s2Œ0;t�

�	
. .s/ � b// _ inf

u2Œ0;t�  .u/



^ inf
u2Œs;t�  .u/

�
; (46)

when the process is started at 0. In view of the two previous propositions it seems
reasonable to conjecture that 
0;b D � , where

�Œ �.t/ D sup
s2Œ0;t�

�
. .t/ �  .s// ^ inf

u2Œs;t� .b C  .t/ �  .u//

�
: (47)

We prove this by first showing that � is Lipschitz-continuous in the J1 topology.
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Lemma 4.6 The mapping � is Lipschitz-continuous in the uniform and J1 metrics
as a mapping from DŒ0;T� for T 2 Œ0;1�, with constant 2.

Proof We follow the proof of Corollary 1.5 in [100] closely. Fix T < 1. We start
by proving Lipschitz-continuity in the uniform metric. Define

RtŒ �.s/ D
�
.� .s// ^ inf

u2Œs;t�.b �  .u//

�
I SŒ �.t/ D sup

s2Œ0;t�
RtŒ �.s/: (48)

For  1; 2 2 DŒ0;T� we have

SŒ 1�.t/ � SŒ 2�.t/ � sup
s2Œ0;t�

.RtŒ 1�.s/ � RtŒ 2�.s//

� sup
s2Œ0;t�

�
j� 1.s/ � .� 2.s//j _

ˇ
ˇ
ˇ̌ inf
u2Œs;t�.b �  1.u//� inf

u2Œs;t�.b �  2.u//

ˇ
ˇ
ˇ̌
�

� k 1 �  2 kT :

The same inequality applies to SŒ 2�.t/ � SŒ 2�.t/, so that taking the supremum
leads to

k SŒ 1� � SŒ 2� kT�k  1 �  2 kT ;

and this proves Lipschitz-continuity, with constant 2:

k �Œ 1� ��Œ 2� kT � k  1 �  2 k C k SŒ 1� � SŒ t� kT � 2 k  1 �  2 kT :

We now turn to the J1-metric, and we let M denote the class of strictly increasing
continuous functions from Œ0;T� onto itself with continuous inverse. An elementary
verification yields that for  2 DŒ0;T� and � 2 M we have�Œ ı �� D �Œ � ı �.
With e being the identity, this leads to

dJ1 .�Œ 1�; �Œ 2�/ D inf
�2M fk �Œ 1� ı � ��Œ 2� kT _ k � � e kTg

D inf
�2M fk �Œ 1 ı �� ��Œ 2� kT _ k � � e kTg

� inf
�2M f2 k  1 ı � �  2 kT _ k � � e kTg � 2dJ1. 1;  2/;

where we used the Lipschitz-continuity in the uniform metric. This proves
Lipschitz-continuity in the J1 metric, again with constant 2; it is valid for every
T < 1 and hence also for T D 1. �
We are now ready to prove that 
0;b D �:

Theorem 4.7 For  2 DŒ0;1/ we have 
 Œ �.t/ D �Œ �.t/.
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Proof Let  2 DŒ0;1/ be given, and define �n and n by 	n.t/ D bntc=n, n.t/ D
 .	n.t//. Since �n ! e in the uniform topology, we have �n !dJ1

e and hence
. ;�n/ ! . ; e/ in the strong version of the J1 topology (see p. 83 in [138]). Since
e is strictly increasing we may apply Theorem 13.2.2 in [138] to obtain  n !dJ1

 .
Fix t < T, and consider  as element of DŒ0;T�. Since the image  n.Œ0;T�/ is
finite, we may apply Propositions 4.4 and 4.5, in conjunction with (46), to obtain

0;bŒ n� D �Œ n�: Finally, we let n ! 1 and use the J1-continuity of the 
0;b
mapping proved in [100], and the J1-continuity of � proved in Lemma 4.6 to finish
the proof. �

Remark 4.8 Letting b ! 1 yields sups2Œ0;t� Œ. .t/ �  .s//�, which is indeed the
standard one-sided reflection from (19) and (20). �

5 The Stationary Distribution

5.1 Ergodic Properties

The following observation is easy but basic:

Proposition 5.1 The two-sided reflected Lévy process V D Vb admits a unique
stationary distribution � D �b. Furthermore, for any initial distribution V
converges in distribution and total variation (t.v.) to � .

Proof We appeal to the theory of regenerative processes [11, Ch. VI]. The classical
definition of a stochastic process to be regenerative means in intuitive terms that
the process can be split into i.i.d. cycles (with the first cycle having a possibly
different distribution). There is usually a multitude of ways to define a cycle. The
naive approach in the case of Vb is to take the instants of visits to state 0 (say) as
regeneration points, but these will typically have accumulation points (cf. the theory
of Brownian zeros!) and so a bit more sophistication is needed. Instead we may, e.g.,
define the generic cycle length T as starting at level 0 at time 0, waiting until level b
is hit and taking the cycle termination time T as the next hitting time of 0 (‘up to b
from 0 and down again’). That is,

T D inf
˚
t > inffs > 0 W Vb.s/ D bg W Vb.t/ D 0

ˇ
ˇVb.0/ D 0

�
:

The regenerative structure together with the easily verified fact ET < 1 then
immediately gives the existence of �b.

T.v. convergence just follows from coupling Vb with the stationary version OVb

(cf. [11, VII.1]). Indeed, we may assume that Vb and OVb both have the same driving
process X. Then OVb.t/ � V.t/ for all t, and so � D infft > 0 W Vb.t/ D OVb.t/g is
bounded by T1, hence a.s. finite. �
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Remark 5.2 T.v. convergence in distribution is often alternatively established by
verifying that the distribution of T is spread-out [11, VI.1]. In the present context,
this is slightly more tedious but goes like this. T decomposes as the independent
sum T1 C T2 where T1 is passage time from 0 to b and T2 the passage from b to 0 so
that it suffices to verify that one of T1;T2 is spread-out. This is obvious for Brownian
motion since there T1;T2 are both absolutely continuous. In the case � ¤ 0 of a non-
vanishing jump component, suppose, e.g., that � does not vanish on .0;1/. Then b
may be hit by a jump, i.e. P0

�
�X.T1/ > 0

�
> 0. Then also P0

�
�X.T1/ > "

�
> 0

for some " > 0 and so P0.T1 2 �; �X.T1/ > "
�
> 0 serves as candidate for the

absolutely continuous part of T1.
Another approach is to take advantage of the fact that Vb is a Markov process on

a compact state space with a semi-group with easily verified smoothness properties,
cf. [94] for some general theory, and yet another to invoke Harris recurrence in
continuous time, cf. [23, 24]. We omit the details. �

Remark 5.3 The process Vb is in fact geometrically ergodic, i.e.

sup
A

ˇ
ˇ̌
Px.V

b.t/ 2 A/� �b.A/
ˇ
ˇ̌ D O.e�"t/ (49)

for some " > 0 where the O term is uniform in x. This follows again from the
coupling argument by bounding the l.h.s. of (49) by P.� > t/ and checking that �
has exponential moments (geometric trials argument!).

It is easy to derive rough bounds on the tail of � and thereby lower bounds on ".
To get the exact rate of decay in (49) seems more difficult, as is typically the case in
Markov process theory (but see Linetsky [109] for the Brownian case). �

5.2 First Passage Probability Representation

The main result on the stationary distribution �b is as follows and states that �b can
be computed via two-sided exit probabilities for the Lévy process.

Theorem 5.4 The stationary distribution of the two-sided reflected Lévy process
V D Vb is given by

�bŒx; b� D P
�
V.1/ � x

� D P
�
X
�
�Œx � b; x/

� � x
�

(50)

where �Œu; v/ D inf
˚
t � 0 W X.t/ 62 Œu; v/�, u � 0 � v.

Note that in the definition of �Œu; v/ we write t � 0, not t > 0.
We remark that in the case of spectrally negative Lévy processes the evaluation

of P
�
X
�
�Œx � K; x/

� � x
�

is a special case of scale function calculations. For such
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a process, the scale function Wq is usually defined as the function with Laplace
transform

Z 1

0

e�sxWq.x/ dx D 1

�.�s/ � q
:

However, it has a probabilistic interpretation related to (50) by means of

E
�
e�q�Œa;b/

�
�
X.�Œa; b// � b

�� D Wq.jaj/
Wq.jaj C b/

(51)

The present state of the area of scale functions is surveyed in Kuznetsov et al. [102].
Classically, there have been very few explicit examples, but a handful more,
most for quite special structures, have recently emerged (see, e.g., Hubalek and
Kyprianou [76] and Kyprianou and Rivero [106]).

We shall present two approaches to the proof of Theorem 5.4. One is direct
and specific for the model, the other uses general machinery for certain classes of
stochastic processes with certain monotonicity properties.

5.3 Direct Verification

Write V0.t/ for V started from V0.0/ D 0, let T be fixed and for 0 � t � T, let
fRx.t/g be defined as Rx.t/ D x � X.T/C X.T � t/ until .�1; 0� or .b;1/ is hit;
the value is then frozen at 0, resp. 1. We shall show that

V0.T/ � x ” Rx.T/ D 0I (52)

this yields

P
�
V0.T/ � x

� D P
�
�Œx � b; x/ � T; X

�
�Œx � b; x/

� � x
�

and the proposition then follows by letting T ! 1.
Let � D sup ft 2 Œ0;T� W V0.t/ D 0g (well-defined since V0.0/ D 0). Then

V0.T/ D X.T/� X.�/C U.�/� U.T/, so if V0.T/ � x then X.T/� X.�/ � x, and
similarly, for t � �

x � V0.T/ D V0.t/C X.T/� X.t/C U.t/ � L.T/ � b C X.T/ � X.t/;

implying Rx.T � t/ � b. Thus absorbtion of fRx.t/g at 1 is not possible before
T � � , and X.T/� X.�/ � x then yields Rx.T � �/ D 0 and Rx.T/ D 0.

Assume conversely Rx.T/ D 0 and write the time of absorbtion in 0 as T � � .
Then x�X.T/CX.�/ � 0, and Rx.t/ � b for all t � T�� implies x�X.T/CX.t/ � b
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for all t � � . If V0.t/ < b for all t 2 Œ�;T�, then U.T/ � U.t/ D 0 for all such t and
hence

V0.T/ D V0.�/C X.T/� X.�/C L.T/� L.�/ � V0.�/C X.T/� X.�/ � 0C x:

If V0.t/ D b for some t 2 Œ�;T�, denote by ! the last such t. Then U.T/ D U.!/
and hence

V0.T/ D V0.!/C X.T/� X.!/C L.T/ � L.!/ � b C X.T/ � X.!/C 0 � x:

�

5.4 Siegmund Duality

Now consider the general approach. Let T D N or T D Œ0;1/, let fV.t/gt2T be a
general Markov process with state space E D Œ0;1/ or E D N, and let Vx.t/ be
the version starting from Vx.0/ D x. We write interchangeably P.Vx.t/ 2 A/ and
Px.V.t/ 2 A/. Then fVx.t/g is stochastically monotone if x � y implies Vx.t/ �so

Vx.t/ (stochastical ordering) for all t 2 T, i.e. if Px.V.t/ � z/ � Py.V.t/ � z/ for all
t and z.

Proposition 5.5 The existence of a Markov process fR.t/gt2T on E [f1g such that

Px
�
V.t/ � y/ D Py

�
R.t/ � x

�
(53)

is equivalent to (i) fV.t/g is stochastically monotone and (ii) Px
�
V.t/ � y

�
is a

right-continuous function of x for all t and y.

Proof If fR.t/g exists, the l.h.s. of (53) is nondecreasing and right-continuous in x
and so necessity of (i), (ii) is clear. If conversely (i), (ii) hold, then the r.h.s. of (53)
defines a probability measure for each y that we can think of as the element Pt.y; �/
of a transition kernel Pt (thus Pt.y; f1g/ D 1 � limx!1 Px

�
V.t/ � y

�
), and we

shall show that the Chapman-Kolmogorov equations PtCs D PtPs hold. This follows
since

PtCs
�
y; Œ0; x�

� D Px
�
V.t C s/ � y

� D
Z

E
Px
�
V.t/ 2 dz/Pz

�
V.s/ � y

�

D
Z

E
Px
�
V.t/ 2 dz

� Z z

0

Ps.y; du/ D
Z z

0

Ps.y; du/Px
�
V.t/ � u

�

D
Z z

0

Ps.y; du/Pt
�
u; Œ0; x�

� D .PtPs/
�
y; Œ0; x�

�
:

�
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Theorem 5.6 The state 0 is absorbing for fR.t/g. Furthermore, letting

� D inf ft > 0 W Rx.t/ � 0g D inf ft > 0 W Rx.t/ D 0g ;

one has

P0

�
V.T/ � x

� D Px.� � T/; (54)

and if V.t/ converges in total variation, say to V D V.1/, then

P0.V � x/ D Px.� < 1/; (55)

Proof Taking x D y D 0 in (53) yields P0
�
R.t/ � 0

� D P0

�
V.t/ � 0

� D 1 so that
indeed 0 is absorbing for fR.t/g. We then get

Px.� � T/ D Px
�
R.T/ � 0

� D P0

�
V.T/ � x

�
:

Letting T ! 1 concludes the proof. �

5.5 Dual Recursions

We turn to a second extension of (53), (55) which does not require the Markov
property but, however, works more easily when T D N than when T D Œ0;1/. We
there assume that fVngn2N is generated by a recursion of the form

VnC1 D f .Vn;Un/; (56)

where fUng (the driving sequence) is a stationary sequence of random elements
taking values in some arbitrary space F and f W E 
 F ! E is a function. The
(time-homogeneous) Markov case arises when the Un are i.i.d. (w.l.o.g., uniform
on F D .0; 1/), but also much more general examples are incorporated. We shall
need the following lemma, which summarizes the standard properties of generalized
inverses as occurring in, e.g., quantile functions.

Lemma 5.7 Assume that f .x; u/ is continuous and nondecreasing in x for each
fixed u 2 F and define g.x; u/ D inf fy W f .y; u/ � xg. Then for fixed u, g.x; u/
is left-continuous in x, nondecreasing in x and strictly increasing on the interval
fx W 0 < g.x; u/ < 1g. Further, f .y; u/ D sup fx W g.x; u/ � yg and

g.x; u/ � y ” f .y; u/ � x: (57)
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W.l.o.g., we can take fUng with doubly infinite time, n 2 Z, and define the dual
process fRngn2N by

RnC1 D g.Rn;U�n/; n 2 NI (58)

when the initial value x D R0 is important, we write Rn.x/.

Theorem 5.8 Equations (53) and (55) also hold in the set-up of (56) and (58).

Proof For T 2 N, define V.T/
0 .y/ D y,

V.T/
1 .y/ D f

�
V.T/
0 .y/;U�.T�1/

�
; : : : ;V.T/

T .y/ D f
�
V.T/

T�1.y/;U0

�
:

We shall show by induction that

V.T/
T .y/ � x ” RT.x/ � y (59)

(from this (53) follows by taking expectations and using the stationarity; since
g.0; u/ D 0, (54) then follows as above). The case T D 0 of (59) is the tautology
y � x ” x � y. Assume (59) shown for T. Replacing y by f .y;U�T/ then yields

V.T/
T

�
f .y;U�T/

� � x ” RT.x/ � f .y;U�T/:

But V.T/
T

�
f .y;U�T /

� D V.TC1/
TC1 .y/ and by (57),

RT.x/ � f .y;U�T/ ” RTC1.x/ D g.RT.x/;U�T/ � y:

Hence (59) holds for T C 1. �

Example 5.9 Consider the a discrete time random walk reflected at 0, VnC1 D .VnC

n/
C with increments 
0; 
1; : : : which are i.i.d. or, more generally, stationary.
In the set-up of Proposition 5.5 and Theorem 5.6, we need (for the Markov

property) to assume that 
0; 
1; : : : are i.i.d. We take E D Œ0;1/ and for y > 0,
we then get

Py.R1 � x/ D Px.V1 � y/ D P.x C 
0 � y/ D P.y � 
0 � x/:

For y D 0, we have P0.R1 D 0/ D 1. These two formulas show that fRng evolves
as a random walk MXn D �
0 � 
�1 � � � � � 
�nC1 with increments �
0;�
1; : : : as
long as Rn > 0, i.e. Rn.x/ D x � MXn, n < � , Rn.x/ D 0, n � � ; when .�1; 0� is
hit, the value is instantaneously reset to 0 and fRng then stays in 0 forever. We see
further that we can identify � and �.x/, and thus (55) is the same as the maximum
representation (15) of the stationary distribution of V .

Consider instead the approach via Theorem 5.8 (which allows for increments that
are just stationary). We let again E D Œ0;1/, take Uk D 
k and f .x; u/ D .x C u/C.
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It is easily seen that g.y; u/ D .y � u/C and so fRng evolves as MX as long as Rn > 0,

while 0 is absorbing. With, X�n D � MXn it follows that � D inf
n
n W x C MXn � 0

o
D

inf
˚
n W X�n � x

�
. This last expression shows that (54) is the same as a classical result

in queueing theory known as Loynes’ lemma, [11, IX.2c]. �

Example 5.10 Consider two-sided reflection in discrete time,

VnC1 D min
�
b; .Vn C 
n/

C�: (60)

For Theorem 5.6, we take 
0; 
1; : : : i.i.d. and E D Œ0;1/ (not Œ0; b�!). For y > B,
we then get

Py.R1 � x/ D Px.V1 � y/ � Px.V1 > b/ D 0

for all x, i.e. Py.R1 D 1/ D 1. For 0 � y � b, Py.R1 � x/ D Px.V1 � y/ becomes

P
�
.x C 
0/

C � y
� D



1 y D 0;

P.y � X0 � x/ 0 < y � b:

Combining these facts show that fRng evolves as MX as long as Rn 2 .0; b�. States
0 and 1 are absorbing, and from y > b fRng is in the next step absorbed at 1.
Thus for R0 D x 2 .0; b�, absorbtion at 0 before N, i.e. � � N, cannot occur if
.b;1/ is entered and with Xn D 
0C� � �C
n�1, �Œu; v/ D inf

˚
n � 0 W Xn 62 Œu; v/�,

u � 0 < v, we get

P0.VN � x/ D Px.� � N/

D P
�
�Œx � b; x/ � N; X�Œx�b;x/ � x

�
; (61)

P.V � x/ D P.X�Œx�b;x/ � x/ (62)

(note that �Œx � b; x/ is always finite). �
The Markov process approach of Theorem 5.6 is from Siegmund [130], and the

theory is often referred to as Siegmund duality, whereas the recursive approach
of Theorem 5.8 is from Asmussen and Sigman [18]. None of the approaches
generalizes readily to higher dimension, as illustrated by Blaszczyszyn and Sigman
[33] in their study of many–server queues. For stochastic recursions in general, see
Brandt et al. [38] and Borovkov and Foss [37].

The two-barrier formula (62) is implicit in Lindley [108] and explicit in
Siegmund [130], but has often been overlooked so that there are a number of
alternative treatments of stationarity in two-barrier models around.

When applying Siegmund duality when T D Œ0;1/, it is often more difficult to
rigorously identify fRtg than when T D N. Asmussen [9] gives a Markov-modulated
generalization for T D Œ0;1/, and there is some general theory for the recursive
setting in Ryan and Sigman [131].
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Example 5.11 An early closely related and historically important example is
Moran’s model for the dam [113], which is discrete-time with the analogue of Yk

having the form Yk D Ak � c. The inflow sequence fAng is assumed i.i.d. and the
release is constant, say c per time unit (if the content just before the release is x < c,
only the amount x is released), and we let b denote the capacity of the dam. We will
consider a slightly more general model where also the release at time n is random,
say Bn rather than c (the sequence fBng is assumed i.i.d. and independent of fAng).

We let QA
n denote the content just before the nth input (just after the .n � 1/th

release) and QB
n the content just after that (just before the .n C 1/th release). Then

QA
n D �

QB
n�1 � Bn�1

�C
; (63)

QB
n D �

QA
n C An

� ^ K; (64)

QA
n D �

.QA
n�1 C An�1/ ^ K � Bn�1

�C
; (65)

QB
n D �

ŒQB
n�1 � Bn�1�C C An

� ^ K: (66)

The recursions (65), (66) are obviously closely related to (28), but not a special case.
The stationary distributions of the recursions (65), (66) can be studied by much

the same methods as used for (28). Consider e.g. (66) which can be written as QB
n D

f .QB
n�1;Un�1/where u D .a; b/, f .x;u/ D .Œx�b�CCa/^K and Un�1 D .An;Bn�1/.

The inverse function g of f in the sense of Proposition 5.7 is then given by

g.x; a; b/ D
8
<

:

0 x D 0 or x 2 .0; b�; a � b
x � .a � b/ x 2 .0; b�; a < b

1 x > b
:

It follows that the dual process fRng started from x evolves as the unrestricted
random walk

˚
.x � A0/C � Sn

�
, starting from .x � A0/C and having random walk

increments Zn D An � Bn�1, and that Pe.QB
n � x/ is the probability that this process

will exit .0;K� to the right. �

5.6 Further Properties of �b

We first ask when �b has an atom at b, i.e., when �bfbg > 0 so that there is positive
probability of finding the buffer full. The dual question is whether �bf0g > 0. For
the answers, we need the fact that in the finite variation case, the underlying Lévy
process X has the form

X.t/ D � t C S1.t/ � S2.t/ (67)

where S1; S2 are independent subordinators.



98 L.N. Andersen et al.

Theorem 5.12

(i) In the infinite variation case, �bfbg D �bf0g D 0.
In the finite variation case (67):

(ii) �bfbg > 0 and �bf0g D 0 when � > 0;
(iii) �bfbg D 0 and �bf0g > 0 when � < 0;

Proof We have �bfbg D P
�
X
�
�Œ0; b/

� � b
�
. In the unbounded variation case,

.�1; 0/ is regular for X, meaning that .�1; 0/ is immediately entered when
starting from X.0/ D 0 [104, p. x], so that in this case X

�
�Œ0; b/

� D 0 and
�bfbg D 0. Thus �bfbg > 0 can only occur in the bounded variation case which is
precisely (67). Similarly for �bf0g.

One has

S1.t/=t
a:s:! 0 ; S2.t/=t

a:s:! 0; t ! 0 (68)

(cf. [11, p. 254]). Thus if � < 0, X takes negative values arbitrarily close to t D 0 so
that �Œ0; b/ D 0, X

�
�Œ0; b/

� D 0 and �bfbg D 0.
If � > 0, we get X.t/ > 0 for 0 < t < " for some ". This implies that X has

a chance to escape to Œb;1/ before hitting .�1; 0/ which entails P
�
X
�
�Œ0; b/

� �
b
�
> 0 and �bfbg > 0.
Combining these facts with a sign reversion argument yields (ii), (iii). �

Corollary 5.13 In the spectrally positive (downward skipfree) case, �bfbg D 0.

Proof The conclusion follows immediately from Theorem 5.12(i) in the infinite
variation case. In the finite variation case where S2 � 0, our basic assumption
that the paths of X are non-monotonic implies � < 0, and we can appeal to
Theorem 5.12(iii). �
Remark 5.14 Corollary 5.13 can alternatively be proved by identifying�bfbg as the
limiting average of the time spent in b before t and noting that the Lebesgue measure
of this time is 0 because X leaves b instantaneously, cf. the remark after (68). The
same argument also yields �1fbg D 0. �

The next result relates one- and two-sided reflection (see also [11, XIV.3] for
some related discussion).

Theorem 5.15 Assume m D EX.1/ < 0 so that �1 exists, and that X is
spectrally positive with �fbg D 0. Then �b is �1 conditioned to Œ0; b�, i.e.
�b.A/ D �1.A/=�1Œ0; b� for A 	 Œ0; b�. Equivalently, �b is the distribution of
M D supt�0 X.t/ conditioned on M � b.

Proof For x 2 .0; b/, define

p1.x/ D P
�
X
�
�Œx � b; x/

� � x
�
; p2.x/ D P

�
X
�
�.�1; x/

� � x
�
:
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Then spectral positivity implies that X is downward skipfree so that

p2.x/ D p1.x/C �
1 � p1.x/

�
p2.b/ ; p1.x/ D p2.x/� p2.b/

1 � p2.b/
:

In terms of stationary distributions, this means

�bŒx; b� D �1Œx; b/
�1Œ0; b/

D �1Œx; b�
�1Œ0; b�

;

where the last equality follows from Remark 5.14. �
Corollary 5.16 Assume m D EX.1/ > 0 and that X is spectrally negative with
�f�bg D 0. Then �b is the distribution of b � M conditioned on M � �b where
M D inft�0 X.t/.

6 The Loss Rate via Itô’s Formula

The identification of the loss rate `b of a Lévy process X first appeared in Asmussen
and Pihlsgård [16]. The derivation is based on optional stopping of the Kella-Whitt
martingale followed by lots of tedious algebra, see Sect. 8. In this section we will
follow an alternative more natural approach presented in Pihlsgård and Glynn [118].
One important point of that paper is that the dynamics of the two-sided reflection
are governed by stochastic integrals involving the feeding process. Thus, all that is
required is that stochastic integration makes sense. Hence, the natural framework is
to take the input X to be a semimartingale. What we will do in the current section
is to solve the more general problem of explicitly identifying the local times L and
U (in terms of X and V) when the feeding process X is a semimartingale. The main
result in [16] follows easily from what will be presented below.

We start with a brief discussion about semimartingales. A stochastic process X is
a semimartingale if it is adapted, cadlag and admits a decomposition

X.t/ D X.0/C N.t/C B.t/

where N is a local martingale, B a process of a.s. finite variation on compacts with
N.0/ D B.0/ D 0. Alternatively, a semimartingale is a stochastic process for which
the stochastic integral

Z
H.s/dX.s/ (69)

is well defined for H belonging to a satisfactory rich class of processes (more
precisely, the predictable processes). In (69), we will in this exposition take H to
be an adapted process with left continuous paths with right limits. The class of
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semimartingales forms a vector space and contains e.g. all adapted processes with
cadlag paths of finite variation on compacts and Lévy processes. For a thorough
introduction to semimartingales we refer to Protter [123].

Let X and Y be semimartingales. ŒX;X� denotes the quadratic variation process
of X and ŒX;X�c is the continuous part of ŒX;X�. ŒX;Y� is the quadratic covariation
process (by some authors referred to as the bracket process) of X and Y.

Section 4 contains a discussion concerning the existence and uniqueness of the
solution .V;L;U/ to the underlying Skorokhod problem in which no assumptions
about the structure of X are made, so it applies to the case where X is a general
semimartingale. We will start by presenting two preliminary results.

Lemma 6.1 V, L and U are semimartingales.

Proof Since L and U are cadlag, increasing and finite (thus of bounded variation)
it follows that they are semimartingales. Since V D X C L � U and X is a
semimartingale, the proof is concluded by noting that semimartingales form a vector
space. ut
Lemma 6.2 It holds that ŒV;V�c D ŒX;X�c.

Proof L � U is cadlag of bounded variation and it follows by Theorem 26, p. 71, in
[123] that ŒL � U;L � U�c D 0 which is well known to imply ŒX;L � U�c D 0, see,
e.g., Theorem 28, p. 75 in [123]. The claim now follows from

ŒV;V�c D ŒXCL�U;XCL�U�c D ŒX;X�cCŒL�U;L�U�cC2ŒX;L�U�c D ŒX;X�c:

ut
We now establish the link between .L;U/ and X. We choose to mainly focus on the
local time U, by partly eliminating L, but it should be obvious how to obtain the
corresponding results for L.

Theorem 6.3 Let X be a semimartingale which is reflected at 0 and b. Then the
following relationship holds.

2bU.t/ D V.0/2 � V.t/2 C 2

Z t

0C
V.s�/ dX.s/C ŒX;X�c.t/C JR.t/ (70)

where JR is pure jump, increasing and finite with

JR.t/ D
X

0<s�t

'
�
V.s�/;�X.s/

�
; (71)

where

'.x; y/ D

8
ˆ̂
<

ˆ̂
:

�.x2 C 2xy/ if y � �x;

y2 if � x < y < b � x;

2y.b � x/� .b � x/2 if y � b � x:
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Proof By the definition of the quadratic variation process ŒV;V� and Lemma 6.2,

V.t/2 � V.0/2 � 2

Z t

0C
V.s�/dV.s/ D ŒV;V�.t/ D ŒX;X�c.t/C

X

0<s�t

.�V.s//2:

(72)

Furthermore,

dV.t/ D dX.t/C dL.t/ � dU.t/ and V.s�/ D V.s/ ��V.s/;

so it follows by the formulation of the Skorokhod problem that

Z t

0C
V.s�/dV.s/

D
Z t

0C
V.s�/dX.s/C

Z t

0C
.V.s/ ��V.s//dL.s/ �

Z t

0C
.V.s/��V.s//dU.s/

D
Z t

0C
V.s�/dX.s/�

Z t

0C
�V.s/dL.s/ � bU.t/C

Z t

0C
�V.s/dU.s/

D
Z t

0C
V.s�/dX.s/�

X

0<s�t

�V.s/�L.s/� bU.t/C
X

0<s�t

�V.s/�U.s/:

(73)

Then (70) and (71) follow by combining (72) and (73) with the fact that

�V.s/ D max.min.�X.s/; b � V.s�//; 0/C min.max.�X.s/;�V.s�//; 0/;
�V.s/�L.s/ D �V.s�/.� min.�X.s/C V.s�/; 0//;
�V.s/�U.s/ D .b � V.s�//max.�X.s/C V.s�/� b; 0/:

Since 0 � '.x; y/ � y2 it follows that JR.t/ is increasing and that

JR.t/ �
X

0<s�t

.�X.s//2 � ŒX;X�.t/ < 1:

ut
We will need the next result in order to go from the path-by-path representation in
Theorem 6.3 to the loss rate `b.

Lemma 6.4 Suppose that X is a Lévy process with characteristic triplet .�; �; �/
and EjX.1/j < 1. Let

I.t/ D
Z t

0C
V.s�/ dX.s/:

Then in the stationary case it holds that E� I.t/ D tmE�V.0/.
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Proof Let QX.t/ D X.t/�P
0<s�t �X.s/�.j�X.s/j � 1/, so that

I.t/ D
Z t

0C
V.s�/d QX.s/C

X

0<s�t

V.s�/�X.s/�.j�X.s/j � 1/:

We let QY.t/ D QX.t/� tE� QX.1/. Then QY is a martingale (and thus a local martingale)
and it follows by Theorem 29, p. 128, in [123] that

J.t/ D
Z t

0C
V.s�/ d QY.s/

is also a local martingale. Theorem 29, p. 75, in [123] tells us that

ŒJ; J�.t/ D
Z t

0C
V.s�/2dŒ QY; QY�.s/ D

Z t

0C
V.s�/2dŒ QX; QX�.s/ � b2Œ QX; QX�.t/

D b2
�
�2t C

X

0<s�t

.�X.s//2�.j�X.s/j < 1/
�

and it follows thatE� ŒJ; J�.t/ < 1 for all t � 0, which implies that J is a martingale,
see Corollary 3, p. 73 in [123]. Then E�J.t/ D E�J.0/ D 0, and thus

E�

Z t

0C
V.s�/ d QX.s/ D E�

Z t

0C
V.s�/E� QX.1/ ds D tE�V.0/E QX.1/:

Furthermore, since
P

0<s�t �X.s/�.j�X.s/j � 1/ is a compound Poisson process
and V.s�/ is independent of �X.s/, we get that

E�

X

0<s�t

V.s�/�X.s/�
�j�X.s/j � 1

� D tE�V.0/

 Z 1

1

x �.dx/C
Z �1

�1
x �.dx/

!

and it follows that

E� I.t/ D tE�V.0/E QX.1/CtE�V.0/

	Z 1

1

x �.dx/C
Z �1

�1
x �.dx/



D tmE�V.0/:

ut
Remark 6.5 In the proof of Lemma 6.4, we used the intuitively obvious fact
that V.s�/ and �X.s/ are independent. For a formal proof, one may appeal to
Campbell’s formula (e.g. [28, p. 7]). More precisely, write the sum

X

0�s�t

V.s�/�X.s/�
�j�X.s/j � 1

�
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as

X

0�s<1
Hs.�X.s/�

�
�X.s/ � 1

�
/ �

X

0�s<1
Hs.�X.s/�

�
�X.s/ � �1�/; (74)

where Hs.x/ D jxjV.s�/��s � t
�
. We see that Hs (viewed as a process indexed by s

taking values in the space of nonnegative measurable functions on R) is predictable.
This is the formal equivalent to the independence argument used above. By applying
Campbell’s formula separately to each part in (74), we get

E�

X

0�s�t

V.s�/�X.s/�
�j�X.s/j � 1

�

D E�

X

0�s<1
Hs.�X.s/�

�
�X.s/ � 1

�
/ � E�

X

0�s<1
Hs.�X.s/�

�
�X.s/ � �1�/

D E�

Z 1

0

ds
Z 1

1

�.dx/Hs.x/� E�

Z 1

0

ds
Z �1

�1
�.dx/Hs.x/

D tE�V.0/
Z 1

1

x�.dx/C tE�V.0/
Z �1

�1
x�.dx/:

Similar arguments are tacitly used in other parts of the paper, in particular in the
proofs of Corollary 6.6, Lemma 8.4, Eqs. (106)–(108), (142), Theorem 14.3, and
the calculations leading to (201). �

The next corollary is an easy consequence of Theorem 6.3 and Lemma 6.4 and
is precisely the main result in the paper [16]. Note that as we keep b fixed it is no
restriction to assume that the support of � is Œ�a;1/nf0g for some a � b. Otherwise
we just truncate � at �a (we then get a point mass of size �..�1;�a�/ at �a). The
truncation does not affect V and hence not `b.

Corollary 6.6 Let X be a Lévy process with characteristic triplet .�; �; �/. IfR1
1

y�.dy/ D 1, then `b D 1 and otherwise

`b D 1

2b

(

2mEV C �2 C
Z b

0

�.dx/
Z 1

�1
'.x; y/�.dy/

)

: (75)

Proof The first part is obvious. The second part follows immediately from (70)
and (71) and Lemma 6.4 if we note that for a Lévy process ŒX;X�c.t/ D �2t. ut
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7 Two Martingales

We will need nothing more sophisticated here than taking the property of fM.t/gt�0
to be a martingale as

E
�
M.t C s/

ˇ̌
F.t/

� D M.t/; t � 0; s > 0 ; (76)

where
˚
F.t/

�
t�0 is the natural filtration generated by the Lévy process, i.e. F.t/ D

�
�
X.v/ W 0 � v � t

�
.

The applications of martingales in the present context are typically optional
stopping, i.e. the identity EM.�/ D M.0/ for a stopping time � when M.0/ is
deterministic or EM.�/ D EM.0/ in the general case. This is not universally true,
but conditions need to be verified, for example

E sup
t��
ˇ
ˇM.t/

ˇ
ˇ < 1 : (77)

7.1 The Wald Martingale

A classical example in the area of Lévy processes is the Wald martingale given by

M.t/ D e˛X.t/�t�.˛/ : (78)

The proof that this is a martingale is elementary using the property of independent
stationary increments and the definition of the Lévy exponent �.

Remark 7.1 For the Wald martingale e�X.t/�t�.�/, there is an usually easier approach
to justify stopping than (77): consider the exponentially tilted Lévy process with
�� .˛/ D �.˛ C �/ � �.�/. Then optional stopping is permissible if and only if
P� .� < 1/ D 1. See [11, p. 362]. �

Example 7.2 Consider Brownian motion with drift � and variance constant �2, and
the problem of computing the two-sided exit probability

P
�
X
�
�Œx � b; x/

� � x
� D �bŒx; b�

occurring in the calculation of the stationary distribution �b.
We have �.˛/ D ˛� C ˛2�2=2, and take ˛ D 	 D �2�=�2 as the root of the

Lundberg equation �.˛/ D 0. Then the martingale is e	X.t/. Condition (77) holds
for � D �Œx � b; x/ since x � b � X.t/ � x for t � �Œx � b; x/. Letting

pC.x/ D P
�
X
�
�Œx � b; x/

� � x
� D P

�
X
�
�Œx � b; x/

� D x
�
;

p�.x/ D P
�
X
�
�Œx � b; x/

�
< x � b

� D P
�
X
�
�Œx � b; x/

� D x � b
�
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(note the path properties of Brownian motion for the second expression!), optional
stopping thus gives

1 D M.0/ D EM
�
�Œx � b; x/

� D pC.x/e	x C p�.x/e	.x�b/ :

Together with 1 D pC.x/C p�.x/ this gives

pC.x/ D 1 � e	.x�b/

e	x � e	.x�b/
D e�	x � e�	b

1 � e�	b
: (79)

The last expression identifies �b as the distribution of an exponential r.v. W
conditioned to Œ0; b� when 	 > 0, (i.e. � < 0) and of b � W when 	 < 0 (i.e.
� > 0). �

Example 7.3 Consider again the Brownian setting, but now with the problem of
computing quantities like

rC D EŒe�q� I X.�/ D v� ; r� D EŒe�q� I X.�/ D u� ; r D rC C r� D Ee�q�

where � D infft W X.t/ 62 Œu; v�g with u < 0 < v and q > 0, as occurring in the
calculation of the scale function.

We take ˛ as root of

q D �.˛/ D ˛�C ˛2�2=2

(rather than the Lundberg equation �.˛/ D 0). Since q > 0, there are two roots, one
positive and one negative,

�C D �C.q/ D ��Cp
�2 C 2�2q

2
; �� D ��.q/ D ���p

�2 C 2�2q

2
:

We therefore have two Wald martingales at disposal, e�
CX.t/�qt and e�

�X.t/�qt.
Instead of verifying condition (77) (trivial for �C and by a symmetry argument

also for ��!), it is easier to note that in the present context, we have � < 1 for all
�, and this implies the conditions of Remark 7.1. Optional stopping thus gives

1 D rCe�
Cv C rCr�e�

Cv 1 D rCe�
�v C rCr�e�

�v :

These two linear equations can immediately be solved for rC; r�, and then also
r D rC C r� is available. �

Example 7.4 Consider again the two-sided exit problem, but now with
exponential.ı/ jumps at rate � in the positive directions added to the Brownian
motion.
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Inspired by Examples 7.2 and 7.3 we look for solutions of the Lundberg equation

0 D �.˛/ D ˛�C ˛2�2=2C �
ı

ı � ˛
:

This is a cubic, which looks promising since we have three unknowns, the
probability of exit below at u, the probability of continuous exit above at v, and the
probability of exit above by a jump. However, only two of the three roots � satisfy
Ee<.˛/X.1/ < 1 and so the third does not lead to a permissible Wald martingale.
Thus, additional ideas are needed to deal with this example. This is done next. �

7.2 The Kella-Whitt Martingale

Consider a modification Z.t/ D X.t/C B.t/ of the Lévy process, where fB.t/gt�0 is
adapted with D-paths, locally bounded variation, continuous part fBc.t/g, and jumps
�B.s/ D B.s/� B.s�/. The Kella-Whitt martingale is given by

�.˛/

Z t

0

e˛Z.s/ ds C e˛Z.0/ � e˛Z.t/

C ˛

Z t

0

e˛Z.s/ dBc.s/ C
X

0�s�t

e˛Z.s/.1 � e�˛�B.s// : (80)

Since the Kella-Whitt martingale (80) is less standard than the Wald martingale
(78), we add some discussion and references. The first occurrence is in Kella and
Whitt [91] where it was identified as a rewriting of the stochastic integral

Z t

0

exp
˚
˛
�
X.s�/C B.s�/�C s�.˛/

�
dW.s/

where W is the Wald martingale. The stochastic integral representation immediately
gives the local martingale property. To proceed from this, much subsequent work
next shows the global martingale property by direct calculations specific for the
particular application. However, recently Kella and Boxma [88] showed that this is
automatic under minor conditions.

A simple but still useful case is the Kella-Whitt martingale with B.t/ � 0,

�.˛/

Z t

0

e˛X.s/ ds C e˛x � e˛X.t/ (81)

A survey of applications of the Kella-Whitt martingale is in Asmussen [11, IX.3];
see also Kyprianou [104] and [105].
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8 The Loss Rate via the Kella-Whitt Martingale

In this section we summarize the original derivation of the loss rate ` D `b which
is presented in Asmussen and Pihlsgård [16]. It is essentially based on optional
stopping of the Kella-Whitt martingale for V . As stated in Sects. 1 and 6, this is
less straightforward than the direct Itô integration method used in Sect. 6. It is
not difficult to see why the latter approach leads more directly to the result: the
Kella-Whitt martingale, see Kella and Whitt [91], is itself obtained as a stochastic
integral with respect to the Wald martingale (indexed by, say, ˛) for V , so this
method implicitly relies on Itô’s formula and, more importantly, there is introduced
an arbitrariness via ˛ which is removed by letting ˛ ! 0. This requires a
delicate analysis, which is to a large extent based on Taylor expansions and tedious
algebra, and hence of limited probabilistic interest. This is perhaps the most serious
drawback of the original approach. However, the martingale technique also has
advantages. E.g., if the process X is such that the equation �.˛/ D 0 has a non-
zero root 	 , we obtain an alternative formula for `, see Theorem 8.6 below, which
turns out to be very useful when we derive asymptotics for `b as b ! 1 when
X is light tailed. We see no immediate way of deriving this result directly via Itô’s
formula.

To follow the exposition in [16], we need to introduce some further notation.
First, we split L and U into their continuous and jump parts, i.e.,

L.t/ D Lc.t/C Lj.t/ and U.t/ D Uc.t/C Uj.t/ (82)

where Lc.t/ is the continuous part of L, Lj.t/ the jump part etc., i.e., Lj.t/ DP
0�s�t�L.s/ and Lc.t/ D L.t/ � Lj.t/. Further, we treat the contributions to L

and U coming from small and large jumps of X separately: let

�L.s/ D �L.s/�
��k � �X.s/ � 0

�
; �L.s/ D �L.s/�

�
�X.s/ < �k

�
;

�U.s/ D �U.s/�
�
0 � �X.s/ � k

�
; �U.s/ D �U.s/�

�
�X.s/ > k

�

where k is a constant such that k > max.1; b/. Further, we let

`b
j D EUj.1/ ; `

b
c D EUc.1/ ; `

b
j D E

X

0�s�1
�U.s/ ; `

b
j D E

X

0�s�1
�U.s/ ;

and similarly at 0. Clearly `b
j D `b

j C `
b
j and `0j D `0j C `

0

j . The Lévy exponent �.˛/
can be rewritten as

ck˛ C �2˛2=2C
Z 1

�1
�
e˛x � 1 � ˛x�

�jxj � k
��
�.dx/; (83)

where ck D c C R k
1

y �.dy/C R �1
�k y �.dy/.



108 L.N. Andersen et al.

The paper [16] relies on the original reference on the Kella-Whitt local mar-
tingale associated with Lévy processes, [91], and on Asmussen and Kella [15] for
the generalisation to a multidimensional local martingale associated with Markov
additive processes with finite state space Markov modulation. However, it was
recently discovered in Kella and Boxma [88] that without any further assumptions,
these local martingales are in fact martingales. This very useful result makes it
possible to keep the treatment below slightly shorter than what was presented in
[16].

The first step in the analysis is to show that `0 and `b are well defined if the
process X is sufficiently well behaved.

Lemma 8.1 If EjX.1/j < 1 then EL.t/ < 1 and EU.t/ < 1 (for all t).

Proof Assume (without loss of generality) that V.0/ D 0. Let �.0/ D 0 and, for
j � 1, �.j/ D infft > �.j � 1/ W V.t/ D bg, �.j/ D infft > �.j/ W V.t/ D 0g. We
view V as regenerative with ith cycle equal to Œ�.i � 1/; �.i//. Let n.t/ denote the
number of cycles completed in Œ0; t�. Clearly, E.�.i/��.i�1// > 0 and this implies
that En.t/ < 1, see Proposition 1.4, p. 140 in [11]. We have

L.t/ D
n.t/X

iD1
Ci C R.t/ (84)

(we use the convention that
P0

iD1 Ci D 0) where Ci is the contribution to L.t/ from
the ith cycle and R.t/ is what comes from Œ�.n.t//; t�. Let m.t/ be the local time
corresponding to X one-sided reflected at 0 (m.t/ D � inf0�s�t X.s/). By the strong
Markov property of X and the fact that V and the process starting from 0 at time
�.i � 1/ resulting from one-sided reflection of X coincide on Œ�.i � 1/; �.i//, we

have Ci
DD m.�.1//C J1, where J1 comes from a jump of X ending the cycle. For

fixed t, the initial parts of the cycles (from 0 up to b) can influence L.t/ only through
what occurs during Œ�.i � 1/; .�.i � 1/C t/^ �.i/�, so in (84) we may replace Ci by

Ci.t/ where Ci.t/
DD m.�.1/ ^ t/C J1. Now,

J1 � 1 _ max
0�s�t

j�X.s/j��j�X.s/j � 1
� � 1C

X

0�s�t

j�X.s/j��j�X.s/j � 1
�
;

so EJ1 � 1CE
P

0�s�t j�X.s/j��j�X.s/j � 1
� D 1C t

R
jxj�1 jxj�.dx/ < 1 (recall

that we assume that EjX.1/j < 1). It is known, see Lemma 3.3, p. 256 in [11], or
Theorem 25.18, p. 166 in [129], that Em.t/ < 1, so Em.�.1/ ^ t/ � Em.t/ < 1,
which together with EJ1 < 1 yields ECi.t/ < 1. In a similar way, we see that
ER.t/ � Em.t/ < 1. It now follows from Wald’s identity that

EL.t/ D E

n.t/X

iD1
Ci.t/C ER.t/ � E

n.t/C1X

iD1
Ci.t/C ER.t/

D .En.t/C 1/EC1.t/C ER.t/ < 1:
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EU.t/ < 1 is now immediate from the formulation of the Skorokhod problem. ut
The next step is the construction of the Kella-Whitt martingale for the reflected
process V .

Proposition 8.2 Assume that EjX.1/j < 1. For each t, let M.t/ be the random
variable

�.˛/

Z t

0

e˛V.s/ds C e˛V.0/ � e˛V.t/ C ˛

Z t

0

e˛V.s/dLc.s/C
X

0�s�t

e˛V.s/.1 � e�˛�L.s//

� ˛

Z t

0

e˛V.s/dUc.s/C
X

0�s�t

e˛V.s/.1 � e˛�U.s//:

Then

M.t/ D �.˛/

Z t

0

e˛V.s/ds C e˛V.0/ � e˛V.t/ C ˛Lc.t/C
X

0�s�t

.1 � e�˛�L.s//

� ˛e˛bUc.t/C e˛b
X

0�s�t

.1 � e˛�U.s// (85)

and M is a zero mean martingale.

Proof L and U solve the Skorokhod problem stated in Sect. 1, so the first claim is
clearly true. L�U is of bounded variation and it follows by what was proved in [88]
that M is a martingale. ut
We proceed by stating two lemmas.

Lemma 8.3 `b satisfies the following equation:

˛.1� e˛b/`b D ��.˛/E�e˛V.0/ C ˛E�X.1/� ˛e˛b`
b
j C ˛`

0

j C ˛2

2
E�

X

0�s�1

.�U.s//2

C ˛2

2
E�

X

0�s�1

.�L.s//2 � e˛b
E�

X

0�s�1

.1� e˛�U.s//

� E�

X

0�s�1

.1� e�˛�L.s//C o.˛2/; (86)

where o.˛2/=˛2 ! 0 if ˛ ! 0.

Proof If we take t D 1 in Proposition 8.2 and use the stationarity of V , we get

0 D �.˛/E�e˛V.0/C˛`0cCE�

X

0�s�1
.1�e�˛�L.s//�˛e˛b`b

cCe˛b
E�

X

0�s�1
.1�e˛�U.s//:

(87)
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We write

X

0�s�1
.1 � e˛�U.s// D

X

0�s�1
.1 � e˛�U.s//C

X

0�s�1
.1 � e˛�U.s//; (88)

X

0�s�1
.1 � e�˛�L.s// D

X

0�s�1
.1 � e�˛�L.s//C

X

0�s�1
.1 � e�˛�L.s// (89)

and apply the expansion

e˛x D 1C ˛x C .˛x/2

2
C .˛x/3

6
e�˛x; � 2 .0; 1/ (90)

to the first parts of the r.h.s. of (88) and (89) and get for the part in (88):

e˛b
E�

X

0�s�1
.1 � e˛�U.s// D e˛b

E�

��˛
X

0�s�1
�U.s/� ˛2

2

X

0�s�1
.�U.s//2

�C o.˛2/

D �˛e˛b`b
j � e˛b ˛

2

2
E�

X

0�s�1
.�U.s//2 C o.˛2/

D �˛e˛b.`b
j � `b

j / � ˛2

2
E�

X

0�s�1
.�U.s//2 C o.˛2/;

(91)

because E�

P
0�s�1 ˛3.�U.s//3e�˛�U.s/=6 D o.˛2/, `b

j D `b
j C `

b
j and e˛b˛2=2 D

˛2=2C o.˛2/. We proceed similarly for the part in (89) and get

E�

X

0�s�1
.1 � e�˛�L.s// D ˛.`0j � `0j / � ˛2

2
E�

X

0�s�1
.�L.s//2 C o.˛2/: (92)

If we combine (87)–(89), (91) and (92) we get

0 D �.˛/E�e˛V.0/ C ˛`0 � ˛e˛b`b � ˛`0j C ˛e˛b`
b
j � ˛2

2
E�

X

0�s�1
.�U.s//2

� ˛2

2
E�

X

0�s�1
.�L.s//2 C e˛b

E�

X

0�s�1
.1 � e˛�U.s//

C E�

X

0�s�1
.1 � e�˛�L.s//C o.˛2/:

The claim now follows if we make the substitution `0 D `b �E�X.1/ and rearrange
terms. ut
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Lemma 8.4 Let, for x > 0, �.x/ D �.x;1/ and, for x < 0, �.x/ D �.�1; x/. In
stationarity it then holds that as ˛ ! 0,

�.˛/E�e˛V.t/ D o.˛2/C
Z b

0

e˛x�.dx/
Z 1

�1
e˛y

�.jyj � k/�.dy/

�
Z 1

�1
I.jyj � k/�.dy/C˛

 

ck�
Z b

0

x�.dx/
Z 1

�1
�.jyj � k/�.dy/

!

C ˛2

 

ck

Z b

0

x�.dx/C �2=2C
Z k

�k
y2=2�.dy/

�
Z b

0

x2=2�.dx/
Z 1

�1
�.jyj � k/�.dy/

!

; (93)

e˛b
E�

X

0�s�1
.1 � e˛�U.s// D e˛b

Z b

0

�.dx/
Z 1

k
.1� e˛.y�bCx//�.dy/

D .1C ˛b C ˛2b2=2/�.k/

�
Z b

0

e˛x�.dx/
Z 1

k
e˛y�.dy/C o.˛2/; (94)

E�

X

0�s�1
.1 � e�˛�L.s// D

Z b

0

�.dx/
Z �k

�1
.1 � e˛.xCy//�.dy/

D �.�k/ �
Z b

0

e˛x�.dx/
Z �k

�1
e˛y�.dy/C o.˛2/; (95)

˛e˛b`
b
j D ˛e˛b

Z b

0

�.dx/
Z 1

k
.y � b C x/�.dy/

D .˛ C ˛2b/
Z b

0

�.dx/
Z 1

k
.y � b C x/�.dy/C o.˛2/; (96)

˛`
0

j D �˛
Z b

0

�.dx/
Z �k

�1
.x C y/�.dy/; (97)

˛m D ˛ck C ˛

Z 1

�1
y�.jyj � k/�.dy/; (98)
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˛2

2
E�

X

0�s�1
.�U.s//2 D ˛2

2

Z b

0

�.dx/
Z k

b�x
.y � b C x/2�.dy/; (99)

˛2

2
E�

X

0�s�1
.�L.s//2 D ˛2

2

Z b

0

�.dx/
Z �x

�k
.x C y/2�.dy/: (100)

Proof Clearly E�e˛V.s/ D R b
0 e˛x�.dx/. Equation (93) follows if we use the

representation for �.˛/ in (83) and expand the integrands corresponding to the
compact sets Œ�k; k� and Œ0; b� according to (90). The remaining statements all
follow by conditioning on V.s�/ and applying (90) where appropriate. ut

We are now ready to identify `b in terms of � and .c; �2; �/. We recall the remark
just before Corollary 6.6.

Theorem 8.5 If
R1
1

y�.dy/ D 1, then `b D 1 and otherwise

`b D 1

2b

(

2mE�V C �2 C
Z b

0

�.dx/
Z 1

�1
'.x; y/�.dy/

)

; (101)

where

'.x; y/ D

8
ˆ̂
<

ˆ̂
:

�.x2 C 2xy/ if y � �x;

y2 if � x < y < b � x;

2y.b � x/� .b � x/2 if y � b � x:

Proof The first claim is obvious. We use (86) and identify the terms in the right
hand side via Lemma 8.4 and get,

˛.1 � e˛b/`b D �ck˛
2

Z b

0

x�.dx/� �2˛2

2
� ˛2

2

Z b

0

�.dx/
Z b�x

0

y2�.dy/

� ˛2

2

Z b

0

�.dx/
Z 0

�x
y2�.dy/C .�.k/C �.�k//

˛2

2

Z b

0

x2�.dx/

C ˛2

2

Z b

0

�.dx/
Z k

b�x
..x � b/2 C 2y.x � b//�.dy/

� ˛2b
Z 1

k
y�.dy/C ˛2

2

Z b

0

�.dx/
Z �x

�k
.x2 C 2xy/�.dy/

C ˛2b
Z b

0

.b � x/�.dx/�.k/C o.˛2/: (102)

We divide both sides of (102) by ˛.1 � e˛b/ and let first ˛ ! 0 and then k ! 1
and get the limit (101) (note that ck ! EX.1/ as k ! 1). ut
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The next result, which follows almost directly from the proof of Lemma 8.3, gives
an alternative expression for `b whenever we can find a non-zero root 	 of �.˛/ D 0

(a genuine root in the sense that e	X.1/ has finite expectation, cf. Lemma 10.7 where
the meaning of �.˛/ D 0 is different). Note that in the original version (Theorem 3.2
in [16]) it is required that 	 is real but this is not necessary.

Theorem 8.6 Assume that there exists a non-zero root 	 of the equation �.˛/ D 0.
Then

`b D 1

e	b � 1

(

e	bI1 C I2 � EX.1/

)

(103)

where

I1 D
Z b

0

�.dx/
Z 1

b�x
..y � b C x/C 	�1.1 � e	.y�bCx///�.dy/

I2 D
Z b

0

�.dx/
Z �x

�1
..x C y/C 	�1.1 � e	.xCy///�.dy/

Proof Let " > 0. We truncate the Lévy measure at " and �". By arguing precisely
as when we derived (86) and taking ˛ D 	 , we get

	.e	b � 1/`b D �	EX.1/C e	bI"1 C I"2 C O."/; (104)

where

I"1 D
Z b

0

�.dx/
Z 1

.b�x/_"
.	.y � b C x/C .1 � e	.y�bCx///�.dy/;

I"2 D
Z b

0

�.dx/
Z �.x_"/

�1
.	.x C y/C .1� e	.xCy///�.dy/;

and the claim follows if we divide both sides of (104) by 	.e	b � 1/, let " # 0 and
apply monotone convergence. ut

As we have seen in Sect. 3.1, the identification of `b is almost trivial in the
discrete time case. However, the continuous time case is much more involved and
less intuitive, no matter the choice of method for deriving the expression(s) for `b

(the direct Itô approach presented in Sect. 6 or the methods used in the current
section). In order to provide the presentation with some intuition, we present an
alternative heuristic derivation of the formula for `b as given in (103). Recall the
definitions of `b

c , `b
j etc. given above. We will derive four equations involving `b

c , `b
j ,

`0c and `0j and solve for the unknowns. The first equation follows directly from the
Skorokhod problem formulation and the stationarity of V:

`0c C `0j � `b
c � `b

j D �m: (105)



114 L.N. Andersen et al.

The second equation is

`b
j D

Z b

0

�.dx/
Z 1

b�x
.y � b C x/�.dy/ (106)

and the third is

`0j D �
Z b

0

�.dx/
Z �x

�1
.x C y/�.dy/: (107)

In order to obtain the fourth equation, we take ˛ D 	 in (85), which yields

	`0c � 	e	b`b
c D �e	b

Z b

0

�.dx/
Z 1

b�x
.1 � e	.y�bCx//�.dy/

�
Z b

0

�.dx/
Z �x

�1
.1 � e	.xCy//�.dy/: (108)

Equations (106)–(108) apply at least if the jump part of X is of bounded variation,
i.e., if

R 1
�1 jxj�.dx/ < 1. In this case they follow by straightforward conditioning

on the value of V immediately prior to a jump of X. By combining (105)–(108), we
may identify the unknowns and the expression for `b given in (103) follows from
`b D `b

c C`b
j . Note that if we take X to be a compound Poisson process with intensity

ˇ and jump distribution F, we get `b D `b
j D R b

0
�.dx/

R1
b�x.y �b Cx/ˇF.dy/. Thus

in this case the expression for `b is the same as in discrete time. If we compare this
expression to (101), we see that for a compound Poisson process it must hold that

Z b

0

�.dx/
Z 1

.b�x/
.y � b C x/F.dy/ D

Z b

0

�.dx/
Z 1

�1
.2b/�1.2xy C '.x; y//F.dy/:

Example 8.7 Assume that X is Brownian motion with drift � and variance �2,
i.e., �.˛/ D �˛ C �2˛2=2. Then 	 D �2�=�2 and Theorem 8.6 gives us
`b D ��=.e�2b�=�2 � 1/.

Example 8.8 Suppose that X is a strictly stable Lévy process with index ˛ 2 .0; 2/n
f1g (note that if ˛ D 1, then `b D 1 and if ˛ D 2, then `b D �2=2b), i.e.,

�.dx/ D
(

cCx�.˛C1/dx if x > 0;

c�jxj�.˛C1/dx if x < 0;

where cC; c� � 0 are such that cC C c� > 0; see, e.g., Bertoin [28, pp. 216–218].
Let ˇ D .cC � c�/=.cC C c�/ and � D 1=2C .�˛/�1 arctan.ˇ tan.�˛=2//.

If ˛ 2 .0; 1/ then `b is 0 if ˇ D �1 (then X is the negative of a subordinator)
and 1 otherwise. We now consider the case ˛ 2 .1; 2/, which implies that
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EX.1/ D � D 0. It follows from Theorem 1 in Kyprianou [103] and some rescaling
manipulations that if X is not spectrally one-sided, i.e., if � 2 .1 � 1=˛; 1=˛/, then

�.dx/ D .bB.˛�; ˛.1 � �///�1.1 � x=b/˛��1.x=b/˛.1��/�1dx;

where B.�; �/ is the beta function. Further, it turns out that in this example,

Z 1

�1
'.x; y/�.dy/ D 2.˛.˛ � 1/.2� ˛//�1.c�x2�˛ C cC.b � x/2�˛/;

and it follows from Theorem 8.5 (Theorem 3.1 in [16]) that

`b D c�B.2� ˛�; ˛�/C cCB.2 � ˛.1 � �/; ˛.1 � �//

B.˛�; ˛.1 � �//˛.˛ � 1/.2 � ˛/b˛�1 :

9 Phase-Type Jumps

A key step in the analysis of two-sided reflection is the computation of the stationary
distribution or equivalently two-sided exit probabilities. This is not possible in
general (at least there are no known methods), but requires additional structure. One
example is the spectrally negative case with the scale function available. Another
one, that we concentrate on here, is phase-type jumps in both directions and an
added Brownian component. This class of Lévy models has the major advantage
of being dense (in the sense of D-convergence) in the class of all Lévy processes.
Further, not only are explicit computations available for two-sided exit probabilities
but also in a number of other problems standard in fluctuation theory for Lévy
processes, see the survey in Asmussen [12] and the extensive list of references there.

9.1 Phase-Type Distributions

Phase-type distributions are absorption time distributions in finite continuous-
time Markov processes (equivalently, lifelength distributions in terminating finite
Markov processes). Let fJ.t/gt�0 be Markov with a finite state space E [ f�g such
that� is absorbing and the rest transient. That is, the process ends eventually up in�
so that the absorption time (lifetime) � D infft W J.t/ D �g is finite a.s. For i; j 2 E,
i ¤ j, write tij for the transition rate i ! j and ti for the transition rate i ! �.
Define tii D �ti �Pj¤i tij and let T be the E 
 E matrix with ijth element tij. If ˛ is
an E-row vector with elements ˛i summing to 1, we then define a phase-type (PH)
distribution F with representation .E;˛;T/ (or just .˛;T/) as the distribution of �
corresponding to the initial distribution P˛ of fJ.t/g given by P˛

�
J.0/ D i

� D ˛i.
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The situation is illustrated in the following figure, where we have represented
the states by colored bullets, such that � corresponds to black. The process can
be illustrated by a traditional graph, as above the horizontal line, or, as below, as
a line of length � with segments colored according to the sample path. This last
representation is the one to be used in subsequent figures.

Analytic expressions for PH distributions, say for the p.d.f., c.d.f., etc., typically
have matrix form. All that will matter to us is the form of the m.g.f. of PH.˛;T/,

Ees� D ˛.�sI � T/�1t ; (109)

where t is the column vector with elements ti (the exit rate vector).
The exponential distribution corresponds to E having only one state, a mixture

of exponentials to tij D 0 for i ¤ j, and an Erlang.p; ı/ distribution (a gamma.p; ı/
distribution) to E D f1; : : : ; pg, ti.iC1/ D ı for i < p, all other off-diagonal elements
0, ˛ D .1 0 : : : 0/.

9.2 The PH Lévy Model

Any one-point distribution, say at z > 0, is the limit as p ! 1 of the Erlang.p; p=z/
distribution. The PH class is closed under mixtures, and so its closure contains all
distributions on .0;1/ with finite support. Hence the PH class is dense.

The class of compound Poisson processes is dense in D in the class of Lévy
processes. Hence the denseness properties of PH imply that the class of differences
of two compound Poisson processes with PH jumps are dense. In our key examples,
we will work in this class with an added Brownian component,

X.t/ D �t C �B.t/C
NC.t/X

iD1
YCi �

N�.t/X

jD1
Y�j (110)
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where N˙ is Poisson.�˙/ and the Y˙ PH.E˙;˛˙;T˙/, with n˙ states. Then
by (109), we have (in obvious notation) that

�.s/ D �s C �2s2=2

C �C
�
˛C.�sIC � TC/�1tC � 1

� C ��
�
˛�.sI� � T�/�1t� � 1�

where tC; t� are the vectors of rates of transitions to the absorbing state.
Expanding the inverses as ratios between minors and the determinant, it follows

that �.s/ D r1.s/=r2.s/ where r1; r2 are polynomials, with degree nC C n� of

r2.s/ D det
��sIC � TC

�
det
�
sI� � T�

�

and degree nC C n� C 2 of r1 if �2 > 0, nC C n� C 1 if �2 D 0, � ¤ 0, and
nC C n� if �2 D 0, � D 0. Obviously, �.s/ therefore has an analytic continuation
to the whole of the complex plane with the zeros of r2 removed. This representation
is fundamental for the paper. We further let

� D ˚
s 2 C W Ee<.s/X.1/ < 1� I

then � is a strip of the form � D ˚
s 2 C W � < <.s/ < �

�
for suitable � < 0 < �

(�� is the eigenvalue of largest real part of TC and � the eigenvalue of largest real
part of T�).

The situation is illustrated in Fig. 3. The green-shaded area is the strip � � C

where the m.g.f. converges. The red squares are the singularities, i.e. the roots of r2
or, equivalently, the union of the sets of roots of det

��sIC�TC
�

and det
�
sI��T�

�
.

Fig. 3 Features of �

θ1 θ20

0
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The blue circles are the roots of r1 or, equivalently, of � which will show up in
numerous computational schemes of the paper.

To avoid tedious distinctions between the various cases arising according to
whether �2; � are non-zero or not, we will assume that �2 > 0. This assumption has
a further motivation from a common procedure (e.g. Asmussen and Rosinski [17])
of replacing small jumps by a Brownian motion with the same mean and variance.

9.3 Two-Sided Exit

Recall that �Œa; b/ D infft � 0 W X.t/ 62 Œa; b/g with a � 0 < bI we want to compute
P
�
X
�
�Œa; b/

� � b
�
.

Write

pCc D P
�
X
�
�Œa; b/

� D b
�
; p�c D P

�
X
�
�Œa; b/

� D a
�
;

pCi D P
�
X
�
�Œa; b/

�
> b; upcrossing occurs in phase i

�
; i D 1; 2; : : : ; nC;

p�j D P
�
X
�
�Œa; b/

�
< a; downcrossing occurs in phase j

�
; j D 1; 2; : : : ; n� :

In more detail, we can imagine each upward jump of the process to be governed by
a terminating Markov process J with generator TC, and if the first exit time from
Œa; b/ is t, ‘upcrossing in phase i’ then means J

�
b � X.�Œa; b/�/� D i (similarly for

the downward jumps). See Fig. 4 where FC has two phases, red and green, and
F� just one, blue (we denote by F˙ the distributions of Y˙); thus on the figure,
there is upcrossing in the green phase.

Fig. 4 The two-sided exit
problem b

a

0



Lévy Processes with Two-Sided Reflection 119

We have P
�
X
�
�Œa; b/

� � b
� D pCc C pC1 C � � � C pC

nC
and need nC C n� C 2

equations to be able to solve for the unknowns. The first equation is the obvious

pCc C
nCX

iD1
pCi C p�c C

n�X

jD1
p�j D 1:

The following notation will be used. Let eCi ; e�i denote the ith unit row vectors
and let OFi̇ Œs� D ei̇ .�sI˙ � T˙/�1t˙ denote the m.g.f. of the phase-type
distributions Fi̇ with initial vector ei̇ and phase generator T˙. Let further 0 D
�1; �2; : : : ; �nCCnCC2 denote the roots of �.�/ D 0, i.e., of the polynomial equation
r1.�/ D 0.

9.3.1 Heuristics via the Wald Martingale

If the drift �0.0/ is non-zero, a 	 ¤ 0with Ee	X.1/ < 1, �.	/ D 0 exists and we can
take �1 D 0, �2 D 	 . Thus e�2X.t/ is an (integrable) martingale. Optional stopping
at �Œa; b/ then yields 1 D Ee�2X.�Œa;b//, which, taking over- and undershoots into
account, means

1 D e�kb
�

pCc C
nCX

iD1
pCi OFCi Œ�k�

�
C e�ka

�
p�c C

n�X

jD1
p�j OF�j Œ��k�

�
(111)

for k D 2. This is one equation more, but only one. If �k, k > 2, is one of the
remaining nC C n� roots and Eje�kX.1/j < 1, we can then proceed as for �k to
conclude that (111) holds also for this k, and get in this way potentially the needed
nC C n� remaining equations. But the problem is that typically E

ˇ
ˇe�kX.1/

ˇ
ˇ < 1

fails. Now both sides of (111) are analytic functions. But the validity for two k is
not enough to apply analytic continuation.

9.3.2 Computation via the Kella-Whitt Martingale

We will use the simple form (81) of the Kella-Whitt martingale. This gives that K
defined according to

K.t/ D �.˛/

Z t^�Œa;b/

0

e˛X.s/ds C 1 � e˛X.t^�Œa;b//; ˛ 2 �;

is a local martingale. In fact, K is a martingale as follows from Kella and
Boxma [88]. Further, we have the bound

jK.t/j � j�.˛/jtej˛jmax.jaj;b/ C 1C ej˛j.xCVC/ C ej˛j.b�xCV�/
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where VC and V� (the overshoot and undershoot of b and a, respectively, at �Œa; b/)
are phase-type distributed and so have finite exponential means. FromE�Œa; b/ < 1
we then get E supt��Œa;b/ jK.t/j < 1, so optional stopping at �Œa; b/ is permissible.

Letting �.˛/ D E
R �Œa;b/
0 e˛X.s/ds, this gives

0 D �.˛/�.˛/C 1

� e˛b
�

pCc C
nCX

iD1
pCi OFCi Œ˛�

�
� e˛a

�
p�c C

n�X

jD1
p�j OF�j Œ�˛�

�
; (112)

It is easily seen that the function �.˛/ is well defined for all ˛ 2 C, not just
for ˛ 2 �, and analytic when the common singularities of � and the OFCi ; OF�i
are removed. Therefore by analytic continuation (112) is valid for all ˛ in this
domain. In particular we may take ˛ as any of the �k to obtain (111) for k D
1; : : : ; nC C n� C 2.

Example 9.1 Take as a simple example all jumps to be exponentially distributed
(with parameters �C, ��) and � D �1. Then

�.˛/ D �C˛
�C � ˛

� ��˛
�� C ˛

C �2˛2

2
� ˛:

The method described above allows us to explicitly compute the c.d.f. �bŒ0; x�
(in terms of the parameters of the model and b). Even for this simple case, the
resulting expressions are quite complicated and rather than presenting them, we
display numerical results in Fig. 5 in the form of plots of the c.d.f. of �b, taking
�C D �� D �C D �� D 1, b D 2, and letting �2 vary.

�

Fig. 5 C.d.f. of �b

=

=

=

=
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9.4 The Scale Function

Though the scale function does not appear in the rest of the paper, we give for the
sake of completeness a sketch of its computation in the PH model. In view of (51),
we need to evaluate

E
�
e�q�Œa;b/

�.X.�Œa; b// � b/
�
: (113)

To this end, we use the Kella-Whitt martingale with B.t/ D �qt=˛ which takes the
form

�.˛/

Z t

0

e˛X.s/�qs ds C 1 � e˛X.t/�qt � q
Z t

0

e˛X.s/�qs ds

Optional stopping at �Œa; b/ gives

1 D ���.˛/ � q
�
E

Z �Œa;b/

0

e˛X.s/�qs ds

C e˛b
�

pCc yCc C
nCX

iD1
pCi OFCi Œ˛�yCi

�
C e˛a

�
p�c y�c C

n�X

jD1
p�j OF�j Œ�˛�y�j

�

where yCc is the expectation of e�q�Œa;b/ given continuous exit above, yCi the
expectation of e�q�Œa;b/ given exit above in phase i, and similarly for the y�c ; y�j .
As in Sect. 9.3.2, we may now choose �q

1; : : : ; �
q
nCCn�C2 as the roots of �.s/ D q to

conclude that

1 D e�
q
k b
�

pCc yCc C
nCX

iD1
pCi OFCi Œ�q

k �y
C
i

�
C e�

q
k a
�

p�c y�c C
n�X

jD1
p�j OF�j Œ��q

k �y
�
j

�

for k D 1; : : : ; nC C n� C 2. These linear equations may be solved for the
pCc yCc ; pCi yCi , p�c y�c ; p�j y�j , and (113) can then be computed as pCc yCc CP

pCi yCi .

9.5 The Loss Rate

As before, we take N˙ to be Poisson.�˙/ and Y˙ to be PH.E˙;˛˙;T˙/ with
n˙ phases, respectively. If we let x ! b and x � b ! a in (111), we obtain, for
k D 1; : : : ; nC C n� C 2,

e��kx D pCc C
nCX

iD1
pCi OFCi Œ�k�C e��kb

�
p�c C

n�X

jD1
p�i OF�j Œ��k�

�
(114)
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(where, as above, we let �1 D 0). We let ak be the vector

ak D �
1 OFC1 .�k/ : : : OFC

nC
.�k/ e��kb e��kb OF�1 .��k/ : : : e��kb OF�n�.��k/

�

and construct the matrix A according to

A D

0

B
B
B
@

a1
a2
:::

anCCn�C2

1

C
C
C
A
:

If we let

p D �
pCc pC1 : : : pC

nC
p�c p�1 : : : p�n�

�T

and take eC to be a row vector with the first nC C 1 elements equal to one and zero

otherwise, we may compute �.x/ D pCc CPnC

iD1 pCi as eCp where p solves the set
of linear equations Ap D h.x/, where

h.x/ D .e��1x : : : e��nCCn�C2x
/T;

i.e., formally

�.x/ D gh.x/ D g expfHxge; (115)

where g D eCA�1 and H D diag.��1;��2; : : : ;��nCCn�C2/ (the rightmost part
in (115) will prove itself useful below).

With this formula for �.x/ at hand we may proceed to the computation of `b.
We will take as a starting point the alternative formula for `b which is presented in
Sect. 1, i.e.,

`b D 1

2b

�
2mEV C �2 C J1 C J2 � 2J3 � 2J4

�
(116)

where

J1 D J1.b/ D
Z b

0

y2�.dy/ ;

J2 D J2.b/ D
Z 1

b
.2yb � b2/�.dy/ ;

J3 D J3.b/ D
Z b

0

Z �x

�1
.x C y/�.dy/ �.x/ dx ;

J4 D J4.b/ D
Z b

0

Z 1

b�x
.x C y � b/�.dy/ �.x/ dx :
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It thus remains to identify m;EV and J1; J2; J3; J4. If we note that

�.dx/ D
(
�C˛C expfTCxgtCdx if x > 0;

��˛� expf�T�xgt�dx if x < 0;

we see that the computation of `b is more or less a matter of routine (though
tedious!). However, for the sake of completeness and clarity we will perform the
calculations in some detail anyway. Clearly,

m D � � �C˛C.TC/�1e C ��˛�.T�/�1e ;

EV D
Z b

0

�.x/dx D
Z b

0

gh.x/dx D gk ;

where

k D

0

B
B
B
@

b
��12 .1� e��2b/

:::

��1
nCCn�C2.1 � e��nCCn�C2b

/

1

C
C
C
A
:

Let ˝ and ˚ denote Kronecker matrix multiplication and addition, respectively,
where ˚ is defined for square matrices by A1 ˚ A2 D A1 ˝ I C I ˝ A2. It is not
difficult to show that

Z
�.dy/ D

(
�CaC.TC/�1 expfTCygtC if y > 0;

���a�.T�/�1 expf�T�ygt� if y < 0;
(117)

Z
y�.dy/ D

(
�CaC.TC/�1.yI � .TC/�1/ expfTCygtC if y > 0;

���a�.T�/�1.yI � .T�/�1/ expf�T�ygt� if y < 0;
(118)

Z
y2�.dy/D �CaC.TC/�1.y2I � 2y.TC/�1 C 2.TC/�2/ expfTCygtC; if y > 0:

(119)

[note that when we write
R

f .y/dy (without integration limits) for some function f
we mean the primitive (indefinite integral), i.e.

R
f .y/dy is a function such that its

derivative with respect to y equals f .y/]. It follows from (115), (117), (118) and the
fact that all eigenvalues of TC and T� have negative real part, see e.g. [11, p. 83],
that

J3 D
Z b

0

��a�.T�/�2 expfT�xgt� �.x/ dx

D
Z b

0

��a�.T�/�2 expfT�xgt� g expfHxge dx
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D ��
�
.a�.T�/�2/˝ g

�hZ b

0

expf.T� ˚ H/xgdx
i
Œt� ˝ e�

D ��
�
.a�.T�/�2/˝ g

��
.T� ˚ H/�1

�
expf.T� ˚ H/bg � I

��
Œt� ˝ e�

where we used the standard identities

.A1B1C1/.A2B2C2/ D .A1 ˝ A2/.B1 ˝ B2/.C1 ˝ C2/

expfRxg ˝ expfSxg D expf.R ˚ S/xg:

Similarly, J4 becomes

��C�.aC.TC/�2 expfTCbg/˝ g
��
.�TC˚ H/�1.expf.�TC˚ H/bg � I/

�
ŒtC˝ e�:

Finally, it follows easily from (117)–(119), that

J1 D �CaC.TC/�1
�
.b2I � 2b.TC/�1 C 2.TC/�2/ expfTCbg � 2.TC/�2

�
tC

J2 D ��CaC.TC/�1
�
b2I � 2b.TC/�1

�
expfTCbgtC;

and thereby all terms in (116) have been evaluated.

10 Loss Rate Asymptotics: Light Tails

In this section we derive asymptotics of `b as b ! 1 when X is assumed to be
light-tailed with �1 < EX.1/ < 0. By light-tailed, we simply mean that the set
� D f˛ 2 R W Ee˛X.1/ < 1g has a non-empty intersection with .0;1/.

We start by introducing the following notation.

M.t/ D sup0�s�t X.s/, M.1/ D sup0�t<1 X.t/.
�C.u/ D infft > 0 W X.t/ > ug, �wC.u/ D infft > 0 W X.t/ � ug, u � 0.
��.�v/ D infft > 0 W X.t/ < �vg, v � 0.
The overshoot of level u, B.u/ D X.�C.u//� u, u � 0.
The weak overshoot of level u, Bw.u/ D X.�wC.u//� u, u � 0.
B.1/, a r.v. having the limiting distribution (if it exists) of B.u/ as u ! 1.

Furthermore, we will assume that the Lundberg equation �.˛/ D 0 has a solution
	 > 0with �0.	/ < 1. We let PL and EL (P	 and E	 in earlier notation) correspond
to a measure which is exponentially tilted by 	 , i.e.,

P.G/ D EL.e�	X.�/I G/ (120)

when � is a stopping time and G 2 F.�/; G 	 f� < 1g. Note that ELX.1/ D
�0.	/ > 0 by convexity of �.
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We need the following two lemmas. The first is just a reformulation of Theo-
rem 8.6 and the second describes the asymptotic probability, as u ! 1, of the
event that X’s first exit of the set Œ�v; u/ occurs at the upper barrier.

Lemma 10.1 For the integrals I1 and I2 in Theorem 8.6 we have the following
alternative formulas.

I1D
Z 1

b
..y � b/C	�1.1 � e	.y�b///�.dy/C

Z b

0

�.x/dx
Z 1

b�x
.1 � e	.y�bCx//�.dy/;

I2 D
Z 0

�1
.y C 	�1.1 � e	y//�.dy/C

Z b

0

�.x/dx
Z �x

�1
.1 � e	.xCy//�.dy/:

Proof Just change order of integration and perform partial integration. Then switch
back to the original order of integration. ut
Lemma 10.2 Assume that X is not compound Poisson with lattice jump distribu-
tion. Then, for each v � 0,

P
�
��.�v/ > �wC.u/

� � e�	u
ELe�	B.1/

PL
�
��.�v/ D 1�

; u ! 1:

Proof It is easily seen that �wC.u/ is a stopping time and that
˚
��.�v/ > �wC.u/

� 2
F
�
�wC.u/

�
. By the Blumenthal zero-one law (e.g. [28, p. 19]), it follows that

P
�
�C.0/ D 0

�
is either 0 or 1. In the first case the sample paths of M are

step functions a.s. and it follows in the same way as in the proof of Lemma 3.3
(Lemma 2.3 in [117]) that P.�wC.u/ ¤ �C.u// ! 0; u ! 1. In the second case it
follows by the strong Markov property applied at �wC.u/ thatP.�wC.u/ ¤ �C.u// D 0.
From (120) we then get,

P
�
��.�v/ > �wC.u/

� D EL
�
e�	X.�w

C
.u//I ��.�v/ > �wC.u/

�

D e�	u
EL
�
e�	B.u/I ��.�v/ > �C.u/

�
P
�
�wC.u/ D �C.u/

�

C e�	u
PL
�
��.�v/ > �wC.u/

ˇ
ˇ �wC.u/ ¤ �C.u/

�
PL
�
�wC.u/ ¤ �C.u/

�

� e�	u
ELe�	B.1/

PL
�
��.�v/ D 1�

:

In the last step we used B.u/ ! B.1/, see [29] and [117],
˚
��.�v/ > �C.u/

� "˚
��.�v/ D 1�

(both in PL-distribution) and asymptotic independence between
B.u/ and

˚
��.�v/ > �C.u/

�
, see the proof of Corollary 5.9, p. 368, in [11]. ut

Remark 10.3 In the proof of Lemma 10.2 above we had to treat the cases
P.�C.0/ D 0/ D 1 and P.�C.0/ D 0/ D 0 (corresponding to completely different
short time behaviors of X) in slightly different ways. In traditional terminology,
these cases correspond to whether the point 0 is regular, or irregular, for the set
.0;1/, see [28, p. 104] or [129, pp. 313, 353]. As a small digression, we shall
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briefly discuss this issue. It turns out that 0 is regular for .0;1/ if and only if

Z 1

0

t�1P.X.t/ > 0/ dt D 1;

see Theorem 47.2 and the remark at the bottom of p. 353 in [129]. Perhaps more
interestingly, we can characterize the short time behavior of X via its Lévy triplet.
We will not give a complete account for all types of Lévy processes (this is done
in Theorem 47.5 on p. 355 in [129]), but note that whenever the paths of X are of
infinite variation then 0 is regular for .0;1/ and if X is the sum of a compound
Poisson process and a non-positive drift then 0 is irregular for .0;1/. �

Next, we state the main result about the asymptotics for `b.

Theorem 10.4 Suppose that X fulfills the conditions in Lemma 10.2. Then, as b !
1, `b � Ce�	b where 	 is the solution to the Lundberg equation and

C D �m C ELe�	B.1/
Z 1

0

e	x
PL
�
��.�x/ D 1� Z 1

x
.1 � e	.y�x// �.dy/ dx

C
Z 0

�1
�
y C 	�1.1 � e	y/

�
�.dy/

C
Z 1

0

P
�
�wC.x/ < 1� Z �x

�1
.1 � e	.xCy// �.dy/ dx: (121)

Proof It follows from Lemma 10.1 and �0.	/ < 1 that

e	bI1 D o.1/C e	b
Z b

0

P
�
��.x � b/ > �wC.x/

�
dx
Z 1

b�x
.1� e	.y�bCx// �.dy/

D o.1/C
Z b

0

e	ze	.b�z/
P
�
��.�z/ > �wC.b � z/

�
dz
Z 1

z
.1 � e	.y�z// �.dy/

! ELe�	B.1/
Z 1

0

e	x
PL
�
��.�x/D1� Z 1

x
.1 � e	.y�x// �.dy/ dx; b ! 1:

The convergence follows from the pointwise convergence in Lemma 10.2 and
dominated convergence, which is applicable because

e	b�.b � x/�.x � b/ � e	b
P
�
M.1/ > b � x

�
�.x � b/ � e	x

and
Z 1

0

e	x dx
Z 1

x
.1 � e	.y�x// �.dy/ D

Z 1

0

�
	�1e	y � ye	y � 	�1

�
�.dy/ > �1:



Lévy Processes with Two-Sided Reflection 127

In I2 we bound �.x/�.x � b/ by 1, note that

Z 1

0

dx
Z �x

�1
.1 � e	.xCy//�.dy/ D

Z 0

�1
.�y � 	�1 C 	�1e	y/�.dy/ < 1

and apply dominated convergence which together with �.x/ ! P
�
�wC.x/ < 1�

gives

I2 !
Z 0

�1
�
yC	�1.1�e	y/

�
�.dy/C

Z 1

0

P
�
�wC.x/ < 1� Z �x

�1
Œ1�e	.xCy/� �.dy/ dx:

The assertion now follows from Theorem 8.6. ut
If X is spectrally one-sided the constant in Theorem 10.4 simplifies significantly.

Corollary 10.5 Let X satisfy the conditions in Lemma 10.2. If �.�1; 0/ D 0, then

C D �m

(

1C 1

ELX.1/

Z 1

0

.e	x � 1/

Z 1

x
.1 � e	.y�x//�.dy/dx

)

:

If �.0;1/ D 0, then

C D �m C
Z 0

�1
�
y C 	�1.1 � e	y/

�
�.dy/C

Z 1

0

e�	x
Z �x

�1
Œ1 � e	.xCy/� �.dy/ dx:

Proof In the spectrally positive case we have that ELe�	B.1/ D �m=ELX.1/, see,
e.g., Bertoin and Doney [29], and that

PL
�
��.�x/ D 1� D 1 � PL

�
��.�x/ < 1� D 1 � Ee	X.��.�x// D 1 � e�	x:

In the spectrally negative case,

P
�
�wC.x/ < 1� D ELe�	X.�w

C
.x// D e�	x:

The claim now follows from Theorem 10.4. ut
We next turn our attention towards asymptotics for `b as b ! 1 in the PH

example. In principle, we should be able to describe the asymptotics by carefully
analyzing what comes out of (116), but we prefer to apply Theorem 10.4. Recall
that we assume negative drift of the feeding process X, i.e. EX.1/ < 0. This means

that X.t/
a:s:! �1; t ! 1; and that there exists a real positive root 	 of the equation

�.˛/ D 0 such that Ee	X.1/ D 1, i.e. 	 is a genuine root of the Lundberg equation
corresponding to X.



128 L.N. Andersen et al.

Theorem 10.6 In the PH Lévy model,

C D eTB�1eT
1 	�
C






�˛C.	I C TC/�2e C ..eT QB�1/˝ .˛C.	I C TC/�1//
nQJ ˚ .	I C TC/

o�1
e
�

C��˛�
n
.T�/�1 � .�	I C T�/�1

o
e C .�� � �C˛C.TC/�1e C ��˛�.T�/�1e/

C 	��..eTB�1/˝ .˛�.�	I C T�/�1//.J ˚ T�/�1e : (122)

For the proof, we need two lemmas. The first is classical and relates to the
locations in the complex plane of the roots of �.˛/ D q; q � 0 (see [12, 51]
and references there).

Lemma 10.7 Let X be defined according to (110).

(i) Consider the equation �.˛/ D 0. If m � 0 then 0 is the only root with zero real
part. There are n� roots with negative real part and nC C 1 roots with positive
real part.

(ii) Consider the equation �.˛/ D q with q > 0. Then (regardless of the value of
m) there are no roots with zero real part, n� C 1 with negative real part and
nC C 1 with positive real part.

Lemma 10.8 Assume m < 0. Then 	 > 0 is a simple root, i.e. of algebraic
multiplicity 1, and if � is any other root with <.�/ > 0, then Re.�/ > 	 .

Proof Part (i) in Lemma 10.7 tells us that there are nC C 1 roots of �.˛/ D 0 with
positive real part. Clearly, 	 is one of these. Let � D <.�/ C i=.�/ be one of the
remaining roots (with positive real part) and suppose that 0 < <.�/ � 	 . Now,

1 D Ee�X.1/ D Ee<.�/X.1/ .cos.=.�/X.1//C i sin.=.�/X.1///
D Ee<.�/X.1/ cos.=.�/X.1//C iEe<.�/X.1/ sin.=.�/X.1//: (123)

From (123), the elementary inequality j cos.=.�/X.1//j � 1 and the convexity of
�.�/ in .0; 	�, it follows that <.�/ < 	 is impossible (no matter the distribution
of X.1/). Note that in the case under consideration, �.˛/ is a rational function (i.e.
�.˛/ D p.˛/=q.˛/ where p and q are polynomials) and from the fact that 0 <
�0.	/ < 1, see Sect. 10, we may conclude that the algebraic multiplicity of the root
	 equals one, i.e. p.˛/ D .˛�	/r.˛/ where r.˛/ does not contain the factor .˛�	/.
If <.�/ D 	 and =.�/ ¤ 0 then it is easily seen that 1 D Ee<.�/X.1/ cos.=.�/X.1//
is possible provided that X.1/ is lattice with span 2�=j=.�/j, a case which is clearly
ruled out by the structure of X. �

Proof of Theorem 10.6 We have to compute ELe�	B.1/, PL
�
��.�x/ D 1�

and
P
�
�wC.x/ < 1�

for x > 0, see Theorem 10.4. Because of (thanks to!) the
Brownian component in X we need not to distinguish between �wC.x/ and �C.x/,



Lévy Processes with Two-Sided Reflection 129

cf. Remark 10.3. Define

pCc .t/ D P.X.�C.x// D x; �C.x/ � t/;

pCi .t/ D P.X.�C.x// > x; �C.x/ � t; upcrossing occurs in state i/ ;

i D 1; 2; : : : ; nC. If we let �.˛; t/ D E
R �C.x/^t
0

e˛X.s/ds it follows by optional
stopping of the Kella-Whitt martingale at �C.x/ that

0 D �.˛/�.˛; t/C 1 � e˛x

0

@pCc .t/C
nCX

iD1
pCi .t/ OFCi .˛/

1

A

� E
�
e˛X.t/I t < �C.x/

�
; ˛ 2 �: (124)

Let �2; �3; : : : ; �nCC2 denote the roots with positive real part (we tacitly assume that
these are distinct and ordered so that �2 D 	 ). If we mimic the derivation of (111),
and take ˛ D �k, we get

0 D 1 � e�kx

0

@pCc .t/C
nCX

iD1
pCi .t/ OFCi .�k/

1

A � E
�
e�kX.t/I t < �C.x/

�
: (125)

If we let t ! 1 in (125), it follows by X.t/
a:s:! �1 and dominated convergence

that

e��kx D pCc C
nCX

iD1
pCi OFCi .�k/; k D 2; 3; : : : ; nC C 2: (126)

Let B be the matrix with kth row equal to .1 OFC1 .�k/ : : : OFC
nC
.�k//. Then it is easily

seen that

P.�C.x/ < 1/ D eTB�1 expfJxge; (127)

where J D diag.��2; : : : ;��nCC2/. Since P.�C.x/ < 1/ D P.M.1/ > x/ and we
know that P.M.1/ > x/ � ELe�	B.1/e�	x; x ! 1, we can use (127) and what
we know about the elements of J to identify ELe�	B.1/ as the sum of the elements
in the first column of B�1. Now, it is well known, see e.g. [21], that w.r.t. PL, X is
still the sum of a Brownian motion with drift and a compound Poisson process with
phase-type distributed jumps, with Lévy exponent �L.˛/ D �.˛C 	/. Furthermore,
if we define d D .	I � T�/�1t� and let D be the diagonal matrix with the di on
the diagonal then (w.r.t. PL) the intensity matrix corresponding to negative jumps
is T�	 D D�1T�D � 	I. It is clear that the equation �L.˛/ D 0 has n� C 1 roots
with negative real part Q�k; k D 1; 2; : : : ; n� C 1 (all of the form Q�k D � � 	 where
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�.�/ D 0 and <.�/ � 0). Define QOF�i in the same way as OF�i with T� replaced
by T�	 . In a fashion similar to the derivation of (111), we obtain (in the obvious
notation)

0 D 1 � e�Q�kx

 

Qp�c .t/C
n�X

iD1
Qp�i .t/ QOF�i .� Q�k/

!

� EL

h
e Q�kX.t/I t < ��.�x/

i
: (128)

From (128) it follows that

e Q�kx D Qp�c C
n�X

iD1
Qp�i QOF�i .� Q�k/; k D 1; 2; : : : ; n� C 1; (129)

and if we define QB as the matrix with kth row equal to
�
1

QOF�1 .� Q�k/ : : :
QOF�n�.� Q�k/

�
,

it is clear that

PL
�
��.�x/ D 1� D 1 � eT QB�1 expfQJxge; (130)

where QJ D diag. Q�1; : : : ; Q�n�C1/. All that now remains in order to describe the
asymptotics of `b is to evaluate the integrals in (121); we omit the details. �

An important lesson to learn from this example is that the case where X is
spectrally one-sided is much easier than the general case. In fact, if we e.g. take
X to be spectrally positive then according to Corollary 10.5, `b � Ce�	b; b ! 1,
where

C D �m
˚
1 � 	�C˛C.	I C TC/�1

˚
.	I C TC/�1 � .TC/�1

�
e=�0.	/

�
;

i.e. we need only to know 	 to compute C (the same thing holds when X is spectrally
negative, but C comes out in a slightly different way, again see Corollary 10.5),
whereas in the general case all roots of �.˛/ D 0 are required in order to completely
describe the asymptotic behavior of `b.

11 Loss Rate Asymptotics: Heavy Tails

The main result of this section states that under some heavy-tailed conditions,
`b � R1

b �.y/dy which in view of Lemma 2.6, can be interpreted as stating that
Theorem 3.2 still holds when the random walk is replaced by a Lévy process. More
precisely:
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Theorem 11.1 Let X be a Lévy process with Lévy measure � 2 S and finite
negative mean m D EX.1/ < 0. Consider the conditions

A EX.1/2 < 1 and
R1

b �I.y/ dy=�I.b/ D O.b/ .
B �.b/ � L.b/b�˛ where L is a locally bounded slowly varying function and 1 <
˛ < 2.

If either A or B holds, then

`b �
Z 1

b
�.y/dy: (131)

It is worth noting, that the requirement on the tail of � in A is very weak. Indeed,
suppose �I.x/ � B.x/ where B is either lognormal, Benktander or heavy-tailed
Weibull. Then we recognize a.x/ D R1

x B.y/ dy=B.x/ as the mean-excess function
and it is known (see [69]), that a.x/ D o.x/. Furthermore, it is easily checked
that the condition is satisfied when B is a Pareto or Burr distribution, provided
that the second moment is finite. Another remark is that we may use the results
of Embrechts et al. [56] to express sufficient conditions for Theorem 11.1 in terms
of the distribution of X.1/.

We will also derive Theorem 11.3 below, which gives an expression for the m.g.f.
of the stationary distribution in the case of one-sided reflection. This result is of
some independent interest and is useful in the proof of Theorem 11.1; see further
Remark 11.4 below. Recall the decomposition of the one-sided reflected process,
V1.t/ D V1.0/C X.t/C L.t/, let Lc.t/ and Lj.t/ denote the continuous and jump
parts of the local time, respectively, and recall that� D f˛ 2 C W Ee<.˛/X.1/ < 1g.

Lemma 11.2 Consider a Lévy process X, let V1 be the process one-sided reflected
at 0 and let Lc and Lj be the continuous and jump part of the corresponding local
time L, respectively. Then, for ˛ 2 � and V1.0/ D x � 0,

M.t/ D �.˛/

Z t

0

e˛V1.s/ ds C e˛x � e˛V1.t/ C ˛Lc.t/C
X

0�s�t

.1 � e�˛�L.s//

(132)

is a martingale.

Proof The proof is similar to (but slightly easier than) the proof of Proposition 8.2,
once we note that L can increase only when V is zero. �

Theorem 11.3 Suppose �1 < m D EX.1/ < 0, so that V1.1/ D
limt!1 V1.t/ exists in distribution. For ˛ 2 � we have

Ee˛V1.1/ D � 1

�.˛/

�
˛E�1Lc.1/C E�1

X

0�s�1
.1 � e�˛�L.s//

�
: (133)
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Proof Replacing x by a r.v. distributed as V1.1/ in (132) and taking expectations
at t D 1 gives

0 D �.˛/E�1

Z 1

0

e˛V1.s/ ds C ˛E�1Lc.1/C E�1

X

0�s�1

�
1 � e�˛�L.s/

�
:

Now just note that the expectation of the integral equals Ee˛V1.1/. �

Remark 11.4 If X has no negative jumps, the term E�1
P

0�s�1.1 � e�˛�L.s//

disappears, and E�1Lc.1/ D E�1L.1/ D �m, and we see that Theorem 11.3
indeed is a generalization of Corollary 3.4 in Chap. IX [11] which is itself a
generalization of the Pollaczeck-Khinchine formula.

The expression provided by Theorem 11.3 can be compared to related identities
from fluctuation theory (see Chap. VI in [28] or Chap. 6 in [104]). Indeed, in
view of (22), we may let q # 0 in equation (1), VI in [28] to conclude the
that l.h.s. of (133) is equal to �.0/=�.�˛/ where � is the Laplace exponent of
the upward ladder height processes. Furthermore, letting O�.˛/ denote the Laplace
exponent of the downward ladder height processes, we obtain from the Wiener-Hopf
factorization (Eq. (4) IV in [28]) that ��.˛/ D �.�˛/ O�.˛/, for ˛ 2 � in the case
where the process is not compound Poisson. Thus we arrive at

Ee˛V1.1/ D �.0/

�.�˛/ D ��.0/
O�.˛/

�.˛/
:

�

Next, we use the results above to obtain an expression for the mean of the
stationary distribution in the case of one-sided reflection.

Corollary 11.5 If X is square integrable then V1 is integrable and we have

EV1 D 1

2m

�
E�1

X

0�s�1
�L.s/2 � Var.X.1//

�
(134)

D 1

2m

�Z 1

�1
y2�.dy/C �2 �

Z 1

0

Z �x

�1
.x C y/2�.dy/�1.dx/

�
: (135)

Proof Since X.1/ is non-degenerate, we have by Lemma 4 Chap. XV.1 in [59] that
there exists " > 0 such that �.it/ ¤ 0 for t 2 .�"; "/ n f0g, and we may use (133) to
obtain the characteristic function  of V . We wish to show that  is differentiable
at 0. Define

g.t/ D E�1

X

0�s�1
.1� e�it�L.s// ; `1 D E�1Lc.1/ :
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By Doob’s inequality, we have that EX.1/2 < 1 implies EL2.1/ < 1 and therefore
E�1L2.1/ < 1, which in turn implies that g is twice differentiable at 0. We see
that

g0.0/ D iE�1
X

0�s�1
�L.s/ D iE�1Lj.1/ ; g00.0/ D E�1

X

0�s�1
�L.s/2 ;

i`1 C g0.0/ D iE�1L.1/ D �im. Since X is square integrable, we may use
formula (2.4.1) p. 27 in [111] to get �.it/ D �0.0/it C o.t/. By combining this
with equation (133), we conclude that

lim
t!0

EeitV � 1

t
D lim

t!0
�ti`1 � g.t/� �.it/

t�.it/
D lim

t!0
�ti`1 � g.t/� �.it/

�0.0/it2
;

provided that the limit exists. We may confirm that this is true, by applying
l’Hospital’s rule twice to the real and imaginary part separately

lim
t!0

�ti`1 � g.t/� �.it/

�0.0/it2
D lim

t!0
�i`1 � g0.t/ � i�0.it/

2i�0.0/t

D lim
t!0

�g00.t/C �00.it/
2i�0.0/

D �g00.0/C �00.0/
2i�0.0/

:

We see that  is differentiable. In itself, this does not entail integrability of V , but a
short argument using the Law of Large Numbers and the fact that V is non-negative,
yields that V is integrable. The first moment is

EV D �g00.0/C �00.0/
2.�1/�0.0/

which is (134). We obtain (135) by conditioning on the value of the process prior to
a jump. �

We proceed to the proof of Theorem 11.1. In order to establish (131), we need
to prove that 1 is a lower bound for lim infb `

b=�I.b/ and an upper bound for
lim supb `

b=�I.b/. The former is established in Proposition 11.7 and is seen to hold
without the conditions assumed in Theorem 11.1. In the proof of the latter, we use
Proposition 11.6 to establish the inequality

m

b

Z b

0

�b.x/ dx � m

b

Z b

0

�1.x/ dx � m�1.b/ (136)

and the proof then follows two distinct routes depending on which of the conditions
A or B is assumed. Under assumption A, we are allowed to rewrite the integral on the
right-hand side of (136) as

R1
0
�1.x/ dx�R1b �1.x/ dx. The first of these integrals

is the mean of the stationary distribution in the case of one-sided reflection. This
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observation and Corollary 11.5 are important keys to the proof in this case. Under
assumption B the proof essentially consists of combining the inequality (136) with
repeated applications of Karamata’s theorem.

Proposition 11.6 Let X be a Lévy process, and let �1.y/; �b.y/ be the tails of the
reflected (one/two-sided) distributions. Then we have the following inequalities for
x > 0; b > 0

0 � �1.x/ � �b.x/ � �1.b/ : (137)

Proof The inequalities in (137) are trivial for x > b. Let 0 � x � b. The
inequality �b.x/ � �1.x/ follows from the representations (6) and (23). The
inequality �1.x/ � �b.x/ � �1.b/, follows by dividing the sample paths of X
which cross above x into those which do so by first passing below x � b, and those
which stay above x � b. To be precise, define �.y/ D infft > 0 W X.t/ � yg and
�.y/ D infft > 0 W X.t/ < yg to be the first passage times above and below y
respectively. Then we can consider the event that a path crosses below x � b before
eventually passing above x, and since such a path must pass an interval of length at
least b, we find that

P
�
�.x � b/ < �.x/ < 1� � P

�
sup
t>0

X
�
�.x � b/C t

� � X
�
�.x � b/

�
> b

�

D P
�
�.b/ < 1�

:

where we used the strong Markov property in the last equality. Next, we apply (23)
to find

�1.x/ D P
�
�.x/ < 1� D P

�
�.x/ < �.x � b/

�C P
�
�.x � b/ < �.x/ < 1�

� �b.x/C P
�
�.b/ < 1� D �b.x/C �1.b/ ;

where we have used the equality P
�
�.x/ < �.x � b/ � 1� D �b.x/, which is a

restatement of (6). �

Proposition 11.7 For any Lévy process we have 1 � lim inf
b!1

`b

�I.b/
:

Proof We have

Z b

0

�b.dx/
Z 1

b
.y � b C x/ �.dy/ � `b
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since the left-hand side is the contribution to `b by the jumps larger than b. Now just
note that

�I.b/ �
Z 1

b
.y � b/�.dy/C

Z b

0

x�b.dx/�.b/ D
Z b

0

�b.dx/
Z 1

b
.y � b C x/�.dy/ :

�

We are now ready for the proof of Theorem 11.1.

Proof Thanks to Proposition 11.7, we only need to prove

lim sup
b

`b=�I.b/ � 1 : (138)

Define

I1 D m

b

Z b

0

x�b.dx/ ; I2 D �2

2b
; I3 D 1

2b

Z b

0

�b.dx/
Z 1

�1
'b.x; y/�.dy/ :

where the function 'b.�; �/ is that of Theorem 1.1, with the dependence on b made
explicit. From Proposition 11.6 we have �1.x/ � �1.b/ � �b.x/ and since m is
assumed to be negative, we have m�b.x/ � m.�1.x/ � �1.b//. Applying this
inequality to expression for the loss rate in Theorem 1.1 we obtain the following
inequality:

`b � m

b

Z b

0

�1.x/ dx � m�1.b/C I2 C I3 : (139)

First, we assume A holds. By (26) we have

lim
b

�m�1.b/
�I.b/

D 1 ; (140)

so we will be done if we can show

lim sup
b

1

�I.b/

�
m

b

Z b

0

�1.y/ dy C I2 C I3

�
D 0 : (141)

We start by rewriting the term in the brackets above. Using Corollary 11.5 and the
assumption that EX.1/2 < 1 we have that

R1
0 �1.y/dy < 1 and using (134)

m

b

Z b

0

�1.y/ dy D m

b

Z 1

0

�1.y/ dy � m

b

Z 1

b
�1.y/ dy

D E�1 Œ
P

0�s�1 �L.s/2� � Var.X.1//

2b
C jmj

b

Z 1

b
�1.y/ dy :
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Furthermore,

I2 C I3 D �2

2b
C 1

2b

Z b

0

�b.dx/
� Z �x

�1

�.x2 C 2xy/�.dy/C
Z b�x

�x
y2�.dy/

C
Z
1

b�x

�
2y.b � x/ � .b � x/2

�
�.dy/

�

D �2

2b
C 1

2b

Z
1

�1

y2�.dy/C 1

2b

Z b

0

�b.dx/
Z
�x

�1

� � .x2 C 2xy/ � y2
�
�.dy/

C 1

2b

Z b

0

�b.dx/
Z
1

b�x

�
2y.b � x/ � .b � x/2 � y2

�
�.dy/

D �2

2b
C 1

2b

Z
1

�1

y2�.dy/ � 1

2b

Z b

0

�b.dx/
Z
�x

�1

.x C y/2�.dy/

� 1

2b

Z b

0

�b.dx/
Z
1

b�x
.y � .b � x//2�.dy/

D Var.X.1//� E�b
P

0�s�1 �L.s/2

2b
� 1

2b

Z b

0

�b.dx/
Z
1

b�x
.y � .b � x//2�.dy/:

The last equation follows from Example 25.12, p. 163 in [129], as does the
following:

E�b

X

0�s�1
�L.s/2 D E�b

X

0�s�1
.V.s�/C�X.s//2�.V.s�/C�X.s/ < 0/

D
Z b

0

 

E

X

0�s�1
.x C�X.s//2�.x C�X.s/ < 0/

!

�b.dx/

D
Z b

0

�b.dx/
Z �x

�1
.x C y/2�.dy/ ; (142)

where we use Theorem 2.7, p. 41 in [104] in the last equation. Next, we note the
fact that

E�1

X

0�s�1
�L.s/2 � E�b

X

0�s�1
�L.s/2;

which can be verified using partial integration and (37). Using this in the last
equation above, we may continue our calculation and obtain

I2 C I3 � Var.X.1//� E�1
P

0�s�1 �L.s/2

2b

� 1

2b

Z b

0

�b.dx/
Z 1

b�x
.y � .b � x//2�.dy/ :
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Comparing the expressions above we see that fractions cancel, and the expression
in the brackets in (141) is less than

jmj
b

Z 1

b
�1.y/ dy � 1

2b

Z b

0

Z 1

b�x
.y � .b � x//2�.dy/�b.dx/ :

Applying partial integration

jmj
b

Z 1

b
�1.y/ dy � 1

2b

Z b

0

Z 1

b�x
.y � .b � x//2�.dy/�b.dx/

D jEX.1/j
b

Z 1

b
�1.y/ dy � 1

2b

Z 1

b
.y � b/2�.dy/� 1

b

Z b

0

�b.x/�I.b � x/dx

� jmj
b

Z 1

b
�1.y/ dy � 1

2b

Z 1

b
.y � b/2�.dy/

D jmj
b

Z 1

b
�1.y/ dy � 1

b

Z 1

b
�I.y/ dy:

Returning to (141) and applying the results above we get

lim sup
b

1

�I.b/

�
m

b

Z b

0

�1.y/ dy C I2 C I3

�

� lim sup
b

1

�I.b/

� jmj
b

Z 1

b
�1.y/ dy � 1

b

Z 1

b
�I.y/ dy

�

D lim sup
b

R1
b �I.y/ dy

b�I.b/

"R1
b jmj�1.y/ dy
R1

b �I.y/ dy
� 1

#

D 0;

where the last equality follows since the term in the brackets tends to 0, and the
fraction outside it is bounded by assumption. This proves that (131) holds under
condition A.

We now assume condition B and start by noticing the following consequences of
the assumptions

Z 1

b
�.y/ dy �

Z 1

b

L.y/

y˛
dy � b�˛C1L.b/

˛ � 1
; b ! 1 ; (143)

where the last equivalence follows by Proposition 1.5.10 of [32] and the fact that
˛ > 1. Since by Proposition 1.3.6 of [32], we have b�˛C2L.b/ ! 1, (143) implies
b�I.b/ ! 1.

The inequality (139) still holds, as does the limit in (140), so we proceed to
analyze m

R b
0
�1.y/dy=.�I.b/b/. Since b�I.b/ ! 1 as b ! 1 we see that for
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any A

lim
b!1

m

b�I.b/

Z A

0

�1.y/ dy D 0 : (144)

Because of the result above we have for any A

lim
b!1

m

b�I.b/

Z b

0

�1.y/ dy D lim
b!1

m

b�I.b/

Z b

A
�1.y/ dy

and using jmj�1.b/ � �I.b/ � b�˛C1L.b/=.˛ � 1/ we have

lim
b!1

m

b�I.b/

Z b

A
�1.y/ dy D lim

b!1� 1

b�I.b/

Z b

A
�I.y/ dy

D � lim
b!1

1

b�I.b/

Z b

A

y�˛C1L.y/
.˛ � 1/ dy

in the sense that if either limit exits so does the other and they are equal.
Furthermore, since �˛ C 1 > �1 and L is locally bounded, we may apply
Proposition 1.5.8 in [32] to obtain

� lim
b!1

1

b�I.b/

Z b

A

y�˛C1L.y/
.˛ � 1/ dy D � lim

b!1
1

b�I.b/

b�˛C2L.b/
.�˛ C 2/.˛ � 1/ D � 1

�˛ C 2
:

That is, we obtain

lim
b!1

m

b�I.b/

Z b

0

�1.y/ dy D � 1

�˛ C 2
: (145)

Returning to (139) we have

lim sup
b

`b

�I.b/
D lim sup

b

�
m

b�I.b/

Z b

0

�1.y/ dy � m�1.b/
�I.b/

C I2

�I.b/
C I3

�I.b/

�

D � 1

�˛ C 2
C 1C lim sup

b

�
I2

�I.b/
C I3

�I.b/

�
: (146)

Since b�I.b/ ! 1 we have

lim sup
b

I2=�I.b/ D lim sup
b

�2

2b�I.b/
D 0 ;
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and we may continue our calculation from (146)

� 1

�˛ C 2
C 1C lim sup

b

h I2

�I.b/
C I3

�I.b/

i
D� 1

�˛ C 2
C1Clim sup

b

h I3

�I.b/

i

(147)

So we turn our attention to I3. First we divide the integral into two:

2bI3 D
Z b

0

�b.dx/
� Z �x

�1
�.x2 C 2xy/�.dy/C

Z 0

�x
y2�.dy/

�

„ ƒ‚ …
A.b/

(148)

C
Z b

0

�b.dx/
� Z b�x

0

y2�.dy/C
Z 1

b�x
2.b � x/y � .b � x/2�.dy/

�

„ ƒ‚ …
B.b/

:

(149)

We may assume � is bounded from below; otherwise truncate � at �L for some
L > 0 chosen large enough to ensure that the mean of X.1/ remains negative. This
truncation may increase the loss rate, which is not a problem, since we are proving
an upper bound. Thus, we may assume that A.b/ is bounded:

A.b/ �
Z b

0

�b.dx/
Z 0

�1
y2�.dy/ �

Z 0

�1
y2�.dy/ < 1 :

And therefore, since b�I.b/ ! 1, we have

A.b/

2b�I.b/
! 0 : (150)

Turning to B.b/, we first perform partial integration

B.b/ D
Z b

0

y2�.dy/C
Z 1

b
2by � b2�.dy/�

Z b

0

�I.b � x/�b.x/ dx

�
Z b

0

y2�.dy/C
Z 1

b
2by � b2�.dy/

D
Z b

0

2y�.y/ dy � b2�.b/C
Z 1

b
2by � b2�.dy/

D
Z b

0

2y�.y/ dy C 2b
Z 1

b
�.y/ dy :
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Since y�.y/ � y�˛C1L.y/ way may apply Proposition 1.5.8 from [32] to get

Z b

0

2y�.y/ dy � 2
L.b/b�˛C2

2 � ˛ ;

and therefore

lim
b

1

2b�I.b/

Z b

0

2y�.y/ dy D ˛ � 1

2 � ˛ :

Combining this with our inequality for B.b/ above, we have

lim sup
b!1

B.b/

2b�I.b/
� ˛ � 1

2 � ˛
C 1 D 1

2 � ˛
:

Finally, by combining this with (146), (150) and (147), we obtain (138). �

12 Loss Rate Symptotics: No Drift

In both Sects. 10 and 11 it was assumed that the underlying stochastic process had
negative mean, and as discussed in Sect. 1 this also gives the asymptotic behavior
in the case of positive drift. Thus, it remains to give an asymptotic expression as
b ! 1 for the loss rate in the zero-mean case. The result is as follows:

Theorem 12.1

a) Let fX.t/g be a Lévy process with m D EX.1/ D 0 and

 2 D Var
�
X.1/

� D �00.0/ D �2 C
Z 1

�1
y2 �.dy/ < 1 :

Then

`b � 1

2b
Var.X.1// ; b ! 1 : (151)

b) Let fX.t/g be a Lévy process with Lévy measure �. Assume EX.1/ D 0 and that
for some 1 < ˛ < 2, there exist slowly varying functions L1.x/ and L2.x/ such
that for L.x/ D L1.x/C L2.x/, we have

�.x/ D x�˛L1.x/ �.�x/ D x�˛L2.x/ lim
x!1

L1.x/

L.x/
D ˇ C 1

2
(152)

where �.x/ D �.�1; x�/ and �.x/ D �Œx;1/. Then, setting

� D 1=2C .�˛/�1 arctan.ˇ tan.�˛=2// ; cC D .ˇ C 1/=2 ; c� D .1� ˇ/=2 ;
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we have `b � 	L.b/=b˛�1 where

	 D c�B.2 � ˛�; ˛�/C cCB.2� ˛.1 � �/; ˛.1 � �//
B.˛�; ˛.1 � �//.˛ � 1/.2� ˛/

and B.x; y/ D 
 .x/
 .y/=
 .x C y/ is the Beta function.

By comparing to Example 8.8, we see that the loss rate behaves asymptotically
like that of a stable Lévy process.

To prove Theorem 12.1, we will use the fact that by properly scaling our Lévy
process we may construct a sequence of Lévy processes which converges weakly
to either a Brownian Motion or a stable process. Since `b has been calculated for
both Brownian Motion and stable processes in Examples 8.7 and 8.8, we may
use this convergence to obtain loss rate asymptotics in the case of zero drift,
provided that the loss rate is continuous in the sense, that weak convergence (in
the sense of Proposition 12.4 below) of the involved processes implies convergence
of the associated loss rates. The required continuity results are established in
Theorems 12.2 and 12.3.

Theorem 12.2 Let
˚
Xn
�

nD0;1;::: be a sequence of Lévy processes with associated

loss rates `b;n. Suppose Xn D! X0 in DŒ0;1/ and that the family
�
X.1/n

�1
nD1 is

uniformly integrable. Then `b;n ! `b;0 as n ! 1.

We shall also need:

Theorem 12.3 Let fXngnD1;2;::: be a sequence of weakly convergent infinitely
divisible random variables, with characteristic triplets .cn; �n; �n/. Then for ˛ > 0:

lim
a!1 sup

n

Z

Œ�a;a�c
jyj˛�n.dy/ D 0 ” .

�ˇˇXnj˛
�
jn�1 is uniformly integrable.

The result is certainly not unexpected and appears in Andersen and Asmussen [4]
in this form. It is, however, a special case of more general results on uniform
integrability and infinitely divisible measures on Banach Spaces given by Theorem 2
in Jurek and Rosinski [81]. Cf. also Theorem 25.3 in [129].

12.1 Weak Convergence of Lévy Processes

We prove here Theorems 12.2 and 12.3. We will need the following weak conver-
gence properties, where DŒ0;1/ is the metric space of cadlag functions on Œ0;1/

endowed with the Skorokhod topology (see Chap. 3, Sect. 16 in [31] or Chap. 3 in
[138]).
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Proposition 12.4 Let X0;X1;X2; : : : be Lévy processes with characteristic triplet
.cn; �n; �n/ for Xn. Then the following properties are equivalent:

(i) X.t/n
D! X.t/0 for some t > 0;

(ii) X.t/n
D! X.t/0 for all t;

(iii)
˚
X.t/n

� D! ˚
X.t/0

�
in DŒ0;1/;

(iv) Q�n ! Q�0 weakly, where Q�n is the bounded measure

Q�n.dy/ D �2n ı0.dy/C y2

1C y2
�n.dy/ (153)

and Qcn ! Qc0 where

Qcn D cn C
Z 	

y

1C y2
� y�jyj � 1



�n.dy/

See e.g. [82, pp. 244–248], in particular Lemmas 13.15 and 13.17. If one of (i)–(iv)

hold, we write simply Xn D! X0.
The following proposition is standard:

Proposition 12.5 Let p > 0 and let Xn 2 Lp, n D 0; 1; : : : , such that Xn
D! X0.

Then EjXnjp ! EjX0jp if and only if the family
�jXnjp

�
n�1 is uniformly integrable.

First, we prove Theorem 12.3. This is achieved through several preliminary
results, of which the first is Lemma 12.6 which essentially states we may disregard
the behavior of the Lévy measures on the interval Œ�1; 1� in questions regarding
uniform integrability. It is therefore sufficient to prove Theorem 12.3 for compound
Poisson distributions, which is done in Proposition 12.8.

We start by examining the case where the Lévy measures have uniformly
bounded support, i.e., there exists A > 0 such that �n.Œ�A;A�c/ D 0 for all n.
We know from Lemmas 25.6 and 25.7 in [129] that this implies the existence of
finite exponential moments of Xn and therefore the mth moment of Xn exists and is
finite for all n;m 2 N.

Lemma 12.6 Suppose Xn
D! X0 and the Lévy measures have uniformly bounded

support. Then EŒ.Xn/
m� ! EŒ.X0/m� for m D 1; 2; � � � . In particular (cf.

Proposition 12.5) the family
�jXnj˛�

n�1 is uniformly integrable for all ˛ > 0.

Proof Since the Lévy measures are uniformly bounded, the characteristic exponent
from (7) is

�n.t/ D cnt C �2n t2=2C
Z A

�A

�
ety � 1 � ty�jyj � 1

�
�n.dy/ : (154)
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With the aim of applying Proposition 12.4 we rewrite (154) as

�n.t/ D Qcnt C
Z A

�A

	
ety � 1 � ty

1C y2



1C y2

y2
Q�n.dy/ : (155)

(the integrand is defined to be 0 at y D 0/ where Q�n is given by (153) and

Qcn D cn C
Z A

�A

	
y

1C y2
� y�jyj � 1



�n.dy/ :

According to Proposition 12.4 the weak convergence of fXngn�1 implies Qcn ! Qc0
and Q�n

D! Q�0. Since the integrand in (155) is bounded and continuous, this implies
that �n.t/ ! �0.t/, which in turn implies that all exponential moments converge.
In particular, the family

�
eXn C e�Xn

�
n�1 is uniformly integrable, which implies that

�jXnj˛�
n�1 is so.

Next, we express the condition of uniform integrability using the tail of the
involved distributions. We will need the following lemma on weakly convergent
compound Poisson distributions.

Lemma 12.7 Let U0;U1; : : : be a sequence of positive independent random vari-
ables such that Un > 1, and let N0;N1; : : : be independent Poisson random
variables with rates �0; �1 : : : Set Xn D PNn

1 Ui;n (empty sum = 0) with the Ui;n

being i:i:d for fixed n with Ui;n
DD Un. Then Xn

D! X0 if and only if Un
D! U0 and

�n ! �0.

Proof The ‘if’ part follows from the continuity theorem for characteristic functions.
For the converse, we observe that e��n ! e��0 D P.X0 � 1=2/ since 1=2 is a
continuity point of X0 (note that P.X0 � x/ D P.X0 D 0/ for all x < 1). Taking logs

yields �n ! �0 and the necessity of Un
D! U0 then is obvious from the continuity

theorem for characteristic functions. �

Using the previous result, we are ready to prove part of Theorem 12.3 for a class of
compound Poisson distributions:

Proposition 12.8 Let U0;U1; : : : , N0;N1; : : : , and X0;X1; : : : be as in Lemma 12.7.

Assume Xn
D! X0. Then for ˛ > 0.

lim
a!1 sup

n
E
�
X˛n�Xn > a

� D 0 ” lim
a!1 sup

n
E
�
U˛

n�Un > a
� D 0 :

Proof To prove that the l.h.s. implies the r.h.s., we let Gn.x/ D P.Xn � x/, Fn.x/ D
P.Un � x/, Fn.x/ D 1 � Fn.x/, Gn.x/ D 1 � Gn.x/, and let F�m

n .x/;G�m
n .x/ denote

the m-fold convolutions. Then

Gn.x/ D
1X

mD1

�m
n

mŠ
e��n F�m

n .x/ ; x > 0
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which implies Gn.x/ � �ne��n Fn.x/. Letting ˇ D supn e�n=�n, which is finite by
Lemma 12.7, we get Fn.x/ � ˇGn.x/. Therefore:

EŒU˛
n�Un > a� D

Z 1

0

˛t˛�1P.Un > a _ t/dt D a˛Fn.a/C ˛

Z 1

a
t˛�1Fn.t/dt

� ˇa˛Gn.a/C ˇ˛

Z 1

a
t˛�1Gn.t/dt D ˇEŒX˛n�Xn > a� :

Taking supremum and limits completes the first part of the proof.

For the converse we note that by Lemma 12.7 we have F�1n
D! F�10 and it

follows from the continuity theorem for characteristic functions that F�m
n

D! F�m
0 .

Fix m 2 N. Since
�Pm

iD1 Ui;n
�˛ � m˛

Pm
iD1 U˛

i;n and the family
�
m˛
Pm

iD1 U˛
i;n

�
n�1

is uniformly integrable, we have that also the family
�Pm

iD1 Ui;n
�˛

n�1 is uniformly

integrable. As noted above we have
Pm

iD1 Ui;n
D! Pm

iD1 Ui;0, so Proposition 12.5
implies E

�Pm
iD1 Ui;n

�˛ ! E
�Pm

iD1 Ui;0
�˛

.
We next show EX˛n ! EX˛0 and thereby the assertion of the proposition. We

have:

lim
n
EX˛n D lim

n

1X

mD0
E

� mX

iD1
Ui;n

�˛ �m
n

mŠ
e��n D

1X

mD0
lim

n
E

� mX

iD1
Ui;n

�˛ �m
n

mŠ
e��n

D
1X

mD0
E

� mX

iD1
Ui;0

�˛ �m
0

mŠ
e��0 D EX˛0 ;

where we used dominated convergence with the bound

E

� mX

iD1
Ui;n

�˛ �m
n

mŠ
e��n � 	m˛C1ˇm=mŠ ;

where 	 D supn EU˛
n and ˇ D supn �n, and we used

�Pm
1 ui

�˛ � m˛u˛i . �
Proof of Theorem 12.3 Using the Lévy-Khinchine representation, we may write

Xn D X.1/n C X.2/n C X.3/n ; (156)

where the
�
X.i/n

�
n�1 are sequences of infinitely divisible distributions having char-

acteristic triplets .0; 0; Œ�n�fy<�1g/ , .cn; �n; Œ�n�fjyj�1g/ and .0; 0; Œ�n�fy>1g/, respec-
tively, which are independent for each n. Assume the family

�jXnj˛
�

n�1 is uniformly

integrable. We wish to apply Proposition 12.8 to the family
�
.X.3/n /˛

�
n�1, and
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therefore we need to show that this family is uniformly integrable. First, we
rewrite (156) as Xn � X.2/n D X.1/n C X.3/n and use Lemma 12.6 together with the
inequality jx � yj˛ � 2˛.jxj˛ C jyj˛/ to conclude that the family

�jXn � X.2/n j˛�
n�1

is uniformly integrable, which in turn implies that the family
�jX.1/n C X.3/n j˛�

n�1 is
uniformly integrable.

Assuming w.l.o.g. that 1 is a continuity point of �0, we have that X.1/n is weakly
convergent and therefore tight. This implies that there exists r > 0 such that
P
�jX.1/n j � r

� � 1=2 for all n, which implies that for all n and for all t so large
that .t1=˛ � r/˛ > t=2, we have:

.1=2/P
�
.X.3/n /˛ > t

� � P
�jX.1/n j � r

�
P
�
X.3/n > t1=˛

�

D P
�jX.1/n j � r;X.3/n > t1=˛

� � P
�
X.1/n C X.3/n > t1=˛ � r

�

� P
�jX.1/n C X.3/n j˛ > .t1=˛ � r/˛

� � P
�jX.1/n C X.3/n j˛ > t=2

�
:

This implies that
�
.X.3/n /˛

�
is uniformly integrable, since

�jX.1/n C X.3/n j˛� is so.
Applying Proposition 12.8 yields

lim
a

sup
n

Z 1

a
y˛�n.dy/ D 0 : (157)

Together with a similar relation for
R �a
�1 this gives

lim
a!1 sup

n

Z

Œ�a;a�c
jyj˛�n.dy/ D 0 :

For the converse, we assume lima supn

R
Œ�a;a�c jyj˛�n.dy/ D 0, and return to our

decomposition (156). As before, we apply Lemma 12.6 to obtain that the family�
X.2/n

�
is uniformly integrable. Furthermore, applying Proposition 12.8, we obtain

that the families
�jX.1/n j˛� and

�jX.3/n j˛� are uniformly integrable, and since jXnj˛ �
3˛
�jX.1/n j˛ C jX.2/n j˛ C jX.3/n j˛�, the proof is complete. �

Next, we prove Theorem 12.2.

We consider a sequence of Lévy processes
˚
Xn
�

such that Xn D! X0 and use
obvious notation like `b;n; �b;n etc. Furthermore, we let �n.A/ denote the first exit
time of Xn from A. Here A will always be an interval.

We first show that weak convergence of Xn implies weak convergence of the
stationary distributions.

Proposition 12.9 Xn D! X0 ) �b;n D! �b;0.
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Proof According to Theorem 13.17 in [82] we may assume�n;t D supv�t jXn.v/�
X0.v/j P! 0. Then

P
�
X0
�0ŒyC"�b;yC"/ � y C "; �0Œy C " � b; y C "/ � t

�

� P
�
Xn
�nŒy�b;y/ � y; �nŒy � b; y/ � t

� C P.�n;t > "/

� P
�
Xn
�nŒy�b;y/ � y

� C P.�n;t > "/ :

Letting first n ! 1 gives

lim inf
n!1 �b;n.y/ � P

�
X0
�0ŒyC"�b;yC"/ � y C "; �0Œy C " � b; y C "/ � t

�
;

and letting next t ! 1, we obtain

lim inf
n!1 �b;n.y/ � �b;0.y C "/ : (158)

Similarly,

P
�
Xn
�nŒy�b;y/ � y; �nŒy � b; y/ � t

� � P
�
X0
�0Œy�"�b;y�"/ � y � "

� C P.�n;t > "/ ;

lim sup
n!1

P
�
Xn
�nŒy�b;y/ � y; �nŒy � b; y/ � t

� � �b;0.y � "/ : (159)

However,

P
�
�nŒy � b; y/ > t

� � P
�
�0Œy � " � b; y C "/ > t

� C P.�n;t > "/ ;

so that

lim sup
n!1

P
�
�nŒy � b; y/ > t

� � P
�
�0Œy � " � b; y C "/ > t

�
:

Since the r.h.s. can be chosen arbitrarily small, it follows by combining with (159)
that

lim sup
n!1

�b;n.y/ D lim sup
n!1

P
�
Xn
�nŒy�b;y/ � y

� � �b;0.y � "/ :

Combining with (158) shows that �b;n.y/ ! �b;0.y/ at each continuity point y of
�b;0, which implies convergence in distribution. �

The following elementary lemma gives two properties of the function ' D 'b

from Theorem 1.1. The proof is omitted.
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Lemma 12.10 The function 'b.x; y/ is continuous in the region .x; y/ 2 Œ0; b� 
 R

and satisfies 0 � 'b.x; y/ � 2y2 ^ 2bjyj.
We are now ready to prove Theorem 12.2.

Proof Recall the definition (153) of the bounded measure Q� and let Q'b.x; y/ D
'.x; y/.1 C y2/=y2 for y ¤ 0, Q'b.x; 0/ D 1. Note that Q'b.x; y/ is continuous on
.0; b/
 R, but discontinuous at y D 0 if x D 0 or x D b. We also get

Z 1

�1
Q'b.x; y/ Q�n.dy/ D �2n C

Z 1

�1
'b.x; y/�n.dy/ ;

so that

an D �2n C
Z b

0

�b;n.dx/
Z 1

�1
'b.x; y/�n.dy/ D

Z b

0

�b;n.dx/
Z 1

�1
Q'b.x; y/ Q�n.dy/ :

Let Q�1n ; Q�2n denote the restrictions of Q�n to the sets jyj � a, resp. jyj > a. Using
0 � 'b.x; y/ � 2bjyj, and uniform integrability (Theorem 12.3) we can choose a
such that

0 �
Z

Œ�a;a�c
Q'b.x; y/ Q�2n.dy/ < "

for all x and n (note that Q�n � �n on Rn f0g). We may also further assume that a and
�a are continuity points of �0 which implies Q�1n ! Q�10 weakly. In particular,

sup
n

Q�1n.Œ�a; a�/ < 1: (160)

Define

fn.x/ D
Z a

�a
'b.x; y/�n.dy/C �2n D

Z a

�a
Q'b.x; y/ Q�1ndy

we wish to prove that
R

fn d�b;n ! R
f0 d�b;0 which, by using the generalized

continuous-mapping theorem (e.g. [138]), will follow if

�b;0.F/ D 0 (161)

where

F D ˚
x j 9.xn/n�1 W xn ! x; fn.xn/ ¹ f0.x/

�
: (162)
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The proof of this follows different routes depending on whether or not �20 is zero.
First, we assume �20 D 0 and consider the functions

f�n .x/ D �2n C
Z

.�1;0�
'b.x; y/�

1
n.dy/ D

Z

.�1;0�
Q'b.x; y/ Q�1n.dy/ ;

fCn .x/ D
Z

.0;1/
'b.x; y/�

1
n.dy/ D

Z

.0;1/
Q'b.x; y/ Q�1n.dy/ :

It follows from the definition of Q�1n , that the assumption �20 D 0 implies that Q�1n has
no mass at 0, and since this is the only possible discontinuity point of the integrands,
we have f�n .x/ ! f�0 .x/ and fCn .x/ ! fC0 .x/ for x 2 Œ0; b�. Furthermore, it can be
checked that x 7! f�n .x/ is increasing, x 7! fCn .x/ is decreasing, and, using the bound
'b.x; y/ � 2y2, that both functions are uniformly bounded. That is, the functions f�n
and fCn form two uniformly bounded sequences of continuous, monotone functions
which converge to a continuous limit and as such, they converge uniformly. From
this we get

sup
0�y�b

jfn.y/ � f0.y/j D sup
0�y�b

jf�n .y/� f�0 .y/C fCn .y/ � fC0 .y/j

� sup
0�y�b

jf�n .y/� f�0 .y/j C sup
0�y�b

jfCn .y/� fC0 .y/j ! 0 :

Using the calculation above, we see that if we consider any x 2 Œ0; b� and any
sequence .xn/n�1 converging to x, we have

jfn.xn/ � f0.x/j � jfn.xn/ � f0.xn/j C jf0.xn/� f0.x/j (163)

� sup
0�y�b

jfn.y/� f0.y/j C jf0.xn/� f0.x/j ! 0 ;

where we use continuity of f0 in the last part of the statement. This gives us that F
in (162) is the empty set, and hence we obtain (161) in the case �20 D 0.

Next, we consider the case where �20 > 0. We note that �20 > 0 implies that
˚
X0
�

is a process of unbounded variation and using Theorem 6.5 in [104], this implies that
0 is regular for .0;1/. By comparing this to the representation (6) of the stationary
distribution, we see that this implies �b;0.f0; bg/ D 0. Consider x 2 .0; b/ and a
sequence .xn/n�1 converging to x. Assume w.l.o.g. that xn 2 Œ"; b � "� for some
" > 0. Since Q'b.x; y/ is continuous on the compact set Œ"; b � "� 
 Œ�a; a�, we can
use (161) to see that given "1, there exists "2 such that jfn.x0/� fn.x00/j < "1 for all n
whenever jx0 � x00j < "2 and x0; x00 2 Œ"; b � "�. Since xn ! x this means, that given
any "1 > 0, we may use an inequality similar to (163) to conclude that for n large
enough

jfn.xn/� f0.x/j � "1 C jfn.x/� f0.x/j
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and by taking lim supn we see that the convergence fn.xn/ ! f0.x/ holds when
x 2 .0; b/, and can only fail x D 0 or x D b. Using that f0; bg has �b;0-measure 0, we
have

R
fn d�b;n ! R

f0 d�b;0 in this case as well. By combining this with the uniform
integrability estimate above, we get that for any " > 0: jan�a0j � jfn�f0jC2", (note
that fi depends on ") and hence lim supn jan � a0j � 2", which implies an ! a0.

By uniform integrability EXn.1/ ! EX0.1/, and further �b;n D! �b;0 impliesR b
0
�b;n.y/dy ! R b

0
�b;0.y/dy. Remembering an ! a0 and inspecting the expres-

sion (75) for the loss rate shows that indeed `b;n ! `b;0. �

12.2 Proof of Theorem 12.1

First we note the effect that scaling and time-changing a Lévy process has on the
loss rate:

Proposition 12.11 Let ˇ; ı > 0 and define Xˇ;ı.t/ D X.ıt/=ˇ. Then the loss rate
`b=ˇ.Xˇ;ı/ for Xˇ;ı equals ı=ˇ times the loss rate `b.X/ D `b for X.

Proof It is clear that scaling by ˇ results in the same scaling of the loss rate. For the
effect of ı, note that the loss rate is the expected local time in stationarity per unit
time and that one unit of time for Xˇ;ı corresponds to ı units of time for X. �

Proof of Theorem 12.1 a) Define Xb.t/ D X.tb2/=b. Then by Proposition 12.11 we
have

b`b.X/ D `1.Xb/

By the central limit theorem we have Xb.1/
D! N.0;  2/ as b ! 1. By

Proposition 12.4, this is equivalent to Xb D!  B where B is standard Brownian
motion. We may apply Theorem 12.2, since

E
�
.Xb.1//2

� D Var.X1.1// ;

that is,
˚
Xb.1/

�1
bD1 is bounded in L2 and therefore uniformly integrable. Thus

lim
b

b`b.X/ D lim
b
`1
�
Xb
� D `1. B/ D  2=2 ;

where the last equality follows directly from the expression for the loss rate in
Theorem 1.1. �

Proof of Theorem 12.1 b) First we note that the stated conditions implies that the
tails of � are regularly varying, and therefore they are subexponential. Then by
Embrechts et al. [56] we have that the tails of P.X.1/ < x/ are equivalent to those
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of � and hence we may write

P.X.1/ > x/ D x�˛L1.x/g1.x/ ; P.X.1/ < �x/ D x�˛L2.x/g2.x/

where limx!1 gi.x/ D 1, i D 1; 2. The next step is to show that the fact that the
tails of the distribution function are regularly varying allows us to apply the stable
central limit theorem. Specifically, we show that the assumptions of Theorem 1.8.1
in [128] are fulfilled.

We notice that if we define M.x/ D L1.x/g1.x/C L2.x/g2.x/ then M.x/ is slowly
varying and

x˛
�
P.X.1/ < �x/C P.X.1/ > x/

� D M.x/ : (164)

Furthermore:

P.X.1/ > x/

P.X.1/ < �x/C P.X.1/ > x/
D L1.x/g1.x/=M.x/ � L1.x/=L.x/ ! ˇ C 1

2
;

(165)

as x ! 1 since L.x/ � M.x/. Define L0.x/ D L.x/.�1=˛/ and let L#
0.x/ denote the

de Bruin conjugate of L0 (cf. [32, p. 29]) and set f .n/ D n.1=˛/L#
0.n

.1=˛//. Let f be
the generalized inverse of f . By asymptotic inversion of regularly varying functions
[32, pp. 28–29] we have f .n/ � .nL0.n//˛ which implies

f .n/L.n/
n˛

� .nL0.n//˛L.n/

n˛
D 1

and since f .f .n// � n we have

nM.f .n//

f .n/˛
� nL.f .n//

f .n/˛
� f .f .n//L.f .n//

f .n/˛
! 1 (166)

and therefore, if we define � D .
 .1 � ˛/ cos.˛�=2//1=˛ we have

nM.��1f .n//
.��1f .n//˛

� nM.f .n//

.��1f .n//˛
! �˛ (167)

using slow variation of M. By combining (164), (165) and (167) we may apply the

stable CLT Theorem 1.8.1 [128]3 to obtain Xb=f .b/
D! Z where Z is a r.v. with

characteristic function  , where

 .u/ D exp.�j�uj˛.1 � iˇ sgn.u/ tan.˛�=2// : u 2 R

3Note that the constants there should be replaced by their inverses.
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Recalling that � is the characteristic exponent of X, this is equivalent to

eb�.iu=f .b// !  .u/

and therefore

e.bL0.b//˛�.iu=f .f .b/// � ef .b/�.iu=f .f .b/// !  .u/

that is, for QXb.t/ D X.t.bL0.b//˛/=f .f .b// we have QXb.1/
D! Z, and using

f .f .b// � b as well as the definition of L0.b/, we see that the same applies to
Xb.t/ D X.t.b˛=L.b///=b. Setting d D .ˇ C 1/=2 and c D .1 � ˇ/=2 we calculate
(cf. [128])

� j� tj˛.1� iˇ sgn.t/ tan.˛�=2/ D �j� tj˛.1C i.d � c/ sgn.t/ tan.˛�=2/

d˛
Z 0

�1
.eivt � 1 � ivt/.�t/�˛�1 dt C c˛

Z 1

0

.eivt � 1 � ivt/t�˛�1 dt :

That is, the characteristic triplet of Z is .�; 0; �/, where

�.du/ D

8
<̂

:̂

˛c

.�u/˛C1
du u < 0

˛d

u˛C1
du u > 0

(168)

and � is a centering constant. We wish to use Theorem 12.2 and have to prove
uniform integrability. Note that by combining Proposition 11.10 and Corollary 8.3
in [129], we have that the Lévy measure of Xb is �b, where

�b.B/ D b˛L.b/�1�.fx W b�1x 2 Bg/ :

Using the assumptions in (152), this implies

�b.a/ D b˛L.b/�1�.ab/ D L.b/�1a�˛L1.ab/ ; �b.�a/ D L.b/�1a�˛L2.ab/ :

Using partial integration and the remarks above, we find:

Z

Œ�a;a�c
jyj�b.dy/ D a�b.a/C

Z 1

a
�b.t/dt C a�b.�a/C

Z �a

�1
�b.t/dt

D a�˛C1L.b/�1˛L.ab/C
Z 1

a
t�˛L.b/�1L.tb/dt :

Furthermore, using Potter’s Theorem (Theorem 1.5.6 in [32]) we have that for ı > 0
such that 1C ı < ˛ there exists 
 > 0 such that
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L.ab/

L.b/
� 2max.aı; a�ı/ ab > 
; b > 
 :

Using this, we get that

lim
a

sup
b>


a�˛C1
L.ab/

L.b/
� 2 lim

a
a�˛C1 max.aı; a�ı/ D 0 (169)

and similarly for the integral:

sup
b>


lim
a

Z 1

a
t�˛

L.tb/

L.b/
dt � 2 lim

a

Z 1

a
t�˛ max.tı ; t�ı/dt D 0 : (170)

By combining (169) and (170) we get

lim
a!1 sup

b>


Z

Œ�a;a�c
jyj�b.dy/ D 0 :

By Proposition 12.11 we have b˛�1L.b/�1`b.X/ D `1
�
Xb
�
, and since we have

proved uniform integrability, we may apply Theorem 12.2. Letting b ! 1 and
using Example 8.8 which states that the loss rate for our stable distribution is 	 (see
also [103]), yields the desired result. �

13 The Overflow Time

We define the overflow time as

!.b; x/ D inf
˚
t > 0 W Vb.t/ D b

ˇ
ˇVb.0/ D x

�
; 0 � x < b:

It can also be interpreted in terms of the one-sided reflected process as

!.b; x/ D inf
˚
t > 0 W V1.t/ � b

ˇ̌
V1.0/ D x

�
; 0 � x � b :

It has received considerable attention in the applied literature; among many
references, see e.g. [47, 75, 93, 98]. We consider here evaluation of characteristics
of !.b; x/, in particular expected values and distributions, both exact and asymptot-
ically as b ! 1. When no ambiguity exists, we write ! instead of !.b; x/.

As may be guessed, the Brownian case is by far the easiest:

Example 13.1 Let X be BM.�; �2/ with � ¤ 0 [the case � D 0 requires a separate
treatment which we omit]. Consider the Kella-Whitt martingale with B.t/ D x C



Lévy Processes with Two-Sided Reflection 153

L.t/ � qt=˛ where L is the local time at 0 for the one-sided reflected process,

�.˛/

Z t

0

e˛V1.s/�qs ds C e˛x � e˛V1.t/�qt C ˛

Z t

0

e�qs dL.s/ � q
Z t

0

e˛V1.s/�qs ds

where we used that L can only increase when V1 is at 0 and so

Z t

0

e˛V1.s/�qs dL.s/ D
Z t

0

e�qs dL.s/ :

Take first 	 D �2�=� as the root of 0 D �.s/ D s� C s2�2=2 and q D 0.
Optional stopping at ! then gives 0 D e	x � e	b C	EL.!/. Using V1 D x C B C L
and EB.!/ D �E! then gives

E!.b; x/ D b � x � .e	b � e	x/=	

�
(171)

Take next q > 0 and �˙ as the two roots of �.˛/ D q, cf. Example 7.3. We then
get

0 D e�
Cx � e�

Cx
Ee�q! � qE

Z !

0

e˛V1.s/�qs ds :

Together with the similar equation with �� this can then be solved to obtain Ee�q!

(the other unknown is E
R !
0 e˛V1.s/�qs ds).

Early calculations of these and some related quantities are in Glynn and
Iglehart [66] who also discuss the probabilistically obvious fact that !.b; 0/ is
exponentially distributed in the Brownian case (as in the spectrally positive Lévy
case), cf. Athreya and Werasinghee [22]. �

13.1 Exact Results in the PH Model

Recall from Sect. 3 that the process V1 with one-sided reflection at 0 can be
constructed as V.t/ D V.0/C X.t/C L.t/, where

L.t/ D � min
0�s�t

.V.0/C X.s//

is the local time. For our phase-type model with a Brownian component, L.t/
decomposes as Lc.t/C Ld.t/, where Lc is the continuous part (the contribution to L
from the segments between jumps where V behaves as a reflected Brownian motion)
and Ld.t/ the compensation of jumps of X that would have taken V below 0.
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0

b

V

L

τV

Fig. 6 One-sided reflected process V D V1 and local time L

The situation is illustrated on Fig. 6. We have again phases red, green for
FC and blue for F�. The cyan Brownian segments are how Brownian motion
would have evolved without reflection. In the lower panel, the cyan segments of
L correspond to compensation when the Brownian motion would otherwise have
taken V1 below 0, and the blue jumps are the compensation from jumps of X that
would otherwise have taken V1 below 0.

To compute the Laplace transform of !, we use the Kella-Whitt martingale with
B.t/ D V.0/C L.t/ � qt=˛. Thus ˛Z.t/ D ˛V.t/ � qt, and the martingale takes the
form

�.˛/

Z t

0

e˛V.s/�qs ds C e˛V.0/ � e˛V.t/�qt

C ˛

Z t

0

e˛V.s/�qs
�
dLc.s/� q ds=˛

�C
X

0�s�t

e˛V.s/�qs.1 � e�˛�Ld.s//

D �
�.˛/ � q/

Z t

0

e˛V.s/�qs ds C e˛V.0/ � e˛V.t/�qt

C ˛

Z t

0

e�qs dLc.s/ C
X

0�s�t

e�qs.1 � e�˛�Ld.s// ;

where in the last step we used that L can only increase when V is at 0. Now introduce
the following unknowns: zCc , the expectation of e�q! evaluated on the event of
continuous upcrossing of level b only; zCi , the expectation of e�q! evaluated on
the event of upcrossing in phase i D 1; : : : ; nC only; `c D E

R !
0

e�qs dLc.s/; and mj,
the expected value of the sum of the e�qs with s � ! such that at time s there is a
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downcrossing of level 0 in phase j D 1; : : : ; n�. Optional stopping then gives

0 D �
�.˛/ � q/E

Z !

0

e˛V.s/�qs ds C e˛V.0/

� e˛b
�

zCc C
nCX

iD1
OFCi Œ˛�zCi

�
C ˛`c C

n�X

jD1
mj.1 � OF�j Œ�˛�/ :

Taking ˛ as one of the same roots as in Sect. 9.4, we get

0 D e�
q
k V.0/ � e�

q
k b
�

zCc C
nCX

iD1
OFCi Œ�q

k �z
C
i

�
C �

q
k`c C

n�X

jD1
mj.1 � OF�j Œ��q

k �/ ;

a set of linear equations from which the unknowns and hence Ee�q! D zCc C zC1 C
� � � C zC

nC
can be computed.

13.2 Asymptotics via Regeneration

The asymptotic study of !.b; x/ is basically a problem in extreme value theory since

P
�
!.b; x/ � t

� D Px

�
max
0�s�t

V1.s/ � b
�
: (172)

This is fairly easy if m D EX.1/ > 0 since then the max in (172) is of the same
order as X.t/ which is in turn of order mt. Hence we assume m < 0 in the following.

For processes with dependent increments such as V1, the asymptotic study of the
quantities in (172) is most often (with Gaussian processes as one of the exceptions)
done via regeneration, cf. [11, VI.4]

For V1, we define (inspired by the discussion in Sect. 5.1) a cycle by starting at
level 0, waiting until level 1 (say) has been passed and taking the cycle termination
time T as the next hitting time of 0 (‘up to 1 from 0 and down again’). That is,

T D inf
˚
t > inffs > 0 W V1.s/ � 1g W V1.t/ D 0

ˇ
ˇV1.0/ D 0

�
:

The key feature of the regenerative setting is that the asymptotic discussion can
be reduced to the study of the behavior within a regenerative cycle. The quantities
needed are

mT D E0T ; a.z/ D P0

�
max
0�s�T

V1.s/ � z
�
:

Indeed one has by [11, VI.4] that:

Theorem 13.2 As b ! 1, it holds for any fixed x that a.b/E!.b; x/ ! mT and
that a.b/!.b; x/=mT has a limiting standard exponential distribution.
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For the more detailed implementation, we note:

Proposition 13.3

(a) Assume that the Lévy measure � is heavy-tailed, more precisely that �.z/ DR1
z �.dy/ is a subexponential tail. Then a.z/ � mT�.x/ as z ! 1;

(b) Assume that the Lévy measure � is light-tailed, more precisely that the Lundberg
equation �.	/ D 0 has a solution 	 > 0 with �0.	/ < 1. Then a.z/ � CT e�	z

for some constant CT as z ! 1
Sketch of Proof For (a), involve ‘the principle of one big jump’ saying that
exceedance of z occurs as a single jump of order z (which occurs at rate �.z/).
The rigorous proof, using the regenerative representation �1.x/ D a.x/=mT of the
stationary distribution of V1 and known results on �1, can be found in [10, 20].

For (b), let P	 , E	 refer to the exponentially tilted case �	.˛/ D �.˛C	/��.˛/
with V1.0/ D 0. By standard likelihood ratio identities,

a.z/ D P0

�
!.z; 0/ < T

� D E	

�
exp

˚�	X
�
!.z; 0/

��I !.z; 0/ < T
i

(173)

Now m	 D �0.	/ > 0 so that P	
�
V1.t/ ! 1� D 1. Hence

˚
!.z; 0/ < T

� " fT D
1g where P	 .T D 1/ > 0, and

X
�
!.z; 0/

�C L
�
!.z; 0/

� D V1
�
!.z; 0/

� D z C 
.z/

where 
.z/, the overshoot, converges in P	 -distribution to a limit 
.1/ (in fact, the
same as when overshoot distribution are taken w.r.t. X, not V1), and L

�
!.z; 0/

�

converges in P	 -distribution to the finite r.v. L.1/. Combining with (173) and
suitable independence estimates along the lines of Stam’s lemma [11, pp. 368–369],
the result follows with

CT D E	e�	
.1/ � E	
�
e	L.1/I T D 1�

:

That CT < 1 is seen by a comparison with Theorem 2.1 since clearly

a.z/ � P0

�
max
0�s�T

V1.s/ � z
�

D �1.z/ :

�

In the heavy-tailed case, Theorem 13.2 and Proposition 13.3 determine the order
of !.b; x/ as �.b/. In the light-tailed case, we are left with the computation of the
constant CT . In general, one can hardly hope for an explicit expression beyond
special cases. Note, however, that for the spectrally negative case one can find the
Laplace transform Exe�q!.z;x/ as Z.q/.x/=Z.q/.b/, where

Z.q/.x/ D 1C q
Z x

0

W.q/.y/ dy



Lévy Processes with Two-Sided Reflection 157

is the ‘second scale function’. See Pistorius [119] and Kyprianou [104, p. 228], with
extensions in Ivanovs and Palmowski [78]. We return to E! in Sect. 14.2.

14 Studying V as a Markov Process

14.1 Preliminaries

An alternative approach to computing probabilities and expectations associated with
V and its loss process U is to take advantage of the fact that V is a Markov jump-
diffusion process. As a consequence, a great number of probabilities/expectations
can be computed by solving linear integro-differential equations, subject to suitable
boundary conditions related to the boundary behaviour of V and the specific
functional under consideration.

Our exposition is somewhat simpler if we require that the jump component of X
be of bounded variation (BV). So, we will henceforth assume that

Z

jyj�1
jyj �.dy/ < 1 : (174)

In this setting,

X.t/ � X.0/ D �t C � B.t/C
X

0<s�t

�X.s/ ;

where �X.s/ D X.s/ � X.s�/ and the sum converges absolutely for each t <
1 because of (174). Cf. the discussion at the end of Sect. 1. Without (174), the
jump part would a.s. have unbounded variation. In order to deal with Lévy processes
having non-BV jumps, one needs to modify the equations and arguments of this
section slightly. We discuss this non-BV extension briefly at the end in Sect. 14.6.

The key to establishing suitable integro-differential equations in this context is
the systematic use of Itô’s formula in the form

f
�
V.s/

� � f
�
V.s/

� �
X

0<s�t

�
f
�
V.s/

� � f
�
V.s�/��

D
Z t

0

h
�f 0
�
V.s/

�C �2

2
f 00
�
V.s/

�i
ds C

Z t

0

f 0
�
V.s/

�
dB.s/

C
Z t

0

f 0
�
V.s/

�
dLc.s/ �

Z t

0

f 0
�
V.s/

�
dUc.s/ (175)

[note that in our context, V.s/ could be replaced by b in the last integral and by 0 i
the next-to-last]. This follows for compound Poisson jumps by using Itô’s formula



158 L.N. Andersen et al.

in a form involving boundary modifications (see [46]) on intervals between jumps
of X (where V is continuous), and in the general case by approximation by such a
process. Equation (174) is the basic form of Itô’s formula that we will systematically
apply in what follows.

With the aid of Itô’s formula, we will illustrate the use of Markov process
arguments in deriving various integro-differential equations associated with V and
its loss process U. In fact, we will generalize from consideration of U to additive
functionals of the form

�.t/ D
Z t

0

f
�
V.s/

�
ds C

X

0<s�t

Qf �V.s�/;�X.s/
� C r1Lc.t/ C r2Uc.t/ : (176)

We recall that � D �
�.t/ W t � 0

�
is an additive functional of X if it can be

represented as �.t/ D gt
�
X.u/ W 0 � u � t

�
where

gtCs
�
X.u/ W 0 � u � t C s

� D gs
�
X.u/ W 0 � u � s

� C gt
�
X.s C u/ W 0 � u � t

� I

see also [34]. Note that we recover U in (176) if we set f � 0, Qf .x; y/ D ŒxCy�b�C,
r1 D 0 and r2 D 1. We assume throughout that f is bounded, that Qf .x; 0/ D 0, and
that

sup
0�x�b

Z ˇ
ˇQf .x; y/ˇˇ �.dy/ < 1 :

An additional notational simplification will be useful: we set

r.x; y/ D

8
ˆ̂
<

ˆ̂
:

0 x C y � 0

x C y 0 � x C y � b

b x C y � b

and observe that V.s/ D r
�
V.s�/;�X.s/

�
whenever�X.s/ ¤ 0.

The integro-differential equations to follow are typically expressed in terms of
the operator L defined on twice differentiable functions ' W Œ0; b� ! R and given
by

.L '/.x/ D �' 0.x/C �2

2
' 00.x/C

Z

R

�
'
�
r.x; y/

� � '.x/
�
�.dy/ ;

The expression on the r.h.s. is familiar from the theory of generators of Markov
processes, but given the multitude of formulations of this theory, we will not
pursue this aspect. The interested reader can find a good discussion of generators
in the diffusion setting in Karlin and Taylor [85, pp. 246–309], and in the jump-
diffusion setting in Øksendahl and Sulem [115, pp. 10–11]. The generator view
may sometimes be helpful to heuristically understand the form of the results. For
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example, we will study the expectation s.x/ D ExTz where Tz D infft > 0 W V.t/ �
zg is a level crossing time of V (and as usual Px;Ex refer to the case V.0/ D x).
Intuitively, one should have

s.x/ � h C Exs
�
x C V.h/

� � h C s.x/ C h .L s/.x/

for small h, so that the equation to solve for computing s should be .L s/.x/ D �1
(subject to suitable boundary conditions). Our detailed analysis aims at making this
rigorous.

We will encounter functions h.�; x/ depending on two arguments and write then
as usual h� .�; x/; hx.�; x/ for the partial derivatives. When working with h as a
function of x for a fixed � , we write h.�/ rather than h.�; �/.

14.2 Level Crossing Times

Consider the level crossing time

Tz D inf
˚
t > 0 W V.t/ � zg

defined for V (with 0 < z � b) and

�.w/ D inf
˚
t > 0 W �.t/ � wg

defined (with w > 0) for the additive functional � in (176). In this section,
we formulate the integro-differential equations appropriate for computing charac-
teristics of these quantities. Our approach closely follows that used by Karatzas
and Shreve [84] and Harrison [73] as a means of calculating various expectations
associated with Markov processes.

Theorem 14.1 Fix � � 0. Suppose that there exists a function h.�/ D h.�; �/ W
Œ0; b� ! R that is twice continuously differentiable in Œ0; z� satisfying the integro-
differential equation

�
L h.�/

�
.x/C �h.�; x/ D 0 (177)

for 0 � x � z, subject to the boundary conditions

h.�; x/ D 1 for x � z; hx.�; 0/ D 0 :

Then h.�; x/ D Exe�Tz .
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Proof Observe that Uc.Tz/ D 0. Hence, Itô’s formula yields

Ee�.Tz^t/h
�
�;V.Tz ^ t/

� � h
�
�;V.0/

� D
4X

jD1
Tj;

where

T1 D
Z Tz^t

0

ebs
��
L h.�/

��
V.s/

�C �h
�
�;V.s/

��
ds ;

T2 D
Z Tz^t

0

ebshx
�
�;V.s/

�
ds ;

T3 D
Z Tz^t

0

ebshx
�
�;V.s/

�
� dB.s/ ds ;

T4 D
X

0<s�Tz^t

ebs
�
h
�
�;V.s/

� � h
�
�;V.s�/�� ;

�
Z Tz^t

0

ebs
Z

R

�
h
�
�; r.V.s/; y/

� � h
�
�;V.s/

��
�.dy/ ds

Here T1 C T2 D 0 because of the integro-differential equation (177) and the
boundary condition at x D 0, whereas T3 C T4 form a martingale. Hence

Ee�.Tz^t/h
�
�;V.Tz ^ t/

� D h.�; x/

for t � 0. By monotone convergence and the boundary condition for x � z,

E
�
e�Tz h

�
�;V.Tz/

�I Tz � t
� " E

�
e�Tz I Tz < 1�

as t ! 1. On the other hand, the boundedness of h.�/ and the fact that � � 0

ensure that

E
�
e� th

�
�;V.t/

�I Tz > t
� ! 0 :

The conclusion follows by noting that Tz < 1 a.s. because of the reflection at 0. �

We can now formally obtain our integro-differential equation for ExTz by
differentiating (177) and the boundary conditions. In particular note that ExTz D
h� .0; x/. Formally differentiating (177) w.r.t. � yields

.L h� /.x/C h.�; x/C �h� .�; x/ D 0

for 0 � x � z, subject to

h� .�; x/ D 0 for x � z; hx� .�; 0/ D 0 :



Lévy Processes with Two-Sided Reflection 161

Letting Qh.x/ D ETz, we conclude from h.0; x/ D 1 for 0 � x � z that Qh should
satisfy

.L Qh/.x/ D �1

for 0 � x � z, subject to

Qh.x/ D 0 for x � z; Qh0.0/ D 0 :

By working with the martingale

Qh�V.Tz ^ t/
�C Tz ^ t ;

this can be rigorously verified by sending t ! 1, using the boundedness of Qh, and
exploiting the fact that Qh�V.Tz/

� D 0.
Bounds on ExTz can be obtained similarly, in the presence of a non-negative

twice continuously differentiable function 	 for which

.L 	/.x/ � �1

for 0 � x � z. In this case,

	
�
V.Tz ^ t/

�C Tz ^ t

is a non-negative supermartingale. Because 	 is non-negative, ExTz ^ t � 	.x/ for
t � 0, yielding the bound

ExTz � 	.z/

for 0 � x � z upon application of the monotone convergence theorem.
We next turn to the computation of Exe��.w/ with �.t/ as in (176) (note for the

following result the quantities f ; Qf ; r1; r2 occurring in the definition).

Theorem 14.2 Fix � � 0. Suppose that there exists a function k.�/ W Œ0; b�
R ! R

of x; � that is twice continuously differentiable in x and continuously differentiable
in � on Œ0; b� 
 .�1;w�, and satisfies

0 D �kx.�; x; �/C �2

2
kxx.�; x; �/C k�.�; x; �/f .x/C �k.�; x; �/

C
Z

R

�
k
�
�; r.x; y/; �C Qf .x; y/� � k.�; x; �/

�
�.dy/ (178)
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for 0 � x � b, � � w, subject to the boundary conditions

r1k�.�; x; �/C kx.�; x; �/ D 0 and r2k�.�; x; �/� kx.�; x; �/ D 0

for � � w. If E��.1/ � 0, then k.�; x; �/ D Exe��.w/.

Proof An application of Itô’s formula guarantees that

e�.�.w/^t/k
�
�;V.�.w/ ^ t//;�.�.w/ ^ t/

� � k
�
�;V.0/; 0

� D
6X

jD1
Tj

where

T1 D
Z �.w/^t

0

ebs
Z

R

�
k
�
�; r.V.s/; y/;�.s/CQf .V.s/; y/��k

�
�;V.s/;�.s/

��
�.dy/ ds ;

T2 D
Z �.w/^t

0

ebs
h
�kx

�
�;V.s/;�.s/

��2

2
kxx
�
�;V.s/;�.s/

�

C k�
�
�;V.s/;�.s/

�
f
�
V.s/

�C �k�
�
�;V.s/;�.s/

�i
ds ;

T3 D
Z �.w/^t

0

ebs
�
kx
�
�;V.s/;�.s/

�C r1k�
�
�;V.s/;�.s/

��
dLc.s/ ;

T4 D
Z �.w/^t

0

ebs
��kx

�
�;V.s/;�.s/

�C r2k�
�
�;V.s/;�.s/

��
dUc.s/ ;

T5 D
Z �.w/^t

0

ebskx
�
�;V.s/;�.s/

�
� dB.s/ ;

T6 D
X

0<s�t

ebs
�
k
�
�; r.V.s�/;�X.s//;�.s�/C Qf .V.s�/;�X.s//

�

� k
�
�;V.s/;�.s�/�� ;

�
Z �.w/^t

0

ebs
Z

R

�
k
�
�; r.V.s�/; y/;�.s�/C Qf .V.s�/; y/�

� k
�
�;V.s�/;�.s�/�� ds :

Here T1 C T2 D 0 because of the integro-differential equation (178), T3 D T4 D 0

because of the boundary conditions, and T5;T6 are martingales. Consequently,

k
�
�;V.0/; 0

� D Ex
�
e��.w/k

�
�;V.�.w/ ^ t//;�.�.w/ ^ t/

��
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Now �.w/ < 1 a.s. because E��.1/ < 1. Because � � 0 and k is bounded, the
r.h.s. converges to

Ex
�
e��.w/k

�
�;V.�.w///;�.�.w//

�
:

The proof is completed upon recognizing that k.�; x; �/ D 1 for � � w. �

14.3 Poisson’s Equation and the CLT

A natural complement to the computation of the loss rate `b is the development of a
central limit theorem (CLT) for the cumulative loss. In particular, we wish to obtain
a CLT of the form

U.t/� `btp
t

D! �N.0; 1/ (179)

as t ! 1. This CLT lends itself to the approximation

U.t/
D� `bt C �

p
t N.0; 1/ (180)

when t is large, where
D� means ‘has approximately the same distribution as’ [and

carries no rigorous meaning, other than through (179)]. The key new parameter
to be computed in the approximation (180) is the time-average variance constant
�2. Computing �2, in turn, involves representing U.t/ in terms of the solution to
Poisson’s equation which is well-known to play a fundamental role for Markov
process CLTs (cf. e.g. Bhattacharyya [30], Glynn [65], Glynn and Meyn [67], [11,
I.7, II.4d]). See also Williams [139] for the CLT for U in the Brownian case.

We develop the theory in terms of a general additive functional V of the
form (176) and its associated boundary processes L and U. Given a function
g W Œ0; b� ! R and a scalar c, we say that the pair .g; c/ is a solution to Poisson’s
equation for the additive functional� if

g
�
V.t/

�C�.t/ � ct

is a martingale. The martingale is a generalization of the Dynkin martingale that
arises if r1 D r2 D 0 � Qf below; see [85, p. 299]. When � D U, c must clearly
equal `b.

Theorem 14.3 Assume that f is bounded and that

sup
0�x�b

Z

R

�jQf .x; y/j C Qf .x; y/2� �.dy/ < 1 : (181)



164 L.N. Andersen et al.

If there exists a twice continuously differentiable function g W Œ0; b� ! R satisfying

sup
0�x�b

Z

R

ˇ̌
g
�
r.x; y/

�ˇ̌
�.dy/ < 1 : (182)

and a scalar c such that the pair .g; c/ satisfies the integro-differential equation

.L g/.x/ D �
�

f .x/C
Z

R

Qf .x; y/ �.dy/� c
�

(183)

for 0 � x � b, subject to the boundary conditions

g0.0/ D �r1; g0.b/ D r2 ; (184)

then

g
�
V.t/

�C�.t/ � ct

is a martingale. Furthermore,

�.t/ � `btp
t

D! �N.0; 1/

as t ! 1, where

�2 D
Z b

0

h
�2g0.x/2 C

Z

R

�Qf .x; y/C g
�
r.x; y/

� � g.x/
�2
� �.dy/

i
�.dx/ :

Proof We note that Itô’s formula guarantees that

g
�
V.t/

� � g
�
V.0/

�C�.t/ � ct

D
Z t

0

.L g/
�
V.s/

�
ds C

Z t

0

g0
�
V.s/

�
� dB.s/

C
X

0<s�t

�
g
�
V.s/

� � g
�
V.s�/��

�
Z t

0

Z

R

�
g
�
r.V.s�/; y/� � g

�
V.s�/�� �.dy/ ds

C
Z t

0

f
�
X.s/

�
ds C

Z t

0

Z

R

Qf �V.s�/; y� �.dy/ ds

C
X

0<s�t

f
�
V.s�/;�X.s/

� �
Z t

0

Z

R

Qf �V.s�/; y� �.dy/ ds
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C r1Lc.t/ C r2Uc.t/ � ct C g0.0/Lc.t/ � g0.b/Uc.t/

D
Z t

0

g0
�
V.s/

�
� dB.s/

C
X

0<s�t

�
g
�
V.s/

� � g
�
V.s�/� C Qf .V.s�/;�X.s/

��

�
Z t

0

Z

R

�
g
�
r.V.s�/; y/� � g

�
V.s/

�C Qf �V.s�/; y�� �.dy/ ds

D M.t/ (say) ;

where (181) and (182) were used to obtain the second equality. In the presence
of (181), (182), and the boundedness of g and g0, it follows that M.t/ is a martingale.
Furthermore, the quadratic variation has the form

ŒM;M�.t/ D
Z t

0

g0
�
V.s/

�2
�2 ds

C
X

0<s�t

�
g
�
V.s/

� � g
�
V.s�/��C Qf .V.s�/;�X.s/

��2

D
Z t

0

h
�2g

�
r.V.s�/; y/�2

C
Z

R

�
g
�
V.s/

� � g
�
V.s�/� C Qf .V.s�/;�X.s/

��2�
�.dy/ ds

C M1.t/

where M1.t/ is a martingale. It is easily seen that ŒM;M�.t/=t ! �2 a.s. as t ! 1.
Finally, to verify condition a) of the martingale CLT in [58, p. 340], we need to show
that

1p
t
E� sup

0�s�t

ˇ
ˇM.s/ � M.s�/ˇˇ ! 0 (185)

as t ! 1 (this needs only to be verified for V.0/ distributed as � because we
can couple V to the stationary version from any initial distribution). Of course, a
sufficient condition for (185) is to establish that

1

t
E� sup

0�s�t

ˇ
ˇM.s/ � M.s�/ˇˇ2 ! 0 : (186)

It is well known that (186) is immediate if

E� sup
0�s�1

�
M.s/ � M.s�/�2 < 1 : (187)
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But (187) is bounded by

E�

X

0�s�1

�
M.s/ � M.s�/�2

D E�

X

0�s�1

�
g
�
V.s/

� � g
�
V.s�/�C Qf .V.s�/;�X.s/

��2

D E�

Z

R

�
g
�
r.V.s�/; y/� � g

�
V.s�/�C Qf .V.s�/; y��2�.dy/ ds

D
Z b

0

Z

R

�
g
�
r.x; y/

� � g
�
x;
�C Qf .x; y��2�.dy/ �.dx/

due to the boundedness of g and condition (181). The martingale CLT then yields
the desired conclusion. �

Theorem 14.3 therefore provides the CLT for general additive functionals
associated with V , provided that one can solve the integro-differential equation (183)
subject to the boundary condition (184). Finally, we note that the fact that g

�
V.t/

�C
�.t/ � ct is, in great generality, a martingale, implies that

Ex�.t/ D ct C g.x/� Exg
�
V.t/

�
;

where, as usual, Ex refers to the case V.0/ D x. Since

Exg
�
V.t/

� ! E�g
�
V.t/

�

as t ! 1 (since V is regenerative with absolutely continuous cycles), we conclude
that

Ex�.t/ D ct C g.x/� E�g
�
V.t/

� C o.1/ ;

as t ! 1. Hence, the solution g to Poisson’s equation also provides a ‘correction’ to
the value of Ex�.t/ that reflects the influence of the initial condition on the expected
value of an additive functional.

14.4 Large Deviations for the Loss Process

We turn next to obtaining a family of integro-differential equations from which the
large deviations behaviour of the additive functional�.�/ can be derived (for earlier
work in this direction in the Brownian case, see Zhang and Glynn [141] and Forde
et al. [60]). The key to the analysis is the following result:
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Theorem 14.4 Fix � 2 R. Suppose that

sup
0�x�b

Z

R

e�Qf .x;y/ �.dy/ < 1 : (188)

If there exists a positive twice differentiable function u.�/ W Œ0; b� ! R and a scalar
 .�/ such that the pair

�
u.�/;  .�/

�
satisfies the integro-differential equation

0 D �ux.�; x/C �2

2
uxx.�; x/C �

� f .x/ �  .�/
�
u.�; x/

C
Z

R

�
e�Qf .x;y/u

�
�; r.x; y/

� � u.�; x/
�
�.dy/ (189)

for 0 � x � b, subject to the boundary conditions

ux.�; 0/ D �r1� ; ux.�; b/ D r2� ; (190)

then M.�; t/ D e��.t/u
�
�;V.t/

�
is a martingale.

Proof Define A.s/ D exp
˚
��.s/ �  .�/s

�
and

S.t/ D
X

0<s�t

A.s/
�
exp

˚
� Qf .V.s�/;�X.s/

��
u
�
�;V.s/

� � u
�
�;V.s�/�� :

Itô’s formula shows that M.�; t/ � M.�; 0/ equals

S.t/ C
Z t

0

�
� f
�
V.s/

� �  .�/�A.s/u��;V.s�/� ds

C
Z t

0

r1�A.s/ dLc.s/ C
Z t

0

r2�A.s/ dUc.s/

C
Z t

0

�
�ux

�
�;V.s/

�C �2

2
uxx
�
�;V.s/

��
A.s/ds

D
Z t

0

A.s/ux
�
�;V.s/

�
� dB.s/ C S.t/

�
Z t

0

A.s/
Z

R

�
exp

˚
� Qf �V.s/; y��u��; r�V.s/; y�� � u

�
�;V.s/

��
�.dy/ ds ;

where the second equality uses the fact that
�
u.�/;  .�/

�
satisfy (189) and (190).

Given the boundedness of u.�/ and (188), the fact that M.�; t/ is integrable and is a
martingale is clear. �
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As a consequence of the martingale property and the fact that u.�/ is bounded
above and below by finite positive constants, it is straightforward to establish that

1

t
logExe��.t/ !  .�/

as t ! 1. Suppose that there exists �� > 0 for which  .�/ exists in a
neighbourhood of �� and is continuously differentiable there. If we let a D  0.��/,
then

1

t
logPx

�
�.t/ � at

� !  .��/ � ��a I

see, for example, the proof of the Gärtner-Ellis theorem in [53, 45–51]. Hence,
the integro-differential equation (189) is intimately connected to the study of large
deviations for�.

14.5 Discounted Expectations for Additive Functionals

As our final illustration of how integro-differential equations naturally arise when
computing expectations of additive functionals of reflected Lévy processes, we
consider the calculation of an infinite horizon discounted expectation. Specifically,
we let the discounting factor at t be


 .t/ D
Z t

0

g
�
V.s/

�
ds C

X

0<s�t

Qg�V.s�/;�X.s/
� C u1Lc.s/C u2Uc.t/

for given functions g; Qg (where Qg is such that Qg.x; 0/ D 0 for 0 � x � b), and set

D D
Z 1

0

e�
 .s/ d�.s/ :

As for f ; Qf , we assume that g is bounded and that

sup
0�x�b

Z

R

ˇ
ˇQg.x; y/ˇˇ �.dy/ < 1:

Theorem 14.5 Assume that f ; Qf , g; Qg, u1; u2 are non-negative with g strictly posi-
tive. If there exists a twice continuously differentiable function k W Œ0; b� ! Œ0;1/
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satisfying the integro-differential equation

0 D �k0.x/C �2

2
k00.x/� g.x/k.x/

C
Z

R

�
e�Qg.x;y/k

�
r.x; y/

� � k.x/
�
�.dy/

C f .x/ C
Z

R

Qf .x; y/ �.dy/

for 0 � x � b, subject to the boundary conditions

k0.0/� u1k.0/ D �r1 ; k0.b/C u2k.b/ D �r2 ;

then ExD D k.x/ for 0 � x � b.

Proof Itô’s formula ensures that

D.t/C e�
 .t/k
�
V.t/

� � k
�
V.0/

� D
8X

jD1
Tj

where

T1 D
Z t

0

e�
 .s/
�
�k0

�
V.s/

�C �2

2
k0
�
V.s/

� � g.x/k
�
V.s/

��
;

T2 D
Z t

0

e�
 .s/
Z

R

�
e�Qg
�

V.s/;y
�
k
�
r
�
V.s/; y

�� � k
�
V.s/

��
�.dy/ ;

T3 D
Z t

0

e�
 .s/f
�
V.s/

�
ds C

Z t

0

e�
 .s/
Z

R

Qf �V.s/; y� �.dy/ ds ;

T4 D
Z t

0

e�
 .s/
�
r1 � u1k

�
V.s/

�C k0
�
V.s/

��
dLc.s/ ;

T5 D
Z t

0

e�
 .s/
�
r2 � u2k

�
V.s/

� � k0
�
V.s/

��
dUc.s/ ;

T6 D
Z t

0

k0
�
V.s/

�
� dB.s/ ;

T7 D
X

0<s�t

e�
 .s/Qf �V.s/;�X.s/
� �

Z t

0

e�
 .s/Qf �V.s/; y� �.dy/ ds ;

T8 D
X

0<s�t

e�
 .s/
�
e�Qg.V.s�/;�X.s//k

�
r
�
V.s/;�X.s/

�� � k
�
V.s�/�� ;

�
Z t

0

e�
 .s/
Z

R

�
e�Qg.V.s�/;y/k

�
r
�
V.s/; y

�� � k
�
V.s�/�� �.dy/ ds :
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Here T1 C T2 C T3 D 0 because of the integro-differential equation, T4 D T5 D 0

because of the boundary conditions satisfied by k, and T6;T7;T8 are all martingales.
Consequently,

k.x/ D Ex

Z t

0

e�
 .s/ d�.s/ C Exe�
 .t/k
�
V.t/

�
:

Sending t ! 1, the non-negativity assumption ensures that

Ex

Z t

0

e�
 .s/ d�.s/ " ExD ;

while the non-negativity of g; Qg, u1; u2, positivity of g and boundedness of k ensure
that

Exe�
 .t/k
�
V.t/

� ! 0 ;

proving the theorem. �

14.6 Jumps of Infinite Variation

Lévy processes are permitted to have a jump part of infinite variation as long as the
FV condition (174) is weakened to

Z

jyj<1
y2 �.dy/ < 1 : (191)

In this setting, one must compensate the small jumps, by considering the random
measure

Z

jyj<1
y
�
�.dy; ds/� �.dy/ ds

�
< 1 (192)

where � is the Poisson random measure having intensity measure � ˝ m (where
m is Lebesgue measure). The centered random measure is well-defined, and forms
a square-integrable martingale when integrated over s [due to (191)]. Thus, in the
non-BV jump setting we can write the Lévy process X as

X.t/� X.0/ D at C �B.t/

C
X

0<s�t

�X.s/�
�ˇˇ�X.s/

ˇ
ˇ � 1

�C
Z t

0

Z

jyj<1
y
�
�.dy; ds/� �.dy/ ds

�
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for some suitably defined constant a; observe that when the stronger FV condi-
tion (174) holds,

a D � C
Z

jyj<1
y �.dy/ :

In order to develop an Itô-type formula in this setting, we note than when
�Œ�"; "� D 0 for some " > 0, we can write (for f twice differentiable)

f
�
V.t/

� � f
�
V.0/

�

D
Z t

0

Z

R

�
f
�
V.s�/C y

��f
�
V.s�/���.dy; ds/ C �2

2

Z t

0

f 00
�
V.s/

�
ds

C
Z t

0

f 0
�
V.s/

�h
a ds C � dB.s/�

Z

jyj<1
y �.dy/ ds C dLc.s/ � dUc.s/

i

D
Z t

0

Z

R

�
f
�
V.s�/C y

��f
�
V.s�/����.dy; ds/� �.dy/ ds

�

C
Z t

0

Z

jyj�1
�
f
�
V.s�/C y

��f
�
V.s�/���.dy/ ds

C
Z t

0

Z

jyj<1
�
f
�
V.s�/C y

��f
�
V.s�/� � yf 0

�
V.s�/���.dy/ ds (193)

C
Z t

0

f 0
�
V.s/

�
� dB.s/C f 0.0/

�
Lc.t/ � Lc.0/

� � f 0.b/
�
Uc.t/ � Uc.0/

�
:

By sending " # 0 and utilising (191), we find that this formula extends to the general
case in the general Lévy setting. We note that the smoothness of f guarantees that

f
�
V.s�/C y

��f
�
V.s�/� � yf 0

�
V.s�/�

is of order y2 when y is small, thereby guaranteeing that the term (193) on the r.h.s. is
well-defined. As a consequence of the martingale property of the centered stochastic
integral,

Exf
�
V.t/

� � Exf
�
V.0/

� D
Z t

0

. QL f /
�
V.s/

�
ds ;

where for some suitable Q�

. QL '/.x/ D Q�' 0.x/C �2

2
' 00.x/C

Z

jyj>1
�
'
�
r.x; y/

� � '.x/
�
�.dy/

C
Z

jyj�1
�
'
�
r.x; y/

� � '.x/ � y' 0.x/
�
�.dy/ ;
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provided that ' 0.0 D ' 0.b/ D 0. The integro-differential operator QL replaces
the operator L that appeared earlier in the BV case (it can be easily verified that

QL D L in the BV case). For example, to compute ExTz, the Itô argument above
establishes that if h satisfies . QL h/.x/ D �1 subject to h0.0/ D 0 and h.x/ D 0

for x � z, then h.x/ D ExTz. In a similar fashion all the other integro-differential
equations derived earlier in this section can be generalised to Lévy processes having
non-BV jumps.

15 Additional Representations for the Loss Rate

In Sects. 6 and 8, two representations for `b were provided, in which `b was
represented in terms of an integral against the stationary distribution � for the
‘interior process’ V . In this section, we return to the computation of `b and provide
a simple argument establishing that there are infinitely many such representations
of `b in terms of � .

The notation is the same as in Sect. 14; recall in particular the function r.x; y/
associated with two-sided reflection and the integro-differential operator L .

We first write the local time U.t/ at b in terms of the jump component and its
continuous component, so that

U.t/� U.0/ D
X

0<s�t

�U.s/ C Uc.t/ ;

where, as usual, �U.s/ D U.s/� U.s�/ for s > 0. Clearly,

`b D `b
j C `b

c ;

where

`b
j D lim

t!1
1

t

X

0<s�t

�U.s/ ; `b
c D lim

t!1
1

t
Uc.t/ a.s.

We now show how `b
j and `b

c can be individually calculated in terms of � . Dealing
with `b

j is easy. Note that

QM.t/ D
X

0<s�t

�U.s/�
Z t

0

Z

R

�
V.s/C y � b�C �.dy/ ds

is a martingale (see p. 6 of [115]), and hence

E
1

t

X

0�s�t

�U.s/ D E
1

t

Z t

0

Z

R

�
V.s/C y � b�C �.dy/ ds :
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Consequently,

`b
j D

Z b

0

Z

R

�
x C y � b�C �.dy/ �.dx/ :

It remains only to compute `b
c . For a given twice differentiable function h W

Œ0; b� ! R, Itô’s formula (see p. 7 of [115]) ensures that

h
�
V.t/

� � h
�
V.0/

� D
X

0<s�t

�
h
�
V.s/

� � h
�
V.s�/��

C
Z t

0

h
�h0

�
V.s/

�C �2

2
h00
�
V.s/

�i
ds (194)

C �

Z t

0

h0
�
V.s//

�
dB.s/C h0.0/Lc.t/ � h0.b/Uc.t/ ;

where Lc.�/ is the continuous component of L.�/. Letting

M.t/ D
X

0<s�t

�
h
�
V.s/

� � h
�
V.s�/��C �

Z t

0

h0
�
V.s/

�
dB.s/

�
Z t

0

Z

R

�
h
�
r
�
V.s�/; y�� � h

�
V.s�/�� �.dy/ ds ;

and rewriting (194) in terms of L , we get

h
�
V.t/

� � h
�
V.0/

� D M.t/C
Z t

0

.L h/
�
V.s/

�
ds C h0.0/Lc.t/ � h0.b/Uc.t/

Further, M.�/ is a square integrable martingale, and since h and its derivatives are
bounded, it follows by taking stationary expectations at t D 1 that

0 D
Z b

0

.L h/.x/ �.dx/C h0.0/`0c � h0.b/`b
c ; (195)

where `0c D lim
t!1

1

t
Lc.t/ a.s.

As a consequence, we can now compute `0c and `b
c by choosing two (twice

differentiable) functions h1 and h2. According to (195),

	
h01.b/ �h01.0/
h02.b/ �h02.0/


	
`b

c

`0c



D

0

B
B
@

Z b

0

.L h1/.x/ �.dx/
Z b

0

.L h2/.x/ �.dx/

1

C
C
A (196)



174 L.N. Andersen et al.

Thus, if h1 and h2 are chosen so that the coefficient matrix on the l.h.s. of (196) is
non-singular, this yields formulae for `0c and `b

c in terms of � . Consequently, there
are infinitely many representations of `b in terms of � (two of which have been
introduced in Sects. 6 and 8).

Even in situations where � is not easily computable, the above approach provides
a mechanism for easily computing bounds on `b. For example, by choosing h1 so
that h01.0/ D 0 and h01.b/ D 1 (and h2.�/ arbitrarily), we can compute bounds on `b

c
in terms of the supremum of .L h1/.x/.

16 Markov-Modulation

Models with the parameters varying according to the state of a finite Markov chain
or -process have a long history and are popular in many areas: in statistics, they
go under the name of hidden Markov models (e.g. Cappé et al. [41]), in finance
the term Markov regime switching is used (e.g. Elliott et al. [55]), and in queueing
the first occurrence was with the Markov-modulated Poisson process. We consider
here Lévy processes with the characteristic triplet .ci; �

2
i ; �i/ depending on the state

J.t/ D i of an underlying finite ergodic Markov process J, with the extension that
additional jumps may occur at state changes of J. This is important since then the
model class becomes dense in the whole of DŒ0;1/, cf. [11, Chap. XI] where also
the connection to Markov additive processes is explained.

In this section we generalize the results from Sects. 6 and 8 to hold for a Markov-
modulated Lévy process X. We will use the same technique as in Sect. 6 (a direct
application of Ito’s formula for general semimartingales) to derive a formula for `b.
In [16] an approach based on optional stopping of a multi-dimensional version of
the Kella-Whitt martingale is used to obtain `b, but this will not be presented here,
since it is very complicated and does not really shed any probabilistic light upon the
underlying Skorokhod problem. Further, the direct Ito approach leads directly to an
easier expression for `b.

We start by constructing X. We assume that we are given an underlying
probability space with filtration F, which satisfies the usual conditions, i.e., it
is augmented and right-continuous. Let J (the modulating process) be a right-
continuous irreducible Markov process with state space f1; : : : ; pg, intensity matrix
Q D .qij/ and stationary row vector ˛ D .˛i/. Let X1; : : : ;Xp be Lévy processes
(with respect to F) with characteristic triplets .ci; �

2
i ; �i/; i D 1; : : : ; p, which are

independent of J and each other and satisfy EjXi.1/j < 1; i D 1; : : : ; p. Further,
let fUij W 1 � i; j � pg and fUij

n W n � 1; 1 � i; j � pg be independent random
variables which are also independent of X1; : : : ;Xp and J, such that for each i; j; n,
Uij and Uij

n are identically distributed with distribution Hij and EjUijj < 1. Let
T0;T1; : : : be the jump epochs of J (with T0 D 0). It is assumed that for every i; j; n,
Uij

n is measurable with respect to F.Tn/ and that Uij 2 F.0/. We then define the



Lévy Processes with Two-Sided Reflection 175

process X according to

X.t/ D
X

n�1

X

1�i;j�p
i¤j

.Xi.Tn/� Xi.Tn�1/C Uij
n /�.J.Tn�1/ D i; J.Tn/ D j;Tn � t/

C
X

n�1

pX

iD1
.Xi.t/ � Xi.Tn�1//�.J.Tn�1/ D i;Tn�1 � t < Tn/; (197)

or, equivalently, X.0/ D 0 and

dX.s/ D
pX

iD1
�.J.s/ D i/dXi.s/C

X

n�1

X

1�i;j�p
i¤j

Uij
n�.s D Tn; J.Tn�/ D i; J.Tn/ D j/:

(198)

We denote the stationary measure of .V; J/ by �.�; �/ (.V; J/ is assumed to be
stationary throughout this section). Let QHij D Hji and QJ be time-reversed version of
J (note that QJ has intensity matrix QQ D A�1QTA where A is the diagonal matrix
with ˛ on the diagonal, and that ˛ is also stationary for QJ). QX is constructed by
using (197) with Hij replaced by QHij and J replaced by QJ. In the same way as in
Proposition 2.11 in [11, p. 314], we obtain the following representation of � in the
Markov-modulated case.

�.Œy; b�; i/ D ˛iPi. QX.�Œy � b; y// � y/; (199)

where �Œu; v/ D infft � 0 W QX.t/ … Œu; v/g; u � 0 � v, and Pi.�/ D P.� j QJ.0/ D i/.
Now, we turn our attention towards the identification of `b. The only differences

between the Markov-modulated case and the standard Lévy process case are that
we now have to treat time segments corresponding to different states of J separately
and that state changes in J generate jumps in X. In particular, we get the following
equivalent to (72) [where dX.s/ is given by (198)]

V.t/2 � V.0/2 �
Z t

0C
2V.s�/dX.s/

D �2bU.t/C
Z t

0C
dŒX;X�c.s/C

X

0<s�t

f�2�V.s/�L.s/C 2�V.s/�U.s/

C .�V.s//2g:

where (cf. Corollaries 2.5 and 2.9 on p. 313 in [11])

m D E�X.1/ D
pX

iD1
˛i

�
mi C

X

j¤i

qijEUij
�

(200)
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with mi D EXi.1/. Thus, we have

�2mEV D �2b`b C E�

Z 1

0C
dŒX;X�c.s/

C E�

X

0<s�1
f�2�V.s/�L.s/C 2�V.s/�U.s/C .�V.s//2g:

What remains is to identify terms which is fairly straightforward. It is easily seen
that

E

Z 1

0C
dŒX;X�c.s/ D

pX

iD1
˛i�

2
i ; EV D

pX

iD1

Z b

0

x�.dx; i/:

For the sum of jumps we get (condition on
�
V.s�/; J.s�/�),

E

X

0<s�1
.�V.s//2

D
pX

iD1

Z b

0

�.dx; i/
Z 1

�1
y2�.�x < y < b � x/

�
�i.dy/C

X

j¤i

qijH
ij.dy/

�

C
pX

iD1

Z b

0

�.dx; i/
Z 1

�1
.b � x/2�.y � b � x/

�
�i.dy/C

X

j¤i

qijH
ij.dy/

�

C
pX

iD1

Z b

0

�.dx; i/
Z 1

�1
x2�.y � �x/

�
�i.dy/C

X

j¤i

qijH
ij.dy/

�
:

E

X

0<s�1
�V.s/�L.s/

D
pX

iD1

Z b

0

�.dx; i/
Z 1

�1
x.x C y/�.y � �x/

�
�i.dy/C

X

j¤i

qijH
ij.dy/

�
;

E

X

0<s�1
�V.s/�U.s/

D
pX

iD1

Z b

0

�.dx; i/
Z 1

�1
.b�x/.y � b C x/�.y � b � x/

�
�i.dy/C

X

j¤i

qijH
ij.dy/

�
;
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Putting the pieces together, we get the final expression for `b in the Markov-
modulated case,

`b D 1

2b

(

2

 
pX

iD1

Z b

0

x�.dx; i/

! 
pX

iD1
˛i

�
mi C

X

j¤i

qijEUij
�!

C
pX

iD1
˛i�

2
i C

pX

iD1

Z b

0

�.dx; i/
Z 1

�1
'.x; y/

�
�i.dy/C

X

j¤i

qijH
ij.dy/

�
)

:

(201)
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